JPH01133349A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPH01133349A
JPH01133349A JP29241187A JP29241187A JPH01133349A JP H01133349 A JPH01133349 A JP H01133349A JP 29241187 A JP29241187 A JP 29241187A JP 29241187 A JP29241187 A JP 29241187A JP H01133349 A JPH01133349 A JP H01133349A
Authority
JP
Japan
Prior art keywords
forming
region
lower electrode
thin film
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29241187A
Other languages
Japanese (ja)
Other versions
JPH07120710B2 (en
Inventor
Toshimasa Sadakata
定方 利正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62292411A priority Critical patent/JPH07120710B2/en
Priority to KR1019880015179A priority patent/KR910009784B1/en
Publication of JPH01133349A publication Critical patent/JPH01133349A/en
Publication of JPH07120710B2 publication Critical patent/JPH07120710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simplify process control, by using a P-type or an N-type diffusion region which is formed before performing an emitter diffusion process as a lower electrode region having MIS type capacity and coating the surface of a nitriding silicon film acting as a dielectric thin film with a CVD oxide film as well before depositing phosphorus for use in forming an emitter region. CONSTITUTION:A lower electrode region 26 is formed prior to performing an emitter diffusion process and after forming a dielectric thin film 29 having MIS type capacity at the surface of the above region 26, a CVD oxide film 28 is deposited at the whole surface of the thin film so as to cover the dielectric thin film 29. Then, the oxide film is selectively removed and an emitter region 30 of an NPN transistor is formed by depositing N-type impurities. Thus, a heat-treating process which has an effect on hFE of the NPN transistor after forming the emitter region 30 is eliminated and the dielectric thin film 29 is protected from a phosphorus deposit for use in forming the emitter region.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はMIS型容全容量素子み込んだ半導体集積回路
の、NP!lランジスタのh□制御を容易ならしめた製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention is directed to a semiconductor integrated circuit incorporating an MIS type capacitive element. The present invention relates to a manufacturing method that facilitates h□ control of an l transistor.

(ロ)従来の技術 バイポーラ型ICは、コレクタとなる半導体層表面にベ
ース、エミッタを2重拡散して形成した縦型のNPN)
ランジスタを主体として構成されている。その為、前記
NPNトランジスタを製造するベース及びエミッタ拡散
工程は必要不可欠の工程であり、コレクタ直列抵抗を低
減する為の高濃度埋込后形成工程やエピタキシャル層成
長工程、各素子を接合分離する為の分離領域形成工程や
電気的接続の為の電極形成工程等と並んでバイポーラ型
ICを製造するのに欠かせない工程(基本工程)である
(b) Conventional technology Bipolar IC is a vertical NPN in which a base and an emitter are double-diffused on the surface of a semiconductor layer that serves as a collector.
It is mainly composed of transistors. Therefore, the base and emitter diffusion processes for manufacturing the NPN transistor are essential processes, as well as the high-concentration embedding formation process and epitaxial layer growth process to reduce the collector series resistance, and the junction isolation of each element. This is an essential process (basic process) for manufacturing bipolar ICs, along with the isolation region forming process and the electrode forming process for electrical connection.

一方、回路的な要求から他の素子、例えばPNPトラン
ジスタ、抵抗、容量、ツェナーダイオード等を同一基板
上に組み込みたい要求がある。この場合、工程の簡素化
という点から可能な限り前記基本工程を流用した方が好
ましいことは言うまでもない。しかしながら、前記ベー
ス及びエミッタ拡散工程はNPNトランジスタの特性を
最重要視して諸条件が設定される為、前記基本工程だけ
では集積化が困難な場合が多い。そこで、基本的なNP
Nトランジスタの形成を目的とせず、他の素子を組み込
む為もしくは他素子の特性を向上することを目的として
新規な工程を追加することがある。例えば前記エミッタ
拡散によるカソード領域とでツェナーダイオードのツェ
ナー電圧を制御するアノード領域を形成する為のP+拡
散工程、ベース領域とは比抵抗が異る抵抗領域を形成す
る為のR拡散工程やインプラ抵抗形成工程、MOS型よ
りも大きな容量が得られる窒化膜容量を形成する為の窒
化膜形成工程、NPNトランジスタのコレクタ直列抵抗
を更に低減する為のコレクタ低抵抗領域形成工程等がそ
れであり、全てバイポーラICの用途や目的及びコスト
的な面から検討して追加するか否かが決定される工程(
オブション工程)である。
On the other hand, due to circuit requirements, there is a demand for incorporating other elements such as PNP transistors, resistors, capacitors, Zener diodes, etc. on the same substrate. In this case, it goes without saying that it is preferable to utilize the basic steps as much as possible in terms of process simplification. However, since the conditions for the base and emitter diffusion steps are set with the most important consideration being given to the characteristics of the NPN transistor, it is often difficult to integrate the base and emitter diffusion steps using only the basic steps. Therefore, basic NP
A new process may be added not for the purpose of forming an N transistor but for the purpose of incorporating other elements or improving the characteristics of other elements. For example, a P+ diffusion process to form an anode region that controls the Zener voltage of the Zener diode with the cathode region by the emitter diffusion, an R diffusion process to form a resistance region with a different resistivity from the base region, and an implant resistance. These include the formation process, the nitride film formation process to form a nitride film capacitor that can obtain a larger capacitance than the MOS type, and the collector low resistance region formation process to further reduce the collector series resistance of the NPN transistor. The process where it is decided whether or not to add an IC after considering its use, purpose, and cost aspects (
option process).

上記オブション工程を利用して形成したMIS型容量を
第2図に示す。同図において、(1)はP型半導体基板
、(2)はN型エピタキシャル層、(3)はN+型埋込
層、(4)はP′″型分離領域、(5)はアイランド、
り6)はエミッタ拡散にょるN+型の下部電極領域、(
7)は高誘電率絶縁体としてのシリコン窒化膜(Si、
N、)、(8)はアルミニウム材料から成る上1部電極
、(9)は酸化膜、(1o)は電極である。
FIG. 2 shows an MIS type capacitor formed using the above optional process. In the figure, (1) is a P-type semiconductor substrate, (2) is an N-type epitaxial layer, (3) is an N+ type buried layer, (4) is a P'' type isolation region, (5) is an island,
6) is the N+ type lower electrode region due to emitter diffusion, (
7) is a silicon nitride film (Si,
N, ), (8) is an upper part electrode made of aluminum material, (9) is an oxide film, and (1o) is an electrode.

尚、窒化膜を利用したMIS型容量としては、例えば特
開昭60−244056号公報に記載されている。
Incidentally, an MIS type capacitor using a nitride film is described in, for example, Japanese Patent Laid-Open No. 60-244056.

(ハ)発明が解決しようとする問題点 しかしながら、従来のMIS型容量は下部電極としてN
PNトランジスタのエミッタ拡散工程を利用している為
、窒化膜の形成工程を全てエミッタ領域形成の後に行わ
なければならない。すると、窒化膜のデボ時に使用する
800″C前後の熱処理がエミッタ領域を拡散きせる為
、NPNトランジスタのh□(電流増幅率)のばらつき
が大きく、hrtのコントロールが難しい欠点があった
(c) Problems to be solved by the invention However, the conventional MIS type capacitor uses N as the lower electrode.
Since the emitter diffusion process of a PN transistor is used, the entire nitride film formation process must be performed after the emitter region is formed. Then, the heat treatment at around 800''C used when devoting the nitride film diffuses the emitter region, resulting in large variations in h□ (current amplification factor) of the NPN transistor, which has the drawback that it is difficult to control hrt.

また、窒化膜の形成に必要なオブション工程を追加した
か否かでエミッタ領域の熱処理条件を変更する必要があ
る為、機種別の工程管理が必要であり、管理の共通化が
できない欠点があった。
In addition, it is necessary to change the heat treatment conditions for the emitter region depending on whether or not an optional process necessary for forming the nitride film is added, so process management is required for each model, and there is a drawback that management cannot be standardized. Ta.

(ニ)問題点を解決するための手段 本発明は衛士した欠点に鑑みてなされ、MIS型容量を
組み込んだ半導体集積回路の製造方法において、エミッ
タ拡散工程に先立って下部電極領域(26)を形成し、
その表面にMIS型容量の誘電体薄膜(29)を形成す
る工程と、誘電体薄膜(29)を覆う様に全面にCVD
酸化膜(28)を堆積する工程と、酸化膜を選択的に除
去してN型不純物をデポジットすることによりNPN 
トランジスタのエミッタ領域(30)を形成する工程と
を具備することを特徴とする。
(d) Means for Solving the Problems The present invention was made in view of the drawbacks, and in a method for manufacturing a semiconductor integrated circuit incorporating an MIS type capacitor, a lower electrode region (26) is formed prior to an emitter diffusion step. death,
A process of forming a dielectric thin film (29) of MIS type capacitance on the surface, and a CVD process on the entire surface so as to cover the dielectric thin film (29).
NPN is formed by depositing an oxide film (28), selectively removing the oxide film, and depositing N-type impurities.
The method is characterized by comprising a step of forming an emitter region (30) of a transistor.

(*)作用 本発明によれば、誘電体薄膜(29)形成後にエミッタ
拡散を行うので、エミッタ領域(30)形成以後のNP
N)ランジスタのhrtに影響する熱処理工程を排除す
ることができる。また、誘電体薄膜(29)を覆う様に
CVD酸化膜(28)を形成してからエミッタ拡散を行
うので、エミッタ形成用のリン(P)のデポジットから
誘電体薄膜(29)を保護することができる。
(*) Effect According to the present invention, since emitter diffusion is performed after forming the dielectric thin film (29), the NP after forming the emitter region (30)
N) A heat treatment process that affects the hrt of the transistor can be eliminated. Furthermore, since the emitter diffusion is performed after forming the CVD oxide film (28) to cover the dielectric thin film (29), the dielectric thin film (29) can be protected from the deposit of phosphorus (P) for emitter formation. Can be done.

(へ)実施例 以下、本発明の一実施例を図面を参照しながら詳細に説
明する。
(F) Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

先ず第1図Aに示す如く、P型のシリコン半導体基板(
21)の表面にアンチモン(Sb)又はヒ素(As)等
のN型不純物を選択的にドープしてN1型埋込Jffi
(22)を形成し、基板(21)全面に厚さ5〜10μ
のN型のエピタキシャル層(23)を積層する。
First, as shown in FIG. 1A, a P-type silicon semiconductor substrate (
21) by selectively doping N-type impurities such as antimony (Sb) or arsenic (As) to the surface of the N1-type buried Jffi.
(22) to a thickness of 5 to 10μ over the entire surface of the substrate (21).
An N-type epitaxial layer (23) is stacked.

次に第1図Bに示す如く、エピタキシャル層(23)表
面からボロン(B)を選択的に拡散することによって、
埋込層(22)を夫々取囲むようにエピタキシャル層(
23)を貫通するP1型の分離領域(24)を形成する
。分離領域(24)で囲まれたエピタキシャルfl?(
23>が夫々の回路素子を形成する為のアイランド(2
5)となる。
Next, as shown in FIG. 1B, by selectively diffusing boron (B) from the surface of the epitaxial layer (23),
Epitaxial layers (
A P1 type isolation region (24) is formed which penetrates through the P1 type isolation region (23). Epitaxial fl? surrounded by isolation regions (24). (
23> is an island (2
5).

次に第2図Cに示す如く、エピタキシャル層(23)表
面からP又はN型不純物を選択拡散することによってア
イランド(25)表面にMIS型容量素子の下部電極と
なる下部電極領域(26)を形成する。
Next, as shown in FIG. 2C, by selectively diffusing P or N type impurities from the surface of the epitaxial layer (23), a lower electrode region (26), which will become the lower electrode of the MIS type capacitive element, is formed on the surface of the island (25). Form.

そして、他のアイランド(25)表面にはボロン(B)
を選択的にイオン注入又は拡散することによってNPN
 トランジスタのベースとなるベース領域(27)を形
成、する。下部電極領域(26)はリン(P)やアンチ
モン(As)を使用したN型領域又はボロン(B)を使
用したP型領域とし、その工程はベース拡散工程の前に
行ってもベース拡散工程の後に行ってもベース拡散工程
そのものを利用してもかまわない、要はエミッタ拡散の
前に形成しておくことが必須である。また、下部電極領
域(26)の拡散深さは全く問わず、不純物濃度はMI
S型容量のヒステリシス特性等の関係から比較的高濃度
、例えば10 ”atoms−cm−”以上であルコト
カ望マシイ。
And boron (B) is on the surface of the other island (25).
NPN by selectively ion implanting or diffusing
A base region (27) that will become the base of the transistor is formed. The lower electrode region (26) is an N-type region using phosphorus (P) or antimony (As) or a P-type region using boron (B), and even if the process is performed before the base diffusion process, the base diffusion process It does not matter if it is performed after the base diffusion process or by using the base diffusion process itself, but it is essential to form it before the emitter diffusion. Moreover, the impurity concentration is MI regardless of the diffusion depth of the lower electrode region (26).
Due to the hysteresis characteristics of the S-type capacitance, it is desirable to use a relatively high concentration, for example, 10 ``atoms-cm'' or more.

次に第1図りに示す如く、エピタキシャル層(23)表
面の酸化膜(28)を選択的にエツチング除去して下部
電極領域(26)表面の一部を露出させ、エピタキシャ
ル層(23)全面に常圧CVD法等の技術を用いて膜厚
数百〜千般百人のシリコン窒化膜(SisN、)を堆積
させる。シリコン窒化膜はシリコン酸化膜よりも高い誘
電率を示すので、大容量を形成することが可能である。
Next, as shown in the first diagram, the oxide film (28) on the surface of the epitaxial layer (23) is selectively etched away to expose a part of the surface of the lower electrode region (26), and the entire surface of the epitaxial layer (23) is etched. A silicon nitride film (SisN) having a thickness of several hundred to several hundred layers is deposited using a technique such as atmospheric pressure CVD. Since a silicon nitride film exhibits a higher dielectric constant than a silicon oxide film, it is possible to form a large capacitance.

そして、前記シリコン窒化膜表面に周知のレジストパタ
ーンを形成し、ドライエッチ等の技術を利用して前記露
出した下部電極領域(26)の表面を覆う誘電体薄膜(
29)を形成する。
A well-known resist pattern is then formed on the surface of the silicon nitride film, and a dielectric thin film (
29).

次に第1図Eに示す如く、常圧又は減圧CVD法によっ
て誘電体薄膜(29)を覆う様に全面に膜厚2000人
前後のノンドープの酸化膜(28)を堆積させ、その後
約800℃前後の温度でCVD酸化膜(28)のベーキ
ングを行う。
Next, as shown in FIG. 1E, a non-doped oxide film (28) with a thickness of about 2,000 nm is deposited on the entire surface to cover the dielectric thin film (29) by normal pressure or low pressure CVD method, and then heated to about 800°C. The CVD oxide film (28) is baked at the same temperature.

次に第1図Fに示す如く、周知のフォトレジスト技術を
利用してベース領域(26)表面とアイランド(25)
表面の酸化膜(28)を選択的にエツチング開孔し、こ
の酸化膜(28)パターンをマスクとしてリン(P)等
のN型不純物を拡散することによりNPNトランジスタ
のエミッタ領域(30)とコレクタコンタクト領域(3
1)を形成する。拡散には例えばリン(P)を含む液体
ソースを使用し、これをスピンオン塗布・焼成すること
によって形成したリンシリケートグラス(PSG)膜(
32)を拡散源とする。この時酸化膜(28)の表面G
QPSG膜(32)のリン(P)と反応してグラス化し
た変質層が生じるが、誘電体薄膜(29)表面は先の工
程で形成したCVD酸化膜(28)によって保護されて
いるので変質しない。
Next, as shown in FIG. 1F, the base region (26) surface and the island (25) are
The oxide film (28) on the surface is selectively etched to open holes, and an N-type impurity such as phosphorus (P) is diffused using the oxide film (28) pattern as a mask to form the emitter region (30) and collector of the NPN transistor. Contact area (3
1) Form. For example, a liquid source containing phosphorus (P) is used for diffusion, and a phosphorus silicate glass (PSG) film (
32) as the diffusion source. At this time, the surface G of the oxide film (28)
It reacts with the phosphorus (P) of the QPSG film (32) to form a glassy altered layer, but since the surface of the dielectric thin film (29) is protected by the CVD oxide film (28) formed in the previous step, no alteration occurs. do not.

次に第1図Gに示す如く、10乃至30%HFなるエツ
チング液によって前記PSG膜(32)を除去する。前
記グラス化した変質層はPSG膜(32)−と同程度の
エツチングレートを示し、選択比が小きいのでCVD酸
化膜(28)の残存膜厚のフントロールが難しい、しか
しながら、誘電体薄膜(29)のシリコン窒化膜(si
ai<)は変質していないので、シリコン酸化膜(Si
log)との選択比が高く、エツチングによる誘電体薄
膜(29)の膜厚の目減りが無い。その為、PSG膜(
32)の除去は誘電体薄膜(29)が露出するまで行っ
てもかまわない、そして、再度CVD法によって改めて
全面にノンドープ又はリンドープの酸化膜を堆積させる
。これはエミッタ領域(30)形成後に酸化性雰囲気内
での熱処理を行わない様にすることでり、のばらつきを
抑えるもので、場合によっては熱酸化でもかまわない。
Next, as shown in FIG. 1G, the PSG film (32) is removed using an etching solution of 10 to 30% HF. The glassy altered layer exhibits an etching rate comparable to that of the PSG film (32), and its selectivity is small, making it difficult to control the remaining film thickness of the CVD oxide film (28). 29) silicon nitride film (si
ai<) has not changed in quality, so the silicon oxide film (Si
log), and there is no reduction in the thickness of the dielectric thin film (29) due to etching. Therefore, PSG film (
32) may be removed until the dielectric thin film (29) is exposed, and then a non-doped or phosphorus-doped oxide film is deposited over the entire surface again by CVD. This prevents heat treatment in an oxidizing atmosphere after forming the emitter region (30) to suppress variations in temperature, and thermal oxidation may be used depending on the case.

次に第1図Hに示す如く、酸化膜(28)上にネガ又は
ポジ型のフォトレジストによりレジストパターンを形成
し、ウェット又はドライエツチングによって酸化膜(2
8)の所望の部分に電気的接続の為のコンタクトホール
を開孔する。また、ウエツトエッチングによって誘電体
薄膜(29)の表面を露出する。
Next, as shown in FIG.
8) Drill a contact hole for electrical connection in a desired portion. Further, the surface of the dielectric thin film (29) is exposed by wet etching.

次に第1図Iに示す如く、エピタキシャル層(23)全
面に周知の蒸着又はスパッタ技術によりアルミニウム層
を形成し、このアルミニウム層をバターニングすること
によって所望形状の電極(33)と誘電体薄膜(29)
上の上部電極(34)を形成する。
Next, as shown in FIG. 1I, an aluminum layer is formed on the entire surface of the epitaxial layer (23) by a well-known vapor deposition or sputtering technique, and this aluminum layer is patterned to form an electrode (33) of a desired shape and a dielectric thin film. (29)
An upper upper electrode (34) is formed.

衛士した本願の製造方法によれば、MIS型容量の下部
電極領域(26〉としてエミッタ拡散工程以前に形成し
たP又はN型の拡散領域を使用したので、誘電体薄膜(
29)の製造工程をエミッタ拡散工程の前に配置するこ
とができる。すると、エミッタ領域(30)形成用のリ
ン(P)のデポジットからリン(P)のドライブインま
での間にMIS型容全容量形成の熱処理を配置する必要
が無く、デポジットによってリン(P)が初期拡散され
た状態から即NPN トランジスタのh□(電流増幅率
)コントロールの為の熱処理(ドライブイン)を行うこ
とができる。その為、NPNトランジスタのhF*のば
らつきが少く、MIS型容量を組み込んだことによるh
□コントロールの難しさを解消できる。
According to the manufacturing method of the present application, since the P or N type diffusion region formed before the emitter diffusion step is used as the lower electrode region (26) of the MIS type capacitor, the dielectric thin film (26) is
The manufacturing process 29) can be placed before the emitter diffusion process. Then, there is no need to perform heat treatment for forming the MIS type total capacitance between the deposition of phosphorus (P) for forming the emitter region (30) and the drive-in of phosphorus (P), and the phosphorus (P) is Heat treatment (drive-in) for controlling h□ (current amplification factor) of the NPN transistor can be performed immediately from the initial diffused state. Therefore, there is little variation in hF* of NPN transistors, and hF* due to the built-in MIS type capacitor
□Can eliminate the difficulty of control.

また、MIS型容量を組み込んだ機種とそうでない機種
とでエミッタ領域(30)の熱処理を一本化できるので
、機種別の工程管理が容易となる。
Further, since the heat treatment of the emitter region (30) can be carried out in a single step for a model incorporating an MIS type capacitor and a model without it, process management for each model becomes easy.

さらに、エミッタ領域(30)形成用のリン(P)のデ
ポジットに先立って誘電体薄膜(29)のシリコン窒化
膜(sisNa)表面をCVD酸化膜(28)テ覆うこ
とによってリン(P)によるシリコン窒化膜表面のグラ
ス化を肪止し、それによってPSG膜(32)エツチン
グ時のシリコン窒化膜の膜厚の目減りを防止するので、
MIS型容量の誘電体薄膜(29)の膜厚を極めて正確
に制御することができる。
Furthermore, prior to the deposition of phosphorus (P) for forming the emitter region (30), the surface of the silicon nitride film (sisNa) of the dielectric thin film (29) is covered with a CVD oxide film (28). This prevents glassing of the surface of the nitride film, thereby preventing reduction in the thickness of the silicon nitride film during etching of the PSG film (32).
The thickness of the dielectric thin film (29) of the MIS type capacitor can be controlled extremely accurately.

〈ト)発明の詳細 な説明した如く、本発明によればMIS型容量をオプシ
ョンデバイスとして追加したことによるNPNトランジ
スタのh□のばらつきが僅んど無い、NPN)ランジス
タのり、のコントロールが極めて容易な半導体集積回路
の製造方法を提供できる利点を有する。また、誘電体薄
膜(29)のシリコン窒化膜(Si8N4)表面をCV
D酸化膜(28)−C”保護するので、シリコン窒化膜
の膜厚の目減りが無く、誘電体薄膜(29)の膜厚を極
めて正確に制御できる利点を有する。また、MIS型容
量を組み込んだ機種とそうでない機種とでエミッタ領域
(30)の処理条件を一本化できるので、機種別の工程
管理を簡略化でき、さらには異る機種のウェハーを同一
拡散炉内で熱処理するといった多機種少量生産が可能に
なる利点をも有する。
(G) As described in detail, according to the present invention, there is almost no variation in h□ of the NPN transistor due to the addition of the MIS type capacitor as an optional device, and the control of the NPN transistor is extremely easy. It has the advantage of being able to provide a method for manufacturing semiconductor integrated circuits. In addition, the surface of the silicon nitride film (Si8N4) of the dielectric thin film (29) was
Since it protects the D oxide film (28)-C'', there is no reduction in the thickness of the silicon nitride film, and it has the advantage that the thickness of the dielectric thin film (29) can be controlled extremely accurately. Since the processing conditions for the emitter region (30) can be unified for different types of models and models that are not, process management for each model can be simplified, and furthermore, wafers of different models can be heat-treated in the same diffusion furnace. It also has the advantage of making it possible to produce small quantities of models.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A乃至第1図Iは夫々本発明を説明する為の断面
図、第2図は従来例を説明する為の断面図である。 (21)はP型半導体基板、 (26)はMIS型容量
の下部電極領域、 (27)はNPNトランジスタのP
型ベース領域、 (28)は酸化膜、 (29)は誘電
体薄膜、  <30)はNPN トランジスタのN+型
エミッタ領域、 (34)は上部電極である。
1A to 1I are sectional views for explaining the present invention, and FIG. 2 is a sectional view for explaining a conventional example. (21) is the P-type semiconductor substrate, (26) is the lower electrode region of the MIS type capacitor, (27) is the P-type semiconductor substrate of the NPN transistor.
(28) is the oxide film, (29) is the dielectric thin film, <30) is the N+ type emitter region of the NPN transistor, and (34) is the upper electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型半導体基板の所望の領域に逆導電型の埋
込層を形成する工程、 前記基板の上に逆導電型のエピタキシャル層を形成する
工程、 前記エピタキシャル層を分離して複数個のアイランドを
形成する工程、 1つのアイランド表面にMIS型容量の下部電極となる
一導電型又は逆導電型の下部電極領域を形成し且つ他の
アイランド表面に前記下部電極領域とは別工程又は同一
工程によって縦型バイポーラトランジスタの一導電型の
ベース領域を形成する工程、 前記下部電極領域表面の一部の領域を露出し、前記MI
S型容量の誘電体薄膜を堆積して形成する工程、 前記誘電体薄膜を覆う様に全面にCVD酸化膜を堆積す
る工程、 前記エピタキシャル層表面の酸化膜を選択的に除去し、
この酸化膜をマスクとして逆導電型の不純物を拡散する
ことにより縦型バイポーラトランジスタのエミッタ領域
を形成する工程、 全面に導電体膜を形成し、前記誘電体薄膜の上に前記M
IS型容量の上部電極を、前記下部電極領域表面には前
記下部電極領域とオーミックコンタクトする電極を配設
する工程とを具備することを特徴とする半導体集積回路
の製造方法。
(1) A step of forming a buried layer of an opposite conductivity type in a desired region of a semiconductor substrate of one conductivity type, a step of forming an epitaxial layer of an opposite conductivity type on the substrate, and a step of separating the epitaxial layer into a plurality of layers. A step of forming an island on the surface of one island, forming a lower electrode region of one conductivity type or the opposite conductivity type, which becomes the lower electrode of the MIS type capacitor, and forming a lower electrode region of one conductivity type or the opposite conductivity type on the surface of the other island, in a process different from that of the lower electrode region or in the same process as the lower electrode region. forming a base region of one conductivity type of the vertical bipolar transistor by a process, exposing a part of the surface of the lower electrode region;
a step of depositing and forming a dielectric thin film of S-type capacitance, a step of depositing a CVD oxide film over the entire surface so as to cover the dielectric thin film, selectively removing the oxide film on the surface of the epitaxial layer,
forming an emitter region of a vertical bipolar transistor by diffusing impurities of opposite conductivity type using this oxide film as a mask; forming a conductive film on the entire surface;
A method for manufacturing a semiconductor integrated circuit, comprising the step of providing an upper electrode of an IS type capacitor, and an electrode in ohmic contact with the lower electrode region on the surface of the lower electrode region.
JP62292411A 1987-11-17 1987-11-19 Method for manufacturing semiconductor integrated circuit Expired - Lifetime JPH07120710B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62292411A JPH07120710B2 (en) 1987-11-19 1987-11-19 Method for manufacturing semiconductor integrated circuit
KR1019880015179A KR910009784B1 (en) 1987-11-17 1988-11-17 Method of fabrication for semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292411A JPH07120710B2 (en) 1987-11-19 1987-11-19 Method for manufacturing semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH01133349A true JPH01133349A (en) 1989-05-25
JPH07120710B2 JPH07120710B2 (en) 1995-12-20

Family

ID=17781436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292411A Expired - Lifetime JPH07120710B2 (en) 1987-11-17 1987-11-19 Method for manufacturing semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH07120710B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113656A (en) * 1984-06-28 1986-01-21 Toshiba Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113656A (en) * 1984-06-28 1986-01-21 Toshiba Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH07120710B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
US4710241A (en) Method of making a bipolar semiconductor device
US5323057A (en) Lateral bipolar transistor with insulating trenches
JPH05347383A (en) Manufacture of integrated circuit
US6573146B2 (en) Methods of manufacturing complementary bipolar transistors
JPH0630359B2 (en) Bipolar transistor manufacturing method
JPS62290173A (en) Manufacture of semiconductor integrated circuit device
US4898839A (en) Semiconductor integrated circuit and manufacturing method therefor
US4898837A (en) Method of fabricating a semiconductor integrated circuit
JPS63200568A (en) Bipolar transistor employing cmos technology and manufacture of the same
US4224088A (en) Method for manufacturing a semiconductor device
JPH01133349A (en) Manufacture of semiconductor integrated circuit
JP2725773B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH02181933A (en) Semiconductor device provided with bipolar transistor and manufacture thereof
JPH01130553A (en) Manufacture of semiconductor integrated circuit
JPH01133350A (en) Manufacture of semiconductor integrated circuit
JPH02135770A (en) Semiconductor integrated circuit
JP2740177B2 (en) Semiconductor integrated circuit
JPH01161764A (en) Manufacture of semiconductor integrated circuit
JPH01133346A (en) Manufacture of semiconductor integrated circuit
JPH01133348A (en) Manufacture of semiconductor integrated circuit
JPH061812B2 (en) Method for manufacturing semiconductor integrated circuit
JPH01184944A (en) Semiconductor integrated circuit
JPH02137258A (en) Manufacture of semiconductor integrated circuit device
JPH061813B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0583191B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term