JP2023519214A - 血管内砕石術デバイスのための光学的アナライザーアッセンブリおよび方法 - Google Patents

血管内砕石術デバイスのための光学的アナライザーアッセンブリおよび方法 Download PDF

Info

Publication number
JP2023519214A
JP2023519214A JP2022556541A JP2022556541A JP2023519214A JP 2023519214 A JP2023519214 A JP 2023519214A JP 2022556541 A JP2022556541 A JP 2022556541A JP 2022556541 A JP2022556541 A JP 2022556541A JP 2023519214 A JP2023519214 A JP 2023519214A
Authority
JP
Japan
Prior art keywords
guide
light
balloon
catheter system
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022556541A
Other languages
English (en)
Other versions
JPWO2021188233A5 (ja
Inventor
エイ. クック、クリストファー
シュルテイス、エリック
Original Assignee
ボルト メディカル インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルト メディカル インコーポレイテッド filed Critical ボルト メディカル インコーポレイテッド
Publication of JP2023519214A publication Critical patent/JP2023519214A/ja
Publication of JPWO2021188233A5 publication Critical patent/JPWO2021188233A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • A61B18/245Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter for removing obstructions in blood vessels or calculi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/042Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating using additional gas becoming plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • A61B2017/00061Light spectrum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • A61B2017/00066Light intensity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • A61B2018/00154Coatings on the energy applicator containing and delivering drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00166Multiple lumina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00273Anchoring means for temporary attachment of a device to tissue
    • A61B2018/00279Anchoring means for temporary attachment of a device to tissue deployable
    • A61B2018/00285Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00369Heart valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00386Coronary vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • A61B2018/00708Power or energy switching the power on or off
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • A61B2018/00785Reflected power
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2015Miscellaneous features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/20361Beam shaping or redirecting; Optical components therefor with redirecting based on sensed condition, e.g. tissue analysis or tissue movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/204Attenuators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2205Characteristics of fibres
    • A61B2018/2211Plurality of fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2247Fibre breakage detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2261Optical elements at the distal end of probe tips with scattering, diffusion or dispersion of light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2266Optical elements at the distal end of probe tips with a lens, e.g. ball tipped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2272Optical elements at the distal end of probe tips with reflective or refractive surfaces for deflecting the beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2288Optical elements at the distal end of probe tips the optical fibre cable having a curved distal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • A61B2018/263Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy the conversion of laser energy into mechanical shockwaves taking place in a liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • A61B2018/266Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy the conversion of laser energy into mechanical shockwaves taking place in a part of the probe

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Otolaryngology (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Vascular Medicine (AREA)
  • Laser Surgery Devices (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Radiation-Therapy Devices (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

血管壁(108)または心臓弁の中のまたはそれに隣接する治療部位(106)を治療するためのカテーテルシステム(100)は、光供給源(124)と、膨張可能なバルーン(104)と、光ガイド(122A)と、光学的アナライザーアッセンブリ(142)とを含む。光供給源(124)は、光エネルギーを発生させる。膨張可能なバルーン(104)は、治療部位(106)に実質的に隣接して位置決め可能である。膨張可能なバルーン(104)は、バルーン内部(146)を画定するバルーン壁(130)を有しており、バルーン内部(146)は、バルーン流体(132)を受け入れる。光ガイド(122A)は、ガイド近位端部(122P)において光供給源(124)から光エネルギーを受け入れ、ガイド遠位端部(122D)に向けてバルーン内部(146)の中へ光エネルギーを第1の方向(121F)にガイドする。光学的アナライザーアッセンブリ(142)は、ガイド遠位端部(122D)から光ガイド(122A)のガイド近位端部(122P)に向けて第2の方向(121S)に光ガイド(122A)から放出された光エネルギーを光学的に分析するように構成されている。

Description

関連出願
本出願は、2020年3月18日に出願された米国仮出願第62/991,394号、および、2021年2月10日に出願された米国特許出願第17/172,980号に対する優先権を主張する。許可される限り、米国仮出願第62/991,394号および米国特許出願第17/172,980号の内容は、その全体が参照により本明細書に組み込まれている。
体内の血管の中の血管病変は、主要な有害事象(たとえば、心筋梗塞、塞栓症、深部静脈血栓症、および脳卒中など)に対するリスクの増加に関連付けられ得る。重度の血管病変は、臨床の場において医師が治療して開存を実現することが困難である可能性がある。
血管病変は、いくつか例を挙げると、たとえば、薬物療法、バルーン血管形成術、アテレクトミー、ステント設置、血管グラフトバイパスなどの介入を使用して治療され得る。そのような介入は、常に理想的であるとは限らない可能性があり、または、病変に対処するためにその後の治療を必要とする可能性がある。
本発明は、血管壁または心臓弁の中のまたはそれに隣接する治療部位を治療するためのカテーテルシステムに関する。さまざまな実施形態において、カテーテルシステムは、光供給源と、バルーンと、光ガイドと、光学的アナライザーアッセンブリとを含む。光供給源は、光エネルギーを発生させる。バルーンは、治療部位に実質的に隣接して位置決め可能である。バルーンは、バルーン内部を画定するバルーン壁を有しており、バルーン内部は、バルーン流体を受け入れる。光ガイドは、ガイド近位端部において光エネルギーを受け入れるように構成されており、また、ガイド近位端部から、バルーン内部の中に位置決めされているガイド遠位端部に向けて、光エネルギーを第1の方向にガイドするように構成されている。光学的アナライザーアッセンブリは、第1の方向とは反対の第2の方向に移動する、光ガイドからの光エネルギーを光学的に分析するように構成されている。
いくつかの実施形態において、バルーン流体が、バルーン内部に提供され、バルーンが折り畳まれた構成から拡張された構成へ拡張するようになっている。
追加的に、特定の実施形態において、光供給源は、光エネルギーのパルスを発生させ、光エネルギーのパルスは、光ガイドに沿ってバルーン内部の中へガイドされ、バルーン内部の中のバルーン流体の中にプラズマ発生を誘導する。いくつかのそのような実施形態において、カテーテルシステムは、プラズマ発生器をさらに含み、プラズマ発生器は、光ガイドのガイド遠位端部に位置決めされており、プラズマ発生器は、バルーン内部の中のバルーン流体の中にプラズマを発生させるように構成されている。さらに、そのような実施形態では、プラズマ発生は、急速な気泡形成を引き起こし、血管病変に隣接するバルーン壁の上に圧力波を付与することが可能である。
そのような実施形態では、光学的アナライザーアッセンブリは、プラズマ発生がバルーン内部の中のバルーン流体の中に起こったかどうかを光学的に検出するように構成され得る。追加的に、光学的アナライザーアッセンブリは、プラズマ発生の欠如がバルーン内部の中のバルーン流体の中に起こったかどうかを光学的に検出するようにさらに構成され得る。さらに、光学的アナライザーアッセンブリは、ガイド近位端部からガイド遠位端部への光ガイドの長さに沿った任意のポイントにおいて、光ガイドの故障を光学的に検出するようにも構成され得る。特定のそのような実施形態では、光学的アナライザーアッセンブリは、ガイド近位端部からガイド遠位端部への光ガイドの長さに沿った任意のポイントにおいて、光ガイドに対する潜在的な損傷を光学的に検出するようにも構成され得る。そのうえ、いくつかのそのような実施形態において、光学的アナライザーアッセンブリは、光ガイドに対する潜在的な損傷を光学的に検出するとき、カテーテルシステムの動作を自動的にシャットダウンするように構成されている。
いくつかの実施形態において、ガイド遠位端部は、遠位光レシーバーを含み、遠位光レシーバーは、戻りエネルギービームとしてガイド遠位端部からガイド近位端部へ光ガイドを通る光エネルギーを受け入れる。特定のそのような実施形態では、ガイド遠位端部からガイド近位端部へ光ガイドによって受け入れられる光エネルギーは、バルーン内部の中のバルーン流体の中に発生させられるプラズマから放出される。さらに、いくつかのそのような実施形態において、遠位光レシーバーを介してガイド遠位端部からガイド近位端部へ光ガイドによって受け入れられる光エネルギーは、光学的アナライザーアッセンブリによって光学的に分析される。
特定の実施形態において、カテーテルシステムは、光供給源に連結されているパルス発生器をさらに含む。パルス発生器は、パルス発生器は、光供給源をトリガーし、光エネルギーのパルスを放出するように構成されており、光エネルギーのパルスは、ガイド近位端部からガイド遠位端部へ光ガイドに沿ってガイドされる。そのような実施形態では、光エネルギーのパルスは、光ガイドのガイド遠位端部に位置決めされているプラズマ発生器を励起することが可能であり、プラズマ発生器は、バルーン内部の中のバルーン流体の中にプラズマを発生させるように構成されている。追加的に、特定のそのような実施形態では、光エネルギーは、戻りエネルギービームとして光ガイドを通してガイド近位端部へガイドされて戻る。そのような実施形態では、光学的アナライザーアッセンブリは、戻りエネルギービームを光学的に分析し、プラズマ発生がバルーン内部の中のバルーン流体の中に起こったかどうかを決定するように構成されている。
いくつかの実施形態において、光学的アナライザーアッセンブリは、ビームスプリッターおよび光検出器を含む。ビームスプリッターは、戻りエネルギービームを受け入れ、戻りエネルギービームの少なくとも一部分を光検出器の上に方向付けるように構成されている。追加的に、特定の実施形態において、カテーテルシステムは、ビームスプリッターと光検出器との間にビーム経路に沿って位置決めされている光学エレメントをさらに含み、光学エレメントは、戻りエネルギービームの少なくとも一部分を光検出器の上に連結するように構成されている。さらに、いくつかの実施形態において、光検出器は、戻りエネルギービームの少なくとも一部分に含まれる可視光に少なくとも部分的に基づいて信号を発生させる。追加的に、光検出器からの信号は、増幅器によって増幅され、増幅された信号を提供することが可能であり、増幅された信号は、制御電子機器に方向付けられ、バルーン内部の中のバルーン流体の中のプラズマ発生の強度を決定することが可能である。さらに、いくつかの実施形態において、増幅された信号は、ディスクリミネーター回路を使用してゲート処理される。そのような実施形態では、制御電子機器は、パルス発生器によってトリガーされるような、光供給源からのエネルギーのパルスのタイミングを、光検出器からの増幅された信号のタイミングと比較し、プラズマ発生がバルーン内部の中のバルーン流体の中でいつ起こったかを決定する。
追加的に、他の実施形態において、カテーテルシステムは、尋問ビームとして光エネルギーを発生させる第2の光供給源をさらに含む。そのような実施形態では、光ガイドは、ガイド近位端部において第2の光供給源から尋問ビームを受け入れ、尋問ビームを第2の光供給源からガイド遠位端部に向けてガイドするように構成されている。いくつかのそのような実施形態において、カテーテルシステムは、第2の光供給源に連結されているパルス発生器をさらに含み、パルス発生器は、第2の光供給源をトリガーし、尋問ビームとして光エネルギーのパルスを放出するように構成されており、尋問ビームは、光ガイドに沿ってガイド近位端部からガイド遠位端部へガイドされる。追加的に、特定のそのような実施形態では、第2の光供給源は、可視光供給源である。
さらに、特定の実施形態において、カテーテルシステムは、光ガイドのガイド遠位端部に位置決めされているプラズマ発生器をさらに含む。そのような実施形態では、尋問ビームは、プラズマ発生器によって散乱される、および、プラズマ発生器によって反射される、のうちの一方であり、戻された尋問ビームとして光ガイドに沿ってガイド遠位端部からガイド近位端部へ方向付けられる。特定の実施形態において、戻された尋問ビームは、光ガイドのガイド近位端部から放出されるときに、光学的アナライザーアッセンブリによって光学的に分析される。追加的に、いくつかの実施形態において、光学的アナライザーアッセンブリは、ビームスプリッターおよび光検出器を含み、ビームスプリッターは、戻された尋問ビームを受け入れ、戻された尋問ビームの少なくとも一部分を光検出器の上に方向付けるように構成されている。さらに、特定のそのような実施形態では、光検出器は、戻された尋問ビームの少なくとも一部分に少なくとも部分的に基づいて信号を発生させる。追加的に、光検出器からの信号は、増幅器によって増幅され、増幅された信号を提供することが可能であり、増幅された信号は、制御電子機器に方向付けられ、プラズマ発生がバルーン内部の中のバルーン流体の中でいつ起こったかを決定することが可能である。さらに、増幅された信号は、ディスクリミネーター回路を使用してゲート処理され得る。そのような実施形態では、制御電子機器は、パルス発生器によってトリガーされるような、第2の光供給源からの光エネルギーのパルスのタイミングを、光検出器からの増幅された信号のタイミングと比較し、プラズマ発生がバルーン内部の中のバルーン流体の中でいつ起こったかを決定することが可能である。
いくつかの実施形態において、光供給源は、レーザーを含む。
追加的に、特定の実施形態において、光供給源は、赤外光のパルスの形態の光エネルギーを放出する赤外線レーザーを含む。
さらに、いくつかの実施形態において、光ガイドは、光ファイバーを含む。
また、本発明は、血管壁または心臓弁の中のまたはそれに隣接する治療部位を治療するための方法に関する。特定の実施形態において、方法は、 光供給源によって光エネルギーを発生させるステップと;治療部位に実質的に隣接してバルーンを位置決めするステップであって、バルーンは、バルーン内部を画定するバルーン壁を有しており、バルーン内部は、バルーン流体を受け入れる、ステップと;ガイド近位端部において光ガイドによって光供給源からの光エネルギーを受け入れるステップと;ガイド近位端部から、バルーン内部の中に位置決めされているガイド遠位端部に向けて、光ガイドによって光エネルギーを第1の方向にガイドするステップと;光学的アナライザーアッセンブリによって光ガイドからの光エネルギーを光学的に分析するステップであって、分析される光エネルギーは、反対側に第1の方向の反対の第2の方向に移動する、ステップとを含む。
本概要は、本出願の教示のうちのいくつかの概観であり、本主題の排他的なまたは網羅的な処理であることを意図していない。さらなる詳細は、詳細な説明および添付の特許請求の範囲の中に見出される。他の態様は、以下の詳細な説明を読んで理解すると、および、その一部を形成する図面を見ると、当業者に明らかになることとなり、それらのそれぞれは、限定的な意味で解釈されるべきではない。本明細書における範囲は、添付の特許請求の範囲およびその法的な均等物によって定義される。
本発明の新規な特徴およびその本発明自身は、その構造およびその動作の両方に関して、添付の説明とともに解釈されて、添付の図面から最良に理解されることとなり、図面において、同様の参照文字は、同様のパーツを指す。
本明細書におけるさまざまな実施形態によるカテーテルシステムの実施形態の概略断面図であり、カテーテルシステムは、本発明の特徴を有する光学的アナライザーアッセンブリを含む、図である。 光学的アナライザーアッセンブリの実施形態を含むカテーテルシステムの実施形態の一部分の簡略図である。 光学的アナライザーアッセンブリの別の実施形態を含むカテーテルシステムの別の実施形態の一部分の簡略図である。
本発明の実施形態は、さまざまな修正および代替的な形態の影響を受けやすいが、その詳細は、例および図面によって示されており、本明細書で詳細に説明されている。しかし、本明細書における範囲は、説明されている特定の実施形態に限定されないということが理解される。それどころか、その意図は、本明細書における精神および範囲の中に入る修正例、均等物、および代替例をカバーすることである。
血管病変(本明細書では「治療部位」とも称される場合がある)の治療は、罹患した被検者における主要な有害事象または死亡を低減させることが可能である。本明細書において言及されているように、主要な有害事象は、血管病変の存在に起因して体内のどこかで発生し得るものである。主要な有害事象は、心臓の主要な有害事象、末梢血管系もしくは中枢血管系における主要な有害事象、脳における主要な有害事象、筋骨格における主要な有害事象、または、内蔵のいずれかにおける主要な有害事象を含むことが可能であるが、それに限定されない。
本明細書で開示されているカテーテルシステムおよび関連の方法は、血管内砕石術(IVL)カテーテルの性能、信頼性および安全をモニタリングするように構成されている。さまざまな実施形態において、本発明のカテーテルシステムは、エネルギー供給源(たとえば、レーザー供給源などのような光供給源または別の適切なエネルギー供給源)を利用し、エネルギー供給源は、エネルギーガイド(たとえば、光ガイド)によってガイドされるエネルギーを提供し、カテーテルの膨張可能なバルーンのバルーン内部の中のバルーン流体の中に局所化されたプラズマを生成させる。そうであるので、エネルギーガイドは、バルーン内部の中に位置決めされているエネルギーガイドのガイド遠位端部にまたはその近くに「プラズマ発生器」を組み込んでいると本明細書で称される場合があり、または、そのように言うことが可能である。この局所化されたプラズマは、圧力波を誘導し、圧力波は、患者の身体の中の血管壁の中のまたはそれに隣接する治療部位の上に圧力を付与し、その治療部位の中に破砕を誘導する。本明細書で使用されているように、治療部位は、典型的に血管および/または心臓弁の中に見出される血管病変(たとえば、石灰化された血管病変または線維性血管病変など)を含むことが可能である。
とりわけ、さまざまな実施形態において、カテーテルシステムは、患者の身体の中の血管または心臓弁の中のまたはそれに隣接する治療部位に前進するように構成されているカテーテルを含むことが可能である。カテーテルは、カテーテルシャフトと、カテーテルシャフトに連結および/または固定されているバルーンとを含む。本明細書におけるバルーンは、バルーン内部を画定するバルーン壁を含むことが可能であり、また、バルーン内部の中にバルーン流体を受け入れ、患者の血管系を通してカテーテルを前進させるのに適切な折り畳まれた構成から、治療部位に対して適切な位置にカテーテルをアンカー固定するのに適切な拡張された構成へ、拡張するように構成され得る。また、カテーテルシステムは、カテーテルシャフトに沿ってバルーンの中に配設されている1つまたは複数のエネルギーガイド(たとえば、光ガイド)を含む。それぞれのエネルギーガイドは、血管病変を破壊するためにバルーンの中に圧力波を発生させるように構成され得る。カテーテルシステムは、エネルギー供給源からのエネルギー(たとえば、光供給源からの光エネルギー)を利用し、治療部位に位置付けされているバルーンの中に配設されているエネルギーガイドのガイド遠位端部においてまたはその近くにおいて、バルーン流体の中にプラズマを(すなわち、プラズマ発生器を介して)発生させる。プラズマ形成は、1つまたは複数の圧力波を開始させることが可能であり、1つまたは複数の気泡の急速な形成を開始させることが可能であり、気泡は、最大サイズまで急速に膨張し、次いで、キャビテーション事象を通して消散することが可能であり、キャビテーション事象は、崩壊するときに圧力波を発射する可能性がある。プラズマ誘導された気泡の急速な膨張は、バルーンの中に保持されているバルーン流体の中に1つまたは複数の圧力波を発生させ、それによって、治療部位に圧力波を付与することが可能である。いくつかの実施形態において、エネルギー供給源は、エネルギー供給源からエネルギー(たとえば、光エネルギー)のサブミリ秒パルスを提供し、バルーンの中のバルーン流体の中のプラズマ形成を開始させ、急速な気泡形成を引き起こし、治療部位におけるバルーン壁に圧力波を付与するように構成され得る。したがって、圧力波は、非圧縮性のバルーン流体を通して治療部位に機械的なエネルギーを伝達し、治療部位に破砕力を付与することが可能である。
重要なことには、本明細書において詳細に説明されているように、本発明のカテーテルシステムは、光学的アナライザーアッセンブリを含み、光学的アナライザーアッセンブリは、光ガイドからバルーン内部の中へ放出される光のリアルタイムの連続的なモニタリングを提供するように構成されており、それは、プラズマ事象が起こったことを検出するために使用され得り、また、カテーテルシステムの公称動作のためのモニタとしても使用され得る。追加的に、光学的アナライザーアッセンブリは、また、光ガイドの一部として組み込まれるプラズマ発生器のエネルギー出力の正確な測定を提供するために、光ガイドから放出される光エネルギーの強度を測定するために利用され得る。より具体的には、プラズマ発生器のエネルギー出力の測定は、エネルギー供給源からの既知のエネルギー入力とともに使用され、変換効率を決定することが可能である。また、そのようなメトリックは、プラズマ発生器および光ガイドの条件をアセスし、カテーテルシステムが正常に機能しているかどうか、および、残っている動作サイクルの数を決定するために使用され得る。
より具体的には、さまざまな実施形態において、本明細書において詳細に説明されているように、本発明は、プラズマ発生器からおよび/またはバルーン内部から光ガイドを通して戻された光をサンプリングする手段を含む。光エネルギーは、光ガイドの長さに沿って両方に(対向する方向に)トラベルすることが可能であるということが認識される。したがって、光ガイドのガイド遠位端部に生じるか、または、光ガイドの長さに沿った任意の他の位置に生じる光を、光ガイドのガイド近位端部において検出することが可能である。したがって、光ガイドを通して送信して戻されるそのような光エネルギーは、光学的アナライザーアッセンブリを介して分離および検出され、ならびに/または分析され、本明細書において詳細に説明されているように、カテーテルシステムの性能、信頼性、および安全を効果的にモニタリングすることとなる。
本明細書において詳細に説明されているように、本発明の使用を通して、プラズマ発生器から放出される光エネルギーの連続的なモニタリング、および、放出された光エネルギーの強度を測定することは、IVLカテーテル(とりわけ、局所化されたプラズマ(そして、それは、バルーンカテーテルの内側に高エネルギー気泡を作り出す)を生成させるためにエネルギー供給源を利用するもの)の性能、信頼性、および安全に伴う複数の潜在的な問題に対処するということが認識される。本発明が対処する特定の問題は、1)バルーン内部の中にプラズマを発生させるためのエネルギー供給源(たとえば、レーザー供給源)の成功的な発射の光学的な検出、2)プラズマ発生器のエネルギー出力の正確な決定、3)バルーン内部の中に所望のプラズマを発生させるためのカテーテルシステムの故障の光学的な検出、および、4)光ガイドの長さに沿った任意のポイントにおける光ガイドの故障の光学的な検出を含む。
本明細書で使用されているように、「血管内病変」、「血管病変」、および「治療部位」という用語は、別段の記述がない限り、相互交換可能に使用される。そうであるので、血管内病変および/または血管病変は、本明細書では単に「病変」と称される場合がある。
以下の本発明の詳細な説明は、単に例示目的のものに過ぎず、決して限定的であることを意図していないということを当業者は認識することとなる。
本発明の他の実施形態は、本開示の利益を有するそのような当業者に容易に思い付くこととなる。ここで、添付の図面に図示されているような本発明の実装形態が詳細に参照されることとなる。
明確性のために、本明細書で説明されている実装形態のルーチン特徴のすべてが示されて説明されているわけではない。当然のことながら、任意のそのような実際の実装形態の開発において、開発者の特定の目標(たとえば、アプリケーション関連の制約およびビジネス関連の制約への準拠など)を実現するために、多数の実装形態に特有の決定が行われなければならないということ、ならびに、これらの特定の目標は、実装形態ごとにおよび開発者ごとに変化することとなるということが認識されることとなる。そのうえ、そのような開発努力は、複雑で時間がかかる可能性があるが、それにもかかわらず、本開示の利益を有する当業者にとってエンジニアリングの日常的な仕事であることとなるということが認識される。
本明細書で開示されているカテーテルシステムは、多くの異なる形態を含むことが可能であるということが認識される。ここで図1を参照すると、本明細書におけるさまざまな実施形態によるカテーテルシステム100の概略断面図が示されている。本明細書で説明されているように、カテーテルシステム100は、血管の血管壁の中のもしくはそれに隣接する、または、患者の身体の中の心臓弁の上のもしくはそれに隣接する、1つまたは複数の血管病変の中に破砕を誘導するための圧力を付与するのに適切である。図1に図示されている実施形態では、カテーテルシステム100は、カテーテル102、1つまたは複数の光ガイド122Aを含む光ガイドバンドル122、供給源マニホールド136、流体ポンプ138、システムコンソール123、ハンドルアッセンブリ128、および、光学的アナライザーアッセンブリ142のうちの1つまたは複数を含むことが可能であり、システムコンソール123は、光供給源124、電力供給源125、システムコントローラー126、およびグラフィックユーザーインターフェース127(「GUI」)のうちの1つまたは複数を含む。
カテーテル102は、患者109の身体107の中の血管108の中のまたはそれに隣接する治療部位106まで移動するように構成されている。治療部位106は、1つまたは複数の血管病変(たとえば、石灰化された血管病変など)を含むことが可能である。追加的に、または、代替例では、治療部位106は、血管病変(たとえば、線維性血管病変など)を含むことが可能である。
カテーテル102は、膨張可能なバルーン104(本明細書では単に「バルーン」と称される場合がある)、カテーテルシャフト110、およびガイドワイヤー112を含むことが可能である。バルーン104は、カテーテルシャフト110に連結され得る。バルーン104は、バルーン近位端部104Pおよびバルーン遠位端部104Dを含むことが可能である。カテーテルシャフト110は、カテーテルシステム100の近位部分114からカテーテルシステム100の遠位部分116へ延在することが可能である。カテーテルシャフト110は、長手方向軸線144を含むことが可能である。また、カテーテルシャフト110は、ガイドワイヤールーメン118を含むことが可能であり、ガイドワイヤールーメン118は、ガイドワイヤー112の上を移動するように構成されている。カテーテルシャフト110は、膨張ルーメン(図示せず)をさらに含むことが可能である。いくつかの実施形態において、カテーテル102は、遠位端部開口部120を有することが可能であり、また、カテーテル102が治療部位106にまたはその近くに移動されて位置決めされるときに、ガイドワイヤー112を収容し、ガイドワイヤー112の上を追跡され得る。
カテーテル102のカテーテルシャフト110は、光供給源124と光学的に通信している光ガイドバンドル122の1つまたは複数の光ガイド122Aに連結され得る。光ガイド122Aは、カテーテルシャフト110に沿ってバルーン104の中に配設され得る。いくつかの実施形態において、それぞれの光ガイド122Aは、光ファイバーであることが可能であり、光供給源124は、レーザーであることが可能である。光供給源124は、カテーテルシステム100の近位部分114において、光ガイド122Aと光学的に通信していることが可能である。
いくつかの実施形態において、カテーテルシャフト110は、複数の光ガイド122A(たとえば、第1の光ガイド、第2の光ガイド、第3の光ガイドなど)に連結され得り、複数の光ガイド122Aは、ガイドワイヤールーメン118および/またはカテーテルシャフト110の周りの任意の適切な位置に配設され得る。たとえば、特定の非排他的な実施形態において、2つの光ガイド122Aが、ガイドワイヤールーメン118および/またはカテーテルシャフト110の周囲部の周りに、おおよそ180度だけ間隔を離して配置され得る;3つの光ガイド122Aが、ガイドワイヤールーメン118および/またはカテーテルシャフト110の周囲部の周りに、おおよそ120度だけ間隔を離して配置され得る;または、4つの光ガイド122Aが、ガイドワイヤールーメン118および/またはカテーテルシャフト110の周囲部の周りに、おおよそ90度だけ間隔を離して配置され得る。さらに代替的に、複数の光ガイド122Aは、ガイドワイヤールーメン118および/またはカテーテルシャフト110の周囲部の周りにおいて、互いから均一に間隔を離して配置される必要はない。より具体的には、本明細書で説明されている光ガイド122Aは、所望の場所において所望の効果を実現するために、ガイドワイヤールーメン118および/またはカテーテルシャフト110の周りに均一にまたは不均に配設され得るということがさらに認識される。
バルーン104は、バルーン内部146を画定するバルーン壁130を含むことが可能であり、また、バルーン流体132によって膨張され、患者の血管系を通してカテーテル102を前進させるのに適切な折り畳まれた構成から、治療部位106に対して適切な位置にカテーテル102をアンカー固定するのに適切な拡張された構成へ、拡張することが可能である。別の様式で述べると、バルーン104が拡張された構成にあるときに、バルーン104のバルーン壁130は、治療部位106に(すなわち、血管病変)に実質的に隣接して位置決めされるように構成されている。いくつかの実施形態において、カテーテルシステム100の光供給源124は、光供給源124から、光ガイド122Aに沿って、バルーン104のバルーン内部146の中の場所へ、光のサブミリ秒パルスを提供し、それによって、バルーン104のバルーン内部146の中のバルーン流体132の中にプラズマ形成を誘導するように構成され得る。プラズマ形成は、急速な気泡形成を引き起こし、治療部位106の上に圧力波を付与する。例示的なプラズマ誘導された気泡が、図1において気泡134として示されている。
本明細書で図示されているカテーテルシステム100は、一般的に、光供給源124および1つまたは複数の光ガイド122Aを含むものとして説明されているが、カテーテルシステム100は、代替的に、バルーン内部146の中のバルーン流体132の中に所望のプラズマを発生させる目的のために、任意の適切なエネルギー供給源およびエネルギーガイドを含むことが可能であるということが認識される。
本明細書で詳細に説明されているカテーテルシステム100の中で使用するのに適切なバルーン104は、折り畳まれた構成にあるときに患者の血管系を通過させられ得るものを含む。いくつかの実施形態において、本明細書におけるバルーン104は、シリコーンから作製されている。他の実施形態において、本明細書におけるバルーン104は、ポリジメチルシロキサン(PDMS)、ポリウレタン、ポリマー(たとえば、King of Prussia,Pennsylvania,USAに所在地を有するArkemaから入手可能なPEBAX(商標)材料など)、およびナイロンなどから作製されている。いくつかの実施形態において、バルーン104は、直径に関して、1ミリメートル(mm)から25mmの範囲にある直径を有するものを含むことが可能である。いくつかの実施形態において、バルーン104は、直径に関して、少なくとも1.5mmから12mmの範囲にある直径を有するものを含むことが可能である。いくつかの実施形態において、バルーン104は、直径に関して、少なくとも1mmから5mmの範囲にある直径を有するものを含むことが可能である。
追加的に、いくつかの実施形態において、本明細書におけるバルーン104は、少なくとも5mmから300mmの範囲にある長さを有するものを含むことが可能である。より具体的には、いくつかの実施形態において、本明細書におけるバルーン104は、少なくとも8mmから200mmの範囲にある長さを有するものを含むことが可能である。より大きな長さのバルーン104が、より大きな治療部位106に隣接して位置決めされ得り、したがって、治療部位106の中の正確な場所において、より大きな血管病変または複数の血管病変の上に圧力を付与し、その中に破砕を誘導するために使用可能であり得るということが認識される。
さらに、本明細書におけるバルーン104は、おおよそ1気圧(atm)から70atmの間の膨張圧力まで膨張され得る。いくつかの実施形態において、本明細書におけるバルーン104は、少なくとも20atmから70atmの膨張圧力まで膨張され得る。他の実施形態において、本明細書におけるバルーン104は、少なくとも6atmから20atmの膨張圧力まで膨張され得る。さらなる他の実施形態において、本明細書におけるバルーン104は、少なくとも3atmから20atmの膨張圧力まで膨張され得る。さらに他の実施形態において、本明細書におけるバルーン104は、少なくとも2atmから10atmの膨張圧力まで膨張され得る。
さらに、本明細書におけるバルーン104は、さまざまな形状を有するものを含むことが可能であり、それは、円錐状の形状、正方形の形状、長方形の形状、球形の形状、円錐状の/正方形の形状、円錐状の/球形の形状、延長された球形の形状、楕円形の形状、テーパー付きの形状、骨の形状、段差付きの直径の形状、オフセット形状、または、円錐状のオフセット形状を含むが、それに限定されない。いくつかの実施形態において、本明細書におけるバルーン104は、薬物溶出コーティングまたは薬物溶出ステント構造体を含むことが可能である。薬物溶出コーティングまたは薬物溶出ステントは、抗炎症剤、抗腫瘍剤、および抗血管新生剤を含む、1つまたは複数の治療剤を含むことが可能である。
バルーン流体132は、液体またはガスであることが可能である。本明細書において使用するのに適切な例示的なバルーン流体132は、それに限定されないが、水、生理食塩水、造影媒体、フルオロカーボン、パーフルオロカーボン、およびガス(たとえば、二酸化炭素など)などのうちの1つまたは複数を含むことが可能である。いくつかの実施形態において、説明されているバルーン流体132は、ベース膨張流体として使用され得る。いくつかの実施形態において、バルーン流体132は、50:50の体積比の生理食塩水と造影媒体との混合物を含む。他の実施形態において、バルーン流体132は、25:75の体積比の生理食塩水と造影媒体との混合物を含む。さらなる他の実施形態において、バルーン流体132は、75:25の体積比の生理食塩水と造影媒体との混合物を含む。追加的に、本明細書において使用するのに適切なバルーン流体132は、その中での圧力波のトラベルのレートを操作するために、組成および粘度などに基づいて調整され得る。特定の実施形態において、本明細書において使用するのに適切なバルーン流体132は、生体適合性である。バルーン流体132の体積は、選ばれた光供給源124および使用されるバルーン流体132のタイプによって調整され得る。
いくつかの実施形態において、本明細書における造影媒体において使用される造影剤は、ヨウ素ベースの造影剤(たとえば、イオン性のまたは非イオン性のヨウ素ベースの造影剤など)を含むことが可能であるが、それに限定されない。イオン性のヨウ素ベースの造影剤のいくつかの非限定的な例は、ジアトリゾエート、メトリゾエート、イオサラメート、およびイオキサグレートを含む。非イオン性のヨウ素ベースの造影剤のいくつかの非限定的な例は、イオパミドール、イオヘキソール、イオキシラン、イオプロミド、イオジキサノール、およびイオバーソルを含む。他の実施形態において、非ヨウ素ベースの造影剤が使用され得る。適切な非ヨウ素含有造影剤は、ガドリニウム(III)ベースの造影剤を含むことが可能である。適切なフルオロカーボン剤およびパーフルオロカーボン剤は、パーフルオロカーボンドデカフルオロペンタン(DDFP、C5F12)などのような薬剤を含むことが可能であるが、それに限定されない。
追加的に、本明細書におけるバルーン流体132は、電磁スペクトルの紫外線領域(たとえば、少なくとも10ナノメートル(nm)から400nm)、可視領域(たとえば、少なくとも400nmから780nm)、または近赤外線領域(たとえば、少なくとも780nmから2.5μm)にある光を選択的に吸収することができる吸収剤を含むものを含むことが可能である。適切な吸収剤は、少なくとも10nmから2.5μmのスペクトルに沿って吸収極大を有するものを含むことが可能である。代替的に、バルーン流体132は、電磁スペクトルの中赤外線領域(たとえば、少なくとも2.5μmから15μm)または遠赤外線領域(たとえば、少なくとも15μmから1mm)にある光を選択的に吸収することができる吸収剤を含むものを含むことが可能である。さまざまな実施形態において、吸収剤は、カテーテルシステムにおいて使用されるレーザーの放出最大とマッチされる吸収極大を有するものであることが可能である。非限定的な例として、本明細書で説明されているさまざまなレーザーは、ネオジム:イットリウム-アルミニウム-ガーネット(Nd:YAG - 放出最大=1064nm)レーザー、ホルミウム:YAG(Ho:YAG - 放出最大=2.1μm)レーザー、またはエルビウム:YAG(Er:YAG - 放出最大=2.94μm)レーザーを含むことが可能である。いくつかの実施形態において、本明細書において使用される吸収剤は、水溶性であることが可能である。他の実施形態において、本明細書において使用される吸収剤は、水溶性ではない。いくつかの実施形態において、本明細書におけるバルーン流体132において使用される吸収剤は、光供給源124のピーク放出にマッチするように調整され得る。少なくとも10ナノメートルから1ミリメートルの放出波長を有するさまざまな光供給源124は、本明細書の他のどこかで議論されている。
本明細書で開示されているカテーテルシステム100および/または光ガイドバンドル122は、任意の数の光ガイド122Aを含むことが可能であり、任意の数の光ガイド122Aは、近位部分114において光供給源124と光学的に通信しており、遠位部分116においてバルーン104のバルーン内部146の中のバルーン流体132と光学的に通信しているということが認識される。たとえば、いくつかの実施形態において、カテーテルシステム100および/または光ガイドバンドル122は、1つの光ガイド122Aから5つの光ガイド122Aを含むことが可能である。他の実施形態において、カテーテルシステム100および/または光ガイドバンドル122は、5つの光ガイド122Aから15個の光ガイド122Aを含むことが可能である。さらに他の実施形態において、カテーテルシステム100および/または光ガイドバンドル122は、10個の光ガイド122Aから30個の光ガイド122Aを含むことが可能である。代替的に、さらなる他の実施形態において、カテーテルシステム100および/または光ガイドバンドル122は、30個よりも多い光ガイド122Aを含むことが可能である。
本明細書における光ガイド122Aは、光ファイバーまたは可撓性の光パイプを含むことが可能である。本明細書における光ガイド122Aは、薄くて可撓性であることが可能であり、強度をほとんど損なうことなく光信号が送られることを可能にすることができる。本明細書における光ガイド122Aは、コアを含むことが可能であり、コアは、その周囲部の周りのクラッディングによって取り囲まれている。いくつかの実施形態において、コアは、円筒形状のコアまたは部分的に円筒形状のコアであることが可能である。光ガイド122Aのコアおよびクラッディングは、それに限定されないが、1つまたは複数のタイプのガラス、シリカ、または、1つまたは複数のポリマーを含む、1つまたは複数の材料から形成され得る。また、光ガイド122Aは、保護コーティング(たとえば、ポリマーなど)を含むことが可能である。コアの屈折率は、クラッディングの屈折率よりも大きくなることとなるということが認識される。
それぞれの光ガイド122Aは、近位部分(すなわち、ガイド近位端部122P)から遠位部分(すなわち、ガイド遠位端部122D)へその長さに沿って光をガイドすることが可能であり、遠位部分は、バルーン内部146の中に位置決めされている少なくとも1つの光学的ウィンドウ(図示せず)を有している。光ガイド122Aは、光供給源124を含む光学ネットワークの一部分として光経路を生成させることが可能である。光学ネットワークの中の光経路は、光がネットワークの1つのパーツから別のパーツへトラベルすることを可能にする。光ファイバーおよび可撓性の光パイプの両方は、本明細書における光学ネットワークの中の光経路を提供することが可能である。
本明細書において提供されているように、ガイド遠位端部122Dは、遠位光レシーバー122Rをさらに含み、および/または、それを組み込むことが可能であり、遠位光レシーバー122Rは、光エネルギーが光ガイド122Aの中へ、および、光ガイド122Aを通してガイド遠位端部122Dからガイド近位端部122Pへ移動されて戻されることを可能にする。別の言い方をすると、光エネルギーは、光ガイド122Aに沿って第1の方向121Fに移動することが可能であり、それは、一般的に、光ガイド122Aのガイド近位端部122Pからガイド遠位端部122Dに向かう方向である。また、光エネルギーの少なくとも一部分は、光ガイド122Aに沿って第2の方向121Sに移動することが可能であり、それは、第1の方向121Fの実質的に反対であり、すなわち、光ガイド122Aのガイド遠位端部122Dからガイド近位端部122Pに向かう方向である。そのうえ、本明細書においてより詳細に下記に説明されているように、光ガイド122Aを通して(第2の方向121Sに)移動されて戻された後にガイド近位端部122Pから放出される光エネルギーは、分離され、次いで、光学的アナライザーアッセンブリ142の使用を通して、光学的に検出され、尋問され、および/または分析され得る。
さらに、本明細書における光ガイド122Aは、本明細書で説明されているカテーテル102のカテーテルシャフト110の周りにおよび/またはそれに対して、多くの構成をとることが可能である。いくつかの実施形態において、光ガイド122Aは、カテーテルシャフト110の長手方向軸線144に対して平行に走ることが可能である。いくつかの実施形態において、光ガイド122Aは、カテーテルシャフト110に物理的に連結され得る。他の実施形態において、光ガイド122Aは、カテーテルシャフト110の外径の長さに沿って配設され得る。さらに他の実施形態において、本明細書における光ガイド122Aは、カテーテルシャフト110の中の1つまたは複数の光ガイドルーメンの中に配設され得る。
追加的に、光ガイド122Aは、ガイドワイヤールーメン118および/またはカテーテルシャフト110の周囲部の周りの任意の適切な位置に配設され得り、光ガイド122Aのそれぞれのガイド遠位端部122Dは、バルーン104の長さに対して、および/または、ガイドワイヤールーメン118の長さに対して、任意の適切な長手方向位置に配設され得るということがさらに認識される。
さらに、本明細書における光ガイド122Aは、1つまたは複数の光音響トランスデューサー154を含むことが可能であり、ここで、それぞれの光音響トランスデューサー154は、光ガイド122Aと光学的に通信することが可能であり、光ガイド122Aの中に、それぞれの光音響トランスデューサー154が配設されている。いくつかの実施形態において、光音響トランスデューサー154は、光ガイド122Aのガイド遠位端部122Dと光学的に通信することが可能である。追加的に、そのような実施形態では、光音響トランスデューサー154は、光ガイド122Aのガイド遠位端部122Dに対応するおよび/またはそれに適合する形状を有することが可能である。
光音響トランスデューサー154は、光ガイド122Aのガイド遠位端部122Dにおいてまたはその近くにおいて、光エネルギーを音波に変換するように構成されている。音波の方向は、光ガイド122Aのガイド遠位端部122Dの角度を変化させることによって調整され得るということが認識される。
本明細書における光ガイド122Aのガイド遠位端部122Dに配設されている光音響トランスデューサー154は、光ガイド122Aのガイド遠位端部122Dと同じ形状をとることが可能であるということがさらに認識される。たとえば、特定の非排他的な実施形態において、光音響トランスデューサー154および/またはガイド遠位端部122Dは、円錐状の形状、凸形の形状、凹形の形状、球根形状、正方形の形状、段差付きの形状、半円形の形状、および卵形の形状などを有することが可能である。また、光ガイド122Aは、光ガイド122Aの長さの1つまたは複数の側部表面に沿って配設されている追加的な光音響トランスデューサー154をさらに含むことが可能であるということが認識される。
本明細書で説明されている光ガイド122Aは、光ガイド122Aの中に1つまたは複数の転向特徴または「ダイバーター」(図1には示されていない)をさらに含むことが可能であり、それらは、たとえば、光ガイド122Aのガイド遠位端部122Dにおいてまたはその近くにおいて、側部表面に向けて、および、バルーン壁130に向けて、光ガイド122Aを退出するように光を方向付けるように構成されている。転向特徴は、光を光ガイド122Aからその軸線方向経路から離れるように光ガイド122Aの側部表面に向けて転向させる、本明細書におけるシステムの任意の特徴を含むことが可能である。追加的に、光ガイド122Aは、1つまたは複数の光ウィンドウをそれぞれ含むことが可能であり、1つまたは複数の光ウィンドウは、それぞれの光ガイド122Aの長手方向表面または軸線方向表面に沿って配設されており、転向特徴と光学的に通信している。別の様式で述べると、本明細書における転向特徴は、光ガイド122Aの中の光を、たとえば、ガイド遠位端部122Dにおけるまたはその近くにおける側部表面に向けて方向付けるように構成され得り、ここで、側部表面は、光ウィンドウと光学的に通信している。光ウィンドウは、光が光ガイド122Aの中から光ガイド122Aを退出することを可能にする光ガイド122Aの一部分(たとえば、光ガイド122Aの上のまたはその周りのクラッディング材料を欠いている光ガイド122Aの一部分など)を含むことが可能である。
本明細書において使用するのに適切な転向特徴の例は、反射エレメント、屈折エレメント、およびファイバーディフューザーを含む。追加的に、本明細書における光ガイド122Aの先端部から離れるように光を集束させるのに適切な転向特徴は、凸形表面を有するもの、屈折率分布型(GRIN)レンズ、およびミラーフォーカスレンズを含むことが可能であるが、それに限定されるべきではない。転向特徴と接触すると、光は、光ガイド122Aの中で光音響トランスデューサー154へ転向され、光音響トランスデューサー154へは、光ガイド122Aの側部表面と光学的に通信している。述べられているように、光音響トランスデューサー154は、次いで、光エネルギーを音波に変換し、音波は、光ガイド122Aの側部表面から離れるように延在する。
供給源マニホールド136は、カテーテルシステム100の近位部分114にまたはその近くに位置決めされ得る。供給源マニホールド136は、1つまたは複数の近位端部開口部を含むことが可能であり、1つまたは複数の近位端部開口部は、光ガイドバンドル122の複数の光ガイド122A、ガイドワイヤー112、および/または、膨張導管140を受け入れることが可能であり、膨張導管140は、流体ポンプ138と流体連通して連結されている。また、カテーテルシステム100は、流体ポンプ138を含むことが可能であり、流体ポンプ138は、必要に応じてバルーン流体132によってバルーン104を膨張させるように構成されている。
前述のように、図1に図示されている実施形態では、システムコンソール123は、光供給源124、電力供給源125、システムコントローラー126、およびGUI127のうちの1つまたは複数を含む。代替的に、システムコンソール123は、図1に具体的に図示されているものよりも多いコンポーネントまたはそれよりも少ないコンポーネントを含むことが可能である。たとえば、特定の非排他的な代替的な実施形態において、システムコンソール123は、GUI127なしに設計され得る。さらに代替的に、光供給源124、電力供給源125、システムコントローラー126、およびGUI127のうちの1つまたは複数は、システムコンソール123に対する特定の必要性なしに、カテーテルシステム100の中に提供され得る。
さらに、図1に図示されているように、特定の実施形態において、光学的アナライザーアッセンブリ142の少なくとも一部分も、実質的にシステムコンソール123の中に位置決めされ得る。代替的に、光学的アナライザーアッセンブリ142のコンポーネントは、図1に具体的に示されているものとは異なる様式で位置決めされ得る。
追加的に、示されているように、システムコンソール123、および、それに含まれるコンポーネントは、カテーテル102、光ガイドバンドル122、および、カテーテルシステム100の残りの部分に動作可能に連結されている。たとえば、いくつかの実施形態において、図1に図示されているように、システムコンソール123は、コンソール接続アパーチャー148(一般的に「ソケット」と称されることもある)を含むことが可能であり、光ガイドバンドル122は、コンソール接続アパーチャー148によってシステムコンソール123に機械的に連結されている。そのような実施形態では、光ガイドバンドル122は、ガイドカップリングハウジング150(一般的に「フェルール」と称されることもある)を含むことが可能であり、ガイドカップリングハウジング150は、光ガイド122Aのそれぞれの一部分(たとえば、ガイド近位端部122P)を収容している。ガイドカップリングハウジング150は、コンソール接続アパーチャー148にフィットし、コンソール接続アパーチャー148の中に選択的に保持され、光ガイドバンドル122とシステムコンソール123との間に所望の機械的なカップリングを提供するように構成されている。
さらに、光ガイドバンドル122は、ガイドバンドラー152(または、「シェル」)を含むことも可能であり、ガイドバンドラー152は、個々の光ガイド122Aのそれぞれをより近付け、光ガイド122Aおよび/または光ガイドバンドル122が、カテーテルシステム100の使用の間にカテーテル102とともに血管108の中へ延在するときに、よりコンパクトな形態になることができるようになっている。
本明細書において提供されているように、光供給源124は、光ガイドバンドル122において、光ガイド122Aのそれぞれと光学的に通信して、すなわち、光ガイド122Aのそれぞれのガイド近位端部122Pに選択的におよび/または代替的に連結され得る。とりわけ、光供給源124は、供給源ビーム124A(たとえば、パルス状の供給源ビーム)の形態の光エネルギーを発生させるように構成されており、それは、個々のガイドビーム124Bとして光ガイドバンドル122の中の光ガイド122Aのそれぞれに選択的におよび/または代替的に方向付けられ、それによって受け取られ得る。代替的に、カテーテルシステム100は、2つ以上の光供給源124を含むことが可能である。たとえば、1つの非排他的な代替的な実施形態において、カテーテルシステム100は、光ガイドバンドル122の中の光ガイド122Aのそれぞれに対して別個の光供給源124を含むことが可能である。
光供給源124は、任意の適切な設計を有することが可能である。特定の実施形態において、前述のように、光供給源124は、光供給源124から光のサブミリ秒パルスを提供するように構成され得り、それは、小さなスポットの上に収束され、それを光ガイド122Aのガイド近位端部122Pの中へ連結するようになっている。光エネルギーのそのようなパルスは、次いで、光ガイド122Aに沿って、バルーン104の中の場所に方向付けられ、それによって、バルーン104のバルーン内部146の中のバルーン流体132の中にプラズマ形成を誘導する。とりわけ、光ガイド122Aのガイド遠位端部122Dにおいて放出される光エネルギーは、プラズマ発生器を励起し、バルーン内部146の中のバルーン流体132の中にプラズマを形成する。プラズマ形成は、急速な気泡形成を引き起こし、治療部位106の上に圧力波を付与する。そのような実施形態では、光供給源124からの光のサブミリ秒パルスは、おおよそ1ヘルツ(Hz)から5000Hzの間の周波数において、治療部位106に送達され得る。いくつかの実施形態において、光供給源124からの光のサブミリ秒パルスは、おおよそ30Hzから1000Hzの間の周波数において、治療部位106に送達され得る。他の実施形態において、光供給源124からの光のサブミリ秒パルスは、おおよそ10Hzから100Hzの間の周波数において、治療部位106に送達され得る。さらに他の実施形態において、光供給源124からの光のサブミリ秒パルスは、おおよそ1Hzから30Hzの間の周波数において、治療部位106に送達され得る。代替的に、光のサブミリ秒パルスは、5000Hzよりも大きくなり得る周波数において、治療部位106に送達され得る。
光供給源124は、典型的に、光エネルギーのパルスを提供するために利用されるが、光供給源124は、依然として、単一の供給源ビーム124A(すなわち、単一のパルス状の供給源ビーム)を提供するものとして説明され得るということが認識される。
本明細書において使用するのに適切な光供給源124は、レーザーおよびランプを含むさまざまなタイプの光供給源を含むことが可能である。たとえば、特定の非排他的な実施形態において、光供給源124は、赤外光のパルスの形態で光エネルギーを放出する赤外線レーザーであることが可能である。代替的に、前述のように、光供給源124は、本明細書において言及されているように、任意の適切なタイプのエネルギー供給源を含むことが可能である。
適切なレーザーは、サブミリ秒タイムスケールでの短パルスレーザーを含むことが可能である。いくつかの実施形態において、光供給源124は、ナノ秒(ns)タイムスケールでのレーザーを含むことが可能である。また、レーザーは、ピコ秒(ps)、フェムト秒(fs)、およびマイクロ秒(us)タイムスケールでの短パルスレーザーを含むことが可能である。本明細書で説明されているカテーテル102のバルーン流体132の中にプラズマを実現するために用いられ得る、レーザー波長、パルス幅、およびエネルギーレベルの多くの組み合わせが存在しているということが認識される。さまざまな実施形態において、パルス幅は、少なくとも10nsから200nsまでを含む範囲の中に入るものを含むことが可能である。いくつかの実施形態において、パルス幅は、少なくとも20nsから100nsまでを含む範囲の中に入るものを含むことが可能である。他の実施形態において、パルス幅は、少なくとも1nsから500nsまでを含む範囲の中に入るものを含むことが可能である。
追加的に、例示的なナノ秒レーザーは、約10ナノメートル(nm)から1ミリメートル(mm)の波長にわたる、UVからIRのスペクトルの中のものを含むことが可能である。いくつかの実施形態において、本明細書におけるカテーテルシステム100における使用に適切な光供給源124は、少なくとも750nmから2000nmの波長において光を作り出すことができるものを含むことが可能である。他の実施形態において、光供給源124は、少なくとも700nmから3000nmの波長において光を作り出すことができるものを含むことが可能である。さらなる他の実施形態において、光供給源124は、少なくとも100nmから10マイクロメートル(μm)の波長において光を作り出すことができるものを含むことが可能である。ナノ秒レーザーは、最大で200kHzまでの繰り返しレートを有するものを含むことが可能である。いくつかの実施形態において、レーザーは、Qスイッチ式のツリウム:イットリウム-アルミニウム-ガーネット(Tm:YAG)レーザーを含むことが可能である。他の実施形態において、レーザーは、ネオジム:イットリウム-アルミニウム-ガーネット(Nd:YAG)レーザー、ホルミウム:イットリウム-アルミニウム-ガーネット(Ho:YAG)レーザー、エルビウム:イットリウム-アルミニウム-ガーネット(Er:YAG)レーザー、エキシマーレーザー、ヘリウム-ネオンレーザー、二酸化炭素レーザー、および、ドープされたパルス状のファイバーレーザーを含むことが可能である。
本明細書で開示されているカテーテルシステム100は、少なくとも1メガパスカル(MPa)から100MPaの範囲にある最大圧力を有する圧力波を発生させることが可能である。特定のカテーテルシステム100によって発生させられる最大圧力は、光供給源124、吸収材料、気泡の膨張、伝播媒体、バルーン材料、および、他の要因に依存することとなる。いくつかの実施形態において、本明細書におけるカテーテルシステム100は、少なくとも2MPaから50MPaの範囲にある最大圧力を有する圧力波を発生させることが可能である。他の実施形態において、本明細書におけるカテーテルシステム100は、少なくとも2MPaから30MPaの範囲にある最大圧力を有する圧力波を発生させることが可能である。さらに他の実施形態において、本明細書におけるカテーテルシステム100は、少なくとも15MPaから25MPaの範囲にある最大圧力を有する圧力波を発生させることが可能である。
本明細書で説明されている圧力波は、カテーテル102が治療部位106に設置されているときに、光ガイド122Aから半径方向に延在する少なくとも0.1ミリメートル(mm)から25mmの範囲内の距離から、治療部位106の上に付与され得る。いくつかの実施形態において、圧力波は、カテーテル102が治療部位106に設置されているときに、光ガイド122Aから半径方向に延在する少なくとも10mmから20mmの範囲内の距離から、治療部位106の上に付与され得る。他の実施形態において、圧力波は、カテーテル102が治療部位106に設置されているときに、光ガイド122Aから半径方向に延在する少なくとも1mmから10mmの範囲内の距離から、治療部位106の上に付与され得る。さらに他の実施形態において、圧力波は、カテーテル102が治療部位106に設置されているときに、光ガイド122Aから半径方向に延在する少なくとも1.5mmから4mmの範囲内の距離から、治療部位106の上に付与され得る。いくつかの実施形態において、圧力波は、0.1mmから10mmの距離において、少なくとも2MPaから30MPaの範囲から、治療部位106の上に付与され得る。いくつかの実施形態において、圧力波は、0.1mmから10mmの距離において、少なくとも2MPaから25MPaの範囲から、治療部位106の上に付与され得る。
電力供給源125は、光供給源124、システムコントローラー126、GUI127、ハンドルアッセンブリ128、および光学的アナライザーアッセンブリ142のそれぞれに電気的に連結されており、必要な電力を提供するように構成されている。電力供給源125は、そのような目的のための任意の適切な設計を有することが可能である。
述べられているように、システムコントローラー126は、電力供給源125に電気的に連結されており、電力供給源125から電力を受け取る。追加的に、システムコントローラー126は、光供給源124、GUI127、および光学的アナライザーアッセンブリ142のそれぞれに連結されており、その動作を制御するように構成されている。システムコントローラー126は、少なくとも光供給源124、GUI127、および光学的アナライザーアッセンブリ142の動作を制御する目的のために、1つまたは複数のプロセッサーまたは回路を含むことが可能である。たとえば、システムコントローラー126は、たとえば、任意の所望の発射レートで、所望の通りに光エネルギーのパルスを発生させるために光供給源124を制御することが可能である。追加的に、システムコントローラー126は、can制御tolyカテーテルシステム100の性能、信頼性、および安全のリアルタイムの連続的なモニタリングを効果的に提供するために、光学的アナライザーアッセンブリ142を制御することが可能であり、および/または、光学的アナライザーアッセンブリ142と連動して動作することが可能である。
追加的に、システムコントローラー126は、カテーテルシステム100の他のコンポーネントの動作を制御するようにさらに構成され得る(たとえば、治療部位106に隣接してカテーテル102を位置決めすること、バルーン流体132の中のバルーン104の膨張など)。さらに、または代替例では、カテーテルシステム100は、1つまたは複数の追加的なコントローラーを含むことが可能であり、1つまたは複数の追加的なコントローラーは、カテーテルシステム100のさまざまな動作を制御する目的のために任意の適切な様式で位置決めされ得る。たとえば、特定の実施形態において、追加的なコントローラーおよび/またはシステムコントローラー126の一部分は、ハンドルアッセンブリ128の中に位置決めされ、および/または、組み込まれ得る。
GUI127は、カテーテルシステム100のユーザーまたはオペレーターによってアクセス可能である。追加的に、GUI127は、システムコントローラー126に電気的に接続されている。そのような設計によって、GUI127は、ユーザーまたはオペレーターによって使用され、治療部位106において血管病変の上に圧力を付与するために、および、血管病変の中へ破砕を誘導するために、カテーテルシステム100が所望の通りに用いられることを保証することが可能である。追加的に、GUI127は、カテーテルシステム100の使用の前に、使用の間に、および、使用の後に使用され得る情報を、ユーザーまたはオペレーターに提供することが可能である。1つの実施形態では、GUI127は、静的な視覚的データおよび/または情報をユーザーまたはオペレーターに提供することが可能である。加えて、または、代替例では、GUI127は、動的な視覚的データおよび/または情報をユーザーまたはオペレーターに提供することが可能である(たとえば、カテーテルシステム100の使用の間に、時間の経過とともに変化するビデオデータまたは任意の他のデータなど)。さらに、さまざまな実施形態において、GUI127は、1つまたは複数の色、異なるサイズ、変化する輝度などを含むことが可能であり、それは、ユーザーまたはオペレーターに対する警告として作用することが可能である。追加的に、または、代替例では、GUI127は、音声データまたは情報をユーザーまたはオペレーターに提供することが可能である。GUI127の仕様は、カテーテルシステム100の設計要件、または、ユーザーもしくはオペレーターの特定の必要性、仕様、および/または要望に応じて変化することが可能であるということが認識される。
図1に示されているように、ハンドルアッセンブリ128は、カテーテルシステム100の近位部分114にもしくはその近くに、および/または、供給源マニホールド136の近くに位置決めされ得る。追加的に、この実施形態では、ハンドルアッセンブリ128は、バルーン104に連結されており、バルーン104から間隔を離して位置決めされている。代替的に、ハンドルアッセンブリ128は、別の適切な場所に位置決めされ得る。
ハンドルアッセンブリ128は、ユーザーまたはオペレーターによってハンドリングおよび使用され、カテーテル102を動作させ、位置決めし、および制御する。ハンドルアッセンブリ128の設計および特定の特徴は、カテーテルシステム100の設計要件に適するように変化することが可能である。図1に図示されている実施形態では、ハンドルアッセンブリ128は、システムコントローラー126、光供給源124、流体ポンプ138、GUI127、および光学的アナライザーアッセンブリ142のうちの1つまたは複数とは別個になっているが、それと電気的におよび/または流体的に連通している。いくつかの実施形態において、ハンドルアッセンブリ128は、ハンドルアッセンブリ128の内部の中にシステムコントローラー126の少なくとも一部分を一体化および/または含むことが可能である。たとえば、示されているように、特定のそのような実施形態では、ハンドルアッセンブリ128は、回路156を含むことが可能であり、回路156は、システムコントローラー126の少なくとも一部分を形成することが可能である。追加的に、いくつかの実施形態において、回路156は、光学的アナライザーアッセンブリ142から電気信号またはデータを受け取ることが可能である。さらに、または、代替例では、回路156は、そのような電気信号を送信するか、または、そうでなければ、システムコントローラー126にデータを提供することが可能である。
1つの実施形態では、回路156は、1つまたは複数の集積回路、または、任意の他の適切な回路を有するプリント回路基板を含むことが可能である。代替的な実施形態において、回路156は省略され得り、または、システムコントローラー126の中に含まれ得り、それは、さまざまな実施形態において、ハンドルアッセンブリ128の外側に(たとえば、システムコンソール123の中に)位置決めされ得る。ハンドルアッセンブリ128は、本明細書で具体的に図示および説明されているものよりも少ないまたは追加的なコンポーネントを含むことが可能であるということが理解される。
概要として、および、本明細書でより詳細に提供されるように、光学的アナライザーアッセンブリ142は、カテーテルシステム100の性能、信頼性、および安全を効果的にモニタリングするように構成されている。カテーテルシステム100の使用の間に、プラズマが最初にバルーン内部の中のバルーン流体132の中に形成するときに、プラズマは、広域スペクトル電磁放射線を放出する。追加的に、前述のように、放出される光エネルギーの少なくとも一部分は、光ガイド122Aのガイド遠位端部122Dの近くにおいて遠位光レシーバー122Rから反射することが可能であり、または、その他の方法で遠位光レシーバー122Rによって受け取られ得る。したがって、光エネルギーのそのような部分は、光ガイド122Aを通って第2の方向121Sにガイド近位端部122Pへトラベルして戻ることが可能であり、ガイド近位端部122Pにおいて、それは、分離および検出され得る。光供給源124からのプラズマ発生パルスに対する可視光パルスの強度およびタイミングは、プラズマ発生器が機能したというインディケーション、そのエネルギー出力、および、その機能的な条件を提供する。光ガイド122Aが損傷または破損される場合には、可視光フラッシュが、光ガイド122Aの長さに沿って他の場所において起こる可能性があるということが認識される。また、そのような追加的な光フラッシュは、光ガイド122Aの中へ連結され、第2の方向121Sにガイド近位端部122Pへ運搬されて戻ることとなる。これらの追加的な光パルスの強度およびタイミングは、損傷された光ガイド122Aまたはプラズマ発生器を示すことが可能である。
エネルギー駆動型プラズマ発生器または関連の光ガイド122Aの故障は(たとえば、光ガイド122Aが、カテーテルシステム100の使用の間に破損するかまたは損傷される場合には)、漏出したエネルギーから結果として生じる患者またはオペレーターの損害につながる可能性があるということが認識される。潜在的な損害は、組織の火傷および網膜損傷を含む。前述のように、いくつかの実施形態において、エネルギー供給源124は、不可視の赤外光を放出するレーザーであり、オペレーターによる可視検出を不可能にする。したがって、光学的アナライザーアッセンブリ142が、任意のそのような故障が起こったということを示す場合には、処置およびエネルギー送達(たとえば、レーザーエネルギー送達)は、患者およびオペレーターに対する関連のリスクを軽減するために、即座に停止されなければならない。別の様式で述べると、本明細書で説明されている光学的アナライザーアッセンブリ142の設計によって、本発明は、カテーテルシステム100の中の任意の上述の故障(たとえば、光ガイド122Aおよび/に対してプラズマ発生器の破損(損傷)または光ガイド122Aおよび/もしくはプラズマ発生器の故障)を検出し、システムコントローラー126がエネルギー供給源124をロックアウトするために使用され得るというインジケーターまたは信号を提供する。これは、エネルギー供給源124が望ましくない方式で漏出する可能性がある潜在的に危険な条件に対して、必要な安全インターロックを提供する。そのうえ、システムコントローラー126は、処置を停止して治療中の患者109からカテーテル102を除去するように、(たとえば、GUI127を介して)外科医に指示するために使用され得る。
追加的に、光学的アナライザーアッセンブリ142は、カテーテルシステム100の性能、信頼性、および安全を効果的にモニタリングする目的のために、任意の適切な設計を有することが可能であるということがさらに認識される。光学的アナライザーアッセンブリ142に関する潜在的な設計の特定の非排他的な例が、本明細書において下記に詳細に説明されている。
図2は、光学的アナライザーアッセンブリ242の実施形態を含むoカテーテルシステム200の実施形態の一部分の簡略図である。カテーテルシステム200の設計は、本明細書で上記に図示および説明されている実施形態と実質的に同様である。カテーテルシステム200のさまざまなコンポーネント(たとえば、図1に示されているようなものなど)は、明確性および図示のしやすさの目的のために、図2に図示されていないということが認識される。しかし、カテーテルシステム200は、そのようなコンポーネントの(すべてではないにしても)ほとんどを含む可能性が高くなることとなるということが認識される。
図2に示されているように、カテーテルシステム200は、繰り返しになるが、エネルギー供給源224を含み、エネルギー供給源224は、供給源ビーム224A(たとえば、パルス状の供給源ビーム)の形態の光エネルギーを発生させるように構成されており、それは、個々のガイドビーム224Bとして、それぞれの光ガイド222A(1つの光ガイドのみが、図2に図示されている)に選択的におよび/または代替的に方向付けられ、それぞれの光ガイド222Aによって受け取られ得る。1つの非排他的な実施形態において、エネルギー供給源224は、赤外線レーザー供給源であり、光ガイド222Aは、小さい直径のマルチモード光ファイバーである。図2に図示されている実施形態では、パルス発生器260が、エネルギー供給源224に連結されている。パルス発生器260は、エネルギー供給源224をトリガーするように構成されており、エネルギー供給源224は、したがって、供給源ビーム224Aとしてエネルギーパルスを放出する。特定の実施形態において、エネルギー供給源224からの供給源ビーム224Aは、光学エレメント262(たとえば、集束レンズ)を通過し、光学エレメント262は、供給源ビーム224Aを個々のガイドビーム224Bとして光ガイド222Aのガイド近位端部222Pの上に集束させ、それによって、赤外線エネルギーのパルス(すなわち、個々のガイドビーム224B)を光ガイド222Aの中へ連結するように構成されている。
その後に、赤外線エネルギーのパルス(すなわち、個々のガイドビーム224B)は、光ガイド222Aに沿っておよび/または光ガイド222Aを通ってトラベルし、プラズマ発生器264を励起し、プラズマ発生器264は、光ガイド222Aのガイド遠位端部222Dにまたはその近くに位置決めされ、および/または、組み込まれている。プラズマ発生器264は、赤外線エネルギーのパルスを利用し、バルーン104(図1に図示されている)のバルーン内部146(図1に図示されている)の中のバルーン流体132(図1に図示されている)の中に、局所化されたプラズマを生成させる。
さまざまな実施形態において、バルーン内部146の中のバルーン流体132の中にプラズマを生成させると、プラズマから放出される広域スペクトル光エネルギーのパルスは、光ガイド222Aのガイド遠位端部222Dの中へ連結されて戻される。次いで、広域スペクトル光エネルギーのそのようなパルスは、光ガイド222Aに沿っておよび/または光ガイド222Aを通ってトラベルして戻り、それは、光ガイド222Aから、光ガイド222Aのガイド近位端部222Pから(すなわち、戻りエネルギービーム224Cとして)放出される。
本明細書において詳細に説明されているように、光学的アナライザーアッセンブリ242は、光ガイド222Aのガイド近位端部222Pから放出される光エネルギー(たとえば、戻りエネルギービーム224C)を光学的に分析することによって、カテーテルシステム200の性能、信頼性、および安全を効果的にモニタリングするように構成されている。光学的アナライザーアッセンブリ242の設計は、カテーテルシステム200の特定の要件に適するように変化され得る。とりわけ、図2に示されている実施形態では、光学的アナライザーアッセンブリ242は、ビームスプリッター266、光学エレメント268(たとえば、カップリングレンズ)、光検出器270、ならびに、信号調整および処理システム272のうちの1つまたは複数を含む。追加的に、示されているように、信号調整および処理システム272は、増幅器274、ディスクリミネーター276、および制御電子機器278のうちの1つまたは複数を含むことが可能であり、制御電子機器278は、1つまたは複数のプロセッサーまたは回路を含むことが可能である。代替的に、他の実施形態において、光学的アナライザーアッセンブリ242、ならびに/または、信号調整および処理システム272は、本明細書で具体的に図示および説明されているものよりも多いコンポーネントまたは少ないコンポーネントを含むことが可能である。
示されているように、ビームスプリッター266(たとえば、ダイクロイックビームスプリッター)は、エネルギー供給源224および光ガイド222Aのガイド近位端部222Pの光学経路の中に位置決めされている。特定の実施形態において、ビームスプリッター266は、光検出器270にとって見ることができるものよりも長い波長に関して、光を通すように構成されている。これは、カットオフ波長と称され得る。ビームスプリッター266は、さらに、カットオフ波長よりも短い波長を有するすべての光を反射するように構成されている。図2に図示されているように、光ガイド222Aのガイド近位端部222Pから放出される戻りエネルギービーム224Cは、ビームスプリッター266から反射され、光学エレメント268を使用して光検出器270の中へ連結される。より具体的には、光学エレメント268(たとえば、カップリングレンズ)は、戻りエネルギービーム224Cがビームスプリッター266から反射された後に、ビームスプリッター266と光検出器270との間において、戻りエネルギービーム224Cの光学経路の中に位置決めされている。光学エレメント268は、光ガイドのガイド近位端部222Pを光検出器270の上に効果的にイメージングし、それによって、光ガイド222Aのガイド近位端部222Pから放出される(すなわち、戻りエネルギービーム224Cの形態の)光エネルギーを光検出器270の上に連結する。そのような設計によって、光ガイド222Aのガイド遠位端部222Dに形成されるプラズマから放出される可視光は、光検出器270によって収集される。
追加的に、いくつかの実施形態において、光検出器270は、信号を発生させ、信号は、光検出器270によって収集された、光ガイド222Aのガイド遠位端部222Dに形成されるプラズマから放出される可視光に基づいている。図2に示されているように、光検出器270からの信号は、次いで、信号調整および処理システム272に方向付けられ、そこで、プラズマ事象の検出および強度評価が決定される。とりわけ、特定の実施形態において、光検出器270からの信号は、増幅器274に向けて方向付けられ、そこで、光検出器270からの信号が増幅される。したがって、増幅された信号は、バルーン内部146の中のバルーン流体132の中で起こったプラズマ事象の強度を決定するために(たとえば、制御電子機器278の中で)利用される。
さらに、特定の実施形態において、増幅された光検出器信号からのパルスは、ディスクリミネーター276(たとえば、ディスクリミネーター回路)を使用してゲート処理され、ディスクリミネーター276は、パルス発生器260からのパルスによってトリガーされる。次いで、この情報は、プラズマ事象がバルーン内部146の中のバルーン流体132の中でいつ起こったかを決定するために(たとえば、制御電子機器278の中で)使用され得る。より具体的には、制御電子機器278は、(パルス発生器260によってトリガーされるような)エネルギー供給源224からのエネルギーのオリジナルのパルスのタイミングを、(ディスクリミネーター276を使用してゲート処理されるような)増幅された光検出器信号のタイミングと比較し、プラズマ事象がバルーン内部146の中のバルーン流体132の中でいつ起こったかを決定することが可能である。
いくつかの実施形態において、信号調整および処理システム272の制御電子機器278は、システムコントローラー126(図1に図示されている)の一部として含まれ得る。代替的に、信号調整および処理システム272の制御電子機器278は、システムコントローラー126から独立して提供され得り、システムコントローラー126と電気的に通信することが可能である。
光ガイド222Aから戻る光パルス(すなわち、戻りエネルギービーム224C)を検出および分析するために必要とされる光検出器270ならびに信号調整および処理システム272に関する多数の他の構成が存在しているということが認識される。たとえば、別の実施形態では、光検出器270は、戻りエネルギービーム224Cについての強度および波長情報を提供するスペクトロメーターであることが可能である。そのような実施形態では、この情報は、スペクトルシグネチャーを発生させ、光ガイド222Aおよび/またはプラズマ発生器264の中の特定の条件または事象をさらに識別するために使用され得る。より具体的には、プラズマ発生器264を構成する少量の材料は、その通常の動作の間に気化されることとなる。これらは、スペクトル線を作り出すこととなり、スペクトル線は、明瞭になることとなる。このアプローチは、機能しているプラズマ発生器264と破損されたまたは損傷された光ガイド222Aとの間を区別するためにさらに使用され得るということがさらに認識される。
本明細書において詳細に説明されているように、本発明に関する主要なメカニズムは、バルーン内部146の中のバルーン流体132の中のプラズマ事象によって生成される光パルスの直接的な検出である。信号調整および処理システム278は、光パルスの強度、そのスペクトル、および、エネルギー供給源224からの入力パルスに対してそれがいつ起こるかということを示すために利用され得る。これは、以下の通りに解釈され得る。
1) 光パルスは、光ガイド222Aの長さおよびエネルギー供給源224からの入力エネルギーパルスの持続期間によって決定される時間間隔の後に起こらなければならない。検出される光パルスが、正しい強度を有しており、特定の時間ウィンドウの中で起こる場合には、それは、プラズマ発生器264が正しく機能したということのインディケーションである。
2) 光パルスが全く検出されない場合には、それは、デバイス故障のインディケーションである。
3) エネルギー供給源224からのエネルギーパルスに対して起こるのが早過ぎるより小さな光パルスが検出される場合には、これは、光ガイド222Aの故障のインディケーションであることとなる。
4) 光パルスが異なるスペクトルを有するものとしてまたはスペクトル線もしくはスペクトルシグネチャーを欠くものとして検出される場合には、これは、デバイス故障を示すために使用され得る。
図3は、光学的アナライザーアッセンブリ342の別の実施形態を含むカテーテルシステム300の別の実施形態の一部分の簡略図である。カテーテルシステム300の設計は、本明細書で上記に図示および説明されている実施形態と実質的に同様である。カテーテルシステム300のさまざまなコンポーネント(たとえば、図1に示されているものなど)は、明確性および図示のしやすさの目的のために、図3に図示されていないということが認識される。しかし、カテーテルシステム300は、そのようなコンポーネントのほとんど(すべてではないとしても)を含む可能性が高いこととなるということが認識される。
図3に示されているように、カテーテルシステム300は、繰り返しになるが、エネルギー供給源324を含み、エネルギー供給源324は、供給源ビーム324A(たとえば、パルス状の供給源ビーム)の形態の光エネルギーを発生させるように構成されており、それは、個々のガイドビーム324Bとして、それぞれの光ガイド322A(1つの光ガイドのみが、図3に図示されている)に選択的におよび/または代替的に方向付けられ、それぞれの光ガイド322Aによって受け取られ得る。1つの非排他的な実施形態において、エネルギー供給源324は、赤外線レーザー供給源であり、光ガイド322Aは、小さい直径のマルチモード光ファイバーである。特定の実施形態において、エネルギー供給源324は、繰り返しになるが、供給源ビーム324Aとして、エネルギーのサブミリ秒パルスを提供するように構成され得り、それは、次いで、たとえば、光学エレメント362によって、小さなスポットの上に集束され、それを個々のガイドビーム324Bとして光ガイド322Aのガイド近位端部322Pの中へ連結するようになっている。
その後に、個々のガイドビーム324Bは、光ガイド322Aに沿っておよび/または光ガイド322Aを通ってトラベルし、プラズマ発生器364を励起し、プラズマ発生器364は、光ガイド322Aのガイド遠位端部322Dにまたはその近くに位置決めされ、および/または、組み込まれている。プラズマ発生器364は、赤外線エネルギーのパルスを利用し、バルーン104(図1に図示されている)のバルーン内部146(図1に図示されている)の中のバルーン流体132(図1に図示されている)の中に、局所化されたプラズマを生成させる。
本明細書において詳細に説明されているように、光学的アナライザーアッセンブリ342は、繰り返しになるが、光ガイド322Aのガイド近位端部322Pから放出される光エネルギーの光学的な分析を通して、カテーテルシステム300(たとえば、光ガイド322Aおよびプラズマ発生器364)の性能、信頼性、および安全を効果的にモニタリングするように構成されている。しかし、図3に図示されている実施形態では、光学的アナライザーアッセンブリ342は、以前の実施形態のときとは異なる設計を有している。より具体的には、この実施形態では、戻りエネルギービーム224C(図2に図示されている)としてプラズマまたは光ガイドの破損されたセクションから放出される光パルスを検出および分析するのではなく、別個の第2のエネルギー供給源380(たとえば、第2の光供給源)が、光ガイド322Aを尋問するために使用される。このアプローチは、長い光ファイバー伝送ラインにおける故障を検出するために使用されるOptical Time Domain Reflectometry(OTDR)と類似点がある。
とりわけ、図3に示されている実施形態では、光学的アナライザーアッセンブリ342は、第2のエネルギー供給源380、パルス発生器382、ビームスプリッター366、光学エレメント368(たとえば、カップリングレンズ)、第2のビームスプリッター384、光検出器370、ならびに、信号調整および処理システム372のうちの1つまたは複数を含む。追加的に、示されているように、信号調整および処理システム372は、増幅器374、ディスクリミネーター376、および制御電子機器378のうちの1つまたは複数を含むことが可能であり、制御電子機器378は、1つまたは複数のプロセッサーまたは回路を含むことが可能である。代替的に、他の実施形態において、光学的アナライザーアッセンブリ342、ならびに/または、信号調整および処理システム372は、本明細書で具体的に図示および説明されているものよりも多いコンポーネントまたは少ないコンポーネントを含むことが可能である。
図3に図示されている実施形態に示されているように、パルス発生器382は、第2のエネルギー供給源380に連結されており、パルス発生器382は、第2のエネルギー供給源380をトリガーするように構成されており、したがって、第2のエネルギー供給源380は、尋問ビーム380Aとしてエネルギーパルスを放出する。1つの非排他的な実施形態において、第2のエネルギー供給源380は、高強度の可視波長レーザーであり、パルス発生器382は、第2のエネルギー供給源380から短い高強度のパルスを生成させるために使用される。尋問ビーム380Aが、最初に、第2のビームスプリッター384に向けて方向付けられ、第2のビームスプリッター384は、本明細書で説明されているように、第2のエネルギー供給源380のための別個の供給源および戻り経路を生成させるために使用され得る。1つの実施形態では、第2のビームスプリッター384は、高い反射対透過比率(reflection-to-transmission ratio)を有する通常のビームスプリッターである。これは、小さいが十分な量の光エネルギーが光ガイド322Aの中へ連結されることを可能にする。
追加的に、特定の実施形態において、第2のエネルギー供給源380からの尋問ビーム380Aは、次いで、光学エレメント368を通過し、ビームスプリッター366(たとえば、ダイクロイックビームスプリッター)によって、光ガイド322Aのガイド近位端部322Pの上に方向転換される。次いで、尋問ビーム380Aは、光ガイド322Aの長さに沿っておよび/またはそれを通ってトラベルする。尋問ビーム380Aは、光ガイド322Aのガイド遠位端部322Dにおいてまたはその近くにおいて、プラズマ発生器364によって散乱または反射され、ガイド近位端部322Pに戻ることとなる。次いで、同じ光学経路が、戻された光パルス(すなわち、戻された尋問ビーム380B)を収集および検出するために使用される。
図3に示されているように、戻された尋問ビーム380Bは、光学的アナライザーアッセンブリ342を使用して光学的に分析される。より具体的には、示されているように、ビームスプリッター366および光学エレメント368は、繰り返しになるが、光ガイド322Aのガイド近位端部322Pから放出されることとなる、光ガイド322Aを通って戻る光エネルギー(すなわち、戻された尋問ビーム380B)を分離するために使用される。その後に、戻された尋問ビーム380Bは、第2のビームスプリッター384に向けて方向付けられる。前述のように、第2のビームスプリッター384は、高い反射対透過比率を有することが可能であり、それは、戻された尋問ビーム380Bの形態の光ガイド322Aからの弱い反射パルスの収集および検出を可能にする。したがって、第2のビームスプリッター384によって反射される戻された尋問ビーム380Bの部分が、光検出器370の中へ収集および連結され得る。そのような設計によって、光学エレメント368は、光ガイドのガイド近位端部322Pを光検出器370の上に効果的にイメージングし、それによって、光ガイド322Aのガイド近位端部322Pから放出される(すなわち、戻された尋問ビーム380Bの形態の)光エネルギーを光検出器370の上に連結する。
追加的に、いくつかの実施形態において、光検出器370は、信号を発生させ、信号は、光検出器370によって収集された、戻された尋問ビーム380Bの部分に基づいている。図3に示されているように、光検出器370からの信号は、次いで、信号調整および処理システム372に方向付けられ、そこで、プラズマ事象の検出が決定される。特定の実施形態において、光検出器370からの信号は、増幅器374に向けて方向付けられ、そこで、光検出器370からの信号が増幅される。さらに、いくつかの実施形態において、増幅された光検出器信号からのパルスは、ディスクリミネーター276(たとえば、ディスクリミネーター回路)を使用してゲート処理され、ディスクリミネーター276は、パルス発生器382からのパルスによってトリガーされる。次いで、この情報は、プラズマ事象がバルーン内部146の中のバルーン流体132の中でいつ起こったかおよび起こったかどうかを決定するために(たとえば、制御電子機器378の中で)使用され得る。より具体的には、制御電子機器378は、(パルス発生器382によってトリガーされるような)第2のエネルギー供給源380からのエネルギーのオリジナルのパルスのタイミングを、(ディスクリミネーター376を使用してゲート処理されるような)増幅された光検出器信号のタイミングと比較し、光ガイド322Aに沿って尋問パルスがどこに戻されたか(すなわち、戻された尋問ビーム380Bとして)を示すことが可能である。これは、戻された尋問ビーム380Bがプラズマ発生器364からのものであるかどうかを決定するために条件付けられ得り、それは、トリガーパルスと戻りパルスとの間の最大時間差であることとなる。逆に、トリガーパルスと戻りパルスとの間のより短い時間間隔は、戻りが光ガイド322Aのガイド近位端部322Pのより近くにあったということを示すこととなり、それは、光ガイドの故障または破損を示すこととなる。
いくつかの実施形態において、信号調整および処理システム372の制御電子機器378は、システムコントローラー126(図1に図示されている)の一部として含まれ得る。代替的に、信号調整および処理システム372の制御電子機器378は、システムコントローラー126から独立して提供され得り、システムコントローラー126と電気的に通信することが可能である。
前述のように、本発明の光学的アナライザーアッセンブリは、IVLカテーテル(とりわけ、局所化されたプラズマ(そして、それは、バルーンのバルーン内部の中のバルーン流体の中に高エネルギー気泡を誘導する)を生成させるためにエネルギー供給源(たとえば、レーザー供給源などのような光供給源)を利用するもの)の性能、信頼性、および安全に伴う複数の潜在的な問題に対処する。たとえば、前述のように、本発明によって対処される問題は、それに限定されないが、(1)バルーン内部の中にプラズマを発生させるためのエネルギー供給源および/またはプラズマ発生器の成功的な発射の光学的な検出、(2)プラズマ発生器のエネルギー出力の正確な決定、(3)バルーン内部の中に所望のプラズマを発生させるためのカテーテルシステム(たとえば、プラズマ発生器)の故障の光学的な検出、および、(4)プラズマ発生器の中の、バルーンの中の、または、カテーテルシャフトの任意のセクションに沿った光ガイドの故障の光学的な検出を含む。
本明細書および添付の特許請求の範囲において使用されているように、単数形の「a」、「an」、および「the」は、内容および/または文脈がそうでないことを明確に指示していない限り、複数の指示対象を含むということが留意されるべきである。また、「または」という用語は、一般的に、内容または文脈がそうでないことを明確に指示していない限り、「および/または」を含む意味で用いられているということも留意されるべきである。
また、本明細書および添付の特許請求の範囲において使用されているように、「構成されている」という語句は、特定のタスクを実施するように、または、特定の構成を採用するように構築または構成されているシステム、装置、または、他の構造体を説明しているということも留意されるべきである。「構成されている」という語句は、「配置および構成されている」、「構築および配置されている」、「構築されている」、「製造されている」、および「配置されている」などのような、他の同様の語句と相互交換可能に使用され得る。
本明細書において使用されている見出しは、37 CFR 1.77の下での提案との一貫性のために、または、そうでなければ、組織的な合図を提供するために提供されている。これらの見出しは、本開示から生じる可能性のある任意の請求項に記載されている本発明を限定するかまたは特徴付けるものとして見られるべきではない。例として、「背景技術」における技術の説明は、その技術が本開示における任意の発明に対する先行技術であるという自白ではない。「発明の概要」または「要約」のいずれも、発行された特許請求の範囲に記載されている本発明の特徴付けとして考慮されるべきではない。
本明細書で説明されている実施形態は、網羅的であるということを意図しておらず、または、本明細書に提供される詳細な説明に開示されている正確な形態に本発明を限定することを意図していない。むしろ、実施形態は、当業者が原理および実践を認識および理解することができるように選ばれて説明されている。そうであるので、態様は、さまざまな特定のおよび好適な実施形態および技法を参照して説明されてきた。しかし、本明細書における精神および範囲の中に留まりながら、多くの変形および修正が行われ得るということが理解されるべきである。
カテーテルシステムの複数の異なる実施形態が本明細書で図示および説明されてきたが、任意の1つの実施形態の1つまたは複数の特徴は、他の実施形態のうちの1つまたは複数の1つまたは複数の特徴と組み合わせられ得る(そのような組み合わせが本発明の意図を満たすという条件で)ということが理解される。
カテーテルシステムの複数の例示的な態様および実施形態が上記に議論されてきたが、当業者は、その特定の修正、順列、追加、およびサブコンビネーションを認識することとなる。したがって、以下の添付の特許請求の範囲および以降に導入される特許請求の範囲は、それらの真の精神および範囲の中にあるような、すべてのそのような修正、順列、追加、およびサブコンビネーションを含むように解釈され、本明細書において示されている構築または設計の詳細に対する限定は意図されていないということが意図されている。

Claims (66)

  1. 血管壁または心臓弁の中のまたはそれに隣接する治療部位を治療するためのカテーテルシステムであって、前記カテーテルシステムは、
    光エネルギーを発生させる光供給源と;
    前記治療部位に実質的に隣接して位置決め可能なバルーンであって、前記バルーンは、バルーン内部を画定するバルーン壁を有しており、前記バルーン内部は、バルーン流体を受け入れる、バルーンと;
    光ガイドであって、前記光ガイドは、ガイド近位端部において前記光エネルギーを受け入れるように構成されており、また、前記ガイド近位端部から、前記バルーン内部の中に位置決めされているガイド遠位端部に向けて、前記光エネルギーを第1の方向にガイドするように構成されている、光ガイドと;
    前記第1の方向の反対の第2の方向に移動する、前記光ガイドからの光エネルギーを光学的に分析するように構成されている光学的アナライザーアッセンブリと
    を含む、カテーテルシステム。
  2. 前記バルーン流体が、前記バルーン内部に提供され、前記バルーンが折り畳まれた構成から拡張された構成へ拡張するようになっている、請求項1に記載のカテーテルシステム。
  3. 前記光供給源は、光エネルギーのパルスを発生させ、前記光エネルギーのパルスは、前記光ガイドに沿って前記バルーン内部の中へガイドされ、前記バルーン内部の中の前記バルーン流体の中にプラズマ発生を誘導する、請求項1または2に記載のカテーテルシステム。
  4. 前記カテーテルシステムは、プラズマ発生器をさらに含み、前記プラズマ発生器は、前記光ガイドの前記ガイド遠位端部に位置決めされており、前記プラズマ発生器は、前記バルーン内部の中の前記バルーン流体の中にプラズマを発生させるように構成されている、請求項1から3のいずれか一項に記載のカテーテルシステム。
  5. 前記プラズマ発生は、急速な気泡形成を引き起こし、前記治療部位に隣接する前記バルーン壁の上に圧力波を付与する、請求項3または4に記載のカテーテルシステム。
  6. 前記光学的アナライザーアッセンブリは、プラズマ発生が前記バルーン内部の中の前記バルーン流体の中に起こったかどうかを光学的に検出するように構成されている、請求項3から5のいずれか一項に記載のカテーテルシステム。
  7. 前記光学的アナライザーアッセンブリは、プラズマ発生の欠如が前記バルーン内部の中の前記バルーン流体の中に起こったかどうかを光学的に検出するように構成されている、請求項3から6のいずれか一項に記載のカテーテルシステム。
  8. 前記光学的アナライザーアッセンブリは、前記ガイド近位端部から前記ガイド遠位端部への前記光ガイドの長さに沿った任意のポイントにおいて、前記光ガイドの故障を光学的に検出するように構成されている、請求項3から7のいずれか一項に記載のカテーテルシステム。
  9. 前記光学的アナライザーアッセンブリは、前記ガイド近位端部から前記ガイド遠位端部への前記光ガイドの長さに沿った任意のポイントにおいて、前記光ガイドに対する潜在的な損傷を光学的に検出するように構成されている、請求項3から8のいずれか一項に記載のカテーテルシステム。
  10. 前記光学的アナライザーアッセンブリは、前記光ガイドに対する潜在的な損傷を光学的に検出するとき、前記カテーテルシステムの動作を自動的にシャットダウンするように構成されている、請求項9に記載のカテーテルシステム。
  11. 前記ガイド遠位端部は、遠位光レシーバーを含み、前記遠位光レシーバーは、戻りエネルギービームとして前記ガイド遠位端部から前記ガイド近位端部へ前記光ガイドを通る光エネルギーを受け入れる、請求項1から10のいずれか一項に記載のカテーテルシステム。
  12. 前記ガイド遠位端部から前記ガイド近位端部へ前記光ガイドによって受け入れられる前記光エネルギーは、前記バルーン内部の中の前記バルーン流体の中に発生させられるプラズマから放出される、請求項11に記載のカテーテルシステム。
  13. 前記遠位光レシーバーを介して前記ガイド遠位端部から前記ガイド近位端部へ前記光ガイドによって受け入れられる前記光エネルギーは、前記光学的アナライザーアッセンブリによって光学的に分析される、請求項11または12に記載のカテーテルシステム。
  14. 前記カテーテルシステムは、前記光供給源に連結されているパルス発生器をさらに含み、前記パルス発生器は、前記光供給源をトリガーし、光エネルギーのパルスを放出するように構成されており、前記光エネルギーのパルスは、前記ガイド近位端部から前記ガイド遠位端部へ前記光ガイドに沿ってガイドされる、請求項1から13のいずれか一項に記載のカテーテルシステム。
  15. 前記光エネルギーのパルスは、前記光ガイドの前記ガイド遠位端部に位置決めされているプラズマ発生器を励起し、前記プラズマ発生器は、前記バルーン内部の中の前記バルーン流体の中にプラズマを発生させるように構成されている、請求項14に記載のカテーテルシステム。
  16. 光エネルギーが、戻りエネルギービームとして前記光ガイドを通して前記第2の方向にガイドされて戻り、前記光学的アナライザーアッセンブリは、前記戻りエネルギービームを光学的に分析し、プラズマ発生が前記バルーン内部の中の前記バルーン流体の中に起こったかどうかを決定するように構成されている、請求項14または15に記載のカテーテルシステム。
  17. 前記光学的アナライザーアッセンブリは、ビームスプリッターおよび光検出器を含み、前記ビームスプリッターは、前記戻りエネルギービームを受け入れ、前記戻りエネルギービームの少なくとも一部分を前記光検出器の上に方向付けるように構成されている、請求項16に記載のカテーテルシステム。
  18. 前記カテーテルシステムは、前記ビームスプリッターと前記光検出器との間にビーム経路に沿って位置決めされている光学エレメントをさらに含み、前記光学エレメントは、前記戻りエネルギービームの前記少なくとも一部分を前記光検出器の上に連結するように構成されている、請求項17に記載のカテーテルシステム。
  19. 前記光検出器は、前記戻りエネルギービームの前記少なくとも一部分に含まれる可視光に少なくとも部分的に基づいて信号を発生させる、請求項17または18に記載のカテーテルシステム。
  20. 前記光検出器からの前記信号は、増幅器によって増幅され、増幅された信号を提供し、前記増幅された信号は、制御電子機器に方向付けられ、前記バルーン内部の中の前記バルーン流体の中の前記プラズマ発生の強度を決定する、請求項19に記載のカテーテルシステム。
  21. 前記増幅された信号は、ディスクリミネーター回路を使用してゲート処理され、前記制御電子機器は、前記パルス発生器によってトリガーされるような、前記光供給源からの前記光エネルギーのパルスのタイミングを、前記光検出器からの前記増幅された信号のタイミングと比較し、プラズマ発生が前記バルーン内部の中の前記バルーン流体の中でいつ起こったかを決定する、請求項20に記載のカテーテルシステム。
  22. 前記カテーテルシステムは、尋問ビームとして光エネルギーを発生させる第2の光供給源をさらに含み、前記光ガイドは、前記ガイド近位端部において前記第2の光供給源から前記尋問ビームを受け入れ、前記尋問ビームを前記第2の光供給源から前記ガイド遠位端部に向けてガイドするように構成されている、請求項1から13のいずれか一項に記載のカテーテルシステム。
  23. 前記カテーテルシステムは、前記第2の光供給源に連結されているパルス発生器をさらに含み、前記パルス発生器は、前記第2の光供給源をトリガーし、尋問ビームとして光エネルギーのパルスを放出するように構成されており、前記尋問ビームは、前記光ガイドに沿って前記ガイド近位端部から前記ガイド遠位端部へガイドされる、請求項22に記載のカテーテルシステム。
  24. 前記第2の光供給源は、可視光供給源である、請求項22または23に記載のカテーテルシステム。
  25. 前記カテーテルシステムは、前記光ガイドの前記ガイド遠位端部に位置決めされているプラズマ発生器をさらに含み、前記尋問ビームは、(i)前記プラズマ発生器によって散乱される、および、(ii)前記プラズマ発生器によって反射される、のうちの一方であり、前記尋問ビームは、戻された尋問ビームとして前記光ガイドに沿って前記第2の方向に方向付けられる、請求項22から24のいずれか一項に記載のカテーテルシステム。
  26. 前記戻された尋問ビームは、前記光ガイドの前記ガイド近位端部から放出されるときに、前記光学的アナライザーアッセンブリによって光学的に分析される、請求項25に記載のカテーテルシステム。
  27. 前記光学的アナライザーアッセンブリは、ビームスプリッターおよび光検出器を含み、前記ビームスプリッターは、前記戻された尋問ビームを受け入れ、前記戻された尋問ビームの少なくとも一部分を前記光検出器の上に方向付けるように構成されている、請求項25または26に記載のカテーテルシステム。
  28. 前記光検出器は、前記戻された尋問ビームの前記少なくとも一部分に少なくとも部分的に基づいて信号を発生させる、請求項27に記載のカテーテルシステム。
  29. 前記光検出器からの前記信号は、増幅器によって増幅され、増幅された信号を提供し、前記増幅された信号は、制御電子機器に方向付けられ、プラズマ発生が前記バルーン内部の中の前記バルーン流体の中でいつ起こったかを決定する、請求項28に記載のカテーテルシステム。
  30. 前記増幅された信号は、ディスクリミネーター回路を使用してゲート処理され、前記制御電子機器は、前記パルス発生器によってトリガーされるような、前記第2の光供給源からの前記光エネルギーのパルスのタイミングを、前記光検出器からの前記増幅された信号のタイミングと比較し、プラズマ発生が前記バルーン内部の中の前記バルーン流体の中でいつ起こったかを決定する、請求項29に記載のカテーテルシステム。
  31. 前記光供給源は、レーザーを含む、請求項1から30のいずれか一項に記載のカテーテルシステム。
  32. 前記光供給源は、赤外光のパルスの形態の光エネルギーを放出する赤外線レーザーを含む、請求項1から31のいずれか一項に記載のカテーテルシステム。
  33. 前記光ガイドは、光ファイバーを含む、請求項1から32のいずれか一項に記載のカテーテルシステム。
  34. 血管壁または心臓弁の中のまたはそれに隣接する治療部位を治療するための方法であって、前記方法は、
    光供給源によって光エネルギーを発生させるステップと;
    前記治療部位に実質的に隣接してバルーンを位置決めするステップであって、前記バルーンは、バルーン内部を画定するバルーン壁を有しており、前記バルーン内部は、バルーン流体を受け入れる、ステップと;
    ガイド近位端部において光ガイドによって前記光供給源からの前記光エネルギーを受け入れるステップと;
    前記ガイド近位端部から、前記バルーン内部の中に位置決めされているガイド遠位端部に向けて、前記光ガイドによって前記光エネルギーを第1の方向にガイドするステップと;
    光学的アナライザーアッセンブリによって前記光ガイドからの光エネルギーを光学的に分析するステップであって、分析される前記光エネルギーは、反対側に前記第1の方向の反対の第2の方向に移動する、ステップと
    を含む、方法。
  35. 位置決めする前記ステップは、前記バルーンが折り畳まれた構成から拡張された構成へ拡張するように、前記バルーン流体を前記バルーン内部に提供するステップを含む、請求項34に記載の方法。
  36. 発生させる前記ステップは、前記光供給源によって光エネルギーのパルスを発生させるステップを含み、ガイドする前記ステップは、前記光ガイドに沿って前記バルーン内部の中へ前記光エネルギーのパルスをガイドし、前記バルーン内部の中の前記バルーン流体の中にプラズマ発生を誘導するステップを含む、請求項34または35に記載の方法。
  37. 前記方法は、前記光ガイドの前記ガイド遠位端部にプラズマ発生器を位置決めするステップと、前記プラズマ発生器によって前記バルーン内部の中の前記バルーン流体の中にプラズマを発生させるステップとをさらに含む、請求項34から36のいずれか一項に記載の方法。
  38. ガイドする前記ステップは、前記プラズマ発生が急速な気泡形成を引き起こすステップと、前記治療部位に隣接する前記バルーン壁の上に圧力波を付与するステップとを含む、請求項36または37に記載の方法。
  39. 光学的に分析する前記ステップは、前記光学的アナライザーアッセンブリによって、プラズマ発生が前記バルーン内部の中の前記バルーン流体の中に起こったかどうかを光学的に検出するステップを含む、請求項36から38のいずれか一項に記載の方法。
  40. 光学的に分析する前記ステップは、前記光学的アナライザーアッセンブリによって、プラズマ発生の欠如が前記バルーン内部の中の前記バルーン流体の中に起こったかどうかを光学的に検出するステップを含む、請求項36から39のいずれか一項に記載の方法。
  41. 光学的に分析する前記ステップは、前記光学的アナライザーアッセンブリによって、前記ガイド近位端部から前記ガイド遠位端部への前記光ガイドの長さに沿った任意のポイントにおいて、前記光ガイドの故障を光学的に検出するステップを含む、請求項36から40のいずれか一項に記載の方法。
  42. 光学的に分析する前記ステップは、前記光学的アナライザーアッセンブリによって、前記ガイド近位端部から前記ガイド遠位端部への前記光ガイドの長さに沿った任意のポイントにおいて、前記光ガイドに対する潜在的な損傷を光学的に検出するステップを含む、請求項36から41のいずれか一項に記載の方法。
  43. 前記方法は、前記光ガイドに対する潜在的な損傷を光学的に検出するとき、前記光学的アナライザーアッセンブリによって、前記カテーテルシステムの動作を自動的にシャットダウンするステップをさらに含む、請求項42に記載の方法。
  44. 前記方法は、前記ガイド遠位端部における遠位光レシーバーによって、戻りエネルギービームとして前記ガイド遠位端部から前記ガイド近位端部へ前記光ガイドを通る光エネルギーを受け入れるステップをさらに含む、請求項34から43のいずれか一項に記載の方法。
  45. 前記ガイド遠位端部から前記光ガイドを通る光エネルギーを受け入れる前記ステップは、前記ガイド遠位端部から前記ガイド近位端部へ前記光ガイドを通して受け入れられる前記光エネルギーが、前記バルーン内部の中の前記バルーン流体の中に発生させられるプラズマから放出されることを含む、請求項44に記載の方法。
  46. 光学的に分析する前記ステップは、前記光学的アナライザーアッセンブリによって、前記ガイド遠位端部から前記ガイド近位端部へ前記光ガイドを通して受け入れられる前記光エネルギーを光学的に分析するステップを含む、請求項44または45に記載の方法。
  47. 前記方法は、パルス発生器を前記光供給源に連結するステップと、前記パルス発生器によって前記光供給源をトリガーし、前記ガイド近位端部から前記ガイド遠位端部へ前記光ガイドに沿ってガイドされる光エネルギーのパルスを放出するステップとをさらに含む、請求項34から46のいずれか一項に記載の方法。
  48. 前記方法は、前記光エネルギーのパルスによって、前記光ガイドの前記ガイド遠位端部に位置決めされているプラズマ発生器を励起するステップと、前記プラズマ発生器によって、前記バルーン内部の中の前記バルーン流体の中にプラズマを発生させるステップとをさらに含む、請求項47に記載の方法。
  49. 前記方法は、戻りエネルギービームとして前記光ガイドを通して前記ガイド近位端部へ光エネルギーをガイドして戻すステップと、前記光学的アナライザーアッセンブリによって前記戻りエネルギービームを光学的に分析し、プラズマ発生が前記バルーン内部の中の前記バルーン流体の中に起こったかどうかを決定するステップとをさらに含む、請求項47または48に記載の方法。
  50. 前記戻りエネルギービームを光学的に分析する前記ステップは、ビームスプリッターによって前記戻りエネルギービームを受け入れるステップと、前記ビームスプリッターによって前記戻りエネルギービームの少なくとも一部分を前記光検出器の上に方向付けるステップとを含む、請求項49に記載の方法。
  51. 前記方法は、前記ビームスプリッターと前記光検出器との間にビーム経路に沿って光学エレメントを位置決めするステップと、前記光学エレメントによってカップリング前記戻りエネルギービームの前記少なくとも一部分を前記光検出器の上に連結するステップとをさらに含む、請求項50に記載の方法。
  52. 前記方法は、前記光検出器によって、前記戻りエネルギービームの前記少なくとも一部分に含まれる可視光に少なくとも部分的に基づいて信号を発生させるステップをさらに含む、請求項50または51に記載の方法。
  53. 前記方法は、増幅器によって前記光検出器からの前記信号を増幅し、増幅された信号を提供するステップと、前記増幅された信号を制御電子機器に方向付け、前記バルーン内部の中の前記バルーン流体の中の前記プラズマ発生の強度を決定するステップとをさらに含む、請求項52に記載の方法。
  54. 前記方法は、ディスクリミネーター回路を使用して、前記増幅された信号をゲート処理するステップと、前記制御電子機器によって、前記パルス発生器によってトリガーされるような、前記光供給源からの前記光エネルギーのパルスのタイミングを、前記光検出器からの前記増幅された信号のタイミングと比較し、プラズマ発生が前記バルーン内部の中の前記バルーン流体の中でいつ起こったかを決定するステップとをさらに含む、請求項53に記載の方法。
  55. 前記方法は、第2の光供給源によって尋問ビームとして光エネルギーを発生させるステップと、前記光ガイドの前記ガイド近位端部において前記第2の光供給源から前記尋問ビームを受け入れるステップと、前記光ガイドによって前記第2の光供給源から前記ガイド遠位端部に向けて前記尋問ビームをガイドするステップとをさらに含む、請求項34から46のいずれか一項に記載の方法。
  56. 前記方法は、パルス発生器を前記第2の光供給源に連結するステップと、前記パルス発生器によって前記第2の光供給源をトリガーし、前記光ガイドに沿って前記ガイド近位端部から前記ガイド遠位端部へガイドされる尋問ビームとして、光エネルギーのパルスを放出するステップとをさらに含む、請求項55に記載の方法。
  57. 尋問ビームとして光エネルギーを発生させる前記ステップは、前記第2の光供給源が可視光供給源であることを含む、請求項55または56に記載の方法。
  58. 前記方法は、前記光ガイドの前記ガイド遠位端部にプラズマ発生器を位置決めするステップと、前記プラズマ発生器によって前記尋問ビームを散乱させるステップおよび反射するステップのうちの1つと、前記光ガイドによって、散乱されたおよび反射された尋問ビームのうちの一方を、戻された尋問ビームとして前記光ガイドに沿って前記第2の方向に方向付けるステップとをさらに含む、請求項55から57のいずれか一項に記載の方法。
  59. 前記方法は、前記光学的アナライザーアッセンブリによって、前記光ガイドの前記ガイド近位端部から放出されるときに、前記戻された尋問ビームを光学的に分析するステップをさらに含む、請求項58に記載の方法。
  60. 前記方法は、ビームスプリッターによって、前記戻された尋問ビームを受け入れるステップと、前記ビームスプリッターによって、前記戻された尋問ビームの少なくとも一部分を前記光検出器の上に方向付けるステップとをさらに含む、請求項58または59に記載の方法。
  61. 前記方法は、前記光検出器によって、前記戻された尋問ビームの前記少なくとも一部分に少なくとも部分的に基づいて信号を発生させるステップをさらに含む、請求項60に記載の方法。
  62. 前記方法は、増幅器によって前記光検出器からの前記信号を増幅させ、増幅された信号を提供するステップと、前記増幅された信号を制御電子機器に方向付け、プラズマ発生が前記バルーン内部の中の前記バルーン流体の中でいつ起こったかを決定するステップとをさらに含む、請求項61に記載の方法。
  63. 前記方法は、ディスクリミネーター回路を使用して、前記増幅された信号をゲート処理するステップと、前記制御電子機器によって、前記パルス発生器によってトリガーされるような、前記第2の光供給源からの前記光エネルギーのパルスのタイミングを、前記光検出器からの前記増幅された信号のタイミングと比較し、プラズマ発生が前記バルーン内部の中の前記バルーン流体の中でいつ起こったかを決定するステップとをさらに含む、請求項62に記載の方法。
  64. 発生させる前記ステップは、前記光供給源がレーザーであることを含む、請求項34から63のいずれか一項に記載の方法。
  65. 発生させる前記ステップは、前記光供給源が赤外光のパルスの形態の光エネルギーを放出する赤外線レーザーであることを含む、請求項34から64のいずれか一項に記載の方法。
  66. 受け入れる前記ステップは、前記光ガイドが光ファイバーを含むことを含む、請求項34から65のいずれか一項に記載の方法。
JP2022556541A 2020-03-18 2021-02-11 血管内砕石術デバイスのための光学的アナライザーアッセンブリおよび方法 Pending JP2023519214A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202062991394P 2020-03-18 2020-03-18
US62/991,394 2020-03-18
US17/172,980 US20210290286A1 (en) 2020-03-18 2021-02-10 Optical analyzer assembly and method for intravascular lithotripsy device
US17/172,980 2021-02-10
PCT/US2021/017604 WO2021188233A1 (en) 2020-03-18 2021-02-11 Optical analyzer assembly and method for intravascular lithotripsy device

Publications (2)

Publication Number Publication Date
JP2023519214A true JP2023519214A (ja) 2023-05-10
JPWO2021188233A5 JPWO2021188233A5 (ja) 2024-02-16

Family

ID=77747108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022556541A Pending JP2023519214A (ja) 2020-03-18 2021-02-11 血管内砕石術デバイスのための光学的アナライザーアッセンブリおよび方法

Country Status (6)

Country Link
US (2) US20210290286A1 (ja)
EP (1) EP4120945A1 (ja)
JP (1) JP2023519214A (ja)
CN (1) CN115334990A (ja)
CA (1) CA3174905A1 (ja)
WO (1) WO2021188233A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
WO2020256898A1 (en) 2019-06-19 2020-12-24 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US11517713B2 (en) 2019-06-26 2022-12-06 Boston Scientific Scimed, Inc. Light guide protection structures for plasma system to disrupt vascular lesions
US11583339B2 (en) 2019-10-31 2023-02-21 Bolt Medical, Inc. Asymmetrical balloon for intravascular lithotripsy device and method
US11672599B2 (en) 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
US20210290286A1 (en) 2020-03-18 2021-09-23 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
WO2022240674A1 (en) * 2021-05-10 2022-11-17 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
US11839391B2 (en) 2021-12-14 2023-12-12 Bolt Medical, Inc. Optical emitter housing assembly for intravascular lithotripsy device
WO2023211810A1 (en) * 2022-04-25 2023-11-02 Bolt Medical, Inc. Catheter inflation tube for use in intravascular lithotripsy
US11918285B2 (en) 2022-06-01 2024-03-05 Fast Wave Medical Inc. Intravascular lithotripsy

Family Cites Families (502)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1453853A (fr) 1966-04-06 1966-07-22 Appareil perfectionné destiné à broyer les calculs dans la vessie
DE3038445A1 (de) 1980-10-11 1982-05-27 Dornier Gmbh, 7990 Friedrichshafen Stosswellengenerator fuer medizinische anwendungsfaelle
US4522194A (en) 1983-02-18 1985-06-11 Baylor College Of Medicine Method and an apparatus for intra-aortic balloon monitoring and leak detection
CA1265586A (en) 1984-08-14 1990-02-06 Consiglio Nazionale Delle Ricerche Method and device for quick location of starting site of ventricular arrhythmias
US4799479A (en) 1984-10-24 1989-01-24 The Beth Israel Hospital Association Method and apparatus for angioplasty
US5104392A (en) 1985-03-22 1992-04-14 Massachusetts Institute Of Technology Laser spectro-optic imaging for diagnosis and treatment of diseased tissue
US4913142A (en) 1985-03-22 1990-04-03 Massachusetts Institute Of Technology Catheter for laser angiosurgery
US5034010A (en) 1985-03-22 1991-07-23 Massachusetts Institute Of Technology Optical shield for a laser catheter
US20020045811A1 (en) * 1985-03-22 2002-04-18 Carter Kittrell Laser ablation process and apparatus
US4850351A (en) 1985-05-22 1989-07-25 C. R. Bard, Inc. Wire guided laser catheter
US4699147A (en) 1985-09-25 1987-10-13 Cordis Corporation Intraventricular multielectrode cardial mapping probe and method for using same
US4994059A (en) 1986-05-09 1991-02-19 Gv Medical, Inc. Laser catheter feedback system
JPS62275446A (ja) 1986-05-21 1987-11-30 オリンパス光学工業株式会社 放電砕石装置
US4744366A (en) 1986-09-10 1988-05-17 Jang G David Concentric independently inflatable/deflatable multiple diameter balloon angioplasty catheter systems and method of use
EP0268019A1 (de) 1986-11-13 1988-05-25 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Vorrichtung zur Zertrümmerung eines von einem Fluid umgebenen festen Körpers
JPS63158064A (ja) 1986-12-23 1988-07-01 テルモ株式会社 血管拡張カテ−テル
DE3728814A1 (de) 1987-08-28 1989-03-30 Lentia Gmbh Loesung zur anwendung als spuelfluessigkeit in der zerstoerung von koerperfremden ablagerungen in menschlichen und tierischen geweben oder koerperhohlraeumen
US6071273A (en) 1988-02-29 2000-06-06 Scimed Life Systems, Inc. Fixed wire dilatation balloon catheter
US5372138A (en) 1988-03-21 1994-12-13 Boston Scientific Corporation Acousting imaging catheters and the like
US5200838A (en) 1988-05-27 1993-04-06 The University Of Connecticut Lateral effect imaging system
DE3836337A1 (de) 1988-10-25 1990-04-26 Meessen Stephan Dr B Verfahren und vorrichtung zum erfassen von intrakorporal erzeugten laserinduzierten stosswellen
DE3842916C1 (ja) 1988-12-21 1990-02-01 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De
AU4945490A (en) 1989-01-06 1990-08-01 Angioplasty Systems Inc. Electrosurgical catheter for resolving atherosclerotic plaque
WO1990007904A1 (en) 1989-01-23 1990-07-26 Medilase, Incorporated Acoustic monitoring and controlling of laser angioplasty
DE3913027A1 (de) 1989-04-20 1990-10-25 Hohla Kristian Einrichtung zur erzeugung von stosswellen mit einem laser
DE3933613C2 (de) 1989-10-07 1998-10-08 Laser & Med Tech Gmbh Vorrichtung zur Erzeugung von laserinduzierten Stoßwellen
KR0180709B1 (ko) 1989-10-25 1999-05-01 잭 머래이 도딕 입력 에너지 변환기가 부착된 외과수술용 기구
JP2514087Y2 (ja) 1990-05-25 1996-10-16 幸三 牧田 離脱式両端逆止弁付きバル―ン
JPH06500248A (ja) 1990-08-21 1994-01-13 ボストン サイエンティフィック コーポレーション 音響撮像カテーテルその他
US5428658A (en) 1994-01-21 1995-06-27 Photoelectron Corporation X-ray source with flexible probe
US5104391A (en) 1990-10-30 1992-04-14 Advanced Cardiovascular Systems Optical fiber breakage detection system
US5093877A (en) 1990-10-30 1992-03-03 Advanced Cardiovascular Systems Optical fiber lasing apparatus lens
US5275594A (en) * 1990-11-09 1994-01-04 C. R. Bard, Inc. Angioplasty system having means for identification of atherosclerotic plaque
US5082343A (en) 1990-12-20 1992-01-21 At&T Bell Laboratories Isolated optical coupler
US5152768A (en) 1991-02-26 1992-10-06 Bhatta Krishna M Electrohydraulic lithotripsy
US5116227A (en) 1991-03-01 1992-05-26 Endo Technic Corporation Process for cleaning and enlarging passages
US5173049A (en) 1991-03-01 1992-12-22 Endo Technic Corporation Removing a post embedded in a tooth
EP0558297B1 (en) 1992-02-25 1997-04-16 Japan Crescent Inc. Heated balloon catheter
ZA931943B (en) 1992-03-30 1993-11-16 Pameda Nv Inflatable shaft catheter
US5290277A (en) 1992-04-03 1994-03-01 Angeion Corporation Multi-fiber linear array laser catheter connector
EP0574686A2 (en) 1992-05-13 1993-12-22 The Spectranetics Corporation Linear scan method and system for cloupling energy into an optical fiber bundle
EP0571306A1 (fr) 1992-05-22 1993-11-24 LASER MEDICAL TECHNOLOGY, Inc. Dispositif et procédé pour enlever des dépôts sur les parois de passages
US5662108A (en) 1992-09-23 1997-09-02 Endocardial Solutions, Inc. Electrophysiology mapping system
CA2678625A1 (en) 1992-09-23 1994-03-31 St. Jude Medical, Atrial Fibrillation Division, Inc. Endocardial mapping system
WO1994007446A1 (en) 1992-10-05 1994-04-14 Boston Scientific Corporation Device and method for heating tissue
DE69417465T2 (de) 1993-02-05 1999-07-22 Joe W And Dorothy Dorsett Brow Ultraschallballonkatheter für Angioplastik
US5772609A (en) 1993-05-11 1998-06-30 Target Therapeutics, Inc. Guidewire with variable flexibility due to polymeric coatings
US5860974A (en) 1993-07-01 1999-01-19 Boston Scientific Corporation Heart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft
US5456680A (en) 1993-09-14 1995-10-10 Spectranetics Corp Fiber optic catheter with shortened guide wire lumen
US6939309B1 (en) 1993-09-23 2005-09-06 Endocardial Solutions, Inc. Electrophysiology mapping system
US6139510A (en) 1994-05-11 2000-10-31 Target Therapeutics Inc. Super elastic alloy guidewire
US5944697A (en) 1994-05-31 1999-08-31 Universal Medical Instrument Corp. Percutaneous catheter introducer
US5509917A (en) 1994-06-28 1996-04-23 Ceramoptec Industries, Inc. Lensed caps for radial medical laser delivery devices
US6572609B1 (en) * 1999-07-14 2003-06-03 Cardiofocus, Inc. Phototherapeutic waveguide apparatus
US6423055B1 (en) 1999-07-14 2002-07-23 Cardiofocus, Inc. Phototherapeutic wave guide apparatus
US5562657A (en) 1994-09-19 1996-10-08 Griffin; Stephen E. Side fire laser catheter method and apparatus
US5718241A (en) 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
US5824005A (en) 1995-08-22 1998-10-20 Board Of Regents, The University Of Texas System Maneuverable electrophysiology catheter for percutaneous or intraoperative ablation of cardiac arrhythmias
US5729583A (en) 1995-09-29 1998-03-17 The United States Of America As Represented By The Secretary Of Commerce Miniature x-ray source
US5598494A (en) 1995-10-23 1997-01-28 The United States Of America As Represented By The Secretary Of The Army Multi-channel fiber optic connector
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
US5891135A (en) 1996-01-19 1999-04-06 Ep Technologies, Inc. Stem elements for securing tubing and electrical wires to expandable-collapsible electrode structures
US7189209B1 (en) 1996-03-29 2007-03-13 Sanuwave, Inc. Method for using acoustic shock waves in the treatment of a diabetic foot ulcer or a pressure sore
US6464660B2 (en) 1996-09-05 2002-10-15 Pharmasonics, Inc. Balloon catheters having ultrasonically driven interface surfaces and methods for their use
US6015404A (en) * 1996-12-02 2000-01-18 Palomar Medical Technologies, Inc. Laser dermatology with feedback control
DE19718512C1 (de) 1997-05-02 1998-06-25 Hmt Ag Verfahren und Vorrichtung zum Erzeugen von Stoßwellen für medizinische Anwendungen
DE19718513C5 (de) 1997-05-02 2010-06-02 Sanuwave, Inc., Vorrichtung zur Erzeugung akustischer Stoßwellen, insbesondere für die medizinische Anwendung
US6024740A (en) 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
US6500174B1 (en) 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
US6652515B1 (en) 1997-07-08 2003-11-25 Atrionix, Inc. Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
US6514249B1 (en) 1997-07-08 2003-02-04 Atrionix, Inc. Positioning system and method for orienting an ablation element within a pulmonary vein ostium
US6013072A (en) 1997-07-09 2000-01-11 Intraluminal Therapeutics, Inc. Systems and methods for steering a catheter through body tissue
US5906611A (en) 1997-07-28 1999-05-25 Dodick; Jack Murray Surgical instrument with laser target
US6538739B1 (en) * 1997-09-30 2003-03-25 The Regents Of The University Of California Bubble diagnostics
MXPA00003920A (es) 1997-10-21 2002-08-06 Univ California Extraccion fotoacustica de oclusiones de vasos sanguineos.
US6123923A (en) 1997-12-18 2000-09-26 Imarx Pharmaceutical Corp. Optoacoustic contrast agents and methods for their use
US6368318B1 (en) 1998-01-23 2002-04-09 The Regents Of The University Of California Opto-acoustic recanilization delivery system
US6210404B1 (en) 1998-10-28 2001-04-03 John H. Shadduck Microjoule electrical discharge catheter for thrombolysis in stroke patients
US6210400B1 (en) 1998-07-22 2001-04-03 Endovasix, Inc. Flexible flow apparatus and method for the disruption of occlusions
US6547779B2 (en) 1998-07-22 2003-04-15 Endovasix, Inc. Flexible flow apparatus and method for the disruption of occlusions
US6607502B1 (en) 1998-11-25 2003-08-19 Atrionix, Inc. Apparatus and method incorporating an ultrasound transducer onto a delivery member
US6203537B1 (en) 1999-02-04 2001-03-20 Sorin Adrian Laser-driven acoustic ablation catheter
US6532387B1 (en) 1999-03-26 2003-03-11 Kevin S. Marchitto Catheter for delivering electromagnetic energy for enhanced permeation of substances
US6161049A (en) 1999-03-26 2000-12-12 Urologix, Inc. Thermal therapy catheter
US20050010095A1 (en) 1999-04-05 2005-01-13 Medtronic, Inc. Multi-purpose catheter apparatus and method of use
US6339470B1 (en) 1999-04-26 2002-01-15 Endovasix, Inc. Apparatus and method for aligning an energy beam
US6356575B1 (en) 1999-07-06 2002-03-12 Raytheon Company Dual cavity multifunction laser system
US7527622B2 (en) 1999-08-23 2009-05-05 Cryocath Technologies Inc. Endovascular cryotreatment catheter
US20040249401A1 (en) 1999-10-05 2004-12-09 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device with a non-compliant balloon
US6524251B2 (en) 1999-10-05 2003-02-25 Omnisonics Medical Technologies, Inc. Ultrasonic device for tissue ablation and sheath for use therewith
US6652547B2 (en) 1999-10-05 2003-11-25 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using ultrasonic medical device operating in a transverse mode
US20040097996A1 (en) 1999-10-05 2004-05-20 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode
US6610007B2 (en) 2000-04-03 2003-08-26 Neoguide Systems, Inc. Steerable segmented endoscope and method of insertion
CN1241658C (zh) 2000-07-13 2006-02-15 普罗里森姆股份有限公司 一种在存活对象的体内施加能量的装置
US6638246B1 (en) 2000-11-28 2003-10-28 Scimed Life Systems, Inc. Medical device for delivery of a biologically active material to a lumen
US20020082553A1 (en) 2000-12-22 2002-06-27 Advanced Cardiovascular Systems, Inc. Balloon designs for angioplasty
DE10100974B4 (de) 2001-01-11 2004-07-08 Hmt High Medical Technologies Ag Vorrichtung zur Erzeugung von Stoßwellen
US6514203B2 (en) 2001-02-12 2003-02-04 Sonata Technologies Ltd. Method for ultrasonic coronary thrombolysis
US6879851B2 (en) 2001-06-07 2005-04-12 Lightlab Imaging, Llc Fiber optic endoscopic gastrointestinal probe
ITMI20012395A1 (it) 2001-11-13 2003-05-13 Milano Politecnico Cannula aortica
US7141044B2 (en) 2001-12-11 2006-11-28 Ekos Corporation Alternate site gene therapy
US6740107B2 (en) 2001-12-19 2004-05-25 Trimedyne, Inc. Device for treatment of atrioventricular valve regurgitation
US6873868B2 (en) 2001-12-31 2005-03-29 Infraredx, Inc. Multi-fiber catheter probe arrangement for tissue analysis or treatment
US7087061B2 (en) 2002-03-12 2006-08-08 Lithotech Medical Ltd Method for intracorporeal lithotripsy fragmentation and apparatus for its implementation
US6773447B2 (en) 2002-07-02 2004-08-10 Sentient Engineering & Technology, Llc Balloon catheter and treatment apparatus
US6966890B2 (en) 2002-08-23 2005-11-22 Medtronic Vascular, Inc. Convertible balloon catheter and manufacture thereof
US7037319B2 (en) 2002-10-15 2006-05-02 Scimed Life Systems, Inc. Nanotube paper-based medical device
US6847848B2 (en) 2003-01-07 2005-01-25 Mmtc, Inc Inflatable balloon catheter structural designs and methods for treating diseased tissue of a patient
US20040143286A1 (en) 2003-01-17 2004-07-22 Johnson Eric G. Catheter with disruptable guidewire channel
FR2851153B1 (fr) 2003-02-14 2005-04-08 Alain Lebet Dispositif generateur d'une onde de choc a simple coup.
US20040162508A1 (en) 2003-02-19 2004-08-19 Walter Uebelacker Shock wave therapy method and device
US7470240B2 (en) 2004-10-22 2008-12-30 General Patent, Llc Pressure pulse/shock wave therapy methods and an apparatus for conducting the therapeutic methods
US9603545B2 (en) 2003-02-21 2017-03-28 3Dt Holdings, Llc Devices, systems, and methods for removing targeted lesions from vessels
US7867178B2 (en) 2003-02-26 2011-01-11 Sanuwave, Inc. Apparatus for generating shock waves with piezoelectric fibers integrated in a composite
US10376711B2 (en) 2003-03-14 2019-08-13 Light Sciences Oncology Inc. Light generating guide wire for intravascular use
DE10311659B4 (de) 2003-03-14 2006-12-21 Sws Shock Wave Systems Ag Vorrichtung und Verfahren zur optimierten elektrohydraulischen Druckpulserzeugung
US7628785B2 (en) 2003-06-13 2009-12-08 Piezo Technologies Endoscopic medical treatment involving acoustic ablation
US6849994B1 (en) 2003-06-30 2005-02-01 Healthtronics Surgical Services, Inc. Electrode assembly for lithotripters
US7713260B2 (en) 2003-09-11 2010-05-11 Cook Incorporated Catheter having an overmolded hub
US20050080396A1 (en) 2003-10-03 2005-04-14 Michael Rontal Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces
JP4391221B2 (ja) 2003-12-22 2009-12-24 有限会社日本エレクテル 高周波加温バルーンカテーテル
MXPA06007623A (es) 2003-12-31 2007-01-30 Johnson & Johnson Montaje de dispositivo de ablacion circunferencial con un miembro expansible.
US20050171437A1 (en) 2004-01-14 2005-08-04 Neptec Optical Solutions, Inc. Optical switching system for catheter-based analysis and treatment
WO2005094283A2 (en) 2004-03-25 2005-10-13 Hauser David L Vascular filter device
DE102004021754A1 (de) 2004-04-30 2005-11-24 Reinhardt Thyzel Vorrichtung zum Entfernen von Epithelzellen aus einem Linsenkapselsack eines menschlichen oder tierischen Auges
US7170675B2 (en) 2004-05-19 2007-01-30 Celloptic, Inc. Method and system for wide-field multi-photon microscopy having a confocal excitation plane
US7758572B2 (en) 2004-05-20 2010-07-20 Boston Scientific Scimed, Inc. Medical devices and methods including cooling balloons having nanotubes
US7922667B2 (en) 2004-06-04 2011-04-12 The Regents Of The University Of Michigan Electromagnetic flow sensor device
US20050277839A1 (en) 2004-06-10 2005-12-15 Honeywell International, Inc. Wireless flow measurement in arterial stent
US7427165B2 (en) 2004-06-16 2008-09-23 Spectros Corporation Optical and electrical hybrid connector
CA2574013A1 (en) 2004-07-14 2006-01-19 By-Pass, Inc. Material delivery system
US7435077B2 (en) 2004-08-13 2008-10-14 Boston Scientific Scimed, Inc. Catheter balloon molding device
US7309324B2 (en) 2004-10-15 2007-12-18 Futuremed Interventional, Inc. Non-compliant medical balloon having an integral woven fabric layer
US8050746B2 (en) 2005-02-02 2011-11-01 Voyage Medical, Inc. Tissue visualization device and method variations
EP1871226A2 (en) 2005-02-16 2008-01-02 Transoma Medical, Inc. Impedance based sensor for monitoring leakage in abdominal aortic aneurism stent graft
US20060241524A1 (en) 2005-03-11 2006-10-26 Qi Yu Intravascular ultrasound catheter device and method for ablating atheroma
US7595615B2 (en) 2005-04-05 2009-09-29 Texas Instruments Incorporated Systems and methods for providing over-current protection in a switching power supply
US20060241733A1 (en) 2005-04-25 2006-10-26 Cardiac Pacemakers, Inc. Atrial pacing lead
US9468500B2 (en) 2005-04-26 2016-10-18 Tea Time Partners, L.P. Image-guided laser catheter
US20060270976A1 (en) 2005-05-31 2006-11-30 Prorhythm, Inc. Steerable catheter
US8162859B2 (en) 2005-06-09 2012-04-24 General Patent , LLC Shock wave treatment device and method of use
EP1909884A1 (en) 2005-06-17 2008-04-16 Abbott Laboratories Method of reducing rigidity of angioplasty balloon sections
CN101309651B (zh) 2005-06-20 2011-12-07 麦德托尼克消融前沿有限公司 消融导管
US7539231B1 (en) 2005-07-15 2009-05-26 Lockheed Martin Corporation Apparatus and method for generating controlled-linewidth laser-seed-signals for high-powered fiber-laser amplifier systems
US8657814B2 (en) 2005-08-22 2014-02-25 Medtronic Ablation Frontiers Llc User interface for tissue ablation system
US7918870B2 (en) 2005-09-12 2011-04-05 Bridgepoint Medical, Inc. Endovascular devices and methods
US8057408B2 (en) 2005-09-22 2011-11-15 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy
US20070088380A1 (en) 2005-10-14 2007-04-19 Endocross Ltd. Balloon catheter system for treating vascular occlusions
EP1946712B1 (en) 2005-11-01 2012-08-29 Japan Electel Inc. Balloon catheter system
US20070118057A1 (en) 2005-11-18 2007-05-24 Moshe Ein-Gal Acoustic wave energy delivery device
US7599588B2 (en) 2005-11-22 2009-10-06 Vascular Imaging Corporation Optical imaging probe connector
US20070142819A1 (en) 2005-12-20 2007-06-21 El-Nounou Fozan O Bifurcated catheter for agent delivery and method of agent delivery
US20080108867A1 (en) 2005-12-22 2008-05-08 Gan Zhou Devices and Methods for Ultrasonic Imaging and Ablation
US7810395B2 (en) 2005-12-22 2010-10-12 Total Wire Corporation Ultrasonic pressure sensor and method of operating the same
US9629567B2 (en) 2006-01-12 2017-04-25 Biosense Webster, Inc. Mapping of complex fractionated atrial electrogram
US20090306533A1 (en) * 2006-01-26 2009-12-10 Rousche Patrick J Stroke Inducing and Monitoring System and Method for Using the Same
US20070239082A1 (en) 2006-01-27 2007-10-11 General Patent, Llc Shock Wave Treatment Device
US20070179496A1 (en) 2006-01-31 2007-08-02 Medtronic, Inc. Flexible catheter for ablation therapy
DE102006012204A1 (de) 2006-03-16 2007-09-20 Switech Medical Ag Vorrichtung zur Erzeugung elektrischer Entladung
US20070255270A1 (en) 2006-04-27 2007-11-01 Medtronic Vascular, Inc. Intraluminal guidance system using bioelectric impedance
US7708779B2 (en) 2006-05-01 2010-05-04 Warsaw Orthopedic, Inc. Expandable intervertebral spacers and methods of use
US7976873B2 (en) 2006-05-10 2011-07-12 Medtronic Xomed, Inc. Extracellular polysaccharide solvating system for treatment of bacterial ear conditions
ATE482647T1 (de) 2006-05-16 2010-10-15 Wilson Cook Medical Inc Ballonmanschette
US20080086118A1 (en) 2006-05-17 2008-04-10 Applied Harmonics Corporation Apparatus and method for diode-pumped laser ablation of soft tissue
US8803027B2 (en) 2006-06-05 2014-08-12 Cymer, Llc Device and method to create a low divergence, high power laser beam for material processing applications
US20080097251A1 (en) 2006-06-15 2008-04-24 Eilaz Babaev Method and apparatus for treating vascular obstructions
DE102006046925A1 (de) * 2006-09-28 2008-04-03 Jenlab Gmbh Verfahren und Anordnung zur Laser-Endoskopie für die Mikrobearbeitung
US7942850B2 (en) 2006-10-13 2011-05-17 Endocross Ltd. Balloons and balloon catheter systems for treating vascular occlusions
US8108030B2 (en) 2006-10-20 2012-01-31 Board Of Regents, The University Of Texas System Method and apparatus to identify vulnerable plaques with thermal wave imaging of heated nanoparticles
KR100840771B1 (ko) 2006-11-02 2008-06-23 조성찬 압전 세라믹 소자를 이용한 충격파 생성 장치
US8246643B2 (en) 2006-11-07 2012-08-21 Flowcardia, Inc. Ultrasound catheter having improved distal end
US7896822B2 (en) 2006-11-30 2011-03-01 Scoseria Jose P Multiple lithotripter electrode
US8206349B2 (en) 2007-03-01 2012-06-26 Medtronic Xomed, Inc. Systems and methods for biofilm removal, including a biofilm removal endoscope for use therewith
US7848370B2 (en) 2007-01-26 2010-12-07 Telaris Inc. Electronically phase-locked laser systems
DE102007018841B4 (de) 2007-04-20 2017-07-20 MTS Medical UG (haftungsbeschränkt) Vorrichtung zur Erzeugung von Stosswellen, Verfahren zur Ermittlung des Verbrauchszustandes der Elektroden in einer Vorrichtung zum Erzeugung von Stosswellen und Verfahren zur Erzeugung von Stosswellen mittels einer Unterwasserfunkenentladung
US20090054881A1 (en) 2007-06-14 2009-02-26 Yosef Krespi Mammalian biofilm treatment processes and instruments
EP2166941A2 (en) 2007-07-09 2010-03-31 Sis-Medical Ag Method and system to detect neointima coverage of a stent
US7972299B2 (en) 2007-07-09 2011-07-05 Cook Medical Technologies Llc Balloon catheter with deflation mechanism
US9039728B2 (en) 2007-08-31 2015-05-26 BiO2 Medical, Inc. IVC filter catheter with imaging modality
EP2194903B1 (en) * 2007-09-06 2017-10-25 Alcon LenSx, Inc. Precise targeting of surgical photodisruption
DE102007046902A1 (de) 2007-09-28 2009-04-09 Hochschule Konstanz Technik, Wirtschaft Und Gestaltung Impulsspannungsgenerator sowie Stoßwellentherapievorrichtung mit einem Impulsspannungsgenerator
FR2922308B1 (fr) 2007-10-11 2012-03-16 Mauna Kea Technologies Dispositif d'imagerie modulaire, module pour ce dispositif et procede mis en oeuvre par ce dispositif
US8166825B2 (en) 2007-10-30 2012-05-01 Tea Time Partners, L.P. Method and apparatus for noise reduction in ultrasound detection
US9066742B2 (en) 2007-11-09 2015-06-30 The Spectranetics Corporation Intra-vascular device with pressure detection capabilities using pressure sensitive material
IL188067A (en) 2007-12-12 2011-12-29 Lithotech Medical Ltd Device for fragmenting and removing concretions from body ducts and cavities
US9462932B2 (en) 2008-01-24 2016-10-11 Boston Scientific Scimed, Inc. Structure for use as part of a medical device
DE102008011811B3 (de) * 2008-02-29 2009-10-15 Anton Dr. Kasenbacher Dentales Laserbearbeitungsgerät zur Bearbeitung von Zahnmaterial
WO2009121017A1 (en) 2008-03-27 2009-10-01 The Regents Of The University Of California Balloon catheter for reducing restenosis via irreversible electroporation
EP2274741B1 (en) 2008-04-14 2016-08-31 Avner Spector Shockwave medical therapy device with automatic adjustable voltage to stabilize pressure and corresponding adjustment method
US20100036294A1 (en) 2008-05-07 2010-02-11 Robert Mantell Radially-Firing Electrohydraulic Lithotripsy Probe
US20100152654A1 (en) 2008-06-02 2010-06-17 Loma Vista Medical, Inc. Inflatable medical devices
US8496652B2 (en) 2008-06-06 2013-07-30 Ethicon, Inc. Balloon catheter systems and methods for treating uterine disorders
US8192368B2 (en) 2008-06-09 2012-06-05 Gentera Holdings, Llc Pressure sensing catheter
US9072534B2 (en) 2008-06-13 2015-07-07 Shockwave Medical, Inc. Non-cavitation shockwave balloon catheter system
ES2671898T3 (es) 2008-06-13 2018-06-11 Shockwave Medical, Inc. Sistema de catéter con globo de ondas de choque
US10702293B2 (en) 2008-06-13 2020-07-07 Shockwave Medical, Inc. Two-stage method for treating calcified lesions within the wall of a blood vessel
US20130030431A1 (en) 2008-06-13 2013-01-31 Adams John M Shock wave balloon catheter system with off center shock wave generator
JP2011526529A (ja) 2008-07-02 2011-10-13 アンジオスライド リミテッド バルーンカテーテルシステム及びその使用方法
US20100016862A1 (en) 2008-07-16 2010-01-21 Daniel Hawkins Method of providing embolic protection and shockwave angioplasty therapy to a vessel
DE102008034702A1 (de) 2008-07-25 2010-01-28 Siemens Aktiengesellschaft Ultraschall-Stoßwellenkopf
EP2326264B1 (en) 2008-07-27 2017-11-15 Pi-R-Squared Ltd. Fracturing calcifications in heart valves
DE102008038214B4 (de) 2008-08-18 2013-12-05 Siemens Aktiengesellschaft Verfahren und Stoßwellenkopf zum Erzeugen von fokussierten Ultraschall-Stoßwellen
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US9119533B2 (en) 2008-10-07 2015-09-01 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
JP5646492B2 (ja) 2008-10-07 2014-12-24 エムシー10 インコーポレイテッドMc10,Inc. 伸縮可能な集積回路およびセンサアレイを有する装置
US8821486B2 (en) 2009-11-13 2014-09-02 Hermes Innovations, LLC Tissue ablation systems and methods
CN102209572B (zh) 2008-10-30 2016-04-20 维克特公司 抗破裂柔性不透射线导管气囊
US9180280B2 (en) 2008-11-04 2015-11-10 Shockwave Medical, Inc. Drug delivery shockwave balloon catheter system
US9044618B2 (en) 2008-11-05 2015-06-02 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
US9259270B2 (en) * 2008-11-07 2016-02-16 Joe Denton Brown Apparatus and method for detecting overheating during laser surgery
WO2010056745A1 (en) 2008-11-17 2010-05-20 Minnow Medical, Inc. Selective accumulation of energy with or without knowledge of tissue topography
DE202008016760U1 (de) 2008-12-18 2009-03-12 Switech Medical Ag Vorrichtung zur Erzeugung von Stoßwellen
US20100160903A1 (en) 2008-12-22 2010-06-24 Yosef Krespi Process and system for treating a vascular occlusion or other endoluminal structure
US20100168572A1 (en) 2008-12-30 2010-07-01 Sliwa John W Apparatus and Methods for Acoustic Monitoring of Ablation Procedures
US20100179632A1 (en) 2009-01-12 2010-07-15 Medtronic Vascular, Inc. Robotic Fenestration Device Having Impedance Measurement
DE202009001238U1 (de) 2009-02-02 2010-06-24 Storz Medical Ag Gerät zur Druckwellenbehandlung mit Parametereinstellung
US9131949B2 (en) 2009-03-31 2015-09-15 Guys And St. Thomas's Nhs Foundation Trust System and method for assessing lithotripsy
DE102009016184A1 (de) 2009-04-03 2010-10-14 Carl Zeiss Meditec Ag Verfahren und Vorrichtung zur nichtinvasiven Temperaturbestimmung an mit einer Behandlungsstrahlung behandeltem biologischen Gewebe
DE102009016102A1 (de) 2009-04-03 2010-10-14 Storz Medical Ag Verfahren zur Vorbereitung eines Geräts zur Behandlung des menschlichen oder tierischen Körpers mit mechanischen Druckwellen
US8644927B2 (en) 2009-04-21 2014-02-04 Incube Labs, Llc Apparatus and method for the detection and treatment of atrial fibrillation
EP2451422B1 (en) 2009-07-08 2016-10-12 Sanuwave, Inc. Usage of extracorporeal and intracorporeal pressure shock waves in medicine
US20150313732A1 (en) 2009-08-13 2015-11-05 Quadra Endovascular, Inc. Method and Device for Treating a Target Site in a Vascular Body Channel
WO2011041638A2 (en) 2009-10-02 2011-04-07 Cardiofocus, Inc. Cardiac ablation system with automatic safety shut-off feature
US9375223B2 (en) 2009-10-06 2016-06-28 Cardioprolific Inc. Methods and devices for endovascular therapy
US11039845B2 (en) 2009-10-06 2021-06-22 Cardioprolific Inc. Methods and devices for endovascular therapy
US20130345617A1 (en) 2009-10-06 2013-12-26 Michael P. Wallace Methods and devices for removal of tissue, blood clots and liquids from the patient
US20110082534A1 (en) 2009-10-06 2011-04-07 Wallace Michael P Ultrasound-enhanced stenosis therapy
US20110144502A1 (en) 2009-12-15 2011-06-16 Tea Time Partners, L.P. Imaging guidewire
US20110263921A1 (en) 2009-12-31 2011-10-27 Anthony Vrba Patterned Denervation Therapy for Innervated Renal Vasculature
EA027884B1 (ru) * 2009-12-31 2017-09-29 Лазер Абразив Технолоджис, Ллс Лазер с механизмами обратной связи для стоматологической хирургии
WO2011084863A2 (en) 2010-01-07 2011-07-14 Cheetah Omni, Llc Fiber lasers and mid-infrared light sources in methods and systems for selective biological tissue processing and spectroscopy
DE202010001176U1 (de) 2010-01-19 2011-05-26 Storz Medical Ag Medizinisches Druckwellengerät
BR112012017977A2 (pt) 2010-01-19 2016-05-03 Univ Texas aparelhos e sistemas para gerar ondas de choque de alta frequência, e métodos de uso.
WO2011094379A1 (en) 2010-01-28 2011-08-04 Cook Medical Technologies Llc Apparatus and method for destruction of vascular thrombus
JP5448885B2 (ja) 2010-01-28 2014-03-19 富士フイルム株式会社 医療機器及び内視鏡装置
US9743980B2 (en) 2010-02-24 2017-08-29 Safepass Vascular Ltd Method and system for assisting a wire guide to cross occluded ducts
CN103108601A (zh) 2010-02-26 2013-05-15 学校法人庆应义塾 利用光化学反应进行心肌组织的光动力学消融的导管
CN105147224B (zh) 2010-03-09 2018-11-02 智能医疗系统有限公司 球囊内窥镜及其制造和使用方法
US20130046293A1 (en) * 2010-03-09 2013-02-21 Keio University System for preventing blood charring at laser beam emitting site of laser catheter
US20120071867A1 (en) 2010-03-18 2012-03-22 Metalase, Inc. Diode laser systems and methods for endoscopic treatment of tissue
AU2011238925B2 (en) 2010-04-09 2016-06-16 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US20110257641A1 (en) * 2010-04-14 2011-10-20 Roger Hastings Phototherapy for renal denervation
EP2588013B1 (en) 2010-07-01 2016-05-04 Zimmer, Inc. Multi-locking external fixation clamp
DE202010009899U1 (de) 2010-07-06 2010-10-14 Zimmer Medizinsysteme Gmbh Stoßwellenapparatur zur Erzeugung von mechanischen Stoßwellen und Stoßwellengerät
EP2608897B1 (en) 2010-08-27 2023-08-02 SOCPRA Sciences et Génie s.e.c. Mechanical wave generator and method thereof
US9662677B2 (en) 2010-09-15 2017-05-30 Abbott Laboratories Drug-coated balloon with location-specific plasma treatment
WO2012052924A1 (en) 2010-10-18 2012-04-26 CardioSonic Ltd. Separation device for ultrasound element
US20120095371A1 (en) 2010-10-18 2012-04-19 CardioSonic Ltd. Ultrasound transducer and cooling thereof
WO2012061150A1 (en) 2010-10-25 2012-05-10 Medtronic Ardian Luxembourg S.a.r.I. Microwave catheter apparatuses, systems, and methods for renal neuromodulation
US20120143294A1 (en) 2010-10-26 2012-06-07 Medtronic Adrian Luxembourg S.a.r.l. Neuromodulation cryotherapeutic devices and associated systems and methods
US20120116289A1 (en) 2010-11-09 2012-05-10 Daniel Hawkins Shockwave valvuloplasty device with guidewire and debris basket
US20120232409A1 (en) 2010-12-15 2012-09-13 Stahmann Jeffrey E System and method for renal artery occlusion during renal denervation therapy
JP2014508580A (ja) 2011-01-19 2014-04-10 フラクティル ラボラトリーズ インコーポレイテッド 組織の治療のためのデバイスおよび方法
ES2759611T3 (es) 2011-02-01 2020-05-11 Channel Medsystems Inc Aparato para el tratamiento criogénico de una cavidad o luz del cuerpo
US20120203255A1 (en) 2011-02-04 2012-08-09 Daniel Hawkins High pressure balloon shockwave catheter and method
AR085279A1 (es) 2011-02-21 2013-09-18 Plexxikon Inc Formas solidas de {3-[5-(4-cloro-fenil)-1h-pirrolo[2,3-b]piridina-3-carbonil]-2,4-difluor-fenil}-amida del acido propano-1-sulfonico
CN103648575B (zh) 2011-02-25 2016-10-26 微排放器公司 加强的球囊导管
CN103764225B (zh) 2011-03-04 2017-06-09 彩虹医疗公司 通过施加能量对组织进行治疗和监测的仪器
WO2012145075A1 (en) 2011-04-22 2012-10-26 Topera, Inc. Flexible electrode assembly for insertion into body lumen or organ
US9709752B2 (en) 2011-05-19 2017-07-18 Konica Minolta, Inc. Optical connector plug, optical probe, and optical system
US20120296367A1 (en) 2011-05-20 2012-11-22 Boston Scientific Scimed, Inc. Balloon catheter with improved pushability
US10016579B2 (en) 2011-06-23 2018-07-10 W.L. Gore & Associates, Inc. Controllable inflation profile balloon cover apparatus
WO2013004236A1 (en) 2011-07-01 2013-01-10 Coloplast A/S A catheter with a balloon
GB201113066D0 (en) 2011-07-29 2011-09-14 Univ Bristol Optical device
US20130041355A1 (en) 2011-08-11 2013-02-14 Tammo Heeren Reducing Damage From A Dielectric Breakdown in Surgical Applications
US20130053792A1 (en) 2011-08-24 2013-02-28 Ablative Solutions, Inc. Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation
US20130053762A1 (en) 2011-08-25 2013-02-28 Michael Rontal Method and apparatus for cold plasma treatment of internal organs
US9808605B2 (en) 2011-10-06 2017-11-07 W. L. Gore & Associates, Inc. Controlled porosity devices for tissue treatments, methods of use, and methods of manufacture
CN102429701A (zh) 2011-11-01 2012-05-02 福州施可瑞光电科技有限公司 超声碎石方法及超声碎石钳
US8574247B2 (en) 2011-11-08 2013-11-05 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
WO2013119662A1 (en) 2012-02-06 2013-08-15 Cornell University Catheter based system and method for thrombus removal using time reversal acoustics
US9381039B2 (en) 2012-03-21 2016-07-05 Medtronic, Inc. Filling methods and apparatus for implanted medical therapy delivery devices
WO2013169807A1 (en) 2012-05-07 2013-11-14 Djt, Llc. Non-cavitation shockwave balloon catheter system
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
JP2015522324A (ja) 2012-06-08 2015-08-06 コーニンクレッカ フィリップス エヌ ヴェ 生理的特徴を基準化する分散されたセンシングデバイス
US9198825B2 (en) 2012-06-22 2015-12-01 Sanuwave, Inc. Increase electrode life in devices used for extracorporeal shockwave therapy (ESWT)
US9642673B2 (en) 2012-06-27 2017-05-09 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
EP2866669A4 (en) 2012-06-30 2016-04-20 Cibiem Inc ABLATION OF CAROTID BODY VIA DIRECTED ENERGY
DE102012106017A1 (de) 2012-07-05 2014-05-08 A.R.C. Laser Gmbh Applikator und Vorrichtung zur Zellbehandlung
WO2014022436A1 (en) 2012-07-30 2014-02-06 Fractyl Laboratories Inc. Electrical energy ablation systems, devices and methods for the treatment of tissue
US10328290B2 (en) 2012-08-03 2019-06-25 Muffin Incorporated Weeping balloon catheter with ultrasound element
WO2014022867A1 (en) 2012-08-03 2014-02-06 Alumend, Llc Endovascular multi-balloon cathethers with optical diffuser for treatment of vascular stenoses
EP2879597B1 (en) 2012-08-06 2016-09-21 Shockwave Medical, Inc. Shockwave catheter
AU2013300176B2 (en) 2012-08-06 2017-08-17 Shockwave Medical, Inc. Low profile electrodes for an angioplasty shock wave catheter
AU2013299562C1 (en) 2012-08-08 2017-11-30 Shockwave Medical, Inc. Shockwave valvuloplasty with multiple balloons
US9237984B2 (en) 2012-08-10 2016-01-19 Shockwave Medical, Inc. Shockwave nerve therapy system and method
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US20140052146A1 (en) 2012-08-17 2014-02-20 Chip Curtis Electrohydraulic Lithotripsy Probe and Electrical Source for an Electrohydraulic Lithotripsy Probe
US9138249B2 (en) 2012-08-17 2015-09-22 Shockwave Medical, Inc. Shock wave catheter system with arc preconditioning
US11253732B2 (en) 2012-08-22 2022-02-22 Energize Medical Llc Therapeutic energy systems
US9522012B2 (en) 2012-09-13 2016-12-20 Shockwave Medical, Inc. Shockwave catheter system with energy control
US9333000B2 (en) 2012-09-13 2016-05-10 Shockwave Medical, Inc. Shockwave catheter system with energy control
US9801721B2 (en) 2012-10-12 2017-10-31 St. Jude Medical, Cardiology Division, Inc. Sizing device and method of positioning a prosthetic heart valve
US8992817B2 (en) 2012-12-10 2015-03-31 Abbott Cardiovascular Systems, Inc. Process of making a medical balloon
US20140180126A1 (en) 2012-12-20 2014-06-26 Volcano Corporation Catheter with balloon and imaging
US20140180069A1 (en) 2012-12-21 2014-06-26 Volcano Corporation Intraluminal imaging system
EP2934321A4 (en) 2012-12-21 2016-07-20 Paul Hoseit IMAGING CATHETER FOR IMAGING FROM THE INSIDE OF A BALLOON
US10245051B2 (en) 2012-12-28 2019-04-02 Bard Peripheral Vascular, Inc. Drug delivery via mechanical vibration balloon
US20140188094A1 (en) 2012-12-31 2014-07-03 Omni Medsci, Inc. Focused near-infrared lasers for non-invasive varicose veins and other thermal coagulation or occlusion procedures
JP5819387B2 (ja) 2013-01-09 2015-11-24 富士フイルム株式会社 光音響画像生成装置及び挿入物
DE102013201928A1 (de) 2013-02-06 2014-08-07 Richard Wolf Gmbh Schallwandlertechnik
US20140228829A1 (en) * 2013-02-13 2014-08-14 St. Jude Medical, Cardiology Division, Inc. Laser-based devices and methods for renal denervation
CN107432762B (zh) 2013-03-08 2021-04-13 林弗洛公司 提供或维持通过身体通道的流体流的方法和系统
US10835767B2 (en) 2013-03-08 2020-11-17 Board Of Regents, The University Of Texas System Rapid pulse electrohydraulic (EH) shockwave generator apparatus and methods for medical and cosmetic treatments
US10076384B2 (en) 2013-03-08 2018-09-18 Symple Surgical, Inc. Balloon catheter apparatus with microwave emitter
WO2014140715A2 (en) 2013-03-11 2014-09-18 Northgate Technologies Inc. Unfocused electrohydraulic lithotripter
US20160184022A1 (en) 2013-03-13 2016-06-30 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
US9320530B2 (en) 2013-03-13 2016-04-26 The Spectranetics Corporation Assisted cutting balloon
US10842567B2 (en) * 2013-03-13 2020-11-24 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
US10201387B2 (en) 2013-03-13 2019-02-12 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
EP2968984B1 (en) 2013-03-14 2016-08-17 ReCor Medical, Inc. Ultrasound-based neuromodulation system
CN105283152A (zh) 2013-03-15 2016-01-27 威廉·L·亨特 支架监控组件及其使用方法
US20140357997A1 (en) 2013-05-30 2014-12-04 Volcano Corporation Intraluminal lead extraction with imaging
JP6436402B6 (ja) 2013-06-27 2019-01-30 セラノーヴァ,エルエルシー 感知フォーリー・カテーテル
WO2015006309A1 (en) 2013-07-10 2015-01-15 Christoph Scharf Devices and methods for delivery of therapeutic energy
US9867629B2 (en) 2013-07-31 2018-01-16 Shockwave Medical, Inc. Angioplasty balloon
JP2015073197A (ja) 2013-10-02 2015-04-16 ソニー株式会社 送信装置及び送信方法、受信装置及び受信方法、並びにコンピューター・プログラム
EP3057488B1 (en) 2013-10-14 2018-05-16 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
EP3058888B1 (en) 2013-10-15 2019-06-12 Nipro Corporation Ablation system and ablation device
GB2519302B (en) 2013-10-15 2016-04-20 Gloucestershire Hospitals Nhs Foundation Trust Apparatus for artificial cardiac stimulation and method of using the same
CN110420057B (zh) 2013-10-15 2022-10-14 尼普洛株式会社 消融系统及消融设备
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US10390881B2 (en) 2013-10-25 2019-08-27 Denervx LLC Cooled microwave denervation catheter with insertion feature
JP6517832B2 (ja) 2013-11-18 2019-05-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 誘導血栓分散カテーテル
WO2015097255A2 (en) 2013-12-23 2015-07-02 Eric Chevalier A versatile vascular access device
WO2015099786A1 (en) 2013-12-27 2015-07-02 Empire Technology Development Llc Devices and techniques for ablative treatment
US9555267B2 (en) 2014-02-17 2017-01-31 Moshe Ein-Gal Direct contact shockwave transducer
EP3073907B1 (en) 2014-02-25 2020-06-17 St. Jude Medical, Cardiology Division, Inc. System for local electrophysiological characterization of cardiac substrate using multi-electrode catheters
US10914902B2 (en) 2014-02-26 2021-02-09 TeraDiode, Inc. Methods for altering properties of a radiation beam
US20170049463A1 (en) 2014-02-26 2017-02-23 Koninklijke Philips N.V. System for performing intraluminal histotripsy and method of operation thereof
EP3116408B1 (en) 2014-03-12 2018-12-19 Cibiem, Inc. Ultrasound ablation catheter
JP6141234B2 (ja) 2014-03-26 2017-06-07 フロンティア・ラボ株式会社 気相成分分析装置
WO2015157347A1 (en) 2014-04-07 2015-10-15 Massachusetts Institute Of Technology Intravascular device
US9730715B2 (en) 2014-05-08 2017-08-15 Shockwave Medical, Inc. Shock wave guide wire
EP3915503A3 (en) 2014-05-18 2022-03-16 Eximo Medical Ltd. System for tissue ablation using pulsed laser
CA2893494C (en) 2014-05-28 2022-11-01 Institut National D'optique Laser-directed microcavitation
US20150359432A1 (en) 2014-06-11 2015-12-17 Sympara Medical, Inc. Methods and devices for detecting nerve activity
JP6543628B2 (ja) 2014-07-16 2019-07-10 テルモ株式会社 治療デバイス
WO2017004432A1 (en) 2015-07-01 2017-01-05 Fractyl Laboratories, Inc. Systems, devices and methods for performing medical procedures in the intestine
US9784922B2 (en) 2014-07-18 2017-10-10 Biosense Webster (Israel) Ltd Electro-optical connector with hot electrical contact protection
WO2016014999A1 (en) 2014-07-24 2016-01-28 John Schwartz Lighted endoscopy for identifying anatomical locations
WO2016028583A1 (en) 2014-08-18 2016-02-25 St. Jude Medical, Cardiology Division, Inc. Sensors for prosthetic heart devices
US11246659B2 (en) 2014-08-25 2022-02-15 The Spectranetics Corporation Liquid laser-induced pressure wave emitting catheter sheath
US20170119470A1 (en) 2014-08-31 2017-05-04 Lithotech Medical Ltd. Device and method for fragmenting organo-mineral concretions
JP6814731B2 (ja) 2014-09-12 2021-01-20 リサーチ ディベロップメント ファウンデーション 組織を撮像および操作するためのシステムおよび方法
US20160135828A1 (en) 2014-11-14 2016-05-19 Shockwave Medical, Inc. Shock wave valvuloplasty device and methods
AU2015353464B2 (en) * 2014-11-25 2020-07-16 460Medical, Inc. Visualization catheters
AU2015358385B2 (en) 2014-12-03 2020-09-03 Medtronic Ireland Manufacturing Unlimited Company Systems and methods for modulating nerves or other tissue
US10842515B2 (en) 2014-12-03 2020-11-24 C.R. Bard, Inc. Electro-hydraulically actuated lithotripters and related methods
US10646274B2 (en) 2014-12-30 2020-05-12 Regents Of The University Of Minnesota Laser catheter with use of reflected light and force indication to determine material type in vascular system
US10898213B2 (en) 2014-12-30 2021-01-26 The Spectranetics Corporation Electrically-induced pressure wave emitting catheter sheath
US11058492B2 (en) 2014-12-30 2021-07-13 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
WO2016109736A1 (en) 2014-12-30 2016-07-07 The Spectranetics Corporation Laser-induced fluid filled balloon catheter
CN107614052B (zh) 2015-03-26 2021-06-15 文斯卡医疗有限公司 超声波尿路膀胱药物输送
US20180092763A1 (en) 2015-03-30 2018-04-05 Enopace Biomedical Ltd. Antenna for use with an intravascular device
MA41958A (fr) 2015-04-24 2018-02-28 Les Solutions Medicales Soundbite Inc Procédé et système pour générer des impulsions mécaniques
US10194994B2 (en) 2015-05-12 2019-02-05 St. Jude Medical, Cardiology Division, Inc. Systems and methods for orientation independent sensing
WO2017087195A1 (en) 2015-11-18 2017-05-26 Shockwave Medical, Inc. Shock wave electrodes
IL242815A0 (en) 2015-11-26 2016-04-21 Amram Asher Catheterization device
US9894756B2 (en) 2015-12-08 2018-02-13 Kardium Inc. Circuits for flexible structures
KR20180100606A (ko) 2016-01-04 2018-09-11 알시온 라이프사이언스 인크. 뇌졸중을 치료하기 위한 방법들 및 장치들
US10368884B2 (en) 2016-01-11 2019-08-06 Boston Scientific Scimed, Inc. Irrigation devices, methods, and systems
EP4155716A1 (en) 2016-01-26 2023-03-29 Stryker European Operations Limited Image sensor assembly
JP7034427B2 (ja) 2016-04-11 2022-03-14 センサム 病変部の検知された特性に基づいて治療法の推奨を行う医療装置
US10226265B2 (en) 2016-04-25 2019-03-12 Shockwave Medical, Inc. Shock wave device with polarity switching
US11278352B2 (en) 2016-05-05 2022-03-22 Optical Integrity, Inc. Protective caps of tips for surgical laser fibers
WO2017194557A1 (en) 2016-05-13 2017-11-16 Cryotherapeutics Gmbh Balloon catheter
EP4134027A1 (en) 2016-05-19 2023-02-15 Santa Anna Tech LLC Ablation catheter with integrated cooling
JP7370250B2 (ja) 2016-06-06 2023-10-27 ニューロ, ベー.フェー. 遠距離双極アブレーションのためのデバイスおよび方法
WO2018022593A1 (en) 2016-07-25 2018-02-01 The Spectranetics Corporation Laser-induced pressure wave emitting catheter sheath
EP3487434B1 (en) 2016-07-25 2021-09-08 The Spectranetics Corporation Liquid laser-induced pressure wave emitting catheter sheath
US10405923B2 (en) 2016-08-12 2019-09-10 Boston Scientific Scimed, Inc. Systems, devices, and related methods for laser lithotripsy
US20180085174A1 (en) 2016-09-23 2018-03-29 Acclarent, Inc. Suction device for use in image-guided sinus medical procedure
US10120196B2 (en) 2016-09-30 2018-11-06 National Taiwan University Of Science And Technology Optical device
CN109788965B (zh) 2016-10-06 2022-07-15 冲击波医疗公司 使用冲击波施加器进行的主动脉小叶修复
EP3528732B1 (en) 2016-10-20 2023-06-21 Retrovascular, Inc. Device for enhanced composition delivery
CN110167466B (zh) 2016-11-04 2023-07-04 莱斯桑柏特医疗解决方案股份有限公司 用于输送机械波通过球囊导管的装置
EP3318204B1 (en) 2016-11-08 2020-02-12 Enraf Nonius B.V. Shockwave generator
US10284732B2 (en) 2016-11-30 2019-05-07 Microsoft Technology Licensing, Llc Masking latency in USB photo capture
US10357264B2 (en) 2016-12-06 2019-07-23 Shockwave Medical, Inc. Shock wave balloon catheter with insertable electrodes
WO2018108637A1 (en) 2016-12-12 2018-06-21 Koninklijke Philips N.V. Light based tissue treatment device
US10323924B2 (en) 2017-01-19 2019-06-18 Xiaoke Wan Step-scanning sensing beam for imaging interferometer
CA3050858A1 (en) 2017-01-24 2018-08-02 Ekos Corporation Method for the treatment of thromboembolism
WO2018175322A1 (en) 2017-03-20 2018-09-27 Precise Light Surgical, Inc. Soft tissue selective ablation surgical systems
US20200093472A1 (en) 2017-03-24 2020-03-26 Robert J Cottone Systems and methods for tissue displacement
EP3600181A4 (en) 2017-03-31 2020-12-16 Boston Scientific Scimed, Inc. CRYOGENIC BALLOON PRESSURE SENSOR ARRANGEMENT
US10470748B2 (en) 2017-04-03 2019-11-12 C. R. Bard, Inc. Ultrasonic endovascular catheter with expandable portion
WO2018191013A1 (en) 2017-04-11 2018-10-18 Cryterion Medical, Inc. Pressure control assembly for cryogenic balloon catheter system
US10441300B2 (en) 2017-04-19 2019-10-15 Shockwave Medical, Inc. Drug delivery shock wave balloon catheter system
EP3612110A1 (en) 2017-04-21 2020-02-26 Boston Scientific Scimed Inc. Lithotripsy angioplasty devices and methods
WO2018194894A1 (en) 2017-04-21 2018-10-25 Boston Scientific Scimed, Inc. Lithotripsy angioplasty devices and methods
US10856893B2 (en) 2017-04-21 2020-12-08 Boston Scientific Scimed, Inc. Lithotripsy angioplasty devices and methods
US11020135B1 (en) 2017-04-25 2021-06-01 Shockwave Medical, Inc. Shock wave device for treating vascular plaques
US10965093B2 (en) * 2017-05-05 2021-03-30 Institut National D'optique Light modulation for improved photoacoustic feedback on light-induced treatments and procedures
US10966737B2 (en) 2017-06-19 2021-04-06 Shockwave Medical, Inc. Device and method for generating forward directed shock waves
EP3658050B1 (en) 2017-07-25 2023-09-06 Affera, Inc. Ablation catheters
NL2019807B1 (en) 2017-10-26 2019-05-06 Boston Scient Scimed Inc Shockwave generating device
US11350954B2 (en) 2017-07-28 2022-06-07 Philips Image Guided Therapy Corporation Intravascular ultrasound (IVUS) and flow guided embolism therapy devices systems and methods
CN109381780B (zh) 2017-08-02 2024-01-26 杭州唯强医疗科技有限公司 药物涂层球囊导管
WO2019034778A1 (en) 2017-08-17 2019-02-21 Koninklijke Philips N.V. TEMPORARY BALLOON OCCLUSION DEVICES, SYSTEMS AND METHODS FOR PREVENTING FLOW THROUGH VASCULAR PERFORATION
US10333269B2 (en) 2017-09-27 2019-06-25 Apple Inc. Controlling output power of a laser amplifier with variable pulse rate
US11077287B2 (en) 2017-10-02 2021-08-03 Anlvr, Llc Non-occluding balloon for cardiovascular drug delivery
US11071557B2 (en) 2017-10-19 2021-07-27 Medtronic Vascular, Inc. Catheter for creating pulse wave within vasculature
US11737778B2 (en) 2017-11-15 2023-08-29 Pavel V. Efremkin Devices and methods for intrabody surgery
US10709462B2 (en) 2017-11-17 2020-07-14 Shockwave Medical, Inc. Low profile electrodes for a shock wave catheter
US20190175111A1 (en) 2017-12-04 2019-06-13 4C Medical Technologies, Inc. Devices and methods for atrial mapping, sensing and treating cardiac arrhythmia
RU2770265C2 (ru) 2017-12-12 2022-04-15 Алькон Инк. Термически устойчивый лазерный зонд в сборе
JP2021505314A (ja) 2017-12-12 2021-02-18 アルコン インコーポレイティド 多重入力結合照光式マルチスポットレーザプローブ
US11213661B2 (en) 2018-01-05 2022-01-04 Cook Medical Technologies Llc Expandable medical device and method of use thereof
US11006996B2 (en) 2018-01-16 2021-05-18 Daniel Ezra Walzman Torus balloon with energy emitters for intravascular lithotripsy
US10758735B2 (en) 2018-02-01 2020-09-01 Pacesetter, Inc. Implantable medical device having an electrode and antenna provided with a ceramic header
US11103262B2 (en) 2018-03-14 2021-08-31 Boston Scientific Scimed, Inc. Balloon-based intravascular ultrasound system for treatment of vascular lesions
US20190282250A1 (en) 2018-03-14 2019-09-19 Boston Scientific Scimed, Inc. Treatment of vascular lesions
WO2019200201A1 (en) 2018-04-12 2019-10-17 The Regents Of The University Of Michigan System for effecting and controlling oscillatory pressure within balloon catheters for fatigue fracture of calculi
US11134879B2 (en) 2018-04-26 2021-10-05 St. Jude Medical, Cardiology Division, Inc. System and method for mapping arrhythmic driver sites
WO2019215869A1 (ja) 2018-05-10 2019-11-14 オリンパス株式会社 アブレーション処置具の制御装置、アブレーションシステムおよび回腸粘膜のアブレーション処置方法
US11395700B2 (en) 2018-05-16 2022-07-26 Optical Integrity, Inc. Fiber tip protective structure with scale indicator
EP3796948A4 (en) 2018-05-22 2022-03-02 Interface Biologics Inc. COMPOSITIONS AND METHODS FOR ADMINISTRATION OF MEDICATIONS TO A VESSEL WALL
US11123135B2 (en) 2018-05-30 2021-09-21 Biosense Webster (Israel) Ltd. Enhanced large-diameter balloon catheter
CN113015494A (zh) 2018-06-01 2021-06-22 圣安娜技术有限公司 多级蒸汽消融治疗方法以及蒸汽产生和输送系统
WO2019245746A1 (en) 2018-06-21 2019-12-26 Shockwave Medical, Inc. System for treating occlusions in body lumens
US11457816B2 (en) * 2018-06-22 2022-10-04 Avava, Inc. Feedback detection for a treatment device
US20200046429A1 (en) 2018-08-09 2020-02-13 Koninklijke Philips N.V. Treatment mode selection systems and laser catheter systems including same
US20200061931A1 (en) 2018-08-21 2020-02-27 Optical Integrity, Inc. Method of welding a protective structure to an optical fiber tip
CN109223100A (zh) 2018-09-03 2019-01-18 沛嘉医疗科技(苏州)有限公司 一种用于治疗心脏瓣膜和血管钙化的装置及其使用方法
CN113015495A (zh) 2018-09-11 2021-06-22 阿卡赫特有限公司 用于治疗心脏疾病的加热蒸汽消融系统和方法
US11090467B2 (en) 2018-10-02 2021-08-17 Alucent Biomedical, Inc. Apparatus and methods for scaffolding
US11602619B2 (en) 2018-10-05 2023-03-14 Biosense Webster (Israel) Ltd. Coupling assembly for variable diameter surgical instrument
US20200107960A1 (en) 2018-10-05 2020-04-09 Alcon Inc. Occlusion sensing in ophthalmic laser probes
CA3112353A1 (en) 2018-10-09 2020-04-16 Limflow Gmbh Devices and methods for catheter alignment
WO2020086361A1 (en) 2018-10-24 2020-04-30 Boston Scientific Scimed, Inc. Photoacoustic pressure wave generation for intravascular calcification disruption
US11266817B2 (en) 2018-10-25 2022-03-08 Medtronic Vascular, Inc. Cavitation catheter
US11357958B2 (en) 2018-10-25 2022-06-14 Medtronic Vascular, Inc. Devices and techniques for cardiovascular intervention
US20220000509A1 (en) 2018-10-26 2022-01-06 Applaud Medical, Inc. Ultrasound Device for Use with Synthetic Cavitation Nuclei
US20210378744A1 (en) 2018-11-02 2021-12-09 Med-Innov Sas Devices for treating calcified heart valves
FR3091409B1 (fr) 2018-12-31 2020-12-25 Adm28 S Ar L Dispositif de décharge électrique impulsionnelle
IT201900001223A1 (it) 2019-01-28 2020-07-28 I Vasc Srl Manipolo di catetere, catetere e metodo
US10797684B1 (en) 2019-05-09 2020-10-06 Government Of The United States Of America, As Represented By The Secretary Of Commerce Superconducting waveform synthesizer
CA3142332A1 (en) 2019-06-18 2020-12-24 C.R. Bard, Inc. Ultrasonic system and method having improved occlusion engagement during crossing and atherectomy procedures
CA3144246C (en) 2019-06-19 2024-03-05 Boston Scientific Scimed, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
WO2020256898A1 (en) 2019-06-19 2020-12-24 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US11517713B2 (en) 2019-06-26 2022-12-06 Boston Scientific Scimed, Inc. Light guide protection structures for plasma system to disrupt vascular lesions
CN110638501A (zh) 2019-09-10 2020-01-03 丁·奥利弗 一种用于心血管碎石的超声波球囊导管系统
CN114727828A (zh) 2019-09-24 2022-07-08 冲击波医疗公司 用于治疗体腔血栓的系统
CN114760940A (zh) 2019-09-24 2022-07-15 冲击波医疗公司 病灶穿过式冲击波导管
EP4295788A3 (en) 2019-09-24 2024-03-06 Shockwave Medical, Inc. Low profile electrodes for a shock wave catheter
AU2020357862A1 (en) 2019-10-02 2022-03-17 Blaze Bioscience, Inc. Systems and methods for vascular and structural imaging
US11583339B2 (en) 2019-10-31 2023-02-21 Bolt Medical, Inc. Asymmetrical balloon for intravascular lithotripsy device and method
US20210137598A1 (en) 2019-11-13 2021-05-13 Bolt Medical, Inc. Dynamic lithoplasty device with movable energy guide
US20210153939A1 (en) 2019-11-22 2021-05-27 Bolt Medical, Inc. Energy manifold for directing and concentrating energy within a lithoplasty device
US11395668B2 (en) 2019-12-12 2022-07-26 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
US20210186613A1 (en) 2019-12-18 2021-06-24 Bolt Medical, Inc. Multiplexer for laser-driven intravascular lithotripsy device
US20210369348A1 (en) 2019-12-18 2021-12-02 Bolt Medical, Inc. Optical valve multiplexer for laser-driven pressure wave device
US20210220052A1 (en) 2020-01-22 2021-07-22 Bolt Medical, Inc. Lithoplasty device with advancing energy wavefront
US20210244473A1 (en) 2020-02-10 2021-08-12 Bolt Medical, Inc. System and method for pressure monitoring within a catheter system
US20210267685A1 (en) 2020-02-27 2021-09-02 Bolt Medical, Inc. Fluid recirculation system for intravascular lithotripsy device
US11672599B2 (en) 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
US20210275249A1 (en) 2020-03-09 2021-09-09 Boston Scientific Scimed, Inc. Laser pulse shaping to enhance conversion efficiency and protect fiber optic delivery system for disruption of vascular calcium
US20210290286A1 (en) 2020-03-18 2021-09-23 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
US20210353359A1 (en) 2020-05-12 2021-11-18 Bolt Medical, Inc. Active alignment system and method for optimizing optical coupling of multiplexer for laser-driven intravascular lithotripsy device
US20210378743A1 (en) 2020-06-03 2021-12-09 Boston Scientific Scimed, Inc. System and method for maintaining balloon integrity within intravascular lithotripsy device with plasma generator
US20210386479A1 (en) 2020-06-15 2021-12-16 Daniel Frank Massimini Spectroscopic tissue identification for balloon intravascular lithotripsy guidance
US11896249B2 (en) 2020-07-02 2024-02-13 Gyrus Acmi, Inc. Lithotripsy system having a drill and lateral emitter
DE102020117713A1 (de) 2020-07-06 2022-01-13 Karl Storz Se & Co. Kg Lithotripsievorrichtung und Verfahren zum Betrieb einer Lithotripsievorrichtung
WO2022007490A1 (zh) 2020-07-06 2022-01-13 上海鑫律通生命科技有限公司 采用脉冲电场消融技术治疗心律失常的系统
US20220008130A1 (en) 2020-07-09 2022-01-13 Boston Scientific Scimed, Inc. Acoustic tissue identification for balloon intravascular lithotripsy guidance
US20220071704A1 (en) 2020-09-09 2022-03-10 Bolt Medical, Inc. Valvuloplasty treatment system and method
US20220183738A1 (en) 2020-12-11 2022-06-16 Bolt Medical, Inc. Catheter system for valvuloplasty procedure
WO2022125525A1 (en) 2020-12-11 2022-06-16 Bolt Medical, Inc. Catheter system for valvuloplasty procedure
CN113951972A (zh) 2020-12-16 2022-01-21 深圳市赛禾医疗技术有限公司 一种压力波球囊导管
CN113951973A (zh) 2020-12-16 2022-01-21 深圳市赛禾医疗技术有限公司 一种压力波球囊导管
CN215384399U (zh) 2021-01-06 2022-01-04 苏州中荟医疗科技有限公司 用于心血管狭窄的冲击波发生装置
EP4277548A1 (en) 2021-01-12 2023-11-22 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
WO2022173719A1 (en) 2021-02-10 2022-08-18 Bolt Medical, Inc. Optical assemblies to improve energy coupling to pressure wave generator of an intravascular lithotripsy device
US20220249165A1 (en) 2021-02-10 2022-08-11 Bolt Medical, Inc. Optical assemblies to improve energy coupling to pressure wave generator of an intravascular lithotripsy device
WO2022187058A1 (en) 2021-03-01 2022-09-09 Bolt Medical, Inc. Valvuloplasty treatment assembly and method using directed bubble energy
US20220273324A1 (en) 2021-03-01 2022-09-01 Bolt Medical, Inc. Valvuloplasty treatment assembly and method using directed bubble energy
CN215651484U (zh) 2021-03-24 2022-01-28 上海微创旋律医疗科技有限公司 电极球囊导管及高压发生处理装置
WO2022216488A1 (en) 2021-04-06 2022-10-13 Bolt Medical, Inc. Intravascular lithotripsy balloon
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
WO2022240674A1 (en) 2021-05-10 2022-11-17 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
CN215651393U (zh) 2021-05-21 2022-01-28 上海微创心通医疗科技有限公司 一种医用导管及医用装置
CN215386905U (zh) 2021-06-04 2022-01-04 乐普(北京)医疗器械股份有限公司 一种冲击波辅助药物灌注球囊导管及医疗设备
WO2022260932A1 (en) 2021-06-07 2022-12-15 Bolt Medical, Inc. Active alignment system for laser optical coupling
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
CN215458401U (zh) 2021-06-23 2022-01-11 苏州中荟医疗科技有限公司 一种用于心血管狭窄病变的冲击波发生装置
CN215458400U (zh) 2021-06-23 2022-01-11 苏州中荟医疗科技有限公司 一种冲击波发生系统
CN215653328U (zh) 2021-06-30 2022-01-28 苏州中荟医疗科技有限公司 用于心血管狭窄病变的冲击波发生装置
CN215537694U (zh) 2021-07-07 2022-01-18 苏州中荟医疗科技有限公司 一种震波导管系统
CN215606068U (zh) 2021-07-30 2022-01-25 苏州中荟医疗科技有限公司 一种冲击波发生导管
CN215651394U (zh) 2021-08-13 2022-01-28 苏州中荟医疗科技有限公司 一种导管及冲击波发生系统
CN215584286U (zh) 2021-08-13 2022-01-21 苏州中荟医疗科技有限公司 一种用于治疗闭塞性病变的装置
CN215534803U (zh) 2021-08-24 2022-01-18 江苏朴芃医疗科技有限公司 一种用于血管内钙化斑块治疗的支架系统
CN215505065U (zh) 2021-08-25 2022-01-14 苏州中荟医疗科技有限公司 一种球囊导管
CN113974765B (zh) 2021-10-22 2022-09-06 北京荷清和创医疗科技有限公司 介入式除栓装置及促溶栓模块
CN113974826A (zh) 2021-10-29 2022-01-28 深圳微量医疗科技有限公司 一种高适应性介入导管
CN113877044A (zh) 2021-11-03 2022-01-04 上海微创旋律医疗科技有限公司 医疗装置
CN113907838B (zh) 2021-11-18 2023-03-21 郑州大学第一附属医院 一种泌尿外科结石粉碎吸取设备

Also Published As

Publication number Publication date
WO2021188233A1 (en) 2021-09-23
CN115334990A (zh) 2022-11-11
EP4120945A1 (en) 2023-01-25
US11903642B2 (en) 2024-02-20
US20210290305A1 (en) 2021-09-23
US20210290286A1 (en) 2021-09-23
CA3174905A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
US11903642B2 (en) Optical analyzer assembly and method for intravascular lithotripsy device
US20210244473A1 (en) System and method for pressure monitoring within a catheter system
US11648057B2 (en) Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11672599B2 (en) Acoustic performance monitoring system and method within intravascular lithotripsy device
US20220008130A1 (en) Acoustic tissue identification for balloon intravascular lithotripsy guidance
US20210386479A1 (en) Spectroscopic tissue identification for balloon intravascular lithotripsy guidance
US11583339B2 (en) Asymmetrical balloon for intravascular lithotripsy device and method
US20230255688A1 (en) Electrical analyzer assembly for intravascular lithotripsy device
US20210353359A1 (en) Active alignment system and method for optimizing optical coupling of multiplexer for laser-driven intravascular lithotripsy device
WO2022240674A1 (en) Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11806075B2 (en) Active alignment system and method for laser optical coupling

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240207