JP2666810B2 - 磁気記録媒体 - Google Patents

磁気記録媒体

Info

Publication number
JP2666810B2
JP2666810B2 JP4021782A JP2178292A JP2666810B2 JP 2666810 B2 JP2666810 B2 JP 2666810B2 JP 4021782 A JP4021782 A JP 4021782A JP 2178292 A JP2178292 A JP 2178292A JP 2666810 B2 JP2666810 B2 JP 2666810B2
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
layer
recording medium
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4021782A
Other languages
English (en)
Other versions
JPH0573883A (ja
Inventor
博男 稲波
清美 江尻
真二 斉藤
悟 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP4021782A priority Critical patent/JP2666810B2/ja
Priority to US07/873,201 priority patent/US5645917A/en
Priority to EP92107020A priority patent/EP0520155B2/en
Priority to DE69213115T priority patent/DE69213115T3/de
Priority to KR1019920007071A priority patent/KR100231920B1/ko
Publication of JPH0573883A publication Critical patent/JPH0573883A/ja
Priority to US08/761,081 priority patent/US5851622A/en
Priority to US08/761,084 priority patent/US5756148A/en
Priority to US08/763,620 priority patent/US5795646A/en
Priority to US08/760,071 priority patent/US5763046A/en
Priority to US08/760,199 priority patent/US5827600A/en
Priority to US08/759,192 priority patent/US5811166A/en
Priority to US08/760,626 priority patent/US5780141A/en
Priority to US08/760,595 priority patent/US5792543A/en
Priority to US08/846,032 priority patent/US6015602A/en
Priority to US08/846,094 priority patent/US6020022A/en
Priority to US08/846,160 priority patent/US5985408A/en
Priority to US08/846,035 priority patent/US6025082A/en
Priority to US08/845,536 priority patent/US5811172A/en
Application granted granted Critical
Publication of JP2666810B2 publication Critical patent/JP2666810B2/ja
Priority to US09/433,797 priority patent/US6143403A/en
Priority to US09/434,276 priority patent/US6210775B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は磁気記録媒体、特に磁性
層が1.0μm以下の非常に薄層な磁気記録媒体に関
し、更に、詳しくは非常に電磁変換特性に優れ、かつ歩
留りが良好な生産特性の優れた磁気記録媒体に関する。
特に本発明は磁気記録媒体、特に磁性層厚みが1.0μ
以下の高密度な薄層磁気記録媒体に関し、更に詳しく
は本発明は下層として非磁性層を有する磁気記録媒体、
特に電磁変換特性、走行性及び耐久性が改良された磁気
記録媒体に関する。
【0002】
【従来の技術】従来、ビデオテープ、オーディオテー
プ、磁気ディスク等の磁気記録媒体としては、強磁性酸
化鉄、Co変性酸化鉄、CrO2 、強磁性合金粉末等を
結合剤中に分散した磁性層を非磁性支持体に塗設したも
のが広く用いられている。近年、記録の高密度化と共に
記録波長が短くなる傾向があり、磁性層の厚さが厚いと
出力が低下する等の記録再生時の厚み損失の問題が大き
くなっている。このため磁性層を薄くすることが行われ
ているが、磁性層を約2μm以下に薄くすると磁性層表
面に支持体の表面性の影響が現れ易くなり、電磁変換特
性が悪化する傾向があった。
【0003】そのため非磁性支持体表面に非磁性の厚い
下層を設けてから磁性層を上層に設けることにより、前
記した支持体の表面粗さによる問題を解消すると共に磁
性層を薄層とすることによって、厚み減磁を減らし高出
力を達成しようとする試みが提案された。例えば、特開
昭62−154225号公報では磁性層の厚さを0.5
μm以下にするとともに磁性層の表面電気抵抗が高くな
るのを防止するため、磁性層と基体との間に導電性微粉
末を含む厚さが磁性層の厚さ以上の下塗り層を設けた磁
気記録媒体が提案されている。又、特開昭62−222
427号公報には支持体と支持体上に設けられ、平均粒
径が0.5〜3μmの研磨剤を含有する下塗り層と、下
塗り層の上に設けられた強磁性粉末を含有した膜厚1μ
m以下の磁性層を具備した磁気記録媒体が提案さている
が、これは下塗り層中の研磨剤の一部分が磁性層に突き
出しているので、磁気記録媒体の磁気ヘッドクリーニン
グ作用を併せ持つようにしたものである。このように磁
性層を薄くして高密度記録を達成し、同時に下層非磁性
層に帯電防止を図るため、カーボンブラックを含めた
り、クリーニング特性や耐久性を向上するために研磨材
を添加したりしている。
【0004】しかながら、従来の技術は、非磁性支持体
に先ず下層非磁性層を塗布し、乾燥してから場合によっ
て、カレンダー処理をしてから上層磁性層を設けている
ため、製造工程が煩雑であると共に以下のような問題が
あった。即ち、磁性層を薄層化するためには、塗布量を
減らすことか、もしくは磁性塗布液に溶剤を多量に加え
て濃度を薄くすることが考えられる。前者を取る場合、
塗布量を減らすと塗布後に十分なレベリングの時間がな
く、乾燥が始まるために、塗布欠陥、例えばスジや刻印
のパターンが残るといった問題が発生し、歩留まりが非
常に悪くなる。後者の方法を取った場合、磁性塗布液の
濃度が希薄であると、できあがった塗膜に空隙が多く、
十分な強磁性粉末の充填度が得られないこと、また、空
隙が多いために塗膜の強度が不十分であること等、種々
の弊害をもたらす。これらの問題を解決する一つの手段
に、特開昭63−191315号公報に記載されている
ように、同時重層塗布方式を用いて下層に非磁性の層を
設け、濃度の高い磁性塗布液を薄く塗布する方法が提案
された。
【0005】この同時重層塗布方式又は逐次湿潤塗布方
式による場合、即ち下層が湿潤状態にある間に上層を同
時又は逐次に塗布するいわゆるWet on Wet塗
布方式の場合は、すでに重層の磁性層では様々な検討が
為されている。しかしながら下層非磁性層にこの技術を
応用しても同じように良好な結果が得られなかった。つ
まり、Wet on Wetにより下層非磁性層と上層
磁性層を設けると、これら両者の界面において乱れが生
じ、ピンホールが生じたり、磁性層のハジキを生じたり
した。
【0006】又、支持体表面に非磁性の厚い下層を設け
てから磁性層を上層として磁性層を設けるようにした場
合支持体の表面粗さの影響は解消することができるが、
ヘッド摩耗や耐久性が改善されないという問題があっ
た。これは、従来、非磁性下層として熱硬化系(硬化
系)樹脂を結合剤として用いているので、下層が硬化
し、磁性層とヘッドとの接触や他の部材との接触が無緩
衝状態で行われることや、このような下層を有する磁気
記録媒体がやや可撓性に乏しい等のことに起因している
と考えられる。これを解消するために、下層に非硬化性
(熱可塑性)樹脂を結合剤しとて用いることが考えられ
るが、従来の方式では、下層を塗布乾燥後磁性層を上層
として塗布する場合、下層が上層の塗布液の有機溶剤に
より膨潤し、上層の塗布液に乱流を起こさせる等の影響
を与え磁性層の表面性を悪くし、電磁変換特性を低下さ
せる等の問題を生じる。
【0007】又、磁気記録媒体の記録密度を向上させる
ために、短波長記録が進んでおり、8mmビデオテープ
で記録波長は0.54μmに達している。これに対応す
る磁気記録媒体として強磁性金属薄膜を用いたものが実
用化されている。金属薄膜磁気記録媒体は磁性層厚みが
非常に薄いため、厚みによる損失が小さく、このため非
常に出力の高い媒体を得ることができる。しかし、これ
らの媒体は金属を非磁性支持体上に蒸着して製造するた
め、従来の塗布型磁気記録媒体に較べて大量生産性に劣
り、また、金属薄膜であるため、酸化されるなど長期保
存性の面で問題を持っている。これらの問題を解決する
ために、従来の塗布型磁気記録媒体の磁性層を薄層化す
ることが望まれてきた。
【0008】しかしながら、上層磁性層を1.0μm以
下の薄層で塗布しようとするためには、磁性液を大量の
溶剤で希釈せねばならず、磁性液の凝集を促しやすい。
また、乾燥時に大量の有機溶媒が蒸発するために強磁性
粉末の配向性が乱れやすく、長手記録でない媒体、例え
ば磁気ディスクのようなものではある程度性能を確保で
きるが、テープ形状の磁気記録媒体では配向性が悪く、
薄層化を達成しても、配向性悪化と表面性悪化のために
充分な電磁変換特性を確保することが困難である。ま
た、乾燥過多で多くの空隙が発生するために、磁性膜の
強度が弱く、走行耐久性の面でも不十分な結果であっ
た。配向性をよくし、また、塗膜の空隙を少なくするた
めに希釈する有機溶剤を減らそうとすると塗布安定性が
悪くなってしまう。
【0009】この様な問題に対処する手段として非磁性
の粒状研磨剤、またはフィラーを下塗層に含ませること
が提案されている。(特開昭62−222427号、特
開平2−257424号) しかしながらこれらの技術の問題点として、磁性層と非
磁性層を同時に塗布し、上層の磁性体を配向するとき
に、磁場による磁性体の回転運動のため上下層の界面で
の混合が発生し、充分な表面性があられないばかりか、
配向が充分に行なわれないので充分な電磁変換特性が得
られない。
【0010】非磁性の鱗片状粒子としてグラファイトを
用いた導電性中間層を形成させることによって、上層の
磁性粒子の配向性を改善することが提案されている。
(特開昭55−55438号)しかしながらこの様な物
質では、配向性の改善はなされるが、グラファイト自身
には膜の補強効果がないため耐久性上不十分であるた
め、モース硬度5以上の無機粉体を混合する提案もなさ
れている。(特開昭60−125926号) 又、非磁性の針状粒子として針状の蓚酸塩を用いた補強
層を形成させることによって、上層の磁性粒子の配向性
を改善することが提案されている。(特公昭58−51
327号)。
【0011】これら提案により配向性向上と耐久性の確
保はなされるが、実際に媒体を製造する段階では鱗片状
粒子はスタッキングをおこしやすく、また、蓚酸塩のよ
うな物質は結合剤への分散性がよくないため、磁性面の
平滑性を損なうことが判明した。又、磁気記録媒体は高
密度化、高出力化のためにヘッドとのスペーシングロス
を低減するために非常に平滑な表面性が望まれている。
このため、直接表面に出ていない下層非磁性層も極力分
散性が良く、同時重層塗布した場合の表面性が平滑であ
る必要性が増している。また、前述したように磁性層を
薄層化すると更に下層非磁性層の分散性が同時重層した
場合の表面性に寄与する割合が増してきている。鋭意検
討した結果、単純に下層のみの分散性を向上させても、
同時重層した結果、表面が荒れることが判明した。
【0012】また磁性層の保磁力が低いと自己減磁損失
が大きく、短波長記録には適さないので、相当のHcを
有することが必要である。この様な目的に使用できる手
段として非磁性支持体と磁性層の間に0.5μm〜5.
0μmの下塗層を設け、磁性層のHcを1000Oeに
することが提案されている。(特開昭57−19853
6) しかしながら従来公知の技術では、この目的を達成する
には次にあげる問題がある。前述の特開昭57−198
536で開示さている技術で、本件の特徴である上下層
の同時重層塗布を行なうと上下層の混合が起きて表面性
が悪くあるばかりか配向が乱れる。また同時重層塗布に
おいて配向性を改善する技術としては特開平3−490
32にカーボンブラックを分散した層を下層に用い、多
段配向をすることが開示さているが、カーボンブラック
のような真比重の小さなフィラーは、配向時の磁性体の
回転運動によって、同時重層塗布の時に上下層の界面が
乱れ、面内方向に測定したSQは高いものの、本件の目
的である磁性層法線方向の残留保磁力の改善は不十分で
あった。
【0013】この様な技術に対する公知技術として特開
昭62−1115がある。しかしながら同時重層塗布に
おいて、この公知技術を適応すると次のような問題があ
る。すなわち、非磁性の下層低比重のカーボンブラック
を用いて同時重層塗布をした場合には、塗布過程あるい
は、配向過程において該非磁性下層と磁性層の混合、あ
るいは乱流による2層界面の乱れを引き起こす。このよ
うな2層間の混合、乱れは磁性層中の磁性体の配向性を
極度に低下させる。
【0014】さらに長軸長が短く、かつ針状比の小さい
磁性体は流動配向しにくいので、磁性体の配向性はさら
に低下し、充分な電磁変換特性が得られなくなる。近
年、磁性層に含まれる磁性体は高密度化のために微粒子
化が進んでいる。微粒子にすることにより、磁性層の強
度が劣るようになり、例えば製造工程やビデオデッキ内
で高いテンションを被るとテープが伸びてしまい、スキ
ュー(SKEW)歪が大きくなるようになる。これを対
策するために支持体の熱収縮率を小さくしたり強度を高
くすることが図られているが、限界がある。また、同時
重層塗布方式を採用すると逐次重層塗布方式に比べて熱
収縮率が大きくなりSkew歪が増加することも問題に
なっている。これは、逐次重層塗布の場合、下層塗布後
カレンダーや硬化処理して下層を硬くして媒体が伸び縮
みしにくくしていたのであるが、同時重層塗布方式では
下層と上層を一度に塗布するため、下層によって媒体の
伸び縮みを抑制することができないからである。特開昭
63−187418や特開昭63−191315に同時
重層塗布方式による発明が開示されているが、このよう
な欠点があった。
【0015】また、同様に長時間化を図るためにテープ
厚みを薄くしている傾向もある。テープ厚みを薄くする
とテープスチフネスが低下して、ヘッドとの良好な接触
が保てなくなり、電磁変換特性の低下を来すことにな
る。特に、近年普及している8mmビデオテープやVH
Sの長時間テープでは全厚みが14μ以下と薄いために
ヘッド当りを確保することが困難となっている。従来、
媒体厚みが厚いものではむしろ下層非磁性層の強度を下
げて滑らかな接触状態を保つことが効果的であったが、
近年の回転ヘッドによる記録再生装置における薄手テー
プでは下層非磁性層のスチフネスを高くしないとヘッド
当りを確保できにくくなっている。非磁性支持体の延伸
方法でこのスチフネスを制御する方法もあるが、幅方向
スチフネスが低下して走行耐久性に好ましくない。
【0016】特開昭63−191315で示されている
ようにヘッド当りを良好にするために、下層非磁性層に
ポリイソシアネートを含まないことに効果を認めたが、
そのため高温高湿の保存性に劣る結果となっている。そ
のために、保存を重視しないシステムでは有効である
が、業務用やデータ保存のような保存を重視するシスム
では使用しにくい方法である。特開昭63−18741
8についても同様に磁性層を薄層化し、電磁変換特性を
向上させることが開示されているが、該発明では電磁変
換特性的に未だ不十分なものがあった。特開昭50−8
03にもモース硬度6以上の細粒状非磁性顔料を磁性層
と支持体との間に設けるという発明があるが、この発明
の骨子はアルミニウム基盤をモース硬度6以上の非磁性
粉体で研磨して基盤の平面性を増すことを目的としてい
る。
【0017】又、これらの方法では近年の長時間化、高
密度化に伴う磁気記録媒体の薄層化の要請に答えること
が困難で、これらの方法では優れた電磁変換特性と走行
耐久性を両立することが不十分であった。特に薄手テー
プで走行耐久性を向上させるにはテープエッヂダメージ
を少なくすることが必要であり、特開昭63−1913
15や特開昭63−187418の発明では不十分であ
った。
【0018】次に上層が磁性層で下層が非磁性で、かつ
Wet on Wetの方式で磁気記録媒体を得ること
については種々の特許出願がされている。例えば特開昭
50−104003号公報ではWet on Wetを
示唆する記載はあるが非磁性層はカーボンブラックのみ
の例であり、構造粘性が強すぎて、界面の乱れが激しか
った。
【0019】又特開昭62−212922号公報(US
4916024号明細書)には導電性層(中間層)にカ
ーボンブラックの5%〜25%の強磁性粉末を含有する
磁気記録媒体が開示されている。これはカーボンブラッ
クの分散性を改良するために加えているものであるが、
中間層に加える強磁性粉末は磁性層中のものと同程度の
ものを使用しているため、界面の乱れは良好に防止する
ことはできなかった。又特開昭62−214524号公
報には隣接した複数層の各塗布液組成の溶媒及び溶質に
対し相互溶解性を有するように各塗布液組成を選定しW
eton Wetで塗布、乾燥する磁気記録媒体の製造
方法が開示されている。しかしながら上層磁性層、下層
非磁性層の組合せの例示はあるが、結合剤のみの例であ
り、又カーボンブラックも中間層に含むことを示唆はし
ているが、このような開示に基づいては界面の乱れを解
消することはできなかった。 又特開昭62−2411
30号公報(US4839225号明細書)には中間層
が水酸基及び/又はアミノ基を含む結合剤の少なくとも
1つを含みかつ該磁性層がイソシアネート化合物を含む
磁気記録媒体であり、これは両者を化学的に結合させて
中間層と磁性層の密着強度を向上させることを開示して
いる。中間層にはカーボンブラックを添加してもよいこ
と及びWet on Wet法により塗布してもよいと
しているが、このような開示では界面変動を解決するこ
とはできなかった。
【0020】更に特開昭63−88080号公報(US
4854262号明細書)にはドクターエッジを改良し
た塗布装置が開示されている。この中には高剪断速度
(104 sec-1)での粘度の開示はあるが、単に上
層、下層液の粘度を示したに過ぎずこのような開示では
界面変動を充分抑えることはできなかった。又特開昭6
3−146210号公報には下層の磁性層又は非磁性層
の結合剤が非硬化系結合剤であり、最上層の磁性層の結
合剤が電子線硬化型樹脂である磁気記録媒体が開示され
ている。しかしながら下層非磁性塗料にはカーボンブラ
ックを含んだ例のみであり、界面の乱れを解決すること
はできなかった。更に特開昭63−164022号公報
にはエクストルージョン型ヘッドのスロット内で磁性液
層を中央に磁性液層より低粘度の非磁性液層をスロット
前後壁面側に形成して多重層の押出塗布をする磁性液の
塗布方法が開示されている。高い粘度の磁性層液を低い
粘度の非磁性層バインダー溶液を包み、高速薄層塗布性
を増したことを発明しており、磁性層塗布液ビードとギ
ーサー間の間隙を少なくする目的である。このような開
示のみでは界面の乱れを充分解決することはできなかっ
た。又特開昭63−187418号公報(US4863
793号明細書)には上層磁性層に含まれる強磁性粉末
の透過型電子顕微鏡による平均長軸長が0.30μm未
満、X線回折法による結晶子サイズが300Å未満であ
る磁気記録媒体が開示されている。下層の非磁性層には
カーボンブラック、グラファイト、酸化チタンなどを含
むことができると開示され、具体例としてはα−Fe2
3 100重量部と導電性カーボン10部の組合せが開
示されている。しかしながらカーボンの使用量が少ない
こと、α−Fe2 3 の粒子サイズが記載されていない
ため、これら公報の開示では界面の乱れを十分解決する
ことはできなかった。
【0021】更に特開昭63−191315号公報(U
S4963433号明細書)には下層の結合剤が熱可塑
性結合剤であり、且つ下層の厚さが乾燥厚みで0.5μ
m以上である磁気記録媒体が開示されている。下層非磁
性層に含まれる非磁性粉の具体例としては前記の特開昭
63−187418号公報と同じくα−Fe2 3 10
0重量部と導電性カーボン10部の組合せが開示されて
いる。しかしながらカーボンの使用量が少ないことα
−Fe2 3 の粒子サイズが記載されていないため、こ
れらの公報の開示では界面の乱れを解決することができ
なかった。
【0022】更に特開平2−254621号公報にはカ
ーボンブラックを主成分とする非磁性層を設け、その上
にFe−Al系強磁性粉末を含む磁性層をウェット・オ
ン・ウェット重層塗布方式で形成した磁気記録媒体が開
示されている。しかしながら下層の例示はカーボンブラ
ックのみであり、これでは構造粘性が強すぎて、界面の
乱れを解決することはできなかった。
【0023】更に特開平2−257424号公報には非
磁性層に平均粒径が50mμ以上のフィラーを含む磁気
記録媒体が開示されている。フィラーとしては、カーボ
ンブラックやAl2 3 ,SiCのような研磨剤を挙げ
ている。しかしながらその具体例はカーボンブラックの
み、Al2 3 のみ、SiCのみの使用であり、このよ
うな組合せでは界面の乱れを解決することができなかっ
た。
【0024】次に特開平2−257425号公報には動
摩擦係数が0.25以下であり、かつ表面比抵抗が1.
0×109Ω/sq以下である複数の層を設けた磁気記
録媒体が開示されている。しかしながら下層の非磁性粉
の例示はSnO2 のみ、カーボンブラックのみであり、
界面の乱れを解決することはできなかった。又特開平2
−260231号公報には非磁性支持体上に第1の非磁
性層と、第1の磁性層と、第2の非磁性層と、第2の磁
性層とがこの順に積層されている磁気記録媒体が開示さ
れている。この非磁性層は結合剤のみの例示であり、界
面の乱れを解決することはできなかった。
【0025】更に特開平3−49032号公報(US5
051291号明細書)には磁性層の膜厚が1.5μm
以下であり、かつ該磁性層の角型比が0.85以上であ
る磁気記録媒体が開示されている。これは多段配向によ
り角型比を向上させるものであるが、下層はカーボンブ
ラックのみを使用する層であり、構造粘性が強すぎて界
面乱れを解決することはできなかった。
【0026】近年Hi8テープの研究がされ、その究極
のニーズはME(蒸着)テープとMP(メタル)テープ
のメリットの両立にあり、それをMPテープで実現する
にはMPテープの本来の優れた走行性、耐久性、生産適
性を維持すると共に、如何に蒸着テープのような短波長
領域(高域の輝度信号)の高C/N化を達成するかであ
り、最も重要な課題であった。
【0027】従来、ダブルコーティング技術は、VTR
の信号記録メカニズム、すなわち各信号の記録深さに着
目し、それぞれに最適な上、下磁性層の設計とすること
で性能向上を図ってきた。VHSのダブルコーティング
は上層と下層にそれぞれサイズや磁気特性の異なる強磁
性粉末を採用した2層構造で輝度、色、音の全ての帯域
における高出力、低ノイズが実現されてきた。
【0028】そしてHi8MPの重層テープでは上層磁
性層に高密度記録に対応する金属磁性体を用い、下層磁
性層には、中、低域特性に優れた酸化鉄磁性体を用い、
まったく種類の異なる磁性体を用いたいわゆるハイグリ
ッドダブルコーティングが開発され、鮮鋭度高い映像
と、鮮やかな色が再現するなど大巾な画質向上が図られ
た。
【0029】しかしながらHi8MPでの更なる超高密
度記録を追求し、高域特性を飛躍的に向上させるために
は従来の技術や考え方だけでは限界があった。そこで本
発明者らは磁気記録そのものの原理、メカニズムまで踏
み込んで解析、研究を行ない、蒸着テープ以上の高域特
性を実現するために鋭意検討を行なった。
【0030】
【発明が解決しようとする課題】本発明の第1の目的
は、塗布型でありながら蒸着テープに匹敵する高域の出
力を発揮すると同時に走行耐久性、保存性を有する高密
度磁気記録媒体を提供することである。本発明の第2の
目的は、塗布型本発明の第1の目的は、歩留り良くかつ
生産効率を確保して出力、C/N比等の電磁変換特性の
優れた薄層磁気記録媒体を提供することであり、またヘ
ッド当りが良好でかつ保存安定性が良好な薄層磁気記録
媒体を提供することである。
【0031】本発明の第3の目的は電磁変換特性が良好
で走行耐久性に優れる磁気記録媒体を提供することであ
る。とりわけ、短波長記録における出力が高く、また、
生産における歩留まりのよい磁気記録媒体を提供するこ
とである。本発明の第4の目的は、RF出力が高く、か
つ走行耐久性に優れドロップアウトが少なく、ブロック
エラーレート(BER)が低い磁気記録媒体を提供する
ことにある。
【0032】本発明の第5のは電磁変換特性が良好でか
つ走行性が良好なる磁気記録媒体を提供することであ
り、とりわけ同時重層塗布方式で表面粗さが良好で高い
電磁変換特性を有する磁気記録媒体を提供することであ
る。本発明の第6の目的は電磁変換特性が良好な磁気記
録媒体を提供することであり、かつ熱収縮率が小さく、
長期保存性に優れる磁気記録媒体を提供することであ
る。本発明の第7の目的は電磁変換特性が良好な磁気記
録媒体を提供することであり、かつ繰り返し走行による
エッヂダメージ少ない走行耐久性に優れる媒体を提供す
ることである。
【0033】
【課題を解決するための手段】本発明者らは鋭意検討し
た結果、従来同時重層塗布技術を部分的には、基本とし
ながらも、その枠を越え、短波長記録になるほど大き
くなる「信号損失」を徹底的に少なくすることとそのた
めの磁性層の薄層化、磁性層の磁気エネルギーを限り
なく高めるために新磁性体の開発と高密度充填化という
2点が重要点であることを見出した。先ず第1に信号損
失の徹底低減を行なった。磁気記録では、その記録再生
の過程でさまざまな「損失」が発生するが本発明者らは
今までMP(メタル)テープでは避け難いと考えていた
「自己減磁損失」を低減することによって高域特性を向
上させるという、従来にないまったく新しい考え方を見
出した。
【0034】すなわち本発明の第1のポイントは上層磁
性層と下層非磁性層の塗布液のチキントロピー性を同一
もしくは近似したものにすること又は下層非磁性粉の形
状を調節することによって界面に混合領域をなくすこと
により磁性層の厚み1μm以下、厚み変動の平均値を厚
みの1/2以下、厚み測定値の標準偏差を0.2μm以
下という従来にない均一な薄層磁性層を実現し、短波長
領域での自己減磁損失を大幅に低減したものである。
【0035】更に本発明の第2のポイントは上記界面の
乱れを極めて低く押さえると共に上層磁性層の強磁性粉
末のサイズ、形状と下層非磁性層の非磁性粉のサイズ、
形状を調整し、又非磁性粉末自体に分散性を向上する発
明を加えることにより、より均一な変動の少ない界面が
実現できたと共に超平滑な磁性層表面を完成した。この
平滑な磁性層表面が「スペース損失」を徹底追放し、高
域出力が向上した。
【0036】又本発明の第3のポイントは磁性層の高エ
ネルギー化である。上層磁性層にHr、Hc共に高くし
た微粒子の強磁性粉末を用いることにより高磁気エネル
ギー化、高抗磁力化を図り、ME(蒸着)テープ同等以
上の高域出力を発揮することを見出した。本発明の第4
のポイントは高密度充填である。従来の技術では磁性層
を単純に薄層化すると低域出力が低下し、カラー特性が
悪化するが、本発明では厚み方向の剛性が極めて高い微
粒子無機粉がカレンダー処理による充填効果を大巾に向
上し、高エネルギー強磁性粉末を高密度充填することに
より、優れた中、低域特性も実現できることを見出し
た。
【0037】更に本発明の第5のポイントはME(蒸
着)テープでは達成できない優れた耐久性を確保する粘
弾性特性、密着強度、鋼球摩耗、残留溶剤、ゾル分率な
どの特性にある。以上本発明の第1〜第5のポイントが
相互に有機的に補充的に、相剰的に更には総合的に作用
し合い、今までにない新たな層構成が超薄層、超平滑、
超高充填を可能とし従来の単層塗布技術では困難だった
画期的な高域特性と、優れた中、低域特性が実現したも
のである。
【0038】まず本発明の第1のポイントについて述べ
る。すなわち本発明の上記目的は非磁性支持体上に少な
くとも非磁性粉末を結合剤に分散した下層非磁性層を設
け、その上に前記下層非磁性層が湿潤状態のうちに、強
磁性粉末を結合剤に分散した上層磁性層を設けた少なく
とも二層以上の複数の層を有する磁気記録媒体におい
て、前記上層磁性層の乾燥厚み平均値(d)が1.0μ
m以下であり、かつ前記上層磁性層と下層非磁性層の界
面における厚味変動の平均値ΔdがΔd≦0.50d
関係にあることを特徴とする磁気記録媒体によって達成
できる。
【0039】すなわち本発明の第1のポイントは超薄層
磁性層を実現したものである。自己減磁の原理から磁性
層の断面積が小さくなるほど損失は小さくなるので短波
長信号の出力アップのためには、磁性層の超薄層化が不
可欠であることを見出したものである。しかも1μm以
上の厚みでは効果が小さく、一般に記録波長の1/4と
いわれている有効記録厚みに近づくほど、すなわち飽和
記録に近づくほど、その効果が大きくなるため、サブミ
クロン単位の超薄層化が必要である。
【0040】従来の単層塗布技術では、サブミクロン領
域の薄層塗布自体が難しい上、薄層にすればするほど均
一な厚みの確保や超平滑化が難しく、また、安定して大
量に供給することが極めて困難であった。しかし従来の
ダブルコーティング技術を革新し、下層で微粒子無機粉
を含む非磁性層をWet on Wetで設け、磁性層
の厚み変動の平均値が厚みの1/2以下、磁性層厚みの
標準偏差を0.2μm以下とすることにより従来の一般
的なHi8 MPテープの1/3〜1/10以下という
従来の技術では困難であった画期的な超薄層磁性層が自
己減磁損失を低減させ、輝度信号出力の大巾な向上を実
現したものである。
【0041】自己減磁の原理は以下のようである。磁化
された磁石の磁極は、磁石の外部だけでなく、内部にも
磁界を作る。磁石内部の磁界は、磁化の方向と逆向きで
あり、磁化を減少させる方向に働く。この内部磁界のこ
とを「反磁界」と言い、これによって生じる磁化の減少
が「自己減磁」である。
【0042】そして、その大きさは、磁石の形状に依存
する。つまり、断面積が小さいほど、また磁極間の距離
が大きいほど反磁界が小さくなり、自己減磁は起きにく
くなる。全く形状の異なる、縫い針とパチンコ玉を例に
とって説明すると、いずれも鉄製で、磁石にくっつく
が、縫い針は自己減磁が小さいのでそれ自信が磁石にな
り易く、一方、パチンコ玉は自己減磁が大きいので、自
分自身は磁石にはなりにくい性質を持っている。
【0043】これを磁気テープに置き換えた場合、長波
長(低域)記録では反磁界は小さいが、短波長(高域)
記録になるほど、磁化の磁極間距離が小さくなって反磁
界が増大し、自己減磁による損失が大きくなる。これ
が、テープの高域特性を劣化させる一つの大きな要因で
ある。この自己減磁損失を小さくするためには、自己減
磁の原理に従って、断面積を小さくすること、すなわち
磁性層の厚みを薄くすることが有効である。しかも、自
己減磁損失は飽和記録に近づくほど小さくなって出力が
向上するため、記録波長の1/4といわれる有効磁性層
厚みに近づける。サブミクロン領域の超薄層化が必要で
ある。
【0044】Hi8の最短記録波長は0.49μmと、
極めて短波長であり、これが磁性層厚み約0.2μmと
極めて薄いME(蒸着)テープと同様に優れた高域特性
をもつ理由のひとつである。一方、塗布型MPテープの
磁性層厚みは約3μmであり、これまでの塗布方式では
記録波長よりかなり厚くならざるをえず、自己減磁損失
による高域特性の劣化が、画質向上をはかる上で避けら
れない大きな壁であった。
【0045】しかし本発明により、このような壁を大き
く打ち破ったのである。またスペース損失も重要な要因
である。自己減磁と並び、高域特性劣化のもうひとつの
大きな原因となっているのがスペース損失である。短波
長ほどテープ表面に出る磁束が弱まるため、テープとビ
デオヘッドのごく僅かなスペーシングでも、大きな損失
となる。スペース損失には、磁性層表面の粗さに起因す
るミクロ的なものと、テープの剛性に起因するマクロ的
なものがある。前者は、いかに超平滑性を実現しながら
安定した走行性を確保するかが課題であり、特にHi8
のように、最短記録波長がVHSの約40%という高密
度記録では、その重要性がきわめて高くなる。後者はい
わゆる「ヘッド当り」と言われているもので、優れたテ
ープ強度としなやかさをいかに両立するかが課題であ
る。これは短波長記録に限らず画質への影響が非常に大
きくなるものである。本発明はこのスペース損失の問題
も一挙に解決したものである。
【0046】次に本発明の第2のポイントについて述べ
る。すなわち本発明は、前記上層磁性層の乾燥厚みdが
1.0μm以下であり、且つ前記上層磁性層表面の走査
型トンネル顕微鏡(STM)法による2乗平均粗さR
rms が前記上層磁性層の乾燥厚みdとの間に30≦d/
rms の関係があることが好ましい。
【0047】本発明の第2のポイントは、磁性層表面の
超平滑化である。ダブルコーティング技術は、元来、優
れた平滑性を実現できる技術である。それは、ベースフ
ィルム表面の凹凸を下層磁性層が吸収し、上層へその凹
凸の影響を伝えにくくするからである。しかし、0.5
μm以下の、より短波長でのごく僅かなスペース損失を
も問題にし、さらなる平滑性を目指した時、従来技術だ
けでは限界があった。
【0048】記録メカニズム上、上層には高域特性に優
れた超微粒子磁性体を使用する必要があり、比較的大き
な下層非磁性粉末によって起こる粒子サイズ単位のごく
微小な上下層界面の乱れさえも、徹底的に追求する必要
があるからである。特に、上層を超薄層にするほど、界
面の平滑性が磁性層表面の平滑性に与える影響が大きく
なり、この課題の解決が一段と重要であった。
【0049】本発明では、上下層界面の超平滑化をはか
るため、下層非磁性粒子の超微粒子化と、その高密度充
填化を追求した。しかし一方では、きわめて微粒子のた
め、そのままでは均一に、かつ高密度に充填させること
が困難であり、そこで超微粒子のひとつひとつの表面に
特殊表面処理を施し、分散性を高めることで、高密度充
填を実現し、上下層界面の平滑さを飛躍的に高めたもの
である。
【0050】また、この非磁性層は高密度充填層である
ため、テープの面方向に対しては自由度が高く、優れた
しなやかさを持ちながら、厚み方向の力に対しては、き
わめた高い剛性を発揮し、カレンダー処理による平滑化
効果を、一段と高めたものである。その結果、Hi8
MP−DCに比べ、さらに20%もの平滑化を実現し、
磁性層の表面粗さ2.5nmを達成した。下層に非磁性
層を設けたWet onWetだからこそ実現できた超
平滑性が、短波長領域におけるスペース損失を大巾に低
減し、高域特性を向上させることができたものである。
【0051】次に本発明の第3のポイントについて述べ
る。すなわち本発明は、前記上層磁性層に含まれる強磁
性粉末が、長軸長が0.3μm以下で、且つHcが15
00Oe以上の針状強磁性合金粉末あるいは板径0.3
μm以下の粉末であり、且つHcが1000Oe以上の
板状強磁性粉末であることが好ましい。
【0052】すなわち本発明の第3のポイントは、磁気
テープの性能向上技術の基本である磁性層の高出力・低
ノイズ化である。短波長での特性向上を徹底追求するた
めには、信号損失の極小化とともに、「磁性体の超微粒
子化、高エネルギー化と、その高密度充填化」による磁
性層自体の高出力、低ノイズ化が不可欠である。次に本
発明の第4のポイントについて述べる。
【0053】すなわち本発明は、前記磁気記録媒体の塗
布方向ステイフネスSMDと塗布方向に対して幅方向のス
テイフネスSTDとの比SMD/STDが1.0〜1.9であ
ることが好ましい。具体的には前記下層非磁性層に含ま
れる無機質粉末のモース硬度が6以上、平均粒径が0.
15μm以下の球状から立方体状までの多面体状無機質
粉末からなることが好ましい。
【0054】又、本発明は、前記磁気記録媒体の80
℃、30分間に於ける熱収縮率が0.4%以下であるこ
とが好ましく、具体的には前記下層非磁性層の乾燥厚み
が前記上層磁性層の乾燥厚みの1倍〜30倍であり、且
つ前記下層非磁性層の粉体体積比率と前記上層磁性層の
粉体体積比率との差が、−5%〜+20%の範囲にある
ことが好ましい。
【0055】すなわち本発明の第4のポイントは高密度
充填であり、本発明の磁性体の高密度充填を可能にした
のが下層の非磁性層である。平滑で、かつ厚み方向に対
してきわめて剛性の高い非磁性層が、スーパーHDP
(High DensityPacking)カレンダ
ーの強力な圧力をしっかりと受け止め、従来にない画期
的な高密度充填を実現した。
【0056】又磁性層の超薄層化によって高域特性を徹
底追求すると、従来の技術では中・低域特性が低下し、
優れたカラー特性が得られなくなる。しかし、本発明の
下層非磁性層がこれを解決した高エネルギー磁性体の画
期的な高充填化を可能にし、高域出力の大幅な向上と同
時に、高い中・低域特性を確保し優れたカラー出力を実
現できたものである。
【0057】すなわち本発明では従来塗布型の磁気記録
媒体では不可能と考えられていた蒸着テープに匹適する
ほどの高密度記録が達成できたものであり、これは前記
下層非磁性層が湿潤状態のうちに前記上層磁性層を設け
るいわゆるWeton Wet法によって、均一な上層
磁性層を乾燥厚み1.0μm以下という薄層で形成でき
たこと、及び、従来このようなWet on Wet法
による磁気記録媒体法では達成されていなかった上層磁
性層の乾燥厚みの平均値が1μm以下であり、かつ前記
上層磁性層と下層非磁性層の界面における厚み変動の平
均値ΔdをΔd≦d/2の関係にしたことによって初め
て現実に実用可能な、塗布型で蒸着テープに匹敵する高
密度記録媒体が得られたものである。従来乾燥厚さ1.
0μm以下の上層磁性薄層、下層非磁性層の磁気記録媒
体は特許出願として散見されるのみであり、今だかつて
現実に市販されるような製品は見出されていなかった。
本発明はこのような従来の常識を初めて破る画期的な発
明である。
【0058】ここでΔdの定義、測定方法は以下の通り
である。ここで上層磁性層の厚みと界面変動Δdの求め
方は以下の通りである。すなわち磁気記録媒体を長手方
向にわたってダイアモンドカッターで約0.1μmの厚
みに切り出し、透過型電子顕微鏡で倍率10000〜1
00000倍好ましくは20000〜50000倍で観
察し、その写真撮影を行った。写真のプリントサイズは
A4〜A5で行った。その後、上層磁性層、下層非磁性
層の磁性体や非磁性粉末の形状差に注目して界面を目視
判断して黒くふちどり、かつ磁性層表面も同様に黒くふ
ちどりをした。その後Zeiss社製画像処理装置IB
AS2にてふちどりした線の間隔の長さを測定した。こ
れにより上層磁性層厚みの平均値を求めた。間隔の長さ
は長さ21cmの間隔を100〜300にセグメント化
してその長さを測定した。
【0059】上層磁性層と下層非磁性層との界面におけ
る厚み変動の平均値Δdは、長さ20μm(実長)中の
磁性層と下層非磁性層の前記ふちどりをした界面が形成
する山の頂きと谷の底部の厚さ方向の距離(Δdi )を
10〜20ヵ所(20μm中全て)求めその総和の平均
値とした。即ち、本発明においては、該界面を形成する
曲線は理想的にはdが一定な直線であることが最も好ま
しい態様であるが、現実的には従来に比べ振幅の小さな
かつ山と谷の間隔が長い滑らかなサイン曲線に類似した
曲線が形成されたものが好ましく、山及び谷の数は、2
0μm長に最大各10〜20個程に制限されることが好
ましい(図1参照)。
【0060】即ちΔdは下式より求まる。 Δd=(Δd1 +Δd2 +… +Δdm )/m(m=1
0〜20) 又、界面が形成する曲線の山−山間の距離(L)は、好
ましくは1μm以上、特に好ましくは2μm以上が好ま
しい。又、本発明においては、前記100〜300にセ
グメント化した各磁性層厚みの値を統計処理で用いるも
のと全く同じものを使用して標準偏差σを求めることが
できる。この標準偏差σは0.2μm以下であることが
好ましい。
【0061】本発明の第1のポイントは、非磁性支持体
上に少なくとも非磁性粉末を結合剤に分散した下層非磁
性層を設け、その上に前記下層非磁性層が湿潤状態のう
ちに、強磁性粉末を結合剤に分散した上層磁性層を設け
た少なくとも二層以上の複数の層を有する磁気記録媒体
において、前記上層磁性層の乾燥厚み平均値(d)が
.0μm以下であり、かつ前記上層磁性層と下層非磁
性層の界面における厚味変動の平均値ΔdがΔd≦0.
50dの関係にあることを特徴とする磁気記録媒体によ
って達成でき、好ましくは、前記上層磁性層の乾燥厚味
の測定値の平均値の標準偏差σが0.2μm以下である
ことを特徴とする磁気記録媒体によって達成できる。
【0062】上記規定を達成するための具体的手段とし
ては、以下の2つがある。第1の態様は、磁性層の磁性
塗料と下層非磁性層の各分散液のチキソトロピー性を互
いに近似するように制御することであり、第2の態様
は、下層非磁性層と磁性層に含まれる粉体のサイズ、形
状を規定して力学的に上層および下層に混合領域が生じ
ないように制御することである。
【0063】第1の態様の具体的方法としては、非磁性
粉末を結合剤中に分散してなる分散液が、チキソトロピ
ー性を持ち、剪断速度104 sec- 1 での剪断応力A
104 と剪断速度10sec- 1 での剪断応力 A10
との比A104 /A10を100≧A104 /A10≧
3に調整することである。このようなチキソトロピー性
を有するための具体的な手段としては以下の4つがあ
る。本発明の磁気記録媒体はこの4つに限定されるもの
ではなく、あくまでもその本質とするところは前記分散
液のチキソトロピー性を前記磁性塗料のチキソトロピー
性と同一又は近似した値にすることであり、更に具体的
にはA104/A10の値の範囲とすることにある。 (A)下層非磁性層の前記粉末が少なくともカーボンブ
ラックと前記下層非磁性層の乾燥厚みより小さい平均一
次粒子径の無機粉末を含みかつ前記下層非磁性層と上層
磁性層に熱硬化系ポリイソシアネートを結合剤中に10
〜70重量%含むこと。 (B)下層非記録層の粉末が平均一次粒子径0.08μ
m以下である非金属無機粉末を含むこと。 (C)上層磁性層の乾燥厚みが1.0μm以下で、且つ
前記下層非磁性層の飽和最大磁束密度Bmが30〜50
0ガウスであるようにチキソトロピー性を付与する磁性
粉末を使用すること。ただし、下層非磁性層は記録に関
与しない。 (D)上層磁性層の強磁性粉末が長軸長が0.3μm以
下、結晶子サイズが300m以下であり、下層に非磁
性粉末として非磁性金属酸化物粉末と平均粒径が20n
m未満のカーボンブラックを95/5〜60/40の割
合で含み、かつ少なくとも下層に一分子中に3個のOH
基を有するポリウレタンとポリイソシアネート化合物を
含むこと。
【0064】これら、(A)〜(D)は、A104 /A
10を前記範囲に調整するための好適な手段を示したも
のであるが、これらは、例えば、下記の因子とも互いに
関係(重複した記載も含む)があり、種々選定すること
により、所望のA104 /A10を有する分散液、磁性
塗料を得、ひいては所期の特性を有する磁気記録媒体を
製造することができる。
【0065】該因子としては、例えば、分散される無機
粉末あるいは磁性粉末に関しては、(1)粒子サイズ
(比表面積、平均一次粒子径等)、(2)構造(吸油
量、粒子形態等)、(3)粉体表面の性質(pH、加熱
減量等)、(4)粒子の吸引力(σS 等) 等、結合剤に
関しては、(1)分子量、(2)官能基の種類等、溶剤
に関しては(1)種類(極性等)、(2)結合剤溶解
性、(3)溶剤処方量等、含水率等が挙げられる。
【0066】次に第2の態様の具体的手段としては、下
記(E)〜(G)が挙げられるが、あくまでもその本質
とするところは前記下層非磁性層と上層磁性層の間に混
合領域をなくすことにあり、これらは単なる例示にすぎ
ない。 (E)下層に含有される非磁性粉末の最も長い軸長r1
と最も短い軸長r2 との比r1 /r2 を2.5以上にす
ること。 (F)非磁性粉末が針状比が2.5以上であり、かつ強
磁性粉末の最も長い軸長の平均径を0.3μm以下とす
ること。 (G)下層非磁性層に鱗片状の非磁性粉末と分子量3万
以上のエポキシ基を含む結合剤を含ませ、かつ上層磁性
層に針状の強磁性粉末又は板状の強磁性粉末を含ませる
こと。
【0067】これらは、下層非磁性層と上層磁性層との
界面において混合領域が生じないようにするため、下層
非磁性層に針状非磁性粉末あるいは鱗片状非磁性粉末を
用いている。従来の粒状の非磁性粉末に比べ、針状の非
磁性粉末が整列して存在すると未乾燥状態でも強固な塗
膜を形成し、上層磁性層の強磁性粉末が回転しても、そ
の界面で混合を生じない。又、混合領域が生じないよう
にするためのもう1つの手段は下層非磁性層に鱗片状の
非磁性粉末を用いて、いわばタイル状に敷きつめること
であり、上記と同様、上層磁性層の強磁性粉末が回転し
てもその界面で混合が生じない。
【0068】このタイル状に敷き詰めることは、分散性
を改良するため分子量3万以上のエポキシ基を含む結合
剤を用いることが好ましい。このように下層非磁性層に
形状的に特徴のある非磁性粉末を用い、その上に上層磁
性層を設けることにより、界面に混合領域が生じず、従
って、極めて薄層な、かつ平滑な磁性層が得られる。
【0069】また、本発明の磁気記録媒体は、磁性層の
乾燥厚味平均値dが最短記録波長λに対してλ/4≦d
≦3λかつ前記磁性層の表面粗さRaがRa≦λ/50
の関係にあることが好ましい。このための好適な粉体構
成は、磁性層中の前記強磁性粉末は長軸長が0.3μm
以下の針状強磁性粉末あるいは板径が0.3μm以下の
板状強磁性粉末であること、下層非磁性層中の非磁性粉
末が、平均粒径がλ/4以下の粒状粒子、もしくは長軸
長が0.05〜1.0μmで針状比が5〜20の針状粒
子、又は板径が0.05〜1.0μmで、かつ板状比が
5〜20の板状粒子であることが好ましい。
【0070】このような本発明の表面性を達成するの
は、前記上層磁性層平均厚味の標準偏差を0.2μm以
下にする発明もベースにすると共に以下の(H)〜
(J)の4つの手段によって達成できる。 (H)下層非磁性層に含まれる非磁性粉末がモース硬度
3以上の無機質粉末を含み、上層磁性層に含まれる強磁
性粉末が針状の強磁性粉末であり、前記無機質粉末の平
均粒径が針状の強磁性粉末の結晶子サイズの1/2〜4
倍であること。 (I)下層非磁性層に含まれる非磁性粉末がモース硬度
3以上の無機質粉末を含み、上層磁性層に含まれる強磁
性粉末が針状の強磁性粉末であり、前記無機質粉末の平
均粒径が針状の強磁性粉末の長軸長の1/3以下である
こと。 (J)上層磁性層に含まれる強磁性粉末が、磁化容易軸
が平板の垂直方向にある六角板状の強磁性粉末であり、
且つ下層非磁性層に含まれる非磁性粉末が無機質粉末を
含み、その平均粒径が前記上層磁性層に含まれる強磁性
粉末の板径以下であること。 (K)下層非磁性層に含まれる無機質粉末が無機質酸化
物で被覆された表面層を有する無機質非磁性粉末を含む
こと。
【0071】上記に述べた夫々の作用効果は以下の通り
である。先ず、(H)について述べる。上層磁性層を1
μm以下の極薄層に塗布するためには湿潤重層塗布が必
要であるが、その際、下層非磁性層に含まれる無機質粉
末の粒子径と上層磁性層に含まれる強磁性粉末の結晶子
サイズとが関連して細かい表面粗さが決定される。結晶
子サイズは針状の強磁性粉末の場合は、概ね短軸径に対
応する。下層非磁性層の無機質粉末の平均粒径が針状の
強磁性粉末の結晶子サイズの1/2以下であると分散そ
のものが困難になり、平滑な下層表面が得られないの
で、できあがった磁気記録媒体の表面平滑性も不十分に
なる。逆に下層の無機質粉末の平均粒径は強磁性粉末の
結晶子サイズの4倍を越えると下層粉体粒子間の粒子間
距離が広がるために、上層強磁性粉末が下層の表面性の
影響を受けるので十分な表面性を得ることができない。
実施例に示すように十分な表面性を得るためには上層針
状強磁性粉末結晶子サイズの1/2〜4倍、更に好まし
くは2/3〜2倍の平均粒径を有する無機質粉末が好ま
しいのである。無機質粉末の形状としては、球状、サイ
コロ状が好ましい。また、モース硬度は3以上、好まし
くは4以上、更に好ましくは以上である。
【0072】又、無機質粉末の下層における体積充填率
が20〜60%、更に好ましくは25〜55%の範囲で
あることが望ましい。上記のような下層非磁性粉末粒子
径と上層強磁性粉末の結晶子サイズとの関係で表面粗さ
を小さくするためには下層粉体の体積充填率に好ましい
範囲がある。体積充填率が20%以下であると下層粉体
粒子間の距離が大きくなり、上層磁性層表面が下層粉体
表面の粗さの影響を被るようになり、また、下層に上層
強磁性粉末が混入することにもなり、非常に激しく表面
が粗くなる。また、角形比が低下することにもなる。ま
た、体積充填率が60%以上であると分散液の粘度が非
常に高くなり、実質的に塗布することが不可能になる。
塗布されても走行耐久性の面で粉落ち等の問題を生ずる また、無機質粉末は、非磁性粉末のうち重量比率で60
%以上含むことが好ましく、無機質粉末としては、金属
酸化物、アルカリ土類金属塩等であることが好ましい。
また、カーボンブラックを添加することにより公知の効
果(例えば、表面電気抵抗を低減する)を期待できるの
で、上記無機質粉末と組み合わせて使用することが好ま
しいが、カーボンブラックは分散性が非常に悪いので、
カーボンブラック単独では十分な電磁変換特性を確保す
ることができない。良好な分散性を得るためには重量比
率で60%以上を金属酸化物、金属、アルカリ土類金属
塩から選択する必要がある。無機質粉末が非磁性粉末の
重量比率で60%未満、カーボンブラックが非磁性粉末
の40%以上であると分散性が不十分となり所望の電磁
変換特性を得ることができなくなる。
【0073】次に(I)について以下に説明する。湿潤
重層塗布で電磁変換特性を良好に保つためには角形比を
大きくする必要があるが、上層強磁性粉末に対して下層
非磁性層の無機質粉末の平均粒径が大きいと下層粒子間
の間隙が大きくなり、特に上層と下層との界面で強磁性
粉末の配向の乱れが生じ、(H)と同様に磁性層表面性
を悪化させる。配向の乱れを少なくするためには強磁性
粉末長軸方向に渡って細かい非磁性粉末を並べるように
して、強磁性粉末の長手方向に渡って配向が乱れないよ
うに支えてやる必要がある。そのための要件を実験的に
確認したところ、角形比が単層磁性層と同等になるのは
針状強磁性粉末の場合、長軸長の1/3以下、更に好ま
しくは1/3〜1/20の無機質粉末を使用すると良好
な表面性と角形比を得ることができる。
【0074】また、(J)では上記針状強磁性粉末に代
わって同様な考え方で6角板状強磁性粉末を使用すると
垂直方向に配向して界面の乱れが少なくなり、角形比を
高くすることができる。下層に使用する無機質粉末は、
その板径以下、更に好ましくは板径以下から板径の1/
5以上であることが好ましい。(I)及び(J)では、
(H)と同様な理由から、無機質粉末の下層における体
積充填率は20〜60%が好ましい。
【0075】また、磁性層の厚味が長軸長の5倍以下で
あるとカレンダーによる充填度向上がめざましく、より
電磁変換特性の優れた磁気記録媒体が得られる。無機質
粉末の好ましい種類、性質は、(H)と同様である。次
に(K)について説明する。下層非磁性層に含まれる無
機質粉末の表面に被覆される無機質酸化物としては、好
ましくはAl2 3 、SiO2 、TiO2 、ZrO2
SnO2 、Sb2 3 、ZnO等が好ましく、更に好ま
しいのはAl2 3 、SiO2 、ZrO2 である。これ
らは、組み合わせて使用してもよいし、単独で用いるこ
ともできる。又、目的に応じて共沈させた表面処理槽を
用いても良いし、先ずアルミナで処理した後にその表層
をシリカで処理する構造、その逆の構造を取ることもで
きる。また、表面処理層は、目的に応じて多孔質層にし
ても構わないが、均質で密である方が一般には好まし
い。
【0076】例えば、非磁性無機質粉末の表面処理は、
非磁性無機質粉末素材を乾式粉砕後、水と分散剤を加
え、湿式粉砕、遠心分離により粗粒分級が行われる。そ
の後、微粒スラリーは表面処理槽に移され、ここで金属
水酸化物の表面被覆が行われる。まず、所定量のAl、
Si、Ti、Zr、Sb、Sn、Znなどの塩類水溶液
を加え、これを中和する酸、またはアルカリを加えて、
生成する含水酸化物で無機質粉末粒子表面を被覆する。
副生する水溶性塩類はデカンテーション、濾過、洗浄に
より除去し、最終的にスラリーpHを調節して濾過し、
純水により洗浄する。洗浄済みケーキはスプレードライ
ヤーまたはバンドドライヤーで乾燥される。最後にこの
乾燥物はジェットミルで粉砕され、製品になる。また、
水系ばかりでなくAlCl3 、SiCl4 の蒸気を非磁
性無機質粉末に通じ、その後水蒸気を流入してAl、S
i表面処理を施すことも可能である。
【0077】その他の表面処理法については、「Charac
terization of Powder Surfaces 」, AcademicPressを
参考にすることができる。本態様は、記録波長に応じた
磁性層の最適厚み範囲と下層非磁性層と磁性層界面にお
ける厚み変動(即ち、該界面の厚み方向における変動
幅)を規定することにより、磁性層表面粗さが規定かつ
改善され、ひいては磁性層の厚みを薄くかつ均一、一様
に形成されるので記録波長が短くなっても再生出力変
動、振幅変調ノイズを防止し、高再生出力、高C/Nを
実現することができる。
【0078】言い換えれば、従来、磁性層が薄くなった
時、記録波長が短くなると磁性層全層が記録再生に寄与
するので、磁性層の厚さが変動すると再生出力変動、振
幅変調ノイズがみられたが、本発明はこの欠点を解決し
たものである。
【0079】本発明において、最短記録波長λは、磁気
記録媒体の種類により種々異なるが、例えば、8mmメ
タルビデオでは0.7μm、デジタルビデオでは、O.
5μm、デジタルオーディオでは0.67μmが挙げら
れる。
【0080】本発明の磁性層の厚みdの範囲は、λ/4
≦d≦3λ、好ましくは、λ/4≦d≦2λ(即ち、
0.25≦d/λ≦2)である。また、本発明の磁性層
の厚み平均値dは、通常0.05μm≦d≦1μm、好
ましくは、0.05μm≦d≦0.8μmの範囲であ
る。
【0081】該磁性層厚みは、前記の通り実測して求め
られるが、蛍光X線で磁性層中に特有に含まれる元素に
ついて、既知厚みの磁性層サンプルを測定し、検量線を
作成し、次いで、未知資料のサンプルの厚みを蛍光X線
の強度から求めることもできる。本発明は、Δdを0.
50d以下、即ち、Δd/dを0.5以下、好ましく
は、0.3以下、更に好ましくは0.25以下に制御す
る。また、Δdの範囲は、0.001〜0.5μm、好
ましくは0.03〜0.3μm、更に好ましくは0.0
5〜0.25である。これにより、磁性層厚みの一様性
を確保すると共に表面粗さRaをRa≦λ/50、即ち
λ/Raを50以上、好ましくは75以上、更に好まし
くは80以上に規制することができる。また、本発明に
おいてRaは、光干渉粗さ計を用いて測定した中心線平
均粗さを測定した値をさす。
【0082】本発明の磁気記録媒体は、下層非磁性層が
湿潤状態の内に上層磁性層を塗布して形成されるが、こ
の場合、同時重層塗布でも逐次でも下層非磁性層が湿潤
状態であればかまわないが、同時重層塗布が好ましい。
【0083】即ち、本発明により、例えば、1μm以下
の磁性層を下層非磁性層と同時塗布することで、磁性層
を単独で薄くした場合あるいは、下層非磁性層が乾燥状
態の逐次で積層した場合問題となる塗布欠陥を防止でき
る。
【0084】本発明において、磁性層の厚みに関して
は、単に薄くすればよいとは言えず、本発明者らは、最
短記録波長λに対して最適な範囲があることを見出し
た。すなわち、磁性層厚みがλ/4より薄くなると再生
に寄与する磁束が減少し出力は低下する。また、3λを
越えると同時に記録する記録波長が長い成分の深層記録
磁界により短波長成分が減磁するので、出力が低下す
る。従って、d≦3λ、好ましくは、d≦2λが良い。
【0085】また、媒体の基本性能であるC/Nをとら
えた場合には、従来の厚膜磁性層で問題とされた磁性層
表面の凹凸(いわゆる表面粗さ)に加えて、非磁性層と
磁性層界面での厚み変動が問題となり、これは、磁性層
厚みdがλ/4≦d≦3λの範囲になると、再生出力は
磁性層全体の磁束量の影響を受ける様になるためで、従
来の厚膜磁性層では問題ではなかったことである。本発
明は、この問題に対して、下層非磁性層と磁性層界面の
厚み変動の平均値Δdが磁性層厚みdの1/2以下であ
ることが要求されることを見出したものである。また、
磁性層表面の粗さに関しては従来の厚膜磁性層と同様に
平滑なことが要求され、表面粗さRaが、Ra≦λ/5
0の関係を満たすことが必要である。
【0086】この発明によって、真空中での処理が前提
であり、腐食に弱い金属薄膜媒体の生産性、信頼性の問
題がなく、電磁変換特性が金属薄膜に匹敵し、しかも生
産性に優れた高性能塗布型磁気記録媒体を得ることがで
きる。本発明の第2のポイントを達成する態様は、磁性
層表面の走査型トンネル顕微鏡(STM)法による2乗
平均粗さ Rrms が前記磁性層の乾燥厚味平均値dとの
間に30≦d/Rrms の関係があることである。
【0087】磁性層厚味が薄くなると、自己減磁損失が
低減して出力向上が図れるはずであるが、磁性層厚味低
減により押されしろが少なくなるためにカレンダー成形
性が悪くなり、表面粗さが大きくなる。自己減磁損失低
減による出力向上を図るためには上式の関係を満たすS
TMによる表面粗さが好ましい。AFMによるR
rms は、10nm以下が好ましい。3d−MIRAUで
測定した光干渉表面粗さRaは1〜4nm、P−V値
(Peak−Valley)値は、80nm以下である
ことが好ましい。
【0088】磁性層表面の光沢度は、カレンダー処理後
で250〜400%が好ましい。また本発明の第3のポ
イントを達成するためには、前記上層磁性層に含まれる
強磁性粉末が、長軸長が0.3μm以下で、且つHcが
1500Oe以上の針状強磁性合金粉末あるいは板径
0.3μm以下で、且つ粉末であり、且つHcが100
0Oe以上の板状強磁性粉末であることが好ましい。
【0089】該強磁性粉末としては、針状強磁性合金粉
末、及び板状の六方晶フェライト系強磁性体(Baフェ
ライト、Srフェライト等)、及び板状Co合金粉末が
使用できる。Hc,飽和磁化( σS ) 、は適宜選択して
よいが、特に最短記録波長が1μm以下の短波長記録に
は、Hcが1500(Oe)以上が好ましい。磁性体の
サイズは一般的に高密度記録に対して適合するための針
状のもので長軸長0.3μm以下、板状のもので板径
0.3μm以下のものを用いる。
【0090】本発明の第4のポイントを達成するために
は、前記磁気記録媒体の塗布方向ステイフネスSMDと塗
布方向(長手方向)に対して幅方向のステイフネスSTD
との比SMD/STDが1.0〜1.9であることが好まし
い。ステイフネスを上記値とするためには前記下層非磁
性層に含まれる無機質粉末のモース硬度が6以上、平均
粒径が0.15μm以下の球状から立方体状までの多面
体状無機質粉末のものを使用することが好ましい。
【0091】スチフネスの発明の作用機構は以下の通り
である。本態様は、磁気記録媒体のSMD/STDを制御す
ることにより、磁気記録媒体の力学的特性を制御して、
磁気記録媒体のヘッド当たりを改善すると共に特に短波
長記録における電磁変換特性を改善したものである。即
ち、本態様は、SMD/STDを1.0〜1.9に制御する
ものである。
【0092】塗布方向のスティフネスSMD及び幅方向の
スティフネスSTDは、共に市販のスティフネステスター
を使用して測定できる。例えば、東洋精機社製ループス
ティフネステスターを使用し、製造した磁気記録媒体を
幅8mm、長さ50mmの試料をSMDの測定用には試料
長さ方向が磁気記録媒体の塗布方向と同じになるよう
に、STDの測定用には試料長さ方向が磁気記録媒体の幅
方向と同じになるように切り出してこれを円環として、
内径方向に変位速度3.5mm/秒で変位5mmを与え
るに要する力をmgで表した値を各SMD、STDとするこ
とができる。
【0093】ここで、SMD/STDは、1.0〜1.9、
好ましくは1.1〜1.85に制御される。また、全厚
み13.5±1μmの磁気記録媒体においてはSMDは、
50〜200mg、好ましくは50〜150mg、STD
は、40〜150mg、好ましくは50〜130mgで
ある。SMD/STDの値を制御する手段は特に制限はない
が、好ましくは下層無機質粉末の形状及びモース硬度を
選択することが望ましく、下層に含まれる無機質粉末と
して、モース硬度が6以上、好ましくは6.5以上、平
均粒径が0.15μm以下、好ましくは0.12μm以
下の球状から立方体状までの多面体状無機質粉末を選択
することが望ましい。
【0094】磁気記録媒体のヘッド当たりを良好にする
ためにはテープの各スティフネスをある程度高くするこ
とが必要であり、そのためには、配合する粉体の硬さは
硬い方が好ましい。モース硬度が6未満であると各ステ
ィフネスが低くなり、良好なヘッド当たりが確保できな
い。また、平均粒径が0,15μm以下と小さい方が、
ヘッド当たりが良好である。これは、結合剤との接触界
面が増加するために変形に強くなり、各スティフネスS
MD、STDが向上するためと考えられる。本発明において
は、このSMD/STDを上述の範囲に調整する。
【0095】特に、電磁変換特性に効果が高いのは、S
TDがSMDに近いこと、即ち1に近いことである。下層に
含まれる無機質粉末を球状から立方体までの多面体形状
にすると塗膜の力学物性が等方的になるので、STDを向
上させるのに都合がよい。ここで、多面体形状とは、具
体的には球状、一面が正方形、正5角形、正6角形等の
正n角形あるいは単なるn角形等から1種以上選択され
る正多面体あるいは非正多面体等が例示できるが、好ま
しくは任意に選択した2つの軸比が0.6〜1.4、好
ましくは0.7〜1.3の範囲にあるものが望ましい。
【0096】本発明の第4のポイントを達成するための
他の態様としては、前記磁気記録媒体の80℃、30分
間に於ける熱収縮率が0.4%以下であることであり、
具体的には前記下層非磁性層の乾燥厚みが前記上層磁性
層の乾燥厚みの1倍〜30倍であり、且つ前記下層非磁
性層の粉体体積比率と前記上層磁性層の粉体体積比率と
の差が−5%〜+20%の範囲にあること、前記上層磁
性層に含まれる強磁性粉末の結晶子サイズが300オン
グストローム以下であり、且つ前記下層非磁性層に含ま
れる無機質粉末の平均粒子サイズが0.15μm未満で
ある粒状物、もしくは平均長軸径0.6μm未満である
針状物であること、前記下層非磁性層に含まれる無機質
粉末が酸化チタン、硫酸バリウム、炭酸カルシウム、硫
酸ストロンチウム、シリカ、アルミナ、酸化亜鉛、α酸
化鉄から選ばれた少なくとも1種であること、前記下層
非磁性層が平均粒径30mμ以下であり、かつDBP吸
油量が30〜300ml/100gで、BET法による
比表面積が150〜400m2 /gであるカーボンブラ
ックを第二成分として前記無機質粉末100重量部に対
し、50重量部未満の割合で含むことである。
【0097】本態様は、磁性層厚味が1μm以下の自己
減磁損失が改善された塗布型磁気記録媒体がピンホー
ル、すじなどの塗布欠陥なく生産性よく製造でき、かつ
磁気記録媒体の熱収縮を所定の値以下に抑制したもので
ある。即ち、本態様は70℃、48時間保存後における
熱収縮率を0.4%以下に制御したことにより、スキュ
ー歪みを改善、低減し、しかも強磁性金属薄膜に匹敵す
る電磁変換特性を有する磁気記録媒体を提供するもので
ある。
【0098】言い換えれば、本態様は、磁性層が極めて
薄い磁気記録媒体を生産性よく製造し、かつスキュー歪
みを小さくする適切な磁気記録媒体の強度を上記熱収縮
率で規定できることを見出したものである。ここで、該
熱収縮率は、100×(加熱前の室温における磁気記録
媒体の長さ−70℃の環境下48時間磁気記録媒体をテ
ンションを与えずに保持した後の長さ)÷(加熱前の室
温における磁気記録媒体の長さ)で示される値である。
【0099】本態様において熱収縮率を制御する手段と
しては、特に制限なく、任意の方法が適用できる。該制
御手段としては、具体的には下記に挙げる例が好まし
い。下層非磁性層の乾燥厚味を上層磁性層の乾燥厚味の
1倍〜30倍、好ましくは2〜20倍に制御し、磁気記
録媒体の伸び縮みを下層及び上層の膜強度で制御するこ
とが挙げられる。該厚味比が1倍以下であると磁性層微
粒子化による強度劣化による熱収縮率増大を防ぐことが
できない。また、該厚味比が30倍以上では、塗布厚味
が厚くなるために、残留溶剤が増加し、膜が可塑化する
等の弊害がでる。
【0100】また、下層及び上層の膜強度を調整する手
段としては、下層非磁性層の粉体体積比率と前記上層磁
性層の粉体体積比率との差を−5%〜+20%、好まし
くは0〜15%の範囲に制御することが挙げられる。こ
こで、−5%以下であると磁性層の熱収縮率増大を抑止
できず、また、20%以上増量すると媒体自体が硬くな
りすぎて、粉落ちが多くなり、好ましくない。
【0101】また、本発明において、上層の粉体体積比
率は、10〜50%、好ましくは、20〜45%の範囲
が例示され、下層の粉体体積比率は、20〜60%、好
ましくは、25〜50%の範囲が例示される。この各層
の粉体体積比率は、添加する粉体と結合剤の各量を変更
すること、各層の粉体の粒子サイズ、形状で制御でき
る。結合剤量を増量すると相対的に粉体体積比率が減少
する。また、粉体の粒子サイズは細かい程、熱収縮率低
減に効果があるが、細かすぎると分散が困難になる。
【0102】本態様において、好ましい態様を挙げる
と、例えば、強磁性粉末の粒子サイズとしては、結晶子
サイズが300Å以下、好ましくは100〜250Å、
平均長軸径が0.005〜0.4μm、好ましくは0.
1〜0.3μmの範囲が望ましく、平均長軸径/結晶子
サイズは、3〜25、好ましくは5〜20の範囲が挙げ
られる。強磁性粉末をBET法による比表面積で表せば
25〜80m2 /gであり、好ましくは30〜70m2
/gである。25m2 /g以下ではノイズが高くなり、
80m2 /g以上では表面性が得にくく好ましくない。
【0103】また、下層の無機質粉末の粒子サイズ、形
状としては、平均粒径が0.15μm未満、好ましくは
0.005〜0.7μmである粒状物、平均長軸径が
0.6μm未満、好ましくは0.1〜0.3μmであ
り、平均長軸径/短軸長で表される針状比が4〜50、
好ましくは5〜30である針状物等が例示される。無機
質粉末としては、ルチル型酸化チタン、α酸化鉄、ゲー
タイトが好ましい。
【0104】また、下層に使用される粉体としては、カ
ーボンブラックが挙げられる。このカーボンブラックと
しては、平均粒径が30mμ以下、好ましくは5〜28
mμであり、且つDBP吸油量が30〜300ml/1
00g、好ましくは50〜250ml/100gで、B
ET法による比表面積が150〜400m2 /g、好ま
しくは170〜300m2 /g、pHは2〜10、含水
率は0.1〜10%、タップ密度は0.1〜1g/cc
が好ましい。
【0105】このカーボンブラックは、前記無機質粉末
100重量部に対し、50重量部未満、好ましくは13
〜40重量部の割合で下層に添加されることが好まし
い。該カーボンブラックは、磁気記録媒体の帯電防止、
膜強度の強化等の機能の他、空隙率を制御することによ
り下層の粉体体積比率を制御するためにも使用される。
即ち、空隙率が高いと相対的に粉体体積比率は低下する
ためである。このよな空隙率を制御するためのカーボン
ブラックとしては、構造を持ったカーボンブラックや中
空状カーボンブラックを使用すると効果がある。
【0106】下層の空隙率は、上層の空隙率±10%の
範囲が好ましい。又、下層の空隙率は、10〜30%の
範囲にあることが好ましい。本発明の第5のポイントは
耐久性に係わるものである。本発明の磁気記録媒体を引
張り試験試験機で測定したヤング率が300〜2000
Kg/mm2 、好ましくは、400〜1500Kg/m
2 であり、前記磁性層のヤング率が400〜5000
Kg/mm2 、好ましくは500〜4000Kg/mm
2 、降伏応力は3〜20Kg/mm2 、好ましくは4〜
18Kg/mm2 、降伏伸びが0.2〜8%、好ましく
は0.5〜5%であることが望ましい。
【0107】これは、強磁性粉末、結合剤、カーボンブ
ラック、無機質粉末、支持体が係わってくるので、耐久
性に影響する。又、本発明の磁気記録媒体の曲げ剛性
(円環式スティフネス)は全厚が11.5μmより厚い
場合は好ましくは40〜300mg全厚が10.5±1
μmでは好ましくは20〜90mg又全厚が9.5μm
より薄い場合は好ましくは10〜70mgである。
【0108】これは、主として支持体に関連するもので
耐久性を確保する上で重要である。また、本発明磁気記
録媒体の23℃、70%RHで測定したクラック発生伸
度が好ましくは20%以下が望ましい。また、本発明磁
気記録媒体をX線光電子分光装置を用いて測定した前記
磁性層表面のCl/Feスペクトルαが好ましくは0.
3〜0.6、N/Feスペクトルβが好ましくは0.0
3〜0.12である。
【0109】これは、強磁性粉末、無機質粉末及び結合
剤と関連し、耐久性を得る上で重要である。また、本発
明磁気記録媒体を動的粘弾性測定装置を用いて測定した
前記磁性層のガラス転移温度Tg(110Hzで測定し
た動的粘弾性測定の損失弾性率の極大点)が好ましくは
40〜120℃であり、貯蔵弾性率E′(50℃)が好
ましくは0.8×1011〜11×1011dyne/cm
2 であり、損失弾性率E′′(50℃)が好ましくは
0.5×1011〜8×1011dyne/cm2 であるこ
とが望ましい。また損失正接は、0.2以下であること
が好ましい。損失正接が大きすぎると粘着故障が出やす
い。これらは、バインダー、カーボンブラック、や溶剤
と関連し、耐久性に関連する重要な特性である。
【0110】また、前記非磁性支持体と前記磁性層との
23℃、70%RHでの8mm幅テープの180°密着
強度が好ましくは10g以上であることが望ましい。ま
た、上層磁性層表面の23℃、70%RHの鋼球磨耗が
好ましくは0.7×10-7〜5×10-73 であること
が望ましい。これは、直接に磁性層表面の磨耗を見るも
ので主に強磁性粉末に関連する耐久性の尺度である。
【0111】又、本発明磁気記録媒体をSEM(電子顕
微鏡)で倍率50000倍で5枚撮影した前記磁性層表
面の研磨剤の目視での数が好ましくは0.1個/μm2
以上であることが望ましい。又、本発明の磁気記録媒体
の上層磁性層端面に存在する研磨剤は5個/100μm
2 以上が好ましい。これらは、磁性層の研磨剤と結合剤
により影響を受け、耐久性に効果を発揮する尺度であ
る。
【0112】また、本発明磁気記録媒体をガスクロマト
グラフィーを用いて測定した前記磁気記録媒体の残留溶
剤が好ましくは50mg/m2 以下であることが望まし
い。又、上層中に含まれる残留溶媒は好ましくは20m
g/m2 以下、さらに好ましくは10mg/m2 以下で
あり、上層に含まれる残留溶媒が下層に含まれる残留溶
媒より少ないほうが好ましい。
【0113】また、本発明磁気記録媒体よりTHFを用
いて抽出された可溶性固形分の磁性層重量に対する比率
であるゾル分率が15%以下であることが望ましい。こ
れは、強磁性粉末と結合剤により影響を受けるもので、
耐久性の尺度となる。本発明の磁気記録媒体は、その上
層磁性層に1MHzの短波長記録をし、フェリコロイド
を用いて磁気現像し、微分干渉顕微鏡を用いて10倍で
観察した5mm幅のサンプルの中に連続した黒又は白い
線が5本以内であることが好ましい。
【0114】本発明の磁気記録媒体の摩擦係数(μ)
は、磁性面で0.15〜0.4が好ましく、特に好まし
くは0.2〜0.35であり、又、バック層面は0.1
5〜0.4が好ましく、特に好ましくは0.2〜0.3
5である。又、本発明の磁気記録媒体の接触角は、60
〜130であることが好ましく、特に80〜120が好
ましい。又、ヨウ化メチレンの場合、好ましくは10〜
90°であり、特に好ましくは20〜70°である。
【0115】これら接触角は特に潤滑剤や分散剤によっ
て定まる値である。本発明の磁気記録媒体の磁性層及び
バック層の表面自由エネルギーは、10〜100dy
/cmが、特に好ましい。本発明の磁気記録媒体の表
面電気抵抗は、磁性層表面及びバック層表面共に1×1
9 Ω/sq以下が好ましく、1×108 Ω/sq以下
が特に好ましい。
【0116】以下、本発明が選択可能な一般的事項につ
いて述べる。本発明に使用できる非磁性無機質粉末は、
例えば、金属、金属酸化物、金属炭酸塩、金属硫酸塩、
金属窒化物、金属炭化物、金属硫化物等の非磁性無機質
粉末が挙げられる。具体的にはTiO2 (ルチル、アナ
ターゼ)、TiOX 、酸化セリウム、酸化スズ、酸化タ
ングステン、ZnO、ZrO2 、SiO2 、Cr
2 3 、α化率90%以上のるαアルミナ、βアルミ
ナ、γアルミナ、α酸化鉄、ゲータイト、コランダム、
窒化珪素、チタンカーバイト、酸化マグネシウム、窒化
硼素、2硫化モリブデン、酸化銅、MgCO3 、CaC
3 、BaCO3 、SrCO3 、BaSO4 、炭化珪
素、炭化チタンなどが単独または組み合わせて使用され
る。これら無機質粉末の形状、サイズ等は任意であり、
これらは必要に応じて異なる無機質粉末を組み合わせた
り、単独の非磁性粉末でも粒径分布等を選択することも
できる。
【0117】粒子サイズは、前記(A)〜(K)までの
具体的方法に基づくことが好ましいが、一般的には、粒
状、球状、多面体状の場合、0.01〜0.7μmであ
り、最短記録波長λの1/4以下にすることが好まし
い。針状または板状の場合は、長軸長0.05〜1.0
μm、好ましくは0.05〜0.5で針状比が5〜2
0、好ましくは5〜15、あるいは板径0.05〜1.
0μm、好ましくは、0.05〜0.5μm、板状比
(板径と厚みの比)が5〜20、好ましくは10〜20
のものが用いられる。
【0118】無機質粉末としては、次のものが好まし
い。タップ密度は0.05〜2g/cc、好ましくは
0.2〜1.5g/cc。含水率は0.1〜5%、好ま
しくは0.2〜3%。pHは2〜11、特に4〜10が
好ましい。比表面積は、1〜100m2 /g、好ましく
は5〜70m2 /g、更に好ましくは7〜50m2 /g
である。結晶子サイズは0.01μm〜2μmが好まし
い。DBPを用いた吸油量は5〜100ml/100
g、好ましくは10〜80ml/100g、更に好まし
くは20〜60ml/100gである。SA(ステアリ
ン酸)吸着量は1〜20μmol/m2 、更に好ましく
は2〜15μmol/m2 である。粉体表面のラフネス
ファクターは0.8〜1.5が好ましく、更に好ましく
は2〜15μmol/m2 である。25℃での水への湿
潤熱は200erg/cm2 〜600erg/cm2
好ましい。また、この湿潤熱の範囲にある溶媒を使用す
ることができる。100〜400℃での表面の水分子の
量は1〜10個/100Åが適当である。水中での等電
点のpHは3〜9の間にあることが好ましい。比重は1
〜12、好ましくは3〜6である。
【0119】上記の無機質粉末は必ずしも100%純粋
である必要はなく、目的に応じて表面を他の化合物、例
えば、Al、Si、Ti、Zr、Sn、Sb、Zn等の
各化合物で処理し、それらの酸化物を表面に形成しても
よい。その際、純度は70%以上であれば効果を減ずる
ことにはならない。強熱減量は20%以下であることが
好ましい。
【0120】本発明に用いられる無機質粉末の具体的な
例としては、昭和電工社製UA5600、UA560
5、住友化学社製AKP−20、AKP−30、AKP
−50、HIT−55、HIT−100、ZA−G1、
日本化学工業社製G5、G7、S−1、戸田工業社製T
F−100、TF−120、TF−140、R516、
石原産業社製TTO−51B、TTO−55A、TTO
−55B、TTO−55C、TTO−55S、TTO−
55S、TTO−55D、FT−1000、FT−20
00、FTL−100、FTL−200、M−1、S−
1、SN−100、R−820、R−830、R−93
0、R−550、CR−50、CR−80、R−68
0、TY−50、チタン工業社製ECT−52、STT
−4D、STT−30D、STT−30、STT−65
C、三菱マテリアル社製T−1、日本触媒社製NS−
O、NS−3Y、NS−8Y、テイカ社製MT−100
S、MT−100T、MT−150W、MT−500
B、MT−600B、MT−100E、堺化学社製FI
NEX−25、BF−1、BF−10、BF−20、B
F−1L、BF−10P、同和工業社製DEFIC−
Y、DEFIC−R、チタン工業社製Y−LOP及びそ
れを焼成した物である。
【0121】本発明に使用される非磁性無機質粉末とし
ては、特に酸化チタン(特に二酸化チタン)が好まし
い。以下、この酸化チタンの製法を詳しく記す。酸化チ
タンの製法は主に硫酸法と塩素法がある。硫酸法は、イ
ルミナイトの原鉱石を硫酸で蒸留し、Ti、Feなどを
硫酸塩として抽出する。硫酸鉄を晶析分離して除き、残
りの硫酸チタニル溶液を濾過精製後、熱加水分解を行っ
て、含水酸化チタンを沈殿させる。これを濾過洗浄後、
夾雑物質を洗浄除去し、粒径調節剤などを添加した後、
80〜1000℃で焼成すれば粗酸化チタンとなる。ル
チル型とアナターゼ型は加水分解の時に添加される核材
の種類によりわけられる。この粗酸化チタンを粉砕、整
粒、表面処理などを施して作成する。塩素法は原鉱石天
然ルチルや合成ルチルが用いられる。鉱石は高温還元状
態で塩素化され、TiはTiCl4 にFeはFeCl2
となり、冷却により固体となった酸化鉄は液体のTiC
4 と分離される。得られた粗TiCl4 は精留により
精製した後、核生成剤を添加し、1000℃以上の温度
で酸素と瞬間的に反応させ、粗酸化チタンを得る。この
酸化分解工程で生成した粗酸化チタンに顔料的性質を与
えるための仕上げ方法は硫酸法と同じである。
【0122】また、本発明は下層にカーボンブラックを
使用することができ、公知の効果であるRS (表面電気
抵抗)等を下げることもできる。このカーボンブラック
としてはゴム用ファーネス、ゴム用サーマル、カラー用
ブラック、アセチレンブラック、等を用いることができ
る。比表面積は100〜500m2 /g、好ましくは1
50〜400、DBP吸油量は20〜400ml/10
0g、好ましくは30〜200ml/100gである。
平均粒径は5mμ〜80mμ、好ましくは10〜50m
μ、更に好ましくは10〜40mμである。pHは2〜
10、含水率は0.1〜10%、タップ密度は0.1〜
1g/ccが好ましい。
【0123】本発明に用いられるカーボンブラックの具
体的な例としてはキャボット社製、BLACKPEAR
LS 2000、1300、1000、900、80
0、、880、700、VULCAN XC−72、三
菱化成工業社製#3050、#3150、#3250、
#3750、#3950、#2400B、#2300、
#1000、、#970、#950、、#900、#8
50、#650、#40、MA40、MA−600、コ
ロンビアカーボン社製、CONDUCTEX SC、R
AVEN社製8800、8000、7000、575
0、5250、3500、2100、2000、180
0、1500、1255、1250、アクゾー社製ケッ
チェンブラックECなどが挙げられる。カーボンブラッ
クを分散剤などで表面処理したり、樹脂でグラフト化し
て使用しても表面の一部をグラファイト化したものを使
用しても構わない。また、カーボンブラックを非磁性塗
料に添加する前にあらかじめ結合剤で分散してもかまわ
ない。これらのカーボンブラックは単独、または組み合
わせて使用することができる。
【0124】本発明で使用できるカーボンブラックは、
例えば(「カーボンブラック便覧」、カーボンブラック
協会編)を参考にすることができる。本発明に使用され
る非磁性有機質粉末は、アクリルスチレン系樹脂粉末、
ベンゾグアナミン樹脂粉末、メラミン系樹脂粉末、フタ
ロシアニン系顔料が挙げられるが、ポリオレフィン系樹
脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉
末、ポリイミド系樹脂粉末、ポリフッ化エチレン樹脂粉
末が使用される。その製法は、特開昭62−18564
号、同60−255827号の各公報に記載されている
ようなものが使用できる。
【0125】これらの非磁性粉末は、通常、結合剤に対
して、重量比率で20〜0.1、体積比率で10〜0.
1の範囲で用いられる。なお、一般の磁気記録媒体にお
いては下塗層を設けることが行われているが、これは支
持体と磁性層等の接着力を向上させるために設けられる
ものであって、厚さも0.5μm以下で本発明の下層非
磁性層とは異なるものである。本発明においても下層と
支持体との接着性を向上させるために下塗層を設けるこ
とが好ましい。
【0126】本発明の磁性層に使用する強磁性粉末とし
ては磁性酸化鉄FeOx(x=1.33〜1.5)、C
o変性FeOx(x=1.33〜1.5)、Feまたは
NiまたはCoを主成分(75%以上)とする強磁性合
金粉末、バリウムフエライト、ストロンチウムフエライ
トなど公知の強磁性粉末が使用できるが、強磁性合金粉
末が更に好ましい。。これらの強磁性粉末には所定の原
子以外にAl、Si、S、Sc、Ti、V、Cr、C
u、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、
Ba、Ta、W、Re、Au、Hg、Pb、Bi、L
a、Ce、Pr、Nd、P、Co、Mn、Zn、Ni、
Sr、Bなどの原子を含んでもかまわない。これらの強
磁性粉末にはあとで述べる分散剤、潤滑剤、界面活性
剤、帯電防止剤などで分散前にあらかじめ処理を行って
もかまわない。具体的には、特公昭44−14090
号、特公昭45−18372号、特公昭47−2206
2号、特公昭47−22513号、特公昭46−284
66号、特公昭46−38755号、特公昭47−42
86号、特公昭47−12422号、特公昭47−17
284号、特公昭47−18509号、特公昭47−1
8573号、特公昭39−10307号、特公昭48−
39639号、米国特許第3026215号、同303
1341号、同3100194号、同3242005
号、同3389014号などに記載されている。
【0127】上記強磁性粉末の中で強磁性合金粉末につ
いては少量の水酸化物、または酸化物を含んでもよい。
強磁性合金粉末の公知の製造方法により得られたものを
用いることができ、下記の方法をあげることができる。
複合有機酸塩(主としてシュウ酸塩)と水素などの還元
性気体で還元する方法、酸化鉄を水素などの還元性気体
で還元してFeあるいはFe−Co粒子などを得る方
法、金属カルボニル化合物を熱分解する方法、強磁性金
属の水溶液に水素化ホウ素ナトリウム、次亜リン酸塩あ
るいはヒドラジンなどの還元剤を添加して還元する方
法、金属を低圧の不活性気体中で蒸発させて微粉末を得
る方法などである。このようにして得られた強磁性合金
粉末は公知の徐酸化処理、すなわち有機溶剤に浸漬した
のち乾燥させる方法、有機溶剤に浸漬したのち酸素含有
ガスを送り込んで表面に酸化膜を形成したのち乾燥させ
る方法、有機溶剤を用いず酸素ガスと不活性ガスの分圧
を調整して表面に酸化皮膜を形成する方法のいずれを施
したものでも用いることができる。
【0128】本発明の上層磁性層の強磁性粉末をBET
法による比表面積で表せば25〜80m2 /gであり、
好ましくは40〜70m2 /gである。25m2 /g以
下ではノイズが高くなり、80m2 /g以上では表面性
が得にくく好ましくない。本発明の上層磁性層の強磁性
粉末の結晶子サイズは450〜100Åであり、好まし
くは350〜100Åである。酸化鉄磁性粉末のσS
50emu/g以上、好ましくは70emu/g以上で
あり、強磁性金属粉末の場合は100emu/g以上が
好ましく、更に好ましくは110emu/g〜170e
mu/gである。抗磁力は1100Oe以上、2500
Oe以下が好ましく、更に好ましくは1400Oe以上
2000Oe以下である。強磁性粉末の針状比は18以
下が好ましく、更に好ましくは12以下である。
【0129】強磁性粉末のr1500は1.5以下であ
ることが好ましい。さらに好ましくはr1500は1.
0以下である。r1500とは磁気記録媒体を飽和磁化
したのち反対の向きに1500Oeの磁場をかけたとき反
転せずに残っている磁化量の%を示すものである。強磁
性粉末の含水率は0.01〜2%とするのが好ましい。
結合剤の種類によって強磁性粉末の含水率は最適化する
のが好ましい。γ酸化鉄のタップ密度は0.5g/cc
以上が好ましく、0.8g/cc以上がさらに好まし
い。合金粉末の場合は、0.2〜0.8g/ccが好ま
しく、0.8g/cc以上に使用すると強磁性粉末の圧
密過程で酸化が進みやすく、充分な飽和磁化( σS ) を
得ることが困難になる。0.2cc/g以下では分散が
不十分になりやすい。
【0130】γ酸化鉄を用いる場合、2価の鉄の3価の
鉄に対する比は好ましくは0〜20%であり、さらに好
ましくは5〜10%である。また鉄原子に対するコバル
ト原子の量は0〜15%、好ましくは2〜8%である。
強磁性粉末のpHは用いる結合剤との組合せにより最適
化することが好ましい。その範囲は4〜12であるが、
好ましくは6〜10である。強磁性粉末は必要に応じ、
Al、Si、Pまたはこれらの酸化物などで表面処理を
施してもかまわない。その量は強磁性粉末に対し0.1
〜10%であり表面処理を施すと脂肪酸などの潤滑剤の
吸着が100mg/m2 以下になり好ましい。強磁性粉
末には可溶性のNa、Ca、Fe、Ni、Srなどの無
機イオンを含む場合があるが、500ppm以下であれ
ば特に特性に影響を与えない。
【0131】また、本発明に用いられる強磁性粉末は空
孔が少ないほうが好ましくその値は20容量%以下、さ
らに好ましくは5容量%以下である。また形状について
は先に示した条件を満足するように針状、粒状、米粒
状、板状等から選択される。強磁性粉末のSFD0.6
以下を達成するためには、強磁性粉末のHcの分布を小
さくする必要がある。そのためには、ゲータイトの粒度
分布をよくする、γ−ヘマタイトの焼結を防止する、コ
バルト変性の酸化鉄についてはコバルトの被着速度を従
来より遅くするなどの方法がある。
【0132】本発明にはまた、磁化容易軸が平板の垂直
方向にある六角板状の強磁性粉末として、板状六方晶フ
エライト等が例示され、バリウムフエライト、ストロン
チウムフエライト、鉛フェライト、カルシウムフェライ
トの各置換体、Co置換体等、六方晶Co粉末が使用で
きる。具体的にはマグネトブランバイト型のバリウムフ
ェライト及びストロンチウムフェライト、更に一部スピ
ネル相を含有したマグネトブランバイト型のバリウムフ
ェライト及びストロンチウムフェライト等が挙げられ、
特に好ましいものとしてはバリウムフェライト、ストロ
ンチウムフェライトの各置換体である。また、抗磁力を
制御するために上記六方晶フェライトにCo−Ti、C
o−Ti−Zr、Co−Ti−Zn、Ni−Ti−Z
n、Ir−Zn等の元素を添加した物を使用することが
できる。
【0133】バリウムフェライトを用いる場合、板径は
六角板状の粒子の板の幅を意味し、電子顕微鏡を使用し
て測定する。本発明ではこのを板径を0.001〜1μ
mで、板厚を直径の1/2〜1/20とするとよい。比
表面積(SBET )は、1〜60m2 /gが好ましく、比
重は4〜6が好ましい。本発明の下層非磁性層、上層磁
性層に使用される結合剤としては従来公知の熱可塑系樹
脂、熱硬化系樹脂、反応型樹脂やこれらの混合物が使用
される。熱可塑系樹脂としては、ガラス転移温度が−1
00〜150℃、数平均分子量が1000〜20000
0、好ましくは10000〜100000、重合度が約
50〜1000程度のものである。このような例として
は、塩化ビニル、酢酸ビニル、ビニルアルコール、マレ
イン酸、アクリル酸、アクリル酸エステル、塩化ビニリ
デン、アクリロニトリル、メタクリル酸、メタクリル酸
エステル、スチレン、ブタジエン、エチレン、ビニルブ
チラール、ビニルアセタール、ビニルエーテル、等を構
成単位として含む重合体または共重合体、ポリウレタン
樹脂、各種ゴム系樹脂がある。また、熱硬化性樹脂また
は反応型樹脂としてはフエノール樹脂、エポキシ樹脂、
ポリウレタン硬化型樹脂、尿素樹脂、メラミン樹脂、ア
ルキド樹脂、アクリル系反応樹脂、ホルムアルデヒド樹
脂、シリコーン樹脂、エポキシ−ポリアミド樹脂、ポリ
エステル樹脂とイソシアネートプレポリマーの混合物、
ポリエステルポリオールとポリイソシアネートの混合
物、ポリウレタンとポリイソシアネートの混合物等があ
げられる。
【0134】これらの樹脂については朝倉書店発行の
「プラスチックハンドブック」に詳細に記載されてい
る。また、公知の電子線硬化型樹脂を下層、または上層
に使用することも可能である。これらの例とその製造方
法については特開昭62−256219号に詳細に記載
されている。
【0135】以上の樹脂は単独または組合せて使用でき
るが、好ましいものとして塩化ビニル樹脂、塩化ビニル
酢酸ビニル樹脂、塩化ビニル酢酸ビニルビニルアルコー
ル樹脂、塩化ビニル酢酸ビニル無水マレイン酸共重合体
の群から選ばれる少なくとも1種とポリウレタン樹脂の
組合せ、またはこれらにポリイソシアネートを組合せた
ものがあげられる。
【0136】ポリウレタン樹脂の構造はポリエステルポ
リウレタン、ポリエーテルポリウレタン、ポリエーテル
ポリエステルポリウレタン、ポリカーボネートポリウレ
タン、ポリエステルポリカーボネートポリウレタン、ポ
リカプロラクトンポリウレタンなど公知のものが使用で
きる。ここに示したすべての結合剤について、より優れ
た分散性と耐久性を得るためには必要に応じ、−COO
M、−SO3 M、−OSO3 M、−P=O(OM1
(OM2 )、−OP=O(OM1 )(OM2 )、−NR
4 X(ここで、M、M1 、M2 は、H、Li、Na、
K、−NR4 、−NHR3 を示し、Rはアルキル基もし
くはHを示し、Xはハロゲン原子を示す。)、OH、N
2 、N+ 3 、(Rは炭化水素基)、エポキシ基、S
H、CNなどから選ばれる少なくとも一つ以上の極性基
を共重合または付加反応で導入したものを用いることが
好ましい。このような極性基の量は10-1〜10-8モル
/gであり、好ましくは10-2〜10-6モル/gであ
る。
【0137】塩化ビニル系共重合体としては、好ましく
は、エポキシ基含有塩化ビニル系共重合体が挙げられ、
塩化ビニル繰返し単位と、エポキシ基を有する繰返し単
位と、所望により−SO3 M、−OSO3 M、−COO
Mおよび−PO(OM)2 (以上につきMは水素原子、
またはアルカリ金属)等の極性基を有する繰返し単位と
を含む塩化ビニル系共重合体が挙げられる。エポキシ基
を有する繰返し単位との併用では、−SO3 Naを有す
る繰返し単位を含むエポキシ基含有塩化ビニル系共重合
体が好ましい。
【0138】極性基を有する繰返し単位の共重合体中に
おける含有率は、通常0.01〜5.0モル%(好まし
くは、0.5〜3.0モル%)の範囲内にある。エポキ
シ基を有する繰返し単位の共重合体中における含有率
は、通常1.0〜30モル%(好ましくは1〜20モル
%)の範囲内にある。そして、塩化ビニル系重合体は、
塩化ビニル繰返し単位1モルに対して通常0.01〜
0.5モル(好ましくは0.01〜0.3モル)のエポ
キシ基を有する繰返し単位を含有するものである。
【0139】エポキシ基を有する繰返し単位の含有率が
1モル%より低いか、あるいは塩化ビニル繰返し単位1
モルに対するエポキシ基を有する繰返し単位の量が0.
01モルより少ないと塩化ビニル系共重合体からの塩酸
ガスの放出を有効に防止することができないことがあ
り、一方、30モル%より高いか、あるいは塩化ビニル
繰返し単位1モルに対するエポキシ基を有する繰返し単
位の量が0.5モルより多いと塩化ビニル系共重合体の
硬度が低くなることがあり、これを用いた場合には磁性
層の走行耐久性が低下することがある。
【0140】また、特定の極性基を有する繰返し単位の
含有率が0.01モル%より少ないと強磁性粉末の分散
性が不充分となることがあり、5.0モル%より多いと
共重合体が吸湿性を有するようになり耐候性が低下する
ことがある。通常、このような塩化ビニル系共重合体の
数平均分子量は、1.5万〜6万の範囲内にある。
【0141】このようなエポキシ基と特定の極性基を有
する塩化ビニル系共重合体は、例えば、次のようにして
製造することができる。例えばエポキシ基と、極性基と
して−SO3 Naとが導入されている塩化ビニル系共重
合体を製造する場合には、反応性二重結合と、極性基と
して−SO3 Naとを有する2−(メタ)アクリルアミ
ド−2−メチルプロパンスルホン酸ナトリウム(反応性
二重結合と極性基とを有する単量体)およびジグリシジ
ルアクリレートを低温で混合し、これと塩化ビニルとを
加圧下に、100℃以下の温度で重合させることにより
製造することができる。
【0142】上記の方法による極性基の導入に使用され
る反応性二重結合と極性基とを有する単量体の例として
は、上記の2−(メタ)アクリルアミド−2−メチルプ
ロパンスルホン酸ナトリウムの外に2−(メタ)アクリ
ルアミド−2−メチルプロパンスルホン酸、ビニルスル
ホン酸およびそのナトリウムあるいはカリウム塩、(メ
タ)アクリル酸−2−スルホン酸エチルおよびナトリウ
ムあるいはカリウム塩、(無水)マレイン酸および(メ
タ)アクリル酸、(メタ)アクリル酸−2−リン酸エス
テルを挙げることができる。
【0143】また、エポキシ基の導入には、反応性二重
結合とエポキシ基とを有する単量体として一般にグリシ
ジル(メタ)アクリレートを用いる。なお、上記の製造
法の外に、例えば、塩化ビニルとビニルアルコールなど
との重合反応により多官能−OHを有する塩化ビニル系
共重合体を製造し、この共重合体と、以下に記載する極
性基および塩素原子を含有する化合物とを反応(脱塩酸
反応)させて共重合体に極性基を導入する方法を利用す
ることができる。
【0144】ClCH2 CH2 SO3 M、 ClCH2 CH2 OSO3 M、 ClCH2 COOM、 ClCH2 PO(OM)2 また、この脱塩酸反応を利用するエポキシ基の導入には
通常はエピクロルヒドリンを用いる。
【0145】なお、該塩化ビニル系共重合体は、他の単
量体を含むものであってもよい。他の単量体の例として
は、ビニルエーテル(例、メチルビニルエーテル、イソ
ブチルビニルエーテル、ラウリルビニルエーテル)、α
−モノオレフィン(例、エチレン、プロピレン)、アク
リル酸エステル(例、(メタ)アクリル酸メチル、ヒド
ロキシエチル(メタ)アクリレート等の官能基を含有す
る(メタ)アクリル酸エステル)、不飽和ニトリル
(例、(メタ)アクリロニトリル)、芳香族ビニル
(例、スチレン、α−メチルスチレン)、ビニルエステ
ル(例、酢酸ビニル、プロピオン酸ビニル等)が例示さ
れる。
【0146】本発明に用いられるこれらの結合剤の具体
的な例としてはユニオンカーバイト社製:VAGH、V
YHH、VMCH、VAGF、VAGD、VROH、V
YES、VYNC、VMCC、XYHL、XYSG、P
KHH、PKHJ、PKHC、PKFE、日信化学工業
社製:MPR−TA、MPR−TA5、MPR−TA
L、MPR−TSN、MPR−TMF、MPR−TS、
MPR−TM、MPR−TAO、電気化学社製:100
0W、DX80、DX81、DX82、DX83、10
0FD、日本ゼオン社製:MR105、MR110、M
R100、400X110A、日本ポリウレタン社製:
ニッポランN2301、N2302、N2304、大日
本インキ社製:パンデックスT−5105、T−R30
80、T−5201、バーノックD−400、D−21
0−80、クリスボン6109、7209、東洋紡社
製:バイロンUR8200、UR8300、UR860
0、UR5500、UR4300、RV530、RV2
80、大日精化社製:ダイフエラミン4020、502
0、5100、5300、9020、9022、702
0、三菱化成社製:MX5004、三洋化成社製:サン
プレンSP−150、旭化成社製:サランF310、F
210などがあげられる。
【0147】本発明の上層磁性層に用いられる結合剤は
強磁性粉末に対し、5〜50重量%の範囲、好ましくは
10〜35重量%の範囲で用いられる。塩化ビニル系樹
脂を用いる場合は、5〜30重量%、ポリウレタン樹脂
を用いる場合は2〜20重量%、ポリイソシアネートは
2〜20重量%の範囲でこれらを組合せて用いるのが好
ましい。
【0148】本発明の下層非磁性層に用いられる結合剤
は、非磁性粉末に対し、合計で5〜50重量%の範囲、
好ましくは10〜35重量%の範囲で用いられる。ま
た、塩化ビニル系樹脂を用いる場合は、3〜30重量
%、ポリウレタン樹脂を用いる場合は3〜30重量%、
ポリイソシアネートは0〜20重量%の範囲でこれらを
組合せて用いるのが好ましい。
【0149】また、本発明において分子量3万以上のエ
ポキシ基含有樹脂を非磁性粉末に対し3〜30重量%使
用する場合は、エポキシ基含有樹脂以外の樹脂を非磁性
粉末に対し3〜30重量%使用でき、ポリウレタン樹脂
を用いる場合は、3〜30重量%、ポリイソシアネート
は0〜20重量%使用できるが、エポキシ基は結合剤
(硬化剤を含む)全重量に対し、4×10-5〜16×1
-4eq/gの範囲で含まれることが好ましい。
【0150】本発明において、ポリウレタン樹脂を用い
る場合はガラス転移温度が−50〜100℃、破断伸び
が100〜2000%、破断応力は0.05〜10Kg
/cm2 、降伏点は0.05〜10Kg/cm2 が好ま
しい。本発明の磁気記録媒体は二層からなる。従って、
結合剤量、結合剤中に占める塩化ビニル系樹脂、ポリウ
レタン樹脂、ポリイソシアネート、あるいはそれ以外の
樹脂の量、磁性層を形成する各樹脂の分子量、極性基
量、あるいは先に述べた樹脂の物理特性などを必要に応
じ下層と上層磁性層とで変えることはもちろん可能であ
る。
【0151】本発明に用いるポリイソシアネートとして
は、トリレンジイソシアネート、4−4′−ジフエニル
メタンジイソシアネート、ヘキサメチレンジイソシアネ
ート、キシリレンジイソシアネート、ナフチレン−1,
5−ジイソシアネート、o−トルイジンイソシアネー
ト、イソホロンジイソシアネート、トリフエニルメタン
トリイソシアネート等のイソシアネート類、また、これ
らのイソシアネート類とポリアルコールとの生成物、ま
た、イソシアネート類の縮合によって生成したポリイソ
シアネート等を使用することができる。これらのイソシ
アネート類の市販されている商品名としては、日本ポリ
ウレタン社製:コロネートL、コロネートHL、コロネ
ート2030、コロネート2031、ミリオネートM
R、ミリオネートMTL、武田薬品社製:タケネートD
−102、タケネートD−110N、タケネートD−2
00、タケネートD−202、住友バイエル社製:デス
モジュールL、デスモジュールIL、デスモジュール
N、デスモジュールHL等があり、これらを単独または
硬化反応性の差を利用して二つもしくはそれ以上の組合
せで下層非磁性層、上層磁性層ともに用いることができ
る。
【0152】本発明の上層磁性層に使用されるカーボン
ブラックはゴム用フアーネス、ゴム用サーマル、カラー
用ブラック、アセチレンブラック、等を用いることがで
きる。比表面積は5〜500m2 /g、DBP吸油量は
10〜400ml/100g、粒子径は5mμ〜300
mμ、pHは2〜10、含水率は0.1〜10%、タッ
プ密度は0.1〜1g/ccが好ましい。本発明に用い
られるカーボンブラックの具体的な例としてはキャボッ
ト社製:BLACKPEARLS 2000、130
0、1000、900、800、700、VULCAN
XC−72、旭カーボン社製:♯80、♯60、♯5
5、♯50、♯35、三菱化成工業社製:♯2400
B、♯2300、♯900、♯1000、♯30、♯4
0、♯10B、コンロンビアカーボン社製:CONDU
CTEX SC、RAVEN 150、50,40,1
5などがあげられる。カーボンブラックを分散剤などで
表面処理したり、樹脂でグラフト化して使用しても、表
面の一部をグラフアイト化したものを使用してもかまわ
ない。また、カーボンブラックを磁性塗料に添加する前
にあらかじめ結合剤で分散してもかまわない。これらの
カーボンブラックは単独、または組合せで使用すること
ができる。カーボンブラックを使用する場合は強磁性粉
末に対する量の0.1〜30%で用いることが好まし
い。カーボンブラックは磁性層の帯電防止、摩擦係数低
減、遮光性付与、膜強度向上などの働きがあり、これら
は用いるカーボンブラックにより異なる。従って本発明
に使用されるこれらのカーボンブラックは下層、上層で
その種類、量、組合せを変え、粒子サイズ、吸油量、電
導度、pHなどの先に示した諸特性をもとに目的に応じ
て使い分けることはもちろん可能である。本発明の上層
で使用できるカーボンブラックは例えば「カーボンブラ
ック便覧」(カーボンブラック協会編)を参考にするこ
とができる。
【0153】本発明の上層磁性層に用いられる研磨剤と
してはα化率90%以上のα−アルミナ、β−アルミ
ナ、炭化ケイ素、酸化クロム、酸化セリウム、α−酸化
鉄、コランダム、人造ダイアモンド、窒化珪素、炭化珪
素、チタンカーバイト、酸化チタン、二酸化珪素、窒化
ホウ素、など主としてモース硬度6以上の公知の材料が
単独または組合せで使用される。また、これらの研磨剤
どうしの複合体(研磨剤を他の研磨剤で表面処理したも
の)を使用してもよい。これらの研磨剤には主成分以外
の化合物または元素が含まれる場合もあるが主成分が9
0%以上であれば効果にかわりはない。これら研磨剤の
粒子サイズは0.01〜2μmが好ましいが、必要に応
じて粒子サイズの異なる研磨剤を組合せたり、単独の研
磨剤でも粒径分布を広くして同様の効果をもたせること
もできる。タップ密度は0.3〜2g/cc、含水率は
0.1〜5%、pHは2〜11、比表面積は1〜30m
2 /g、が好ましい。本発明に用いられる研磨剤の形状
は針状、球状、サイコロ状、のいずれでも良いが、形状
の一部に角を有するものが研磨性が高く好ましい。
【0154】本発明に用いられる研磨剤の具体的な例と
しては、住友化学社製:AKP−20,AKP−30,
AKP−50,HIT−50、日本化学工業社製:G
5,G7,S−1、戸田工業社製:TF−100、TF
−140、100ED、140EDなどがあげられる。
本発明に用いられる研磨剤は下層、上層で種類、量およ
び組合せを変え、目的に応じて使い分けることはもちろ
ん可能である。これらの研磨剤はあらかじめ結合剤で分
散処理したのち磁性塗料中に添加してもかまわない。
【0155】本発明に使用される、添加剤としては潤滑
効果、帯電防止効果、分散効果、可塑効果、などをもつ
ものが使用される。二硫化モリブデン、二硫化タングス
テン、グラフアイト、窒化ホウ素、フッ化黒鉛、シリコ
ーンオイル、極性基をもつシリコーン、脂肪酸変性シリ
コーン、フッ素含有シリコーン、フッ素含有アルコー
ル、フッ素含有エステル、ポリオレフイン、ポリグリコ
ール、アルキル燐酸エステルおよびそのアルカリ金属
塩、アルキル硫酸エステルおよびそのアルカリ金属塩、
ポリフエニルエーテル、フッ素含有アルキル硫酸エステ
ルおよびそのアルカリ金属塩、炭素数10〜24の一塩
基性脂肪酸(不飽和結合を含んでも、また分岐していて
もかまわない)、および、これらの金属塩(Li,N
a,K,Cuなど)または、炭素数12〜22の一価、
二価、三価、四価、五価、六価アルコール(不飽和結合
を含んでも、また分岐していてもかまわない)、炭素数
12〜22のアルコキシアルコール、炭素数10〜24
の一塩基性脂肪酸(不飽和結合を含んでも、また分岐し
ていてもかまわない)と炭素数2〜12の一価、二価、
三価、四価、五価、六価アルコールのいずれか一つ(不
飽和結合を含んでも、また分岐していてもかまわない)
とからなるモノ脂肪酸エステルまたはジ脂肪酸エステル
またはトリ脂肪酸エステル、アルキレンオキシド重合物
のモノアルキルエーテルの脂肪酸エステル、炭素数8〜
22の脂肪酸アミド、炭素数8〜22の脂肪族アミン、
などが使用できる。これらの具体例としてはラウリン
酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘ
ン酸、ステアリン酸ブチル、オレイン酸、リノール酸、
リノレン酸、エライジン酸、ステアリン酸オクチル、ス
テアリン酸アミル、ステアリン酸イソオクチル、ミリス
チン酸オクチル、ステアリン酸ブトキシエチル、アンヒ
ドロソルビタンモノステアレート、アンヒドロソルビタ
ンジステアレート、アンヒドロソルビタントリステアレ
ート、オレイルアルコール、ラウリルアルコール、があ
げられる。
【0156】また、アルキレンオキサイド系、グリセリ
ン系、グリシドール系、アルキルフエノールエチレンオ
キサイド付加体、等のノニオン界面活性剤、環状アミ
ン、エステルアミド、第四級アンモニウム塩類、ヒダン
トイン誘導体、複素環類、ホスホニウムまたはスルホニ
ウム類、等のカチオン系界面活性剤、カルボン酸、スル
フォン酸、燐酸、硫酸エステル基、燐酸エステル基、な
どの酸性基を含むアニオン界面活性剤、アミノ酸類、ア
ミノスルホン酸類、アミノアルコールの硫酸または燐酸
エステル類、アルキルベダイン型、等の両性界面活性剤
等も使用できる。これらの界面活性剤については、「界
面活性剤便覧」(産業図書株式会社発行)に詳細に記載
されている。これらの潤滑剤、帯電防止剤等は必ずしも
100%純粋ではなく、主成分以外に異性体、未反応
物、副反応物、分解物、酸化物、等の不純分が含まれて
もかまわない。これらの不純分は30%以下が好まし
く、さらに好ましくは10%以下である。
【0157】本発明で使用されるこれらの潤滑剤、界面
活性剤は下層非磁性層、上層磁性層でその種類、量を必
要に応じ使い分けることができる。例えば、下層非磁性
層、上層磁性層で融点の異なる脂肪酸を用い表面へのに
じみ出しを制御する、沸点や極性の異なるエステル類を
用い表面へのにじみ出しを制御する、界面活性剤量を調
節することで塗布の安定性を向上させる、潤滑剤の添加
量を下層非磁性層で多くして潤滑効果を向上させるなど
が考えられ、無論ここに示した例のみに限られるもので
はない。
【0158】また本発明で用いられる添加剤のすべてま
たはその一部は、磁性塗料製造のどの工程で添加しても
かまわない、例えば、混練工程前に強磁性粉末と混合す
る場合、強磁性粉末と結合剤と溶剤による混練工程で添
加する場合、分散工程で添加する場合、分散後に添加す
る場合、塗布直前に添加する場合などがある。本発明で
使用されるこれら潤滑剤の商品例としては、日本油脂社
製:NAA−102,NAA−415,NAA−31
2,NAA−160,NAA−180,NAA−17
4,NAA−175,NAA−222,NAA−34,
NAA−35,NAA−171,NAA−122,NA
A−142,NAA−160,NAA−173K,ヒマ
シ硬化脂肪酸,NAA−42,NAA−44,カチオン
SA,カチオンMA,カチオンAB,カチオンBB,ナ
イミーンL−201,ナイミーンL−202,ナイミー
ンS−202,ノニオンE−208,ノニオンP−20
8,ノニオンS−207,ノニオンK−204,ノニオ
ンNS−202,ノニオンNS−210,ノニオンHS
−206,ノニオンL−2,ノニオンS−2,ノニオン
S−4,ノニオンO−2,ノニオンLP−20R,ノニ
オンPP−40R,ノニオンSP−60R,ノニオンO
P−80R,ノニオンOP−85R,ノニオンLT−2
21,ノニオンST−221,ノニオンOT−221,
モノグリMB,ノニオンDS−60,アノンBF,アノ
ンLG,ブチルステアレート,ブチルラウレート,エル
カ酸、関東化学社製:オレイン酸、竹本油脂社製:FA
L−205,FAL−123、新日本理化社製:エヌジ
エルブLO,エヌジョルブIPM,サンソサイザーE4
030、信越化学社製:TA−3,KF−96,KF−
96L,KF−96H,KF410,KF420,KF
965,KF54,KF50,KF56,KF−90
7,KF−851,X−22−819,X−22−82
2,KF−905,KF−700,KF−393,KF
−857,KF−860,KF−865,X−22−9
80,KF−101,KF−102,KF−103,X
−22−3710,X−22−3715,KF−91
0,KF−3935、ライオンアーマー社製:アーマイ
ドP,アーマイドC,アーモスリップCP、ライオン油
脂社製:デュオミンTDO、日清製油社製:BA−41
G、三洋化成社製:プロフアン2012E,ニューポー
ルPE61,イオネットMS−400,イオネットMO
−200,イオネットDL−200,イオネットDS−
300,イオネットDS−1000,イオネットDO−
200などがあげられる。
【0159】本発明で用いられる有機溶媒は任意の比率
でアセトン、メチルエチルケトン、メチルイソブチルケ
トン、ジイソブチルケトン、シクロヘキサノン、イソホ
ロン、テトラヒドロフラン、等のケトン類、メタノー
ル、エタノール、プロパノール、ブタノール、イソブチ
ルアルコール、イソプロピルアルコール、メチルシクロ
ヘキサノール、などのアルコール類、酢酸メチル、酢酸
ブチル、酢酸イソブチル、酢酸イソプロピル、乳酸エチ
ル、酢酸グリコール等のエステル類、グリコールジメチ
ルエーテル、グリコールモノエチルエーテル、ジオキサ
ン、などのグリコールエーテル系、ベンゼン、トルエ
ン、キシレン、クレゾール、クロルベンゼン、などの芳
香族炭化水素類、メチレンクロライド、エチレンクロラ
イド、四塩化炭素、クロロホルム、エチレンクロルヒド
リン、ジクロルベンゼン、等の塩素化炭化水素類、N,
N−ジメチルホルムアミド、ヘキサン等のものが使用で
きる。これら有機溶媒は必ずしも100%純粋ではな
く、主成分以外に異性体、未反応物、副反応物、分解
物、酸化物、水分等の不純分がふくまれてもかまわな
い。これらの不純分は30重量%以下が好ましく、さら
に好ましくは10重量%以下である。本発明で用いる有
機溶媒は必要ならば上層と下層でその種類は同じである
ことが好ましい。その添加量は変えてもかまわない。下
層に表面張力の高い溶媒(シクロヘキサノン、ジオキサ
ンなど)を用い塗布の安定性をあげる、具体的には上層
溶剤組成の算術平均値が下層溶剤組成の算術平均値を下
回らないことが肝要である。分散性を向上させるために
はある程度極性が強い方が好ましく、下層非磁性層と上
層磁性層の塗布液に用いた溶剤がいずれも溶解パラメー
ターが8〜11であり、20℃での誘電率が15以上の
溶剤が15%以上含まれることが好ましい。
【0160】本発明の磁気記録媒体の厚み構成は非磁性
支持体が1〜100μm、好ましくは4〜80μm、下
層が0.5〜10μm、好ましくは1〜5μm、上層は
0.05μm以上1.0μm以下、好ましくは0.05
μm以上0.6μm以下、さらに好ましくは0.05μ
m以上、0.3μm以下である。上層磁性層は、下層非
磁性層より薄いことが好ましい。上層と下層を合わせた
厚みは非磁性支持体の厚みの1/100〜2倍の範囲で
用いられる。また、非磁性支持体と下層の間に密着性向
上のための下塗り層を設けてもかまわない。これらの厚
みは0.01〜2μm、好ましくは0.05〜0.5μ
mである。また、非磁性支持体の磁性層側と反対側にバ
ックコート層を設けてもかまわない。この厚みは0.1
〜2μm、好ましくは0.3〜1.0μmである。これ
らの下塗り層、バックコート層は公知のものが使用でき
る。
【0161】本発明に用いられる非磁性支持体はポリエ
チレンテレフタレート、ポリエチレンナフタレート、等
のポリエステル類、ポリオレフイン類、セルローストリ
アセテート、ポリカーボネート、ポリアミド、ポリイミ
ド、ポリアミドイミド、ポリスルフオン、アラミド、芳
香族ポリアミドなどの公知のフイルムが使用できる。こ
れらの支持体にはあらかじめコロナ放電処理、プラズマ
処理、易接着処理、熱処理、除塵処理、などをおこなっ
ても良い。本発明の目的を達成するには、非磁性支持体
として中心線平均表面粗さが0.03μm以下、好まし
くは0.02μm以下、さらに好ましくは0.01μm
以下のものを使用する必要がある。また、これらの非磁
性支持体は単に中心線平均表面粗さが小さいだけではな
く、1μ以上の粗大突起がないことが好ましい。また、
表面の粗さ形状は、必要に応じて支持体に添加されるフ
ィラーの大きさと量により自由にコントロールされるも
のである。これらのフィラーとしては一例としてはC
a、Si、Tiなどの酸化物や炭酸塩の他、アクリル系
などの有機微粉末が挙げられる。
【0162】また、非磁性支持体のテープ走行方向のF
−5値は、好ましくは5〜50Kg/mm2 、テープ幅
方向のF−5値は、好ましくは3〜30Kg/mm2
あり、テープ長手方向のF−5値がテープ幅方向のF−
5値より高いのが一般的であるが、特に幅方向の強度を
高くする必要があるときはその限りではない。また、非
磁性支持体のテープ走行方向および幅方向の100℃3
0分での熱収縮率は好ましくは3%以下、さらに好まし
くは1.5%以下、80℃30分での熱収縮率は好まし
くは1%以下、さらに好ましくは0.5%以下である。
破断強度は両方向とも5〜100Kg/mm2 、弾性率
は100〜2000Kg/mm2 が好ましい。
【0163】本発明の磁気記録媒体の磁性塗料を製造す
る工程は、少なくとも混練工程、分散工程、およびこれ
らの工程の前後に必要に応じて設けた混合工程からな
る。個々の工程はそれぞれ2段階以上にわかれていても
かまわない。本発明に使用する強磁性粉末、結合剤、カ
ーボンブラック、研磨剤、帯電防止剤、潤滑剤、溶剤な
どすべての原料はどの工程の最初または途中で添加して
もかまわない。また、個々の原料を2つ以上の工程で分
割して添加してもかまわない。例えば、ポリウレタンを
混練工程、分散工程、分散後の粘度調整のための混合工
程で分割して投入してもよい。
【0164】本発明の目的を達成するためには、従来の
公知の製造技術を一部の工程として用いることができる
ことはもちろんであるが、混練工程では連続ニーダや加
圧ニーダなど強い混練力をもつものを使用することによ
り本発明の磁気記録媒体の高いBrを得ることができ
る。連続ニーダまたは加圧ニーダを用いる場合は強磁性
粉末と結合剤のすべてまたはその一部(ただし全結合剤
の30重量%以上が好ましい)および強磁性粉末100
部に対し15〜500部の範囲で混練処理される。これ
らの混練処理の詳細については特開平1−106338
号、特開昭64−79274号に記載されている。ま
た、下層非磁性層液を調製する場合には高比重の分散メ
ディアを用いることが望ましく、ジルコニアビーズ、金
属ビーズが好適である。
【0165】本発明では、特開昭62−212933号
に示されるような同時重層塗布方式を用いることによ
り、より効率的に生産することができる。本発明のよう
な重層構成の磁気記録媒体を塗布する装置、方法の例と
して以下のような構成を提案できる。 1.磁性塗料の塗布で一般的に用いられるグラビア塗
布、ロール塗布、ブレード塗布、エクストルージョン塗
布装置等により、まず下層を塗布し、下層がウエット状
態のうちに特公平1−46186号や特開昭60−23
8179号、特開平2−265672号に開示されてい
る支持体加圧型エクストルージョン塗布装置により上層
を塗布する。 2.特開昭63−88080号、特開平2−17921
号、特開平2−265672号に開示されているような
塗布液通液スリットを二つ内蔵する一つの塗布ヘッドに
より上層及び下層をほぼ同時に塗布する。 3.特開平2−174965号に開示されているバック
アップロール付きエキストルージョン塗布装置により上
層及び下層をほぼ同時に塗布する。なお、強磁性粉末の
凝集による磁気記録媒体の電磁変換特性等の低下を防止
するため、特開昭62−95174号や特開平1−23
6968号に開示されているような方法により塗布ヘッ
ド内部の塗布液に剪断を付与することが望ましい。さら
に、塗布液の粘度については、特願平1−312659
号に開示されている数値範囲を満足することが好まし
い。
【0166】本発明では、上記の下層用塗布液を湿潤状
態で重畳して塗布する、所謂ウェット・オン・ウェット
塗布方式によって、非磁性支持体上に設ける。本発明で
下層と上層を設けるに用いるウェット・オン・ウェット
塗布方式とは、初め一層を塗布した後に湿潤状態で可及
的速やかに次の層をその上に塗布する所謂逐次塗布方
法、及び多層同時にエクストルージョン塗布方式で塗布
する方法等をいう。ウェット・オン・ウェット塗布方式
としては、特開昭61−139929号公報に示した磁
気記録媒体塗布方法が使用できる。
【0167】図は、本発明で両層を設けるのに用いら
れる逐次塗布方式の一例を示す説明図であって、連続的
に走行するポリエチレンテレフタレート等の可撓性支持
体1に塗布機(A)3にて下層用塗布液(a)をプレコ
ートし、その直後にスムージングロール4にて該塗布面
を平滑化し、該塗布液2が湿潤状態にある状態で別の押
し出し塗布機(B)6により次なる上層用塗布液(b)
を塗布する。
【0168】図は、本発明で両層を設けるのに好まし
く用いられるエクストルージョン型同時塗布方式の一例
を示す説明図であって、可撓性支持体1上に同時多層塗
布器8を用いた下層用塗布液(a)2と上層用塗布液
(b)5とを同時に塗布する状態を説明するものであ
る。両層を塗布した後に、磁場配向、乾燥、平滑化処理
を施して磁気記録媒体とする。
【0169】本発明の媒体を得るためには強力な配向を
行う必要がある。1000G(ガウス)以上のソレノイ
ドと2000G以上のコバルト磁石を併用することが好
ましく、さらには乾燥後の配向性が最も高くなるように
配向前に予め適度の乾燥工程を設けることが好ましい。
また、ディスク媒体として、本発明を適用する場合はむ
しろ配向をランダマイズするような配向法が必要であ
る。
【0170】さらに、カレンダ処理ロールとしてエポキ
シ、ポリイミド、ポリアミド、ポリイミドアミド等の耐
熱性のあるプラスチックロールを使用する。また、金属
ロール同志で処理することもできる。処理温度は、好ま
しくは70℃以上、さらに好ましくは80℃以上であ
る。線圧力は好ましくは200kg/cm、さらに好ま
しくは300kg/cm以上、その速度は20m/分〜
700m/分の範囲である。本発明の効果は80℃以上
の温度で300kg/cm以上の線圧でより一層効果を
上げることができる。
【0171】カレンダー処理後、磁性層、バック層、非
磁性層の硬化を促進するために、40℃〜80℃のサー
モ処理を施してもかまわない。本発明の磁気記録媒体の
上層およびその反対面のSUS420Jに対する摩擦係
数は好ましくは0.5以下、さらに0.3以下、磁性層
表面固有抵抗は104 〜1011オーム/sq、下層を単
独で塗布した場合の表面固有抵抗は104 〜108 オー
ム/sq、BC層の表面電気抵抗は103 〜109 が好
ましい。
【0172】上層、下層が有する空隙率は、ともに好ま
しくは30容量%以下、さらに好ましくは20容量%以
下である。空隙率は高出力を果たすためには小さい方が
好ましいが、目的によってはある値を確保した方が良い
場合がある。例えば、繰り返し用途が重視されるデータ
記録用磁気記録媒体では空隙率が大きい方が走行耐久性
は好ましいことが多い。これらの値を目的に応じた適当
な範囲に設定することは容易に実施できることである。
【0173】本発明の磁気記録媒体の磁気特性は磁場5
KOeで測定した場合、テープ走行方向の角形比は0.
70以上であり、好ましくは0.80以上さらに好まし
くは0.90以上である。テープ走行方向に直角な二つ
の方向の角型比は走行方向の角型比の80%以下となる
ことが好ましい。磁性層のSFDは0.6以下であるこ
とが好ましい。
【0174】本発明の磁気記録媒体は、下層と上層を有
するが、目的に応じ下層と上層でこれらの物理特性を変
えることができるのは容易に推定されることである。本
発明の磁気記録媒体は基本的には上層磁性層と下層非磁
性層の二層からなるが、三層以上であってもよい。三層
以上の構成としては、上層磁性層を2層以上の複数の磁
性層することである。この場合、最上層の磁性層と下層
磁性層との関係は通常の複数の磁性層の考え方が適用で
きる。例えば、最上層の磁性層の方が下層磁性層より
も、抗磁力が高く、平均長軸長や結晶子サイズの小さい
強磁性粉末を用いるなどの考え方が適用できる。又、下
層非磁性層を複数の非磁性層で形成してもかまわない。
しかし、大きく分類すれば、上層磁性層、下層非磁性層
という構成である。
【0175】
【実施例】次に実施例と比較例を示し、本発明を更に具
体的に説明する。各例において、「部」は特に指定しな
い限り、「重量部」を意味する。
【0176】以下の処方で上層磁性層用塗布液及び下層
非磁性層用塗布液を調製した。 実施例1 上層磁性層用塗布液処方 強磁性粉末:Fe合金粉末 100部 組成;Fe 93重量%、Ni 3重量%、Co 3重量%、その 他Zn,Cr等 Hc 1600Oe、σS 135emu/g 長軸長 0.18μm,針状比 9 塩化ビニル共重合体 10部 −SO3 Na,エポキシ基含有 ポリウレタン樹脂 5部 −SO3 Na含有,分子量 45000 αアルミナ(平均粒径0.2μm) 5部 シクロヘキサノン 150部 メチルエチルケトン 200部 上記組成物をサンドミル中で6時間混合分散したのち、
ポリイソシアネート(コロネートL)及びステアリン酸
5部、ステアリン酸ブチル10部を加えて磁性塗布液を
得た。
【0177】 下層非磁性層用塗布液処方 粒状TiO2 100部 平均粒径 0.09μm カーボンブラック 5部 平均粒径 20mμ 塩化ビニル共重合体 8部 −SO3 Na,エポキシ基含有 分子量 50000 ポリウレタン樹脂 5部 −SO3 Na含有、分子量 45000 αアルミナ(平均粒径 0.2μm) 5部 シクロヘキサノン 150部 メチルエチルケトン 50部 上記組成物をサンドミル中で4時間混合分散したのち、
ポリイソシアネート(コロネートL)5部、ステアリン
酸1部、ステアリン酸ブチル1部を加えて下層非磁性層
用塗布液を得た。
【0178】上記の塗布液をギャップの異なる2つのド
クターを用いて、湿潤状態で塗布したのち、永久磁石に
て配向処理後、乾燥した。非磁性支持体は9.8μmの
ポリエチレンテレフタレートフィルムを用い、支持体の
磁性層と反対面にはカーボンブラックを含有するバック
層を設けた。その後にス−パーカレンダー処理を行っ
た。塗布厚みは磁性層0.3μm、非磁性層3.0μm
であった。この様にして得られた原反を3.81mm幅
に裁断し実施例1−1のデジタルオーディオテープ(D
AT)を作成した。
【0179】その他実施例、比較例は実施例1−1に
対して表1に示す因子を変更してテープを作成した。こ
れらのテープは以下の方法で評価し、結果を表2に示し
た。磁性層平均値d、dの標準偏差σ:テープ断面を透
過型電子顕微鏡(TEM)にて撮影(倍率20000
倍)し、前記の定義に従って求めた。厚み変動の平均値
(Δd):テープ断面を透過型電子顕微鏡(TEM)に
て撮影(倍率20000倍)、長さ20μm(実長)中
の磁性層と下層非磁性層の変位を測定し、山と谷の変位
差の平均値を求めΔdとした。
【0180】尚、比較例の逐次重層とは、下層非磁性層
を塗布し、乾燥後上層磁性層を塗布することを言う。 電磁変換特性 使用デッキ:SONY製DTC−1000 再生出力:4.7MHz単一周波数の信号を入力し、再
生信号をスペクトラムアナライザーに出力させ、信号の
ピーク値を読みとった。
【0181】C/N:再生出力測定時にノイズスペクト
ラムをとり、再生出力と中心記録周波数(4.7MH
z)から0.1MHz離れたノイズレベルの比からC/
Nを求めた。スペクトルアナライザーは、HP−358
5A、0dBは比較例1の磁性層単層のテープ BER(ブロックエラーレート):10000トラック
中のエラーフラッグの数を言い、次の式で表される。
【0182】 BER=エラーフラッグ/10000×128ブロック DAT信号構成は、アナログ信号を符号化し、1符号は
8ビット、1ブロックは32シンボル×8ビット=25
6ビットであるので、1トラックは128ブロックで構
成される。2トラックすなわち128×2ブロックの信
号をメモリー上に取り込み、シャッフルし、エラー検出
をする。ソニー社製のDATデッキを用い、カウンター
としてヒューレットパッカード社製のHP5328Aを
使用し、パソコンに接続して測定した。
【0183】ドロップアウト:4.7MHz単一周波数
の信号を入力、スレッシュホールド(DO) レベ
ル−10dBで長さ0.5μSECのドロップアウトを
ドロップアウトカウンターで測定した。
【0184】
【表1】
【0185】
【表2】
【0186】作成したDATの最短記録波長λは、0.
67μmである。従って、λ/4≦d≦3λより、磁性
層の厚み範囲は、0.17μm≦d≦2.01μmとな
るが、本発明は、0.17μm≦d≦1.0μmの範囲
である。また、Δd/d≦0.5の関係がある。
【0187】実施例1−1〜1−3は、下層非磁性層厚
みと上層磁性層厚みを変え、かつ上下層厚み比率を変え
たもので実施例1−1は磁性層厚のほぼ下限、実施例1
−2は同厚の中位、実施例1−3はほぼ上限に設定した
ものである。実施例1−4は、下層非磁性層厚を薄くし
て下限近くにした構成である。実施例1−5〜1−7
は、下層非磁性層の非磁性粉末の種類を変えた例であ
り、本発明の規定内でRaに影響を与えることがわか
る。実施例1−8は、強磁性粉末としてバリウムフェラ
イトを使用した例である。実施例1−9は、上層磁性層
厚を上限近くとした例であり、この系では他の実施例に
比較して特性が劣る。
【0188】比較例1−1は、単層厚膜の磁性層を有す
る磁気記録媒体である。比較例1−2は、下層非磁性層
の非磁性粉末として粗大なベンガラ(平均粒径が0.2
5で、λ/4=0.1675より大)を用いているの
で、Δdが大きくC/Nが劣る。比較例1−3は、長軸
長の長い針状ベンガラを使用しているため、Δdが大き
く、Raが劣る。比較例1−4は、下層塗布後、乾燥
し、その下層の上に上層を塗布した逐次重層の例であ
り、ピンホールが多い。
【0189】実施例1〜8は、d、Δd、σ、及びRa
うち少なくともd及びΔdの各範囲を満足しているの
で、比較例に比べ、再生出力、C/N、BER、DO、
塗布成形性何れも優れていることがわかる。
【0190】本発明により、薄い磁性層(最短記録波長
の3倍以下)を下層非磁性層と同時塗布することで、磁
性層を単独で薄くした場合に問題となる塗布欠陥を防止
できる。同時に記録システムに応じて最短記録波長に対
する磁性層の厚みを最適化することで再生出力が向上
し、かつ薄膜化した磁性層の厚み変動を小さくし、かつ
磁性層表面を平滑にすることでC/Nが向上する。
【0191】この発明によって、金属薄膜磁気記録媒体
に匹敵する電磁変換特性が得られると同時に金属薄膜磁
気記録媒体が有する生産性、保存信頼性の問題を解決し
た塗布型磁気記録媒体を供給することができる。 実施例2 以下の処方で上層磁性層用塗布液及び下層非磁性層用塗
布液を調製した。 下層非磁性層用塗布液 無機質粉末 TiO2 90部 平均粒径 0.035μm 結晶系 ルチル TiO2 含有量 90%以上 表面処理剤 Al2 3 BET法による比表面積 35〜45m2 /g DBP吸油量 27〜38g/100g pH 6.5〜8 カーボンブラック 10部 平均粒径 16mμ DBP吸油量 80ml/100g pH 8.0 BET法による比表面積 250m2 /g 揮発分 1.5% 塩化ビニル−酢酸ビニル−ビニルアルコール共重合体 12部 −N(CH3 3 + Cl- の極性基を5×10-6eq/g含む 組成比 86:13:1 重合度 400 ポリエステルポリウレタン樹脂 5部 ネオペンチルグリコール/カプロラクトンポリオール/MDI =0.9/2.6/1 −SO3 Na基 1×10-4eq/g含有 ブチルステアレート 1部 ステアリン酸 1部 メチルエチルケトン 200部 シクロヘキサノン 80部 上層磁性層用塗布液 強磁性金属微粉末 組成 Fe/Zn/Ni=92/4/4 100部 Hc 1600Oe BET法による比表面積 60m2 /g 結晶子サイズ 195Å 平均長軸長 0.20μm、針状比 10 飽和磁化( σS ) :130emu/g 塩化ビニル系共重合体 12部 −SO3 Na基 1×10-4eq/g含有、重合度300 ポリエステルポリウレタン樹脂 3部 ネオペンチルグリコール/カプロラクトンポリオール/MDI =0.9/2.6/1 −SO3 Na基 1×10-4eq/g含有 α−アルミナ(平均粒径 0.2μm) 2部 カーボンブラック(平均粒径 0.10μm) 8部 ブチルステアレート 1部 ステアリン酸 2部 メチルエチルケトン 200部 上記2つの塗料のそれぞれについて、各成分を連続ニー
ダーで混練した後、サンドミルを用いて分散させた。得
られた分散液にポリイソシアネートを下層非磁性層の塗
布液には1部、上層磁性層の塗布液には3部を加え、さ
らにそれぞれに酢酸ブチル40部を加え、1μmの平均
孔径を有するフィルターを用いて濾過し、下層非磁性層
用及び上層磁性層用の塗布液をそれぞれ調製した。
【0192】得られた下層非磁性層塗布液を乾燥後の厚
さが3μmになるように更にその直後にその上に上層磁
性層の厚さが0.5μmになるように、厚さ7μmで中
心平均表面粗さが0.01μmのポリエチレンナフタレ
ート支持体上に同時重層塗布を行い、両層がまだ湿潤状
態にあるうちに3000ガウスの磁力をもつコバルト磁
石と1500ガウスの磁力をもつソレノイドにより配向
させ、乾燥後、金属ロールのみから構成される7段のカ
レンダーで温度90℃にて処理を行い、8mmの幅にス
リットし、実施例2−1の8mmビデオテープを製造し
た。
【0193】また、同様に表3〜4に記載の因子を変更
して試料、実施例2−2〜2−、比較例2−1〜2−
7を作成し、性能を下記により評価し、その結果を表3
4に示した。 1.下層無機質粉末の体積比率(充填率) ダイヤモンドカッターで媒体を約0.1μmに切り出し
て試験片を作成し、これを透過型電子顕微鏡で観察し
た。この透過型電子顕微鏡写真映像から1μm2当たり
の無機質粉末粒子個数を勘定して、切り出した試験片の
厚味を計算に入れて、単位体積当たりに含まれる無機質
粉末の粒子個数を計測し、また、同じ写真から求めた粉
体粒子径より1個当たりの体積を求めて単位体積当たり
に含まれる無機質粉末粒子個数を乗じて、無機質粉末の
体積比率を求めた。計算式は以下の通り。
【0194】下層無機質粉末の体積比率 =4π/3(D/2)3 (n/t)×100(%) D:切片写真から求めた粉体の粒子径(μm) n:切片写真から求めた単位面積当たりに含まれる粉体
の個数(個/μm2 ) t:切片の厚味(μm) 2.上層磁性層の粉体体積比率 強磁性粉末密度は下式から求めることができる。
【0195】dM=Bm/4πσS ここで、Bm(ガウス):残留磁束密度 dM(g/cc):強磁性粉末密度 σS (emu/g):強磁性粉末の持つ磁化量 強磁性粉末の上層における体積比率は、上記密度を強磁
性粉末の比重で割ることにより、求まる。また、磁性層
中の他の粉体成分及び結合剤の密度は磁性層処方量より
算出し、各粉体成分の比重で割ることにより、各粉体成
分の体積比率が求まり、これらを合計することにより、
上層の粉体体積比率が求まる。 3.無機質粉末の平均粒径 透過型電子顕微鏡より長軸の平均粒子径を求めた。 4.強磁性金属粉末の結晶子サイズ X線回折により(1,1,0)面と(2,2,0)面の
回折線の半値幅のひろがり分から求めた。 5.表面粗さRrms 走査型トンネル顕微鏡(STM)の測定は、Digital In
strument社製のNanoscope IIを用いトンネル電流10
A、バイアス電圧400mVの条件で6μm×6μmの
範囲をスキャンして下式数1より求めた。
【0196】
【数1】
【0197】6.σ;実施例1と同じ方法である。 7.7MHz出力 富士写真フィルム社製FUJIX8 8mmビデオデッ
キを用いて7MHzの信号を記録し、この信号を再生し
たときの7MHz信号再生出力をオシロスコープで測定
した。リファレンスは富士写真フィルム(株)社内リフ
ァレンスである。 8.ピンホール 磁性層塗布後でバック層を塗布する前に透過光で磁性層
を目視観察して100m2 当たりのピンホールを測定し
た。100m2 当たり1個以内であることが望ましい。
【0198】
【表3】
【0199】
【表4】
【0200】表3〜4に示す通り、実施例試料は、下層
非磁性層に含まれる無機質粉末の平均粒径が、上層磁性
層に含まれる強磁性粉末の結晶子サイズの1/2倍〜4
倍であるために表面粗さRrms が小さく、かつd/R
rms が30以上、一様かつ表面性が優れた磁性層が形
成され、再生出力が高く、かつピンホールが極めてすく
ない優れた磁気記録媒体である。一方、比較例2−1
は、(無機質粉末の平均粒径/強磁性粉末の結晶子サイ
ズ)が所定の範囲より大きすぎるためにRrms が大きく
なり、再生出力が改善されない。比較例2−2は、(無
機質粉末の平均粒径/強磁性粉末の結晶子サイズ)が所
定の範囲より小さすぎるためにRrms が大きくなり、再
生出力が改善されない。比較例2−3は、磁性層の厚味
dは1.2μmと厚いために再生出力がやや劣る。比較
例2−4は、磁性層のみの単層磁気記録媒体である。比
較例2−5は、無機質粉末の添加量が少ないためにR
rms が大きくなり、磁変換特性が改善されない。比較
例2−6は、粉体の体積比率が小さすぎるため、Rrms
が大きく、電磁変換特性が改善されない。比較例2−7
は無機質粉末の体積比率が大きすぎるために塗布が不可
能であった。
【0201】実施例3 以下の処方で上層磁性層用塗布液及び下層非磁性層用塗
布液を調製した。 下層非磁性層;実施例2−1と同じ 上層磁性層用塗布液 Co変性γFe2 3 100部 Hc 700Oe BET法による比表面積 42m2 /g 結晶子サイズ 300Å 飽和磁化( σS ) 75emu/g 塩化ビニル系共重合体 9部 −SO3 Na基 1×10-5eq/g含有、重合度300 微粒子研磨剤(Cr2 O、平均粒径 0.3μm) 7部 トルエン 30部 メチルエチルケトン 30部 上記の組成物をニーダーで約1時間混練した後に更に下
記組成物を加えニーダーで約2時間分散を行った。
【0202】 ポリエステルポリウレタン樹脂 5部 ネオペンチルグリコール/カプロラクトンポリオール/MDI =0.9/2.6/1 −SO3 Na基 1×10-4eq/g含有 平均分子量 35000 トルエン 200部 メチルエチルケトン 200部 次いで下記カーボンブラック、粗粒子研磨剤を添加、サ
ンドグラインダーにて分散処理を行った。
【0203】 カーボンブラック(平均粒径 20〜30mμ) 5部 ライオンアクゾ社製ケッチェンブラックEC 粗粒子研磨剤 2部 α−アルミナ(住友科学社製AKP−12、平均粒径 0.5μm) さらに下記組成物を加え、再度サンドグラインダー分散
し、上層磁性層用塗布液を得た。
【0204】 ポリイソシアネート(日本ポリウレタン社製コロネートL) 6部 トリデシルステアレート 6部 以上のようにして得られた上層磁性層用塗布液と下層非
磁性層用塗布液を厚さ75μmのポリエチレンテレフタ
レート上にまず、下層非磁性層用塗布液を、次に湿潤状
態にある内に上記上層磁性層用塗布液を塗布し、裏面に
も同様に処理した。乾燥膜厚で下層非磁性層の厚味が
1.5μm、磁性層の厚味が0.5μmとなるようにし
た。その後、カレンダー処理を施して磁気記録媒体を得
た。しかるのちに、この磁気記録媒体を3.5吋に打ち
抜き、ライナーが内側に設置済みの3.5吋カートリッ
ジに入れ、所定の機構部品を付加し、実施例3−1の
3.5吋フロッピーディスクを得た。また、同様に表5
に記載の因子を変更して試料、実施例3−2〜3−5、
比較例3−1〜3−3を作成し、性能を下記により評価
し、その結果を表5に示した。 1.下層無機質粉末の体積比率(充填率);実施例2と
同じ 2.無機質粉末の平均粒径;実施例2と同じ 3.酸化鉄磁性粉の結晶子サイズ;X線回折により、
(4.4.0)面と(2.2.0)面の回折線の広がり
分から求めた。 4.表面粗さRrms ;実施例2と同じ 5.σ;実施例1と同じ方法である。 6.最内周2F出力相対値(%);実施例3−1の初期
2F出力値として算出した。使用ドライブはPD211
東芝株式会社製である。
【0205】
【表5】
【0206】表5より明らかなとおり、実施例試料は、
下層非磁性層に含まれる無機質粉末の平均粒径が、上層
磁性層に含まれる強磁性粉末の結晶子サイズの1/2倍
〜4倍であるために表面粗さRrms が小さく、かつd/
rms が30以下、σが0.2μm以下と一様かつ表面
性が優れた磁性層が形成され、再生出力が高く、かつピ
ンホールが極めてすくない優れた磁気記録媒体である。
一方、比較例3−1は、(無機質粉末の平均粒径/強磁
性粉末の結晶子サイズ)が所定の範囲より大きすぎるた
めにRrms が大きくなり、出力が改善されない。比較例
3−2は、(無機質粉末の平均粒径/強磁性粉末の結晶
子サイズ)が所定の範囲より小さすぎるためにRrms
大きくなり、出力が改善されない。比較例3−3は、磁
性層の厚味dは1.2μmと厚いために再生出力がやや
劣る。
【0207】実施例4 実施例2−1と同様の上層磁性層及び下層非磁性層用塗
布液組成において、表6〜7に記載の因子(特に下層非
磁性層の無機質粉末平均粒径と上層磁性層の強磁性粉末
の長軸長の比)を変更して各種の試料を作成し、性能を
実施例2と同様に評価し、その結果を表6〜7に示し
た。
【0208】角形比:振動試料型磁束計(VNM;東英
工業製)を用いてHm5kOeで測定した時の塗布方向
Br/Bmを角形比とした。
【0209】
【表6】
【0210】
【表7】
【0211】上表から明らかなとおり、実施例試料は、
Δd≦0.50dを満足し、下層非磁性層に含まれる無
機質粉末の平均粒径が、上層磁性層に含まれる強磁性粉
末の長軸長の1/3倍以下であるためにd/Rrms が3
0以上であり、一様な磁性層が形成され、再生出力が高
く、かつピンホールが極めてすくない優れた磁気記録媒
体である。一方、比較例は、Δd≦0.50dを満足し
ない。比較例4−1は、(無機質粉末の平均粒径/強磁
性粉末の長軸長)が大きすぎるためにΔdが大きくな
り、出力が改善されない。比較例4−2は、磁性層の厚
味dが1.3μmと厚いために再生出力が劣る。比較例
4−3は、磁性層単層の例であり、下層非磁性層がなく
dが薄いために塗布性、電磁変換特性が劣悪である。比
較例4−4は下層乾燥後の逐次重層であるために塗布性
が改善されない。参考例4−1は、磁性層単層でdが厚
いために塗布性は良好であるが電磁変換特性が改善され
ない。比較例4−5は、下層に無機質粉末を使用してい
ないので、上層及び下層の界面変動が大きくなるためΔ
dが高く電磁変換特性が悪い。比較例4−6は、下層
含まれるカーボンブラックが多すぎるので、やはりΔd
が高くなり、電磁変換特性が悪い。
【0212】実施例5 実施例3−1の上層磁性層用塗布液組成の内Co変性γ
Fe2 3 を下記強磁性粉末に変更した他は実施例3−
1と同じ上層磁性層用塗布液及び実施例3−1の下層非
磁性層用塗布液と同じ塗布液を作成し、実施例5−1の
試料を作成した。
【0213】 強磁性粉末(六方晶バリウムフェライト) 平均板径 0.05μm 、板状比 4 BET法による比表面積 39m2 /g Hc 1100Oe 又、表8に記載の因子(特に下層非磁性層の無機質粉末
平均粒径と上層磁性層の強磁性粉末の平均板径の比)を
変更して試料、実施例5−2〜5−3、比較例5−1〜
5−2を作成し、性能を実施例3と同様に評価し、その
結果を表8に示した。
【0214】垂直方向角形比:振動試料型磁束計を用い
て塗布面に対して垂直方向のBr/Bmを測定した。 D50(kfci):出力が長波長記録再生出力の50
%となる記録密度。このD50は、装置として実現可能
な最大記録密度の目安となる。
【0215】
【表8】
【0216】表8より、実施例試料は、下層非磁性層に
含まれる無機質粉末の平均粒径が、上層磁性層に含まれ
る板状強磁性粉末の平均板径以下であるために垂直方向
角形比が高く、Δdが0.50d以下と一様な磁性層が
形成されている。従って、実施例試料は、D50が高
く、かつピンホールが極めてすくない優れた磁気記録媒
体である。一方、比較例5−1は、無機質粉末の平均粒
径が強磁性粉末の平均板径より大きいためにΔdが大き
くなり、D50が改善されない。比較例5−2は、下層
非磁性層のない磁性層単層の例であり、D50が悪い。
【0217】実施例6 以下の処方で上層磁性層用塗布液及び下層非磁性層用塗
布液を調製した。 実施例6−1 下層非磁性層用塗布液 無機質粉末 TiO2 80部 平均粒径 0.035μm 結晶系 ルチル TiO2 含有量 90重量% 無機質粉末表面処理層 Al2 3 (10重量%) BET法による比表面積 40m2 /g DBP吸油量 27〜38g/100g pH 7 カーボンブラック 20部 平均粒径 16mμ DBP吸油量 80ml/100g pH 8.0 BET法による比表面積 250m2 /g 揮発分 1.5% 塩化ビニル−酢酸ビニル−ビニルアルコール共重合体 12部 −N(CH3 3 + Cl- の極性基を5×10-6eq/g含む 組成比 86:13:1 重合度 400 ポリエステルポリウレタン樹脂 5部 ネオペンチルグリコール/カプロラクトンポリオール/MDI =0.9/2.6/1 −SO3 Na基 1×10-4eq/g含有 ブチルステアレート 1部 ステアリン酸 1部 メチルエチルケトン 100部 シクロヘキサノン 50部 トルエン 50部 上層磁性層用塗布液 強磁性金属微粉末 組成 Fe/Zn/Ni=92/4/4 100部 Hc 1600Oe BET法による比表面積 60m2 /g 結晶子サイズ 195Å 平均長軸長 0.20μm、針状比 10 飽和磁化( σS ) :130emu/g 表面処理剤:Al2 3 、SiO2 塩化ビニル系共重合体 12部 −SO3 Na基 1×10-4eq/g含有、重合度300 ポリエステルポリウレタン樹脂 3部 ネオペンチルグリコール/カプロラクトンポリオール/MDI =0.9/2.6/1 −SO3 Na基 1×10-4eq/g含有 α−アルミナ(平均粒径 0.3μm) 2部 カーボンブラック(平均粒径 0.10μm) 0.5部 ブチルステアレート 1部 ステアリン酸 2部 メチルエチルケトン 90部 シクロヘキサノン 50部 トルエン 60部 上記2つの塗料のそれぞれについて、各成分を連続ニー
ダーで混練した後、サンドミルを用いて分散させた。得
られた分散液にポリイソシアネートを下層非磁性層の塗
布液には1部、上層磁性層の塗布液には3部を加え、さ
らにそれぞれに酢酸ブチル40部を加え、1μmの平均
孔径を有するフィルターを用いて濾過し、下層非磁性層
用及び上層磁性層用の塗布液をそれぞれ調製した。
【0218】得られた下層非磁性層塗布液を乾燥後の厚
さが2μmになるように更にその直後にその上に上層磁
性層の厚さが0.5μmになるように、厚さ7μmで中
心平均表面粗さが0.01μmのポリエチレンテレフタ
レート支持体上に同時重層塗布を行い、両層がまだ湿潤
状態にあるうちに3000ガウスの磁力をもつコバルト
磁石と1500ガウスの磁力をもつソレノイドにより配
向させ、乾燥後、金属ロールのみから構成される7段の
カレンダーで温度90℃にて処理を行い、8mmの幅に
スリットし、実施例6−1の8mmビデオテープを製造
した。
【0219】また、同様に表9〜10に記載の因子を変
更して試料、実施例6−2〜6−12、比較例6−1〜
6−3を作成し、性能を前述と同様に評価し、その結果
を表9〜10に示した。尚、8mmビデオの相対速度は
38m/secであり、7MHz記録波長は0.54μ
mである。従って、λ/50は10.8nmとなる。中
心線平均表面粗さ(Ra):WYKO社製TOYO3D
を用いてMIRAU法で約250×250nmの面積R
aを測定した。測定波長は約650nmにて球面補正。
円筒補正を加えた。
【0220】
【表9】
【0221】
【表10】
【0222】上表より明らかなとおり、実施例試料は、
無機質粉末表面にAl2 3 、SiO2 、ZrO2 等の
処理層を上表に示す通り含むために分散性が改善され、
Raが低く、λ/50(10.8nm)以下であり、電
磁変換特性が良好である。比較例6−1は、無機質粉末
に処理層が含まれないので、分散性が悪く、Raおよび
σ、Δdが高くなり、電磁変換特性が劣る。比較例6−
2は、磁性層が厚いために電磁変換特性が悪い。比較例
3は、逐次重層のため試料が作成できなかった。
【0223】実施例7 以下の処方で上層磁性層用塗布液及び下層非磁性層用塗
布液を調製した。 実施例7−1 下層非磁性層用塗布液;実施例6−1と同じ 上層磁性層用塗布液 Co置換バリウムフェライト 100部 BET法による比表面積 35m2 /g 平均粒径 0.06、板状比 5 塩化ビニル系共重合体 9部 −SO3 Na基 1×10-5eq/g含有、重合度300 微粒子研磨剤(Cr2 O、平均粒径 0.3μm) 7部 トルエン 30部 メチルエチルケトン 30部 上記の組成物をニーダーで約1時間混練した後に更に下記組成物を加えニーダ ーで約2時間分散を行った。
【0224】 ポリエステルポリウレタン樹脂 5部 ネオペンチルグリコール/カプロラクトンポリオール/MDI =0.9/2.6/1 −SO3 Na基 1×10-4eq/g含有 平均分子量 35000 メチルエチルケトン 200部 シクロヘキサノン 100部 トルエン 80部 次いで下記カーボンブラック、粗粒子研磨剤を添加、サ
ンドグラインダーにて2000回転、約2時間分散処理
を行った。
【0225】 カーボンブラック(平均粒径 20〜30mμ) 5部 ライオンアクゾ社製ケッチェンブラックEC 粗粒子研磨剤 2部 α−アルミナ(住友化学社製AKP−12、平均粒径 0.5μm) さらに下記組成物を加え、再度サンドグラインダー分散
し、上層磁性層用塗布液を得た。
【0226】 ポリイソシアネート(日本ポリウレタン社製コロネートL) 6部 トリデシルステアレート 6部 以上のようにして得られた上層磁性層用塗布液と下層非
磁性層用塗布液を厚さ75μmのポリエチレンテレフタ
レート上にまず、下層非磁性層用塗布液を、次に湿潤状
態にある内に上記上層磁性層用塗布液を塗布し、裏面に
も同様に処理した。乾燥膜厚で下層非磁性層の厚味が
1.5μm、磁性層の厚味が0.5μmとなるようにし
た。その後、カレンダー処理を施して磁気記録媒体を得
た。しかるのちに、この磁気記録媒体を3.5吋に打ち
抜き、ライナーが内側に設置済みの3.5吋カートリッ
ジに入れ、所定の機構部品を付加し、実施例7−1の
3.5吋フロッピーディスクを得た。また、同様に表1
1に記載の因子を変更して試料、実施例7−2〜7−
7、比較例7−1を作成し、性能を評価し、その結果を
表11に示した。
【0227】初期最内周2F出力:実施例7−1のサン
プルを100として相対値として算出した。使用ドライ
ブはPD211(東芝社製)である。尚、記録波長は、
1.428μmである。従って、λ/50は28.5n
mである。 表面粗さ:Raを実施例6と同様の方法で測定した。
【0228】
【表11】
【0229】上表から、実施例6と同様に実施例試料
は、無機質粉末表面にAl2 3 、SiO2 、ZrO2
等の処理層を上表に示す通り含むために分散性が改善さ
れ、Raが低く、電磁変換特性が良好である。比較例7
−1は、無機質粉末に処理層が含まれないので、分散性
が悪く、Raおよびσ、Δdが高くなり、電磁変換特性
が劣る。
【0230】実施例8 以下の処方で上層磁性層用塗布液及び下層非磁性層用塗
布液を調製した。 実施例8−1 下層非磁性層用塗布液 無機質粉末 TiO2 80部 平均粒径 0.035μm 結晶系 ルチル TiO2 含有量 90%以上 比表面積 40m2 /g DBP吸油量 27〜38g/100g pH 7 カーボンブラック 20部 平均粒径 16mμ DBP吸油量 80ml/100g pH 8.0 BET法による比表面積 250m2 /g 揮発分 1.5% 塩化ビニル−酢酸ビニル−ビニルアルコール共重合体 12部 −N(CH3 3 + Cl- の極性基を5×10-6eq/g含む 組成比 86:13:1 重合度 400 ポリエステルポリウレタン樹脂 5部 ネオペンチルグリコール/カプロラクトンポリオール/MDI =0.9/2.6/1 −SO3 Na基 1×10-4eq/g含有 ブチルステアレート 1部 ステアリン酸 1部 メチルエチルケトン 200部 上層磁性層 強磁性金属微粉末 組成 Fe/Zn/Ni=92/4/4 100部 Hc 1600Oe BET法による比表面積 60m2 /g 結晶子サイズ 195Å 平均長軸径 0.20μm、針状比 7 飽和磁化( σS ) :128emu/g 塩化ビニル系共重合体 12部 −SO3 Na基 1×10-4eq/g含有、重合度300 ポリエステルポリウレタン樹脂 3部 ネオペンチルグリコール/カプロラクトンポリオール/MDI =0.9/2.6/1 −SO3 Na基 1×10-4eq/g含有 α−アルミナ(平均粒径 0.2μm) 2部 カーボンブラック(平均粒径 0.10μm) 0.5部 ブチルステアレート 1部 ステアリン酸 2部 メチルエチルケトン 200部 上記2つの塗料のそれぞれについて、各成分をオープン
ニーダーで混練した後、サンドミルを用いて分散させ
た。得られた分散液にポリイソシアネートを下層非磁性
層の塗布液には1部、上層磁性層の塗布液には3部を加
え、さらにそれぞれに酢酸ブチル40部を加え、1μm
の平均孔径を有するフィルターを用いて濾過し、下層非
磁性層用及び上層磁性層用の塗布液をそれぞれ調製し
た。
【0231】得られた下層非磁性層塗布液を乾燥後の厚
さが3μmになるように更にその直後にその上に上層磁
性層の厚さが0.5μmになるように、厚さ7μmで中
心平均表面粗さが0.01μmのポリエチレンテレフタ
レート支持体上に同時重層塗布を行い、両層がまだ湿潤
状態にあるうちに3000ガウスの磁力をもつコバルト
磁石と1500ガウスの磁力をもつソレノイドにより配
向させ、乾燥後、金属ロールのみから構成される7段の
カレンダーで温度90℃にて処理を行い、8mmの幅に
スリットし、実施例8−1の8mmビデオテープを製造
した。
【0232】また、同様に表12〜17に記載の因子を
変更して試料、実施例8−2〜8−6、比較例8−1〜
8−4を作成した。また、実施例8−4、比較例8−1
の磁性層は強磁性粉末の充填密度を上げるために混練に
連続ニーダーを用いた。その試料の特性を評価し、その
結果を表16、17に示した。 評価方法 7MHz出力 富士写真フィルム社製FUJIX8 8mmビデオデッ
キを用いて7MHz信号を記録し、この信号を再生した
ときの7MHz信号再生出力をオシロスコープで測定し
た。対照は富士写真フィルム社製8ミリテープSAG
P6−120である。
【0233】C/N比 富士写真フィルム社製FUJIX8 8mmビデオデッ
キを用いて7MHz信号を記録し、この信号を再生した
ときの6MHzで発生するノイズをスペクトルアナライ
ザーで測定し、このノイズに対する再生信号の比を測定
した。 テープ熱収縮率 試料テープを70℃の恒温槽に48分間保存し、その前
後の長さの変化をもって熱収縮率とした。テープ長は約
100mmでコンパレーターで長さを測定した。恒温槽
に保存中はテンションをかけなかった。
【0234】スキュー歪み 予め、カラーバー信号を記録し、その後70℃の恒温槽
中に48時間保存した後、十分室温に戻ったのを確認し
た後、再生して画面上でのカラーバー信号の変化より求
めた。カラーバー1本が7.48μsecである。 走行耐久性 試料を23℃、70%RHの雰囲気で富士写真フィルム
社製8mmビデオデッキFUJIX8 10台でP6−
120を100回走行させた。その間、出力低下を測定
し、また走行後のデッキ内各部の汚れを評価した。○
は、汚れが付着している部分が5ヵ所以内であることを
示し、△は、汚れが付着している部分が5ヵ所以上であ
るが、目詰まりの実害はないことを示し、×は、汚れが
付着している部分が5ヵ所以上であり、目詰まりの実害
があることを示す。尚、○△は、○と△の中間の性能を
意味する。
【0235】
【表12】
【0236】
【表13】
【0237】
【表14】
【0238】
【表15】
【0239】
【表16】
【0240】
【表17】
【0241】上表より、各実施例に示される本発明の磁
気記録媒は、Δd≦0.50dを満足し、比較例に比
べ、スキュー歪みが小さく、σ、Δdも小さいので再生
出力、C/N比、走行耐久性も良好であった。比較例8
は、上層厚味が、1.2μmと厚いために電磁変換
特性が劣る。
【0242】本実施例は、磁気記録媒体の70℃、48
時間における熱収縮率を0.4%以下に制御したことに
よりスキュー歪みを低減すると共に走行耐久性、更にC
/N、再生出力を良好に確保できる優れた特性を有する
極めて磁性層の薄い塗布型磁気記録媒体であり、しかも
塗布欠陥なく大量に製造できることがわかる。 実施例9 下記処方により下層非磁性層用塗布液及び上層磁性層用
塗布液を調製した。 下層非磁性層用塗布液 無機質粉末 TiO2 80部 平均粒径 0.035μm 結晶系 ルチル TiO2 含有量 90%以上 BET法による比表面積 40m2 /g DBP吸油量 27〜38g/100g pH 7 カーボンブラック 20部 平均粒径 16mμ DBP吸油量 80ml/100g pH 8.0 BET法による比表面積 250m2 /g 揮発分 1.5% 塩化ビニル−酢酸ビニル−ビニルアルコール共重合体 12部 −N(CH3 3 + Cl- の極性基を5×10-6eq/g含む 組成比 86:13:1 重合度 400 ポリエステルポリウレタン樹脂 5部 ネオペンチルグリコール/カプロラクトンポリオール/MDI =0.9/2.6/1 −SO3 Na基 1×10-4eq/g含有 ブチルステアレート 1部 ステアリン酸 1部 メチルエチルケトン 200部 上層磁性層(a) 強磁性金属微粉末 組成 Fe/Zn/Ni=92/4/4 100部 Hc 1600Oe BET法による比表面積 60m2 /g 結晶子サイズ 195Å 平均長軸長 0.20μm、針状比 10 飽和磁化( σS ) :130emu/g 塩化ビニル系共重合体 12部 −SO3 Na基 1×10-4eq/g含有、重合度300 ポリエステルポリウレタン樹脂 3部 ネオペンチルグリコール/カプロラクトンポリオール/MDI =0.9/2.6/1 −SO3 Na基 1×10-4eq/g含有 α−アルミナ(平均粒径 0.3μm) 2部 カーボンブラック(平均粒径 0.10μm) 0.5部 ブチルステアレート 1部 ステアリン酸 2部 メチルエチルケトン 200部 上記2つの塗料のそれぞれについて、各成分を連続ニー
ダーで混練した後、サンドミルを用いて分散させた。得
られた分散液にポリイソシアネートを下層非磁性層の塗
布液には1部、上層磁性層の塗布液には3部を加え、さ
らにそれぞれに酢酸ブチル40部を加え、1μmの平均
孔径を有するフィルターを用いて濾過し、下層非磁性層
用及び上層磁性層用の塗布液をそれぞれ調製した。
【0243】得られた下層非磁性層塗布液を乾燥後の厚
さが2.5μmになるように更にその直後にその上に上
層磁性層の厚さが0.5μmになるように、厚さ7μm
で中心平均表面粗さが0.01μmのポリエチレンテレ
フタレート支持体上に同時重層塗布を行い、両層がまだ
湿潤状態にあるうちに3000ガウスの磁力をもつコバ
ルト磁石と1500ガウスの磁力をもつソレノイドによ
り配向させ、乾燥後、金属ロールのみから構成される7
段のカレンダーで温度90℃にて処理を行い、8mmの
幅にスリットし、実施例9−1の8mmビデオテープを
製造した。
【0244】また、同様に表18〜19に記載の因子を
変更して試料、実施例9−2〜9−6、比較例9−1〜
9−4を作成した。また、上層磁性層として下記塗料を
使用して実施例9−7の試料を作成した。 上層磁性層(b) 強磁性金属微粉末 組成 BaFe(バリウムフェライト) 100部 Hc:2400Oe BET法による比表面積:452 /g 板径:0.03μm、板状比:5 塩化ビニル系共重合体 12部 −SO3 Na基 1×10-4eq/g含有、重合度300 ポリエステルポリウレタン樹脂 3部 ネオペンチルグリコール/カプロラクトンポリオール/MDI =0.9/2.6/1 −SO3 Na基 1×10-4eq/g含有 α−アルミナ(平均粒径 0.3μm) 5部 カーボンブラック(平均粒径 0.10μm) 0.5部 ブチルステアレート 1部 ステアリン酸 2部 メチルエチルケトン 200部 上記試料を評価し、その結果を表18〜19に示す。 SMD、STD、スチフネス比率 東洋精機製ループスチフネステスターを用いて、幅8ミ
リ、長さ50ミリの試料をSMD用及びSTD用に切り出し
てこれを円環として、内径方向に変位速度3.5mm/
秒で変位5mmを与えるのに要する各力をmgでSMD、
STDを求めスチフネス比率SMD/STDを求めた。 エンベロープ平坦度 富士写真フィルム社製FUJIX8 8mmビデオデッ
キを用いて7MHz信号を記録し、この信号を再生した
時7MHz信号再生出力をオシロスコープで観察し、1
フィールド中で最大出力と最小出力との差をもって表
す。 7MHz出力 富士写真フィルム社製FUJIX8 8mmビデオデッ
キを用いて7MHz信号を記録し、この信号を再生した
ときの7MHz信号再生出力をオシロスコープで測定し
た。対照は富士写真フィルム社製8ミリテープSAG
P6−120である。 C/N比 富士写真フィルム社製FUJIX8 8mmビデオデッ
キを用いて7MHz信号を記録し、この信号を再生した
ときの6MHzで発生するノイズをスペクトルアナライ
ザーで測定し、このノイズに対する再生信号の比を測定
した。 走行耐久性測定法 試料を23℃、70%RH雰囲気で富士写真フィルム社
製8mmビオデデッキFUJIX8 10台でP6−1
20を100回走行させた。その間、出力低下を測定し
た。
【0245】○は、出力低下2dB以内 △は、出力低下2〜4dB ×は、出力低下4dB以上又は目詰まり発生 ピンホール 磁性層塗布後、バック層を塗布する前に、透過白色光で
磁性層を目視観察して100m2 当たりのピンホールを
測定した。100m2 に1個以下が好ましい。
【0246】
【表18】
【0247】
【表19】
【0248】上表より、本発明の実施例は、SMD/STD
が1.0〜1.9に制御されているために比較例に比
べ、ヘッド当たりが改善され、エンベロープ平坦度が小
さい。また、実施例は塗布欠陥がなくかつσが小さいの
で走行耐久性、出力、C/Nに優れることが分かる。比
較例9−1は、下層に無機質粉末でなくモース硬度2の
カーボンを使用しているためにSTDが低く所定のSMD/
STDが得られず、エンベロープ平坦度、σ、走行耐久性
が改善されない。比較例9−2は、平均粒径の大きな無
機質粉末を使用したために所定のSMD/STDが得られ
ず、エンベロープ平坦度、σが改善されない。比較例9
−3は、下層を設けない例であり、磁性層は塗布欠陥が
生じ評価試料はできなかった。比較例9−4は、磁性層
の厚味は1.2と厚いために他の実施例に比べ電磁変換
特性が劣るものの、エンベロープ平坦度、走行耐久性は
改善された。
【0249】実施例10 非磁性粉体としてポリエチレンテレフタレート(厚味1
0μm、F5値:MD方向 20Kg/mm2 、TD方
向 14Kg/mm2 、ヤング率:MD方向750Kg
/mm2 、TD方向 470Kg/mm2 )又はポリエ
チレンテレナフタレート(厚味 7μm、F5値:MD
方向 22Kg/mm2 、TD方向18Kg/mm2
ヤング率:MD方向 750Kg/mm2 、TD方向7
50Kg/mm2 )を用い、その上に以下の処方でディ
スパ攪拌機で12時間攪拌して下塗液を調製した。
【0250】 ポリエステル樹脂(−SO3 Na基含有) 100部 Tg 65℃ Na含量 4600ppm シクロヘキサノン 9900部 得られた下塗液を用いてバーコートにより前記非磁性支
持体上に乾燥厚味 0.1μmで塗布した。
【0251】一方、以下の処方で上層磁性層用塗布液及
び下層非磁性層用塗布液を調製した。 上層磁性層用塗布液処方 強磁性粉末:Fe合金粉末(Fe−Co−Ni) 100部 組成;Fe:Co:No:Ni=92:6:2 焼結防止剤としてAl2 3 を使用 Hc 1600Oe、σS 119emu/g 長軸長 0.13μm,針状比 7 結晶子サイズ 172Å、含水率 0.6重量% 塩化ビニル共重合体 13部 −SO3 Na 8×10-5eq/g、−OH、エポキシ基含有 Tg 71℃、重合度 300、数平均分子量(Mn)12000 重量平均分子量(Mw)38000 ポリウレタン樹脂 5部 −SO3 Na 8×10-5eq/g含有 −OH 8×10-5eq/g含有 Tg 38℃、Mw 50000 αアルミナ(平均粒径0.15μm) 12部 SBET 8.7m2 /g、pH 8.2、含水率 0.06重量% シクロヘキサノン 150部 メチルエチルケトン 150部 上記組成物をサンドミル中で6時間混合分散したのち、
ポリイソシアネート(コロネートL)を5部及びオレイ
ン酸 1部、ステアリン酸1部、ステアリン酸ブチル
1.5部を加えて上層磁性層用塗布液を得た。
【0252】 下層非磁性層用塗布液処方 TiO2 85部 平均粒径 0.035μm 結晶系 ルチル TiO2 含有量 90%以上 表面処理剤 Al2 3 BET 35〜45m2 /g 真比重 4.1 pH 6.5〜8.0 カーボンブラック 5部 平均粒径 16mμ DBP吸油量 80ml/100g pH 8.0 SBET 250m2 /g 着色力 143% 塩化ビニル共重合体 13部 −SO3 Na 8×10-5eq/g、−OH、エポキシ基含有 Tg 71℃、重合度 300、数平均分子量(Mn)12000 重量平均分子量(Mw)38000 ポリウレタン樹脂 5部 −SO3 Na 8×10-5eq/g含有 −OH 8×10-5eq/g含有 Tg 38℃、Mw 50000 シクロヘキサン 100部 メチルエチルケトン 100部 上記組成物をサンドミル中で4時間混合分散したのち、
ポリイソシアネート(コロネートL)5部、オレイン酸
1部、ステアリン酸1部、ステアリン酸ブチル1.5部
を加えて下層非磁性層用塗布液を得た。
【0253】上記の塗布液をギャップの異なる2つのド
クターを用いて、湿潤状態で塗布したのち、永久磁石3
500ガウス、次いでソレノイド 1600ガウスにて
配向処理後、乾燥した。その後、金属ロールと金属ロー
ルによるスーパーカレンダー処理を温度80℃で行っ
た。塗布厚みは磁性層0.3μm、非磁性層3.0μm
であった。
【0254】次いで以下の処方により塗布液を調製し
た。 BC層処方 カーボンブラック 100部 SBET 220m2 /g 平均粒径 17mμ DBP吸油量 75ml/100g 揮発分 1.5% pH 8.0 嵩密度 15 lbs/ft3 ニトロセルロース RS1/2 100部 ポリエステルポリウレタン 30部 ニッポラン(日本ポリウレタン社製) 分散剤 オレイン酸銅 10部 銅フタロシアニン 10部 硫酸バリウム(沈降性) 5部 メチルエチルケトン 500部 トルエン 500部 上記組成を予備混練し、ロールミルで混練した。次に上記分散物100重量部 に対して、 カーボンブラック 100部 SBET 200m2 /g 平均粒径 200mμ DBP吸油量 36ml/100g pH 8.5 α−Al2 3 (平均粒径 0.2μm) 0.1部 を添加した組成にてサンドグラインダーで分散を行い、
濾過後、上記分散物100重量部に対して以下の組成を
添加し、塗布液を調製した。
【0255】 メチルエチルケトン 120部 ポリイソシアネート 5部 得られた塗布液をバーコーターにより、前記磁性層を設
けた非磁性支持体の反対側に乾燥厚味0.5μmになる
よう塗布した。このようにして得られた原反を8mm幅
に裁断し試料1(PET支持体)及び試料2(PEN支
持体)の8mmビデオテープを作成した。
【0256】得られた8mmビデオテープについて以下
の測定を行い、その測定結果を得た。 (1)TEM(透過型電子顕微鏡) 磁性層の超薄切片を観察した。ダイヤモンドカッターで
媒体を約0.1μm厚味に切り出し、これを透過型電子
顕微鏡で観察し、写真撮影した。撮影した写真の上下層
の界面と磁性層表面を隈取りし、IBASII画像処理装
置で磁性層厚味を測定し、その平均値dと標準偏差σと
を求めた。
【0257】磁性層厚味の平均値dは0.3μmであっ
た。実用上は1.0μm以下、特に好ましくは0.6μ
m以下であることがわかった。磁性層厚味変動Δdは、
0.07μmで、Δd≦0.50dを満足し、磁性層厚
味の標準偏差σは、0.08μm以下であった。実用上
はσは0.2μm以下、特に好ましくは0.1μm以下
であることがわかった。同様な測定で実施例2−4は、
σが0.06μmであった。
【0258】前記磁気テープを延伸して磁性層を支持体
から浮いた状態にし、カッター刃でしごいて磁性層を剥
離した。この剥離した磁性層500mgを1N−NaO
H/メタノール溶液100ml中で2時間環流し、結合
剤を加水分解した。強磁性粉末は比重が大きいために底
に沈むので上澄み液を除去した。次いでデカンテーショ
ンにより3回水洗、その後THFで3回洗浄した。得ら
れた強磁性粉末は50℃の真空乾燥機で乾燥した。次に
得られた強磁性粉末をコロジオン中に分散し、TEMを
用いて6万倍で観察した。その結果、強磁性粉末の粒子
長軸長0.13μmであり、針状比は10であった。同
様に実施例2−2では長軸長0.25μmで、針状比は
15であった。実用上は粒子長軸長は0.4μm以下が
必要であり、好ましくは0.3μm以下であることがわ
かった。又実用上、針状比は2〜20が必要であり、好
ましくは2〜15であることがわかった。 (2)AFM(Atomic Force Micro
Scope) 表面粗さRrms を測定した。磁性層表面をDigita
l Instrument社のNanoscopeII
を用い、トンネル電流10nA、バイアス電圧400m
Vで6μm×6μmの範囲を走査した。表面粗さはこの
範囲のRrms を求めた。
【0259】その結果、Rrms は6nmであった。実用
上は20nm以下が必要であり、好ましくは10nm以
下であることがわかった。同様に実施例2も参考にでき
る。 (3)表面粗さ計 3d−MIRAUを用いた表面粗さを測定した。WYK
O社製TOPO3Dを用いてMIRAU法で約250×
250μm 2 の面積のRa、Rrms 、Peak−Val
ley値を測定した。測定波長約650nmにて球面補
正、円筒補正を加えている。この方式は光干渉にて測定
する非接触表面粗さ計である。Raは、2.7nmであ
った。実用上、Raは1〜4nmが好ましく、更に好ま
しくは2〜3.5nmであることがわかった。Rrms
3.5nmであった。実用上は1.3〜6nmが好まし
く、更に好ましくは1.5〜5nmであることがわかっ
た。P−V値は20〜30nmであった。実用上は80
nm以下が好ましく、更に好ましくは10〜60nmで
あることがわかった。 (4)VSM(振動試料型磁束計) VSMを用いて得られた磁気テープの磁性層の磁気特性
を測定した。東英工業社製の振動試料型磁束計を用いて
Hm 5kOeで測定した。
【0260】その結果、Hcは1620Oe、Hr(9
0°)は1800Oe、Br/Bmは0.82、SFD
は、0.583であった。実用上Hcは1500〜25
00Oeが必要で、好ましくは1600〜2000Oe
であることがわった。Hr(90°)は実用上、100
0〜2800Oeが必要で、好ましくは1200〜25
00Oeであることがわかった。Br/Bmは、実用上
0.75以上が必要で、好ましくは0.8以上であるこ
とがわかった。SFDは実用上0.7以下が必要で、好
ましくは0.6以下であることがわかった。
【0261】実施例4も同様の結果を得た。 (5)X線回折 前述の(1)で磁性層より取り出した強磁性粉末を用い
て、X線回折をした。磁気テープを直接にX線回折装置
にかけ、(1,1,0)面と(2,2,0)面との回折
線の半値幅の広がりから求めた。その結果、結晶子サイ
ズは180Åであることがわかった。実用上好ましくは
400Å以下であり、特に好ましくは100〜300Å
であることがわかった。同様に実施例6−2を測定する
と280Åであった。 (6)引っ張り試験 引っ張り試験機で得られた磁気テープのヤング率、降伏
応力、降伏伸びを測定した。引っ張り試験機(東洋ボー
ルドウィン社製万能引っ張り試験機STM−T−50B
P)を用いて雰囲気23℃、70%RHで引っ張り速度
10%/分で測定した。
【0262】その結果、磁気テープのヤング率は700
Kg/mm2 、降伏応力 6〜7Kg/mm2 、降伏伸
びが0.8%であった。実用上好ましくはヤング率は4
00〜2000Kg/mm2 、特に好ましくは500〜
1500Kg/mm2 であることがわかった。降伏応力
は、実用上好ましくは3〜20Kg/mm2 、特に好ま
しくは4〜15であることがわかった。降伏伸びは実用
上好ましくは0.2〜8%であり、特に好ましくは0.
4〜5%であることがわかった。 (7)曲げ剛性、円環式スティフネス ループスティフネステスタを用いて、幅8mm、長さ5
0mmの試料を円環とし、変位速度約3.5mm/秒で
変位5mmを与えるのに要する力をmgで表す。
【0263】その結果、8mmのp6−120のテープ
では厚さが10.5μmであり、スティフネスは40〜
60mmであった。実用上厚さが10.5±1μmでは
好ましくは、スティフネスは20〜90mgであり、特
に好ましくは30〜70mgであることがわかった。厚
さが11.5μm以上の場合は実用上好ましくは40〜
200mgであることがわかった。厚さが9.5μm以
下の場合は、実用上好ましくは10〜70mgであるこ
とがわかった。 (8)延伸破壊 クラック発生伸度を23℃、70%RHで測定した。
【0264】テープ長さ10cmの試験片の両端を0.
1mm/秒の引っ張り速度で引っ張り、400倍で磁性
層表面を顕微鏡観察して、磁性層表面に5個以上の明ら
かな亀裂が発生した伸度を測定する。同様にして実施例
8−4は12%であった。その結果、発生伸度は4%で
あった。実用上好ましくは20%以下、特に好ましくは
10%以下であることがわかった。 (9)ESCA Cl/FeスペクトルαとN/Feスペクトルβを測定
した。
【0265】α及びβの測定には、X線光電子分光装置
(PERKIN−FLMER社製)を用いた。X線源は
Mgアノードを用い、300Wで測定した。まず、ビデ
オテープの潤滑剤をn−ヘキサンを用いて洗い流した
後、X線光電子分光装置にセットした。X線源と試料と
も距離は1cmとした。試料を真空に排気して5分後か
らCl−2Pスペクトル、N−1SスペクトルとFe−
2P(3/2)スペクトルを10分間積算し測定した。
なお、バスエネルギーは100eVで一定とした。測定
したCl−2PスペクトルとFe−2P(3/2)スぺ
クトルとの積分強度比を計算で求め、αとした。
【0266】又、N−1SスペクトルとFe−2P(3
/2)スぺクトルとの積分強度比を計算で求めβとし
た。その結果αは、0.45であり、βは0.07であ
った。また、実施例3−5を測定するとαは0.32、
βは、0.10であった。実用上αは好ましくは0.3
〜0.6であり、特に好ましくは0.4〜0.5である
ことがわかった。実用上βは好ましくは0.03〜0.
12であり、特に好ましくは0.04〜0.1であるこ
とがわかった。 (11)レオバイブロン 110Hzの動的粘弾性を測定した。
【0267】動的粘弾性測定装置(東洋ボールドウィン
社製レオバイブロン)を用い、周波数110Hzでテー
プの粘弾性を測定した。TgはE′′のピーク温度とし
た。この方法はテープの一端から振動を加え他端に伝播
する振動を測定する。その結果、Tgは73℃、E′
(50℃)は4×1010dyne/cm2 、E′′(5
0℃)は1×1011であった。実用上Tgは好ましくは
40〜120℃、特に好ましくは50〜110℃である
ことがわかった。実用上E′(50℃)は0.8×10
11〜11×1011dyne/cm2 であり、特に好まし
くは、1×1011〜9×1011dyne/cm2 である
ことがわかった。実用上E′′(50℃)は好ましくは
0.5×1011〜8×1011dyne/cm2 であり、
特に好ましくは0.7×1011〜5×1011dyne/
cm2 であることがわかった。 (12)密着強度 180°剥離法により支持体と磁性層との密着強度を測
定した。
【0268】8mm幅にスリットしたテープを3M製粘
着テープにはりつけ、23℃、70%RHで180剥離
強度を測定した。得られた結果は50gであった。又、
実施例3−1を同様に測定すると25gであった。実用
上好ましくは密着強度は10g以上であり、特に好まし
くは20g以上であることがわかった。 (13)磨耗 磁性層表面の23℃、70%RHの鋼球磨耗を測定し
た。
【0269】プレパラートガラス上に試料をその両端を
接着テープで張り付けて固定し、6.25mmφの鋼球
に荷重50gを加えて摺動させた。その際、20mmの
距離を速度20mm/secで1回走行させた後、新し
い磁性面に鋼球を移動させて同じ操作を20回繰り返し
た。その後、鋼球の摺動面を40倍の顕微鏡で観察し、
その面が円であると仮定して直径を求め、その直径から
磨耗量を計算した。
【0270】得られた結果は、0.7×10-5〜1.1
×10-5mm3 であった。また、実施例3−2の試料
は、4×10-5mm3 であった。実用上好ましくは0.
×10-5〜5×10-5mm3 であり、特に好ましくは
0.4×10-5〜2×10-5mm3 であった。 (14)SEM(Scanning Electron
ic Microscope) SEMで磁性層表面状況を観察した。
【0271】日立製電子顕微鏡S−900にて倍率50
00倍で5枚撮影して表面の研磨剤を測定した。その結
果、研磨剤個数は0.2個/μm2 であった。また、実
施例4−6を測定すると0.4個/mm2 であった。実
用上、研磨剤個数は0.1個/μm2 以上であり、特に
好ましくは0.12個/μm2 〜0.5個/μm2 であ
ることがわかった。 (15)GC(ガスクロマトグラフィー) GCで磁気テープの残留溶剤を測定した。
【0272】島津製作所製ガスクロマトグラフィーGC
−14Aを用いて、20cm2 の試料を120℃まで加
熱して、媒体中の残留溶剤を測定した。その結果、残留
溶剤は8mg/m2 であった。また、実施例1−1を同
様に測定すると18mg/m2 であった。実用上、好ま
しくは50mg/m2 以下であり、特に好ましくは20
mg/m2 以下であることがわかった。 (16)ゾル分率 磁気テープの磁性層よりTHFにて抽出された可溶固形
分の磁性層重量に対する比率を求めた。その結果ゾル分
率は7%であった。また、実施例1−1を同様に測定す
ると5%であった。実用上、ゾル分率は好ましくは15
%以下であり、特に好ましくは10%以下であることが
わかった。 (17)磁気現像パターン 得られた8mm幅の磁気記録媒体をSONY社製VTR
EVO−9500を用い、1MHzの短波長記録を
し、記録された部分のみ5mm幅にスリットし、フェリ
コロイド(約100Åφ)(タイホウ工業社製)の液を
流して磁気現像し、リグロイン液中に24時間浸漬処理
したものを日本光学(株)製微分干渉顕微鏡を用い、干
渉色をブルーにして10倍で撮影した。写真を目視で観
察すると、磁性層の厚味の平均したサンプルは、黒又は
白の線は現れないが、磁性層の厚み変動が大きくなって
くると黒又は白の線が現れてくる。この線は厚みにむら
がある部分であり、このような黒又は白の線は5mm幅
の内に5本以内であることが好ましい。更にそれらの線
をミクロデンシトメーターで測定した黒と白の線の濃度
差が、好ましくは0.2以下、特に0.1以下が好まし
い。 (18)摩擦係数(μ) 8mm幅テープとsus420J、4mmφの棒とを2
0g(T1)の張力でラップ角約180°で接触させ
て、この条件下でテープを14mm/secの速度で走
行させるのに必要な張力(T2)を測定し、下式により
求めた。
【0273】μ=(1/π)・ln(T1/T2) その結果、磁性面のμは0.3であった。実用上、磁性
面のμは0.15〜0.4が好ましく、特に好ましくは
0.2〜0.35であることがわかった。又、バック層
面のμは0.2であった。実用上、バック層面のμは
0.15〜0.4が好ましく、特に好ましくは0.2〜
0.35であることがわかった。
【0274】この摩擦係数は、磁性体、研磨剤、カーボ
ンブラック、潤滑剤、分散剤等が関係して定まる。 (19)接触角 磁性層上に水、ヨウ化メチレンの液滴を落とし、顕微鏡
でその接触角を測定した。水の場合、90°であった。
実用上60〜130°であることが好ましく、特に80
〜120°が好ましいことがわかった。
【0275】又ヨウ化メチレンの場合、接触角は、20
°であった。実用上、好ましくは10〜90°であり、
特に好ましくは10〜70°であった。これら接触角は
特に潤滑剤や分散剤によって定まる値である。 (20)磁性層及びバック層の表面自由エネルギー 特開平3−119513号公報、D. K. 0wens, J. App
l. polymer Sci., 13(1969)とJ. Panzer J. Colloid &
Interfacial Sci., 44, No1に記載さふぇている方法に
基づく。
【0276】この結果、磁性層及びバック層共に40d
yne/cmであった。実用上10〜100dyen/
cmが、特に好ましいことがわかった。この表面自由エ
ネルギーは特に潤滑剤や分散剤によって定まってくる値
である。 (21)表面電気抵抗 8mm幅の試料を半径10mmの四分円の断面を持ち8
mmの間隔で置かれた2個の電極に渡して、デジタル表
面電気抵抗計TR−8611A(タケダ理研製)で測定
した。
【0277】その結果、磁性層表面及びバック層表面共
に1×106 Ω/sqであった。実用上1×109 Ω/
sq以下が好ましく、1×108 Ω/sq以下が特に好
ましいことがわかった。この表面電気抵抗は強磁性粉
末、結合剤、カーボンブラック等によって定まってくる
値である。
【0278】上述の方法、特性を有する8mmビデオテ
ープを現在市販されているテープと比較し、その結果を
表20に示した。
【0279】
【表20】
【0280】尚、評価方法は前記方法もしくは一般的方
法によった。また、判定基準は以下の通りである。 ジッター:○ 0.2μsec未満 × 0.2μsec以上 保存安定性:○ 60℃、90%RHに10日間保存後の
錆の発生が皆無 × 60℃、90%RHに10日間保存後の錆の発生があ
る 走行耐久性:8mmビデオデッキで50パス走行させた
時 ○ 30秒以上続く目詰まりがない。
【0281】× 30秒以上続く目詰まりがある。 スリキズ:スチルモードで10分間走行させた。 ○ 目視で傷が認められない。 × 目視で傷が認められる。
【図面の簡単な説明】
【図1】本発明の磁気記録媒体のΔdを測定する方法を
説明するための図である。
【図2】本発明で下層及び上層をウェット・オン・ウェ
ット塗布方式で設けるのに用いる逐次塗布方式の一例を
示す説明図である。
【図3】同じく同時重層塗布方式の一例を示す説明図で
ある。
【符合の説明】
1 可撓性支持体 2 塗布液(a) 3 塗布機(A) 4 スムージングロール 5 塗布液(b) 6 塗布機(B) 7 バックアップロール 8 同時多層塗布器
───────────────────────────────────────────────────── フロントページの続き (72)発明者 早川 悟 神奈川県小田原市扇町2丁目12番1号 富士写真フイルム株式会社内 (56)参考文献 特開 昭63−187418(JP,A) 特開 平4−238111(JP,A) 特開 平4−283416(JP,A) 特開 平4−321924(JP,A) 特開 平4−325915(JP,A) 特開 平4−325917(JP,A) 特開 平5−12650(JP,A) 特開 平5−197946(JP,A) 特開 平5−182173(JP,A) 特開 平5−182177(JP,A) 特開 平5−182178(JP,A)

Claims (9)

    (57)【特許請求の範囲】
  1. 【請求項1】 非磁性支持体上に少なくとも非磁性粉末
    を結合剤に分散した下層非磁性層を設け、その上に前記
    下層非磁性層が湿潤状態のうちに、強磁性粉末を結合剤
    に分散した上層磁性層を設けた少なくとも二層以上の複
    数の層を有する磁気記録媒体において、前記上層磁性層
    の乾燥厚み平均値(d)が1.0μm以下であり、かつ
    前記上層磁性層と下層非磁性層の界面における厚味変動
    の平均値ΔdがΔd≦0.50dの関係にあることを特
    徴とする磁気記録媒体。
  2. 【請求項2】 前記上層磁性層表面が、3d−MIRA
    Uで測定した光干渉表面粗さでRaが1〜5nm、R
    rms が1.3〜6nm、P−V値が80nm以下の内少
    なくとも1つの値を満足することを特徴とする請求項
    記載の磁気記録媒体。
  3. 【請求項3】 前記磁気記録媒体の曲げ剛性(円環式ス
    ティフネス)は全厚が11.5μmより厚い場合は40
    〜300mgであり、全厚が10.5±1μmでは20
    〜90mgであり、又全厚が9.5μmより薄い場合は
    10〜70mgであることを特徴とする請求項1記載
    磁気記録媒体。
  4. 【請求項4】 前記磁気記録媒体の23℃、70%RH
    で測定した磁性層のクラック発生伸度が20%以下であ
    ることを特徴とする請求項1記載の磁気記録媒体。
  5. 【請求項5】 前記磁気記録媒体をX線光電子分光装置
    を用いて測定した前記上層磁性層表面のCl/Feスペ
    クトルαが0.3〜0.6であり、N/Feスペクトル
    βが0.03〜0.12であることを特徴とする請求項
    1記載の磁気記録媒体。
  6. 【請求項6】 前記上層磁性層表面の23℃、70%R
    Hの鋼球磨耗が0.7×10-5〜5×10-5mm3 であ
    ることを特徴とする請求項1記載の磁気記録媒体。
  7. 【請求項7】 前記磁気記録媒体をSEM(電子顕微
    鏡)で倍率50000倍で5枚撮影した前記上層磁性層
    表面の研磨剤の目視での数が0.1個/μm2 以上であ
    ることを特徴とする請求項1記載の磁気記録媒体。
  8. 【請求項8】 前記磁気記録媒体の上層磁性層に1MH
    zの短波長記録をし、フェリコロイドを用いて磁気現像
    し、微分干渉顕微鏡を用いて10倍で観察した5mm幅
    のサンプルの中に連続した黒又は白い線が5本以内であ
    ることを特徴とする請求項1記載の磁気記録媒体。
  9. 【請求項9】 前記磁気記録媒体の上層磁性層の塗布方
    向(長手方向)の面内角形比が0.7以上であり、垂直
    方向の角形比が0.6以上であることを特徴とする請求
    1記載の磁気記録媒体。
JP4021782A 1991-01-21 1992-01-10 磁気記録媒体 Expired - Lifetime JP2666810B2 (ja)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP4021782A JP2666810B2 (ja) 1991-07-15 1992-01-10 磁気記録媒体
US07/873,201 US5645917A (en) 1991-04-25 1992-04-24 Magnetic recording medium
EP92107020A EP0520155B2 (en) 1991-04-25 1992-04-24 Magnetic recording medium
DE69213115T DE69213115T3 (de) 1991-04-25 1992-04-24 Magnetische Aufzeichnungsträger
KR1019920007071A KR100231920B1 (ko) 1991-04-25 1992-04-25 자기 기록 매체
US08/759,192 US5811166A (en) 1991-01-21 1996-12-04 Magnetic recording medium
US08/761,084 US5756148A (en) 1991-01-21 1996-12-04 Magnetic recording medium
US08/763,620 US5795646A (en) 1991-01-21 1996-12-04 Magnetic recording medium
US08/760,071 US5763046A (en) 1991-01-21 1996-12-04 Magnetic recording medium
US08/760,199 US5827600A (en) 1991-01-21 1996-12-04 Magnetic recording medium
US08/761,081 US5851622A (en) 1991-01-21 1996-12-04 Magnetic recording medium
US08/760,626 US5780141A (en) 1991-04-25 1996-12-04 Magnetic recording medium
US08/760,595 US5792543A (en) 1991-04-25 1996-12-04 Magnetic recording medium
US08/846,094 US6020022A (en) 1991-01-21 1997-04-25 Magnetic recording medium
US08/846,032 US6015602A (en) 1991-01-21 1997-04-25 Magnetic recording medium
US08/846,160 US5985408A (en) 1991-01-21 1997-04-25 Magnetic recording medium
US08/846,035 US6025082A (en) 1991-01-21 1997-04-25 Magnetic recording medium
US08/845,536 US5811172A (en) 1991-01-21 1997-04-25 Magnetic recording medium
US09/433,797 US6143403A (en) 1991-04-25 1999-11-03 Magnetic recording medium
US09/434,276 US6210775B1 (en) 1991-04-25 1999-11-03 Magnetic recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-198309 1991-07-15
JP19830991 1991-07-15
JP4021782A JP2666810B2 (ja) 1991-07-15 1992-01-10 磁気記録媒体

Related Child Applications (11)

Application Number Title Priority Date Filing Date
JP8160218A Division JP2714370B2 (ja) 1991-07-15 1996-06-20 磁気記録媒体の製造方法
JP8160217A Division JP2666820B2 (ja) 1991-07-15 1996-06-20 磁気記録媒体
JP8160213A Division JP2666817B2 (ja) 1991-07-15 1996-06-20 磁気記録媒体
JP8160214A Division JP2666818B2 (ja) 1991-07-15 1996-06-20 磁気記録媒体及びその製造方法
JP8160220A Division JP2666821B2 (ja) 1991-07-15 1996-06-20 磁気記録媒体およびその製造方法
JP8160216A Division JP2666819B2 (ja) 1991-07-15 1996-06-20 磁気記録媒体
JP8160215A Division JP2714369B2 (ja) 1991-07-15 1996-06-20 磁気記録媒体の製造方法
JP8160212A Division JP2666816B2 (ja) 1991-07-15 1996-06-20 磁気記録媒体及びその製造方法
JP8160222A Division JP2666823B2 (ja) 1991-07-15 1996-06-20 磁気記録媒体およびその製造方法
JP8160219A Division JP2710278B2 (ja) 1991-07-15 1996-06-20 磁気記録媒体の製造方法
JP8160221A Division JP2666822B2 (ja) 1991-07-15 1996-06-20 磁気記録媒体

Publications (2)

Publication Number Publication Date
JPH0573883A JPH0573883A (ja) 1993-03-26
JP2666810B2 true JP2666810B2 (ja) 1997-10-22

Family

ID=26358881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4021782A Expired - Lifetime JP2666810B2 (ja) 1991-01-21 1992-01-10 磁気記録媒体

Country Status (1)

Country Link
JP (1) JP2666810B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666821B2 (ja) * 1991-07-15 1997-10-22 富士写真フイルム株式会社 磁気記録媒体およびその製造方法
JPH08180378A (ja) * 1994-12-27 1996-07-12 Kao Corp 磁気記録媒体
JPH08241515A (ja) * 1995-03-03 1996-09-17 Tdk Corp 磁気記録媒体
US5776590A (en) * 1995-04-04 1998-07-07 Kao Corporation Magnetic recording medium
JPH10255261A (ja) * 1997-03-13 1998-09-25 Kao Corp 磁気記録媒体の配向方法
US6162528A (en) * 1998-12-16 2000-12-19 Verbatim Corporation Magnetic recording medium and method for manufacturing the same
US6780531B2 (en) 2000-10-31 2004-08-24 Hitachi Maxell, Ltd. Magnetic recording medium comprising a magnetic layer having specific surface roughness and protrusions
JP3886968B2 (ja) 2002-03-18 2007-02-28 日立マクセル株式会社 磁気記録媒体および磁気記録カートリッジ
US6964811B2 (en) 2002-09-20 2005-11-15 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same
GB2422949B (en) 2003-02-19 2007-05-30 Hitachi Maxell Magnetic recording medium
JP6175418B2 (ja) * 2014-08-29 2017-08-02 富士フイルム株式会社 磁気テープ
JP6058599B2 (ja) * 2014-08-29 2017-01-11 富士フイルム株式会社 磁気記録媒体
JP6044689B2 (ja) * 2015-09-09 2016-12-14 日立化成株式会社 両面粘着シートの製造方法及び両面粘着シート
JP6167218B2 (ja) * 2016-12-07 2017-07-19 富士フイルム株式会社 磁気記録媒体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666821B2 (ja) * 1991-07-15 1997-10-22 富士写真フイルム株式会社 磁気記録媒体およびその製造方法

Also Published As

Publication number Publication date
JPH0573883A (ja) 1993-03-26

Similar Documents

Publication Publication Date Title
JP3181042B2 (ja) 磁気記録媒体
EP0520155B2 (en) Magnetic recording medium
US6210775B1 (en) Magnetic recording medium
JP2666810B2 (ja) 磁気記録媒体
JP2666820B2 (ja) 磁気記録媒体
JP3181031B2 (ja) 磁気記録媒体の製造方法
JP2666823B2 (ja) 磁気記録媒体およびその製造方法
JP2666821B2 (ja) 磁気記録媒体およびその製造方法
JP2666818B2 (ja) 磁気記録媒体及びその製造方法
JP3181038B2 (ja) 磁気記録媒体及びその製造方法
JP2666816B2 (ja) 磁気記録媒体及びその製造方法
JP3181040B2 (ja) 磁気記録媒体
JP2666817B2 (ja) 磁気記録媒体
JP2714369B2 (ja) 磁気記録媒体の製造方法
JP3181041B2 (ja) 磁気記録媒体
JP2666819B2 (ja) 磁気記録媒体
JP2666822B2 (ja) 磁気記録媒体
JP2714370B2 (ja) 磁気記録媒体の製造方法
JP3181039B2 (ja) 磁気記録媒体及びその製造方法
JP2623185B2 (ja) 磁気記録媒体
JP2710278B2 (ja) 磁気記録媒体の製造方法
JPH1069634A (ja) 磁気記録媒体の製造方法
JP2666810C (ja)
JP2666820C (ja)
JP2666822C (ja)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 15