JP2023137874A - 免制振複合システム - Google Patents

免制振複合システム Download PDF

Info

Publication number
JP2023137874A
JP2023137874A JP2022044292A JP2022044292A JP2023137874A JP 2023137874 A JP2023137874 A JP 2023137874A JP 2022044292 A JP2022044292 A JP 2022044292A JP 2022044292 A JP2022044292 A JP 2022044292A JP 2023137874 A JP2023137874 A JP 2023137874A
Authority
JP
Japan
Prior art keywords
damping device
tmd
vibration
sliding bearing
vibration damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022044292A
Other languages
English (en)
Inventor
銘崇 劉
ming cong Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2022044292A priority Critical patent/JP2023137874A/ja
Publication of JP2023137874A publication Critical patent/JP2023137874A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】地震時に上部構造体及び吊り構造体の加速度を共に低減することができる免制振複合システムを提供する。【解決手段】免制振複合システム2は、上部構造体17と上部構造体17に吊り下げられた吊り構造体19と備える建物1に設置される免制振複合システムであって、上部構造体17の最上部17uに設けられ、TMDとして機能する上側制振装置20Aと、上部構造体17の下部を支持する滑り支承30と、吊り構造体19の最下部19dに設けられ、TMDとして機能する下側制振装置20Bと、を備える。【選択図】図1

Description

本発明は、免制振複合システムに関するものである。
従来から、すべり支承のすべり面を傾斜面とした傾斜すべり支承が知られている。直角に交わる2本の案内レール(鋼材製の上部案内部及び下部案内部)と、それらを連結しつつ摩擦面をスライドする摺動子と、を備えている。摺動子の上下面には傾斜面に当接する摩擦材が設けられ、摺動子が摩擦面を摺動する際に発生する摩擦抵抗力を減衰力とし、構造物の自重が傾斜した摩擦面に作用することで傾斜復元力を得ている。
また、摩擦材の摩擦係数μと傾斜角度θとの関係をtanθ=(0.1~0.4)μ程度とすれば残留変位をほぼなくせることが加振実験で確認されており、すでに自動ラック倉庫の免震化に実施案件展開されている(下記の特許文献1参照)。
しかしながら、曲げ変形が卓越している高くて柔らかい構造に傾斜滑り支承を適用した場合、高次モードの影響で構造の上端部は加速度が大きくなることがある。この課題に対して、傾斜滑り免震とTMDを併用する技術が提案されている(下記の特許文献1参照)。
特許第5850231号公報 特許第6804738号公報
しかしながら、例えば、エレベーター等の吊り構造を有する構造では、上部構造体と吊り構造体の周期が同じではなく、別々動きが生じるため、傾斜滑り支承と上部TMDの併用による上部構造体の頂部の加速度低減の効果が悪くなる可能性がある。
そこで、本発明は、上記事情に鑑みてなされたものであり、地震時に上部構造体及び吊り構造体の加速度を共に低減することができる免制振複合システムを提供する。
上記目的を達成するために、本発明は以下の手段を採用している。
すなわち、本発明に係る免制振複合システムは、上部構造体と前記上部構造体に吊り下げられた吊り構造体と備える建物に設置される免制振複合システムであって、前記上部構造体の最上部に設けられ、TMDとして機能する上側制振装置と、前記上部構造体の下部を支持する滑り支承と、前記吊り構造体の最下部に設けられ、TMDとして機能する下側制振装置と、を備える。
このように構成された免制振複合システムでは、上部構造体の最上部にTMDとして機能する上側制振装置を設けて、吊り構造体の最下部にTMDとして機能する下側制振装置を設けている。上部構造体の下部を支持する滑り支承は固有周期をもたないため、滑り支承の剛性に影響されることなくTMD機構の同調周期は非免震時の(免震層を固定した)構造物の1次周期とすることができ、TMDの諸元を決定しやすくなる。入力地震波の特性による影響を受けにくくなり、地震波と共振を生じることもなくなる。地震時に、上部構造体のような構造重心位置以上の場所の加速度及び吊り構造体のような重心位置以下の場所の加速度を共に低減することができる。
また、本発明に係る免制振複合システムでは、前記上側制振装置の質量は、前記上部構造体の有効質量の7%~9%であってもよい。
このように構成された免制振複合システムでは、上部構造体及び吊り構造体の加速度を確実に低減することができる。
また、本発明に係る免制振複合システムでは、前記下側制振装置の質量は、前記吊り構造体の有効質量の10%~20%であってもよい。
このように構成された免制振複合システムでは、上部構造体及び吊り構造体の加速度を確実に低減することができる。
本発明に係る免制振複合システムによれば、地震時に上部構造体及び吊り構造体の加速度を共に低減することができる。
本発明の一実施形態に係る免制振複合システムを示す模式的な図である。 本発明の一実施形態の制震装置を説明する模式図である。 1次周期と有効質量の算出法を説明する図である。 本発明の一実施形態の(a)滑り支承の摺動子の分解斜視図であり、(b)滑り支承の分解斜視図である。 本発明の一実施形態の滑り支承の(a)平面図であり、(b)(a)のb-b線断面図であり、(b)(a)のc-c線断面図である。 本発明の一実施形態の滑り支承の常時の状態を示す図である。 本発明の一実施形態の滑り支承の地震時時の状態を示す図である。 解析モデルを示す図である。 解析用地震波の波形を示す図であり、(a)エルセントロ、(b)タフト、(c)八戸を示す。 解析結果であり、上部構造体最上部における加速度を示し、(a)エルセントロ、(b)タフト、(c)八戸を示す。 解析結果であり、吊り構造体最下部における加速度を示し、(a)エルセントロ、(b)タフト、(c)八戸を示す。 解析結果であり、免震変位を示し、(a)エルセントロ、(b)タフト、(c)八戸を示す。
本発明の一実施形態に係る免制振複合システムについて、図面を用いて説明する。
図1は、本発明の一実施形態に係る免制振複合システムを示す模式的な図である。
図1に示すように、本実施形態に係る免制振複合システム2は、建物1に設置されている。建物1は、ピット10と、上部構造体17と、吊り構造体19と、を備えている。
ピット10は、底盤11と、底盤11の外縁部から立設された周壁12と、を有している。周壁12の上端部には、外側に張り出した張出し部12aが設けられている。ピット10の内部には、吊り構造体が収容可能な収容空間部10sが形成されている。
上部構造体17は、梁15と、建物本体16と、を有している。梁15は、建物本体16を支持している。梁15は、張出し部12aの上方に配置されている。平面視で、梁15は、張出し部12aの延在方向に沿って配置されている。建物本体16の下端部の外縁部は、梁15に支持されている。例えば、建物本体16は、複数の層で形成されている。
吊り構造体19の上端部19uは、上部構造体17の下端部17dに支持されている。吊り構造体19は、上部構造体17の下端部17dから吊り下げられ、ピット10の収容空間部10sに収容されている。吊り構造体19は、ピット10の周壁12と間隔を空けて配置されている。吊り構造体19は、例えばエレベーターである。
免制振複合システム2は、上側制振装置20Aと、下側制振装置20Bと、滑り支承30と、を備えている。
上側制振装置20Aは、上部構造体17の最上部17uに設置されている。吊り構造体19の最下部19dには、コンクリート板等の支持板が設けられている。下側制振装置20Bは、吊り構造体19の最下部19dに設置されている。
上側制振装置20A及び下側制振装置20Bを、総称して制振装置20とする。制振装置20は、TMD(Tuned Mass Damper)として機能する。制振装置20が設置される設置面を、設置面20aとする。設置面20aは、上側制振装置20Aならば上部構造体17の最上部17uであり、下側制振装置20Bならば吊り構造体19の最下部19dである。
図2は、制振装置20を説明する模式図である。
図2に示すように、制振装置20は、固定部21と、可動質量22と、減衰部23と、減衰部23と、水平ばね24と、を有している。
固定部21は、設置面20aに固定されている。固定部21は、設置面20aに対して変位しないように固定されている。固定部21は、可動質量22を水平方向に移動可能に支持するスライダ21aを有している。
可動質量22は、固定部21に支持され、固定部21と水平方向に相対移動可能である。
減衰部23は、固定部21と可動質量22との間に配置され、固定部21に対する可動質量22の相対振動を許容しつつこの相対振動を減衰させる。減衰部23は、オイルダンパーや粘弾性ゴムなどを用いた減衰装置で構成され、本実施形態では、減衰定数hは10%程度に設定されている。
水平ばね24は、固定部21と可動質量22との間に減衰部23と並列に配置され、固定部21に対する可動質量22の相対振動を許容しつつ可動質量22を付勢する。
図3は、1次周期と有効質量の算出法を説明する図である。
図3に示すように、制振装置20がTMDとして機能していない(無TMD)状態で、上部構造体17と吊り構造体19の共同節点Q1とQ2を固定端とする。固有値解析で上部構造体17の1次周期Tu及び吊り構造体19の1次周期Tdと、上部構造体17の有効質量Meu及び吊り構造体19の有効質量Medを算出する。
上側制振装置20Aの可動質量は、上部構造体17の有効質量Meuの7%~9%程度が好ましく、7%がより一層好ましい。下側制振装置20Bの可動質量は、吊り構造体19の有効質量Medの10%~20%程度が好ましく、10%がより一層好ましい。
本実施形態では、滑り支承30は、傾斜滑り支承である。滑り支承30は、上部構造体17をその支持構造物であるピット10に対して水平各方向に滑動自在に支持するためのものである。滑り支承30は、複数設置されている。
図4は、(a)滑り支承30の摺動子35の分解斜視図であり、(b)滑り支承30の分解斜視図である。
図4に示すように、滑り支承30は、上部案内部材33と、下部案内部材34と、摺動子35と、を有している。上部案内部材33は、上部構造体17の梁15の下部15d(図1参照)に固定されている。下部案内部材34は、ピット10の張出し部12aの上部12uに固定されている。摺動子35は、上部案内部材33と下部案内部材34との間に介装されている。摺動子35は、上部案内部材33に対して水平一方向(図4ではX-X方向として示す)にのみ摺動可能に保持されている。摺動子35は、下部案内部材34に対しては水平一方向と直交する水平他方向(図4ではY-Y方向として示す)にのみ摺動可能に保持されている。
図5は、滑り支承30の(a)平面図であり、(b)(a)のb-b線断面図であり、(b)(a)のc-c線断面図である。
上部案内部材33及び下部案内部材34は、いずれも断面矩形の横長のブロック状をなす同一形状及び同一寸法の部材である。上部案内部材33及び下部案内部材34は、長さ方向が互いに直交する向きとされている。上部案内部材33及び下部案内部材34は、上下方向に間隔をおいた状態で対向配置されている。図5(b),(c)に示すように、この状態で、上部案内部材33が上部構造体17に固定され、下部案内部材34がピット10に固定されている。
図4(b)に示すように、上部案内部材33及び下部案内部材34の対向面側(すなわち上部案内部材33の下面側及び下部案内部材34の上面側)には、それぞれの長さ方向に沿う溝が形成されている。溝の深さは中央部から両側に向かって漸次浅くなるようにされている。溝の底面は緩慢なV形に傾斜する傾斜面とされている。
上部案内部材33の溝が下向きとなり、溝の延在方向がX-X方向に沿う向きで、上部案内部材33は上部構造体17に固定されている。これによって、上部案内部材33に形成されている溝の底面は、X-X方向に沿って逆V形に緩慢に傾斜する下向きの上部傾斜面36となっている。
下部案内部材34の溝が上向きとなり、溝の延在方向がY-Y方向に沿う向きで、下部案内部材34はピット10に固定されている。これによって、下部案内部材34に形成されている溝の底面は、Y-Y方向に沿ってV形に緩慢に傾斜する上向きの下部傾斜面37となっている。
図6は、滑り支承30の常時の状態を示す図である。
図6に示すように、滑り支承30の支持する軸力(自重)をWとすると、傾斜による復元力(水平力)Fは、水平面に対する傾斜角をθとして、式(1)で表される。摺動子35の接触面は、上面全体である。なお、μは傾斜面の摩擦係数であり、μWは摩擦力を意味する。
Figure 2023137874000002
図7は、滑り支承30の地震時時の状態を示す図である。
地震時の免震層に生じる水平変位に対し、図7に示すように滑り支承30は可動する。摺動子35の接触面は、上面の半分である。なお、実際の勾配は1/100~1/20だが、図を分かりやすくするために、傾斜角θを大きく図示している。
傾斜角θと傾斜面の摩擦係数μは、式(2)で表される関係にある。
Figure 2023137874000003
tanθは摩擦係数μの0.1~0.4に相当することする。また、免震設計変位によって摩擦係数を調整する必要あるが、低摩擦材を使用することでμ≦0.06とする。
次に、解析結果について説明する。
<解析条件>
・解析対象:図8に示すモデル図
・構造:上部構造(上部構造体17)13段、吊り構造(吊り構造体19)1段
・傾斜滑り支承(滑り支承30):μ=0.012、傾斜角度θ=1.5°
・減衰10%のオイルダンパーを使用することとした
・上部構造の1次周期Tu=0.415sec、有効質量Meu=54831kg
・吊り構造の1次周期Td=0.164sec、有効質量Med=5170kg
<パラメータ>
(1)地震波
解析に用いた地震波を、表1に示す。解析用地震波の波形を図9に示す。
Figure 2023137874000004
(2)TMDの有効質量に対する比率
・上TMD(上側制振装置20A)の場合
使用するTMDの質量muと上部構造体の有効質量Meuの比率(mu/Meu): mu/Meu=3%、5%、7%、9%とする。
・下TMD(下側制振装置20B)の場合
使用するTMDの質量mdと吊り構造体の有効質量Medの比率(md/Med): md/Med=10%、20%、30%、40%とする。
<解析結果>
図10に上部構造上端部における加速度を示し、図11に吊り構造上端部における加速度を示し、図12に免震変位を示す。いずれの図も、(a)エルセントロ、(b)タフト、(c)八戸である。
免震EVA(エレベーター)の上下端にTMDを設置する場合の解析を行った。
(加速度について)
・EVAの上端部の加速度に対して、上TMDの効果は下TMDより大きい。
上TMDの質量比(mu/Meu)をみると、有効質量Meuの7%~9%程度であれば、全ケースの加速度の低減変化が一番大きい。9%以上になると、7%より効果があるものの、それほど著しく変化がなかった。
・EVAの下端部の加速度に対して、下TMDの効果は上TMDより大きい。
TMDの質量比(md/Med)をみると、有効質量のMedの10%~20%程度は、全ケースの加速度の低減変化が一番大きい。20%を超えると、逆に悪くなるケースもある。コストを考えると下端部TMDの質量は有効質量の10%程度はベストである。
・上部構造上端部でと吊り構造の下端部でそれぞれの周期特性に合わしてTMDをつけることで加速度の低減に相乗効果があることがわかった。
(免震変位)
上TMDと下TMDを設置することによる影響は小さいが分かる。
このように構成された免制振複合システム2では、上部構造体17の最上部にTMDとして機能する上側制振装置20Aを設けて、吊り構造体19の最下部にTMDとして機能する下側制振装置20Bを設けている。上部構造体17の下部を支持する滑り支承30は固有周期をもたないため、滑り支承30の剛性に影響されることなくTMD機構の同調周期は非免震時の(免震層を固定した)構造物の1次周期とすることができ、TMDの諸元(可動質量、バネ、減衰の諸元)を決定しやすくなる。入力地震波の特性による影響を受けにくくなり、地震波と共振を生じることもなくなる。地震時に、上部構造体17のような構造重心位置以上の場所の加速度及び吊り構造体19のような重心位置以下の場所の加速度を共に低減することができる。
また、上側制振装置20Aの質量は上部構造体17の有効質量の7%~9%であるため、上部構造体17及び吊り構造体19の加速度を確実に低減することができる。
また、下側制振装置20Bの質量は吊り構造体19の有効質量の10%~20%であるため、上部構造体17及び吊り構造体19の加速度を確実に低減することができる。
また、上部構造体17の最上部17uと吊り構造体19の最下部19dとでそれぞれの周期特性に合わしてTMDをつけることで加速度の低減に相乗効果がある。
また、滑り支承30と上下のTMD(上側制振装置20A及び下側制振装置20B)とを併用することで、エレベーターのような剛性が小さいものにも剛体移動と同じ効果を齎せることができる。
なお、上述した実施の形態において示した組立手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上記に示す実施形態では、吊り構造体19としてエレベーターを例に挙げて説明したが、本発明はこれに限られない。吊り構造体19として、一般の吊り構造を有する構造も適用することができる。
また、上記に示す実施形態では、滑り支承30として傾斜滑り支承を例に挙げて説明したが、本発明はこれに限られない。滑り支承30として、特開2019-138376で開示されているような傾斜弾性すべり支承や球面滑り支承を採用することもできる。
1 建物
2 免制振複合システム
17 上部構造体
17u 最上部
19 吊り構造体
19d 最下部
20 制振装置
20A 上側制振装置
20B 下側制振装置

Claims (3)

  1. 上部構造体と前記上部構造体に吊り下げられた吊り構造体と備える建物に設置される免制振複合システムであって、
    前記上部構造体の最上部に設けられ、TMDとして機能する上側制振装置と、
    前記上部構造体の下部を支持する滑り支承と、
    前記吊り構造体の最下部に設けられ、TMDとして機能する下側制振装置と、を備える免制振複合システム。
  2. 前記上側制振装置の質量は、前記上部構造体の有効質量の7%~9%である請求項1に記載の免制振複合システム。
  3. 前記下側制振装置の質量は、前記吊り構造体の有効質量の10%~20%である請求項1または2に記載の免制振複合システム。
JP2022044292A 2022-03-18 2022-03-18 免制振複合システム Pending JP2023137874A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022044292A JP2023137874A (ja) 2022-03-18 2022-03-18 免制振複合システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022044292A JP2023137874A (ja) 2022-03-18 2022-03-18 免制振複合システム

Publications (1)

Publication Number Publication Date
JP2023137874A true JP2023137874A (ja) 2023-09-29

Family

ID=88146295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022044292A Pending JP2023137874A (ja) 2022-03-18 2022-03-18 免制振複合システム

Country Status (1)

Country Link
JP (1) JP2023137874A (ja)

Similar Documents

Publication Publication Date Title
KR101162687B1 (ko) 면진장치
KR20200100990A (ko) 볼과 스프링을 이용하여 향상된 복원력을 가지는 면진 장치
KR102191280B1 (ko) 볼과 스프링을 이용하는 면진 장치
JP4706958B2 (ja) 免震構造
JP2009007916A (ja) 制振構造およびその諸元設定方法
JP2023137874A (ja) 免制振複合システム
JP6420012B1 (ja) 建物用受動型制振装置
JP2021042622A (ja) チューンドマスダンパー及び建物
JP6895737B2 (ja) 建築用オイルダンパーの取付構造
JP6502116B2 (ja) 制振装置
JP2011169026A (ja) 床構造
JP5917291B2 (ja) マスダンパー型制振装置
JP2016056875A (ja) 制振機能付き免震構造物
JP6804738B2 (ja) ラック倉庫の免制振システム
JP6675636B2 (ja) 免震機構
JP2022139621A (ja) 制振装置
JP2019138376A (ja) 免震機構
JP7355627B2 (ja) 防振構造
JP7461538B1 (ja) チューンドマスダンパー及びチューンドマスダンパーの固有周期の調整方法
KR20120128523A (ko) 구체의 진자운동을 이용한 지진 격리장치
JP7415543B2 (ja) クリアランス調整機構
JP2017125324A (ja) 免震構造物
JP2018145626A (ja) 制振構造
JP7291490B2 (ja) フローリング用遮音構造
JP5852394B2 (ja) 免震装置