JP2023132402A - 保持装置 - Google Patents

保持装置 Download PDF

Info

Publication number
JP2023132402A
JP2023132402A JP2022037692A JP2022037692A JP2023132402A JP 2023132402 A JP2023132402 A JP 2023132402A JP 2022037692 A JP2022037692 A JP 2022037692A JP 2022037692 A JP2022037692 A JP 2022037692A JP 2023132402 A JP2023132402 A JP 2023132402A
Authority
JP
Japan
Prior art keywords
substrate
inorganic substrate
inorganic
ceramic substrate
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022037692A
Other languages
English (en)
Other versions
JP7509814B2 (ja
Inventor
智史 森
Tomohito Mori
敦 鈴木
Atsushi Suzuki
旭伸 八十島
Akinobu Yasojima
祐介 勝
Yusuke Katsu
伸治 由利
Shinji Yuri
淳吉 柴田
Junkichi Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2022037692A priority Critical patent/JP7509814B2/ja
Publication of JP2023132402A publication Critical patent/JP2023132402A/ja
Application granted granted Critical
Publication of JP7509814B2 publication Critical patent/JP7509814B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】対象物を保持する保持装置において、セラミックス基板と冷却部との剥がれを抑制する他の技術を提供する。【解決手段】保持装置は、セラミックスを主成分とし、第1面と、第1面の裏面である第2面と、を有するセラミックス基板と、無機材料を主成分とし、セラミックス基板より熱伝導率が低い無機基板であって、セラミックス基板に対して、第2面側に配置された無機基板と、無機基板に対して、セラミックス基板とは反対側に配置された冷却部と、無機基板と冷却部との間に配置され、無機基板と冷却部とを接合する接合部と、を備え、無機基板のヤング率をE1、伸びをε1、厚みをt1とし、接合部のヤング率をE2、伸びをε2、厚みをt2としたとき、E1>E2かつ、ε1<ε2かつ、t1<t2を満たす。【選択図】図1

Description

本発明は、対象物を保持する保持装置に関する。
半導体を製造する際にウェハ等の対象物を保持する保持装置として、例えば、静電チャックが用いられる。静電チャックは、対象物が載置されるセラミックス基板と、セラミックス基板を冷却する冷却部と、セラミックス基板と冷却部とを接合する接合部と、を備える。静電チャックを、例えば、250℃以上の高温プロセスで使用する場合、シリコーン接着剤などにより形成された接合部が、熱により劣化し、剥がれるという問題があった。この問題に対し、セラミックス基板と接合部との間に、樹脂製の断熱材を挿入し、接合部を熱保護する技術が提案されている(例えば、特許文献1参照)。また、セラミックス基板を厚くして、熱抵抗を大きくすることにより、高温使用を可能とする技術も提案されている(例えば、特許文献2参照)。
国際公開第2019/176544号 特開2016-72478号公報
しかしながら、特許文献1に記載の技術では、上記のような高温で使用する際には、セラミックス基板と樹脂断熱材との熱膨張率の差から、静電チャックの端部に応力が発生し、そこから剥がれてしまう可能性がある。また、樹脂断熱材を使用する場合には、たとえ、高耐熱の樹脂であっても、稼働時に軟化して、静電チャックによって保持されたウェハの温度ばらつきが生じる虞がある。
このような課題は、静電チャックに限らず、CVD(chemical vapor deposition)、PVD(physical vapor deposition)、PLD(Pulsed Laser Deposition)等の真空装置用ヒータ装置、サセプタ、載置台等の保持装置に共通する課題である。
本発明は、上述した課題を解決するためになされたものであり、対象物を保持する保持装置において、セラミックス基板と冷却部との剥がれを抑制する他の技術を提供することを目的とする。
本発明は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、対象物を保持する保持装置が提供される。この保持装置は、セラミックスを主成分とし、第1面と、前記第1面の裏面である第2面と、を有するセラミックス基板と、無機材料を主成分とし、前記セラミックス基板より熱伝導率が低い無機基板であって、前記セラミックス基板に対して、前記第2面側に配置された無機基板と、前記無機基板に対して、前記セラミックス基板とは反対側に配置された冷却部と、前記無機基板と前記冷却部との間に配置され、前記無機基板と前記冷却部とを接合する接合部と、を備え、前記無機基板のヤング率をE1、伸びをε1、厚みをt1とし、前記接合部のヤング率をE2、伸びをε2、厚みをt2としたとき、E1>E2かつ、ε1<ε2かつ、t1<t2を満たす。
この形態の保持装置によれば、セラミックス基板より熱伝導率が低い無機基板を備えるため、無機基板を備えない場合と比較して、熱が無機基板を通過することにより温度が下がるため、接合部の無機基板側の表面の温度を下げることができる。また、無機基板と接合部のヤング率、伸び、および厚みが上記の条件を満たすとき、セラミックス基板と無機基板との界面での剥がれを抑制することができる。E1>E2かつε1<ε2であり、接合部は無機基板より柔らかく、かつ伸びるため、セラミックス基板と冷却部との間の熱膨張差を緩和することができる。また、t1<t2であり、無機基板が薄いため、無機基板の上と下の温度差を小さくすることにより、セラミックス基板と無機基板との界面での剥がれを抑制することができる。また、セラミックス基板と接合部との間に樹脂製の断熱材を用いる場合と比較して、無機基板は耐熱性が高いため、保持装置を高温環境で使用することができる。
(2)上記形態の保持装置であって、前記無機基板の厚みは、200μm以上、600μm以下であってもよい。無機基板の厚みをこの範囲内にすることにより、適切な断熱性を得ることができると共に、セラミックス基板と無機基板との界面での剥がれを抑制することができる。
(3)上記形態の保持装置であって前記無機基板の熱伝導率をλ1、前記接合部の熱伝導率をλ2としたとき、λ1<λ2であり、λ1は0.3W/(m・K)以上、1.0W/(m・K)以下であってもよい。このようにすると、無機基板の断熱性と強度とを適正な範囲で両立することができる。
(4)上記形態の保持装置であって、前記無機基板の熱抵抗をθ1、前記接合部の熱抵抗をθ2としたとき、θ1<θ2であってもよい。このようにすると、接合部も熱抵抗層として機能することができる。その結果、セラミックス基板と無機基板との界面での剥がれをより抑制することができる。
なお、本発明は、種々の態様で実現することが可能であり、例えば、保持装置を含む半導体製造装置などの形態で実現することができる。
実施形態の静電チャック10の外観構成を概略的に示す斜視図である。 静電チャック10のXZ断面構成を概略的に示す説明図である。 セラミックス基板に生じる力を概念的に示す説明図である。
<実施形態>
図1は、実施形態の静電チャック10の外観構成を概略的に示す斜視図である。図2は、静電チャック10のXZ断面構成を概略的に示す説明図である。図1、図2には、方向を特定するために、互いに直交するXYZ軸が示されている。図2において、Y軸正方向は、紙面裏側に向かう方向である。本明細書では、便宜的に、Z軸正方向を上方向といい、Z軸負方向を下方向というものとするが、静電チャック10は実際にはそのような向きとは異なる向きで設置されてもよい。本実施形態における静電チャック10を、「保持装置」とも呼ぶ。
静電チャック10は、対象物(例えばウェハW)を静電引力により吸着して保持する装置であり、例えば半導体製造装置の真空チャンバー内でウェハWを固定するために使用される。静電チャック10は、上下方向(Z軸方向)に並べて配置されたセラミックス基板100と、冷却部200と、セラミックス基板100と冷却部200との間に配置され断熱材として機能する無機基板300と、無機基板300と冷却部200とを接合する接合部400と、を備える。
セラミックス基板100は、第1面S1と、第1面S1の裏面である第2面S2と、を有する板状部材である。詳しくは、セラミックス基板100は、略円形平面状の第1面S1を有する板状部材である第1セラミックス部110(図1)と、第1セラミックス部110より径が大きい略円形平面状の第2面S2(図2)とを有する板状部材である第2セラミックス部120(図1)と、を備え、全体として、下に向かって(Z軸マイナス方向に向かって)階段状に拡径する板状部材である。本実施形態において、セラミックス基板100の第1面S1は、ウェハWが載置される載置面として機能する。セラミックス基板100は、いわゆるファインセラミックス、ニューセラミックスと言われるセラミックス(例えば、アルミナや窒化アルミニウム等)を主成分とする緻密体である。第1セラミックス部110の第1面S1の直径は、例えば、50mm~500mm程度(通常は200mm~350mm程度)であり、セラミックス基板100の厚さは例えば3mm~7mm程度である。
セラミックス基板100の内部には、導電性材料(例えば、タングステンやモリブデン等)により形成された吸着電極130(図2)が配置されている。Z軸方向視での吸着電極130の形状は、例えば略円形である。吸着電極130に電源(不図示)から電圧が印加されると、静電引力が発生し、この静電引力によってウェハWがセラミックス基板100の第1面S1に吸着固定される。
また、セラミックス基板100の内部には、吸着電極130よりも下側(Z軸マイナス側)に、Z軸方向視で渦巻き型のヒータ140(図2)が配置されている。本実施形態において、ヒータ140は、タングステンやモリブデン等により形成されたメタライズ層である。ヒータ140の形状は、本実施形態に限定されず、例えば、円盤形状等でもよい。他の実施形態では、セラミックス基板100は、ヒータ140を備えなくてもよい。
冷却部200は、セラミックス基板100より径が大きい略円形平面状の板状部材である。冷却部200は、熱伝導率が高い金属によって形成されている。例えば、アルミニウム、チタン、モリブデン、これらのそれぞれを主成分とする合金等を用いることができるが金属に限らずセラミックスやセラミックスと金属の複合材料であってもよい。冷却部200の直径は、例えば、220mm~550mm程度(通常は220mm~350mm)であり、冷却部200の厚さは、例えば、20mm~40mm程度である。
冷却部200の内部には冷媒流路210(図2)が形成されている。静電チャック10のセラミックス基板100に保持されたウェハWを、プラズマを利用して加工する際、ウェハWに対してプラズマから入熱され、ウェハWの温度が上昇する。冷却部200に形成された冷媒流路210に冷媒(例えば、フッ素系不活性液体や水等)が流されると、冷却部200が冷却される。接合部400、および無機基板300を介した冷却部200とセラミックス基板100との間の伝熱によりセラミックス基板100が冷却され、セラミックス基板100の第1面S1に保持されたウェハWが冷却される。これにより、ウェハWの温度制御が実現される。他の実施形態では、冷却部は内部に冷媒流路が形成されていなくてもよく、外部から冷却してもよい。
無機基板300は、第2面S2と径が等しい略円形平面状の板状部材である。無機基板300は、無機材料を主成分とする、セラミックス基板100より熱伝導率が低い板状部材である。無機基板300は、セラミックス基板100より熱伝導率が低いため、断熱材として機能する。無機材料としては、例えば、アルミナ・シリカ等を主成分とする天然鉱物、いわゆるファインセラミックス、ニューセラミックスと言われるセラミックスを用いることができる。すなわち、無機材料は、セラミックスと天然鉱物を含む概念である。本実施形態において、無機基板300は緻密体である。他の実施形態では、無機基板300として、多孔質体を用いることができる。本実施形態において、無機基板300は、セラミックス基板100に以下の方法で接合されている。例えば、接着機能を有する未硬化のシート状の無機基板を熱圧着によりセラミックス基板100に接合してもよいし、接着機能を有するペースト状の無機バインダーをセラミックス基板100に塗布して未硬化の無機基板を形成した後、熱圧着してもよい。熱圧着後、無機基板はセラミックス基板100と一体化した状態で硬化する。他の実施形態では、無機基板300は、例えば、無機材料を主成分とする接着剤によりセラミックス基板100に接合されてもよい。
無機基板300の熱膨張率は、特に限定されないが、セラミックス基板100の熱膨張率に近い値にするのが好ましい。例えば、セラミックス基板100の熱膨張率が7ppmの場合には、7ppmに近い値(5ppm~12ppm)にすることが好ましい。無機基板300の熱膨張率をセラミックス基板100の熱膨張率と近い値にすることにより、セラミックス基板100と無機基板300との熱膨張率の違いに伴いセラミックス基板100に生じる力を抑制することができる。
無機基板300の引張強度は特に限定されないが、10MPa以上が好ましい。このようにすると、静電チャック10の稼働時に無機基板300の内部における破損を抑制することができる。
接合部400は、無機基板300と径が等しい略円形平面状の板状部材であり、無機基板300と冷却部200とを接合する。接合部400は、接着剤から形成されており、例えば、アクリル、ポリイミド等の有機物、シリコーン等を主成分とする接着剤を用いることができる。
シリコーン接着剤は、例えば、ポリジメチルシロキサンと、架橋剤、シランカップリング剤、硬化触媒、およびフィラーを混合することで作製することができる。フィラーにはアルミナ、シリカ、窒化アルミニウム、窒化ホウ素、カーボンブラック、グラファイト、カーボンナノチューブ、炭化ケイ素、窒化ケイ素、酸化鉄、酸化マグネシウムのうち少なくとも1種類を用いることができる。無機基板300と冷却部200との接合には、シート状、もしくはワニス状のシリコーン接着剤を使用することができる。シート状で使用する場合、シリコーン接着剤をシート状に成型した後、100℃以下の温度で一部を硬化させる。所定の形状に切断した後、シート状シリコーン接着剤を、セラミックス基板100と一体化した無機基板300と、冷却部200とにそれぞれ、真空中で貼りつけを行った。さらにセラミックス基板100と一体化した無機基板300と、冷却部200とを、シート状シリコーン接着剤を介して真空中で接合し、100℃以上の温度で硬化させることにより、無機基板300と冷却部200とを接合することができる。ワニス状のシリコーン接着剤を使用する場合、冷却部200にスクリーン印刷法で塗布し、セラミックス基板100と一体化した無機基板300と真空中で接合し、100℃以上の温度で硬化させることにより、無機基板300と冷却部200とを接合することができる。ここで、冷却部200には流れ出し防止用の樹脂壁を作製しておいても良い。
接合部400の厚みt2は特に限定されないが、200μm~800μmが好ましい。接合部400は、熱引きの点では薄い方が良いが、薄すぎるとセラミックス基板100と冷却部200の熱膨張差を緩和することができない。接合部400の厚みt2を、上記の範囲にすると、適切に熱引きができると共に、セラミックス基板100と冷却部200の熱膨張差を緩和することができる。
接合部400の熱伝導率λ2は特に限定されないが、0.2~1.5W/(m・K)が好ましい。接合部400の熱伝導率λ2は高い方が好ましいが、熱伝導率を上げるために熱伝導フィラー(例えば、アルミナ、窒化アルミニウム、窒化ホウ素等)を大量に添加すると硬く伸びにくくなるため、温度変化に伴う破損が生じたり、セラミックス基板100と冷却部200との温度差に伴う応力の緩和能が低下する虞がある。接合部400の熱伝導率λ2を上記の範囲にすると、応力緩和能を確保すると共に効率よく熱伝導を行うことができる。
無機基板300のヤング率をE1、伸びをε1、厚みをt1とし、接合部400のヤング率をE2、伸びをε2、厚みをt2としたとき、
E1>E2かつ、
ε1<ε2かつ、
t1<t2を
満たす。
E1>E2であるため接合部400は無機基板300より柔らかく、かつε1<ε2であるため接合部400は無機基板300より伸びる。そのため、接合部400によりセラミックス基板100と冷却部200との間の熱膨張差を緩和することができる。また、t1<t2であり無機基板300が薄いため、無機基板300の上と下の温度差を小さくすることができる。そうすると、無機基板300がセラミックス基板100を内側に向かって引っ張る力を抑制することができるため、セラミックス基板100と無機基板300との界面での剥がれを抑制することができる。
図3は、セラミックス基板に生じる力を概念的に示す説明図である。図3では、無機基板の厚みによるセラミックス基板に生じる力の違いを示しており、セラミックス基板100と、セラミックス基板100に接合された無機基板300、300Pを図示している。無機基板300と無機基板300Pとは、厚さが異なる以外は同じであり、無機基板300Pは、無機基板300より厚い。例えば、セラミックス基板100、無機基板300、300Pが半径175mmの円板状であって、無機基板300、300Pのヤング率が6GPa、熱膨張率が10ppmである場合に、無機基板300の上面温度が250℃、下面温度が180℃とし、無機基板300Pの上面温度が250℃、下面温度が130℃として、無機基板内に発生する力、およびセラミックス基板が圧縮方向に受ける力を簡易計算した。
無機基板300Pの上面は半径175.40mm、下面は半径175.19mmとなり、そのとき無機基板300P内に発生する力は、ヤング率とひずみから計算でき、7.19MPaとなる。
このときセラミックス基板100が圧縮方向に受ける力は約3MPa程度となる。
一方、無機基板300の上面は半径175.40mm、下面は半径175.28mmとなり、そのとき無機基板300内に発生する力は、上記と同様に、ヤング率とひずみから計算でき、4.11MPaとなる。
このときセラミックス基板100が圧縮方向に受ける力は約0.8MPa程度となる。
このように、無機基板の厚みを薄くすることにより、セラミックス基板100が圧縮方向に受ける力が小さくなり、セラミックス基板100と無機基板300との界面における剥がれを抑制することができる。
無機基板300のヤング率E1は、接合部400のヤング率E2より高ければよく、その値は特に限定されないが、2GPa~10GPaが好ましい。ヤング率E1が高いほど無機基板300は硬く、ヤング率E1が低いほど無機基板300は柔らかい。無機基板300のヤング率E1はセラミックス基板100に生じる力に寄与するため、低い方が好ましいが、ヤング率E1が高く無機基板300が柔らかすぎると、静電チャック10の製造工程における静電チャックの傾け、圧着、真空パック等の工程において破損する等の不具合が生じる虞がある。そのため、無機基板300のヤング率E1は、上記の範囲が好ましい。
接合部400のヤング率E2は無機基板300のヤング率E1に対し、十分小さな値であればよい。例えば、0.1MPa~10MPaとしてもよい。なお、ヤング率は、引張試験の結果から算出することができる。製品形状では、せん断のヤング率の方が現実的であるものの測定が困難である。ヤング率E1およびヤング率E2としてせん断のヤング率を用いた場合にも、E1>E2となる。そのため、ヤング率として引張試験の結果から算出した値を用いる。
接合部400の伸びε2は無機基板300の伸びε1より大きければよく、その値は特に限定されないが、50%以上が好ましく、100%以上がより好ましい。このようにすると、冷却部200と接合部400との界面や接合部400と無機基板300との界面における剥がれを抑制することができる。
無機基板300は接合部400より薄ければよく、その厚みは特に限定されないが、200μm以上、600μm以下が好ましい。断熱性を考慮すると、無機基板300は厚い方が良い。また、無機基板300が厚いと無機基板300内でゆっくりと温度が下がっていくため、温度差が生じたときの内部応力緩和性を考慮した場合にも、無機基板300は厚い方がよい。しかしながら、セラミックス基板100と無機基板300との界面での剥がれを考慮すると、上述の通り薄い方がよい。無機基板300の厚みをこの範囲内にすることにより、適切な断熱性を得ることができると共に、セラミックス基板100と無機基板300との界面での剥がれを抑制することができる。
無機基板300の熱伝導率λ1は特に限定されないが、λ1<λ2であり、λ1は0.3W/(m・K)以上、1.0W/(m・K)以下が好ましい。無機基板300の熱伝導率λ1が低いほど断熱性が高くなるため、熱伝導率λ1は低い方が好ましい。しかしながら、無機基板300を多孔質にすることにより無機基板300の熱伝導率を低くする場合には無機基板300の強度不足となる場合がある。無機基板300の熱伝導率λ1を、上記の範囲内にすると、無機基板300の断熱性と強度とを適正な範囲で両立することができる。
無機基板300の熱抵抗θ1、および接合部400の熱抵抗θ2は特に限定されないが、θ1<θ2が好ましい。このようにすると、接合部400も熱抵抗層として機能することができる。接合部400が熱抵抗層として機能することにより無機基板300の上と下の温度差をさらに小さくすることができる。その結果、セラミックス基板100と無機基板300との界面での剥がれをより抑制することができる。
実施例により本発明を更に具体的に説明する。
上記実施形態の静電チャック10の実施例1~9と、比較例1~4を用いて、接合部上面温度、および剥がれを評価した。
1.保持装置の製造
実施例および比較例の保持装置は、下記の方法により製造された。
・実施例1
まず、従来公知の方法により、アルミナを主成分とするセラミックスグリーンシートを作製する。セラミックスグリーンシート上にヒータや吸着用電極、ビア、通気孔を作製し、複数のセラミックグリーンシートを積層して熱圧着した後、還元雰囲気下1400℃~1600℃で焼成を行い、セラミックス基板を得た。
無機基板として、ガラスウールを無機バインダー溶液に含浸させ、乾燥、硬化させることで得られる緻密な無機基板を使用した。ここで無機バインダー溶液は、シリカおよびアルミナを主成分とする金属アルコキシド溶液、シリカおよびアルミナフィラー、有機溶剤、ポリシロキサンを混合することで調整した。無機基板のヤング率は4000MPa、伸びは30%であり、硬化後の厚みは150μmに調整した。また無機基板の熱伝導率は0.7W/(m・K)であった。
無機基板を所定のサイズに切断し、穴あけ加工を行い、シランカップリング剤を含む無機バインダーを全面に塗布し、熱圧着によってセラミックス基板と接合した。この時、無機バインダー溶液含浸後の無機基板に乾燥のみを行い、所定のサイズに切断し、穴あけ加工を行ったのち、セラミックス基板に熱圧着することで、硬化と接合を同時に行っても良い。
次いで、セラミックス基板と無機基板の接合体と、冷却部をシリコーン接着剤により接合することで、保持装置を得た。使用したシリコーン接着剤のヤング率は0.2MPa、伸びは350%であり、硬化後の厚みは300μmに調整した。またシリコーン接着剤の熱伝導率は0.4W/(m・K)であった。
シリコーン接着剤はポリジメチルシロキサンと、架橋剤、シランカップリング剤、硬化触媒、およびフィラーを混合することで作製した。フィラーにはアルミナ、および窒化アルミニウムを用いた。接合にはシート状のシリコーン接着剤を使用した。シリコーン接着剤をシート状に成型した後、100℃以下の温度で一部を硬化させた。所定の形状に切断した後、シート状シリコーン接着剤をセラミックス基板と一体化した無機基板と、冷却部とにそれぞれ、真空中で貼りつけを行った。さらにセラミックス基板と一体化した無機基板と、冷却部とを、シート状シリコーン接着剤を介して真空中で接合し、100℃以上の温度で硬化させることにより、保持装置を得た。後述する実施例2~9、および比較例1~4においても、同様に、シリコーン接着剤を作製し、無機基板と冷却部とを接合した。
・実施例2
まず、実施例1と同様の手法でセラミックス基板を得た。
無機基板として、マイカ板を使用した。無機基板のヤング率は6000MPa、伸びは30%であり、硬化後の厚みは200μmに調整した。また無機基板の熱伝導率は0.7W/(m・K)であった。
無機基板を所定のサイズに切断し、穴あけ加工を行い、シランカップリング剤を含む無機バインダーを塗布し、熱圧着によりセラミックス基板と接合した。
次いで、セラミックス基板と無機基板の接合体と、冷却部をシリコーン接着剤により接合することで、保持装置を得た。使用したシリコーン接着剤のヤング率は1.0MPa、伸びは200%であり、硬化後の厚みは650μmに調整した。またシリコーン接着剤の熱伝導率は0.7W/(m・K)であった。
・実施例3
まず、実施例1と同様の手法で複数のセラミックスグリーンシートを積層して熱圧着した。実施例3では、無機基板として多孔質アルミナ基板を使用しており、上記の通り熱圧着されたセラミックグリーンシート積層体に、カーボンを含むアルミナグリーンシートを積層し、還元雰囲気下1400℃~1600℃で同時焼成を行う事でセラミックス基板と一体化した無機基板を得た。無機基板のヤング率は8000MPa、伸びは3%であり、硬化後の厚みは450μmに調整した。また無機基板の熱伝導率は0.4W/(m・K)であった。
次いで、セラミックス基板と無機基板の接合体と、冷却部をシリコーン接着剤により接合することで、保持装置を得た。使用したシリコーン接着剤のヤング率は1.0MPa、伸びは200%であり、硬化後の厚みは750μmに調整した。またシリコーン接着剤の熱伝導率は0.7W/(m・K)であった。
・実施例4
まず、実施例1と同様の手法でセラミックス基板を得た。
無機基板として、ガラスウールをシリカおよびアルミナを主成分とする金属アルコキシド溶液に含浸させ、乾燥、硬化させることで得られる緻密な無機基板を使用した。無機基板のヤング率は4000MPa、伸びは30%であり、硬化後の厚みは300μmに調整した。また無機基板の熱伝導率は0.7W/(m・K)であった。
無機基板を所定のサイズに切断し、穴あけ加工を行い、シランカップリング剤を含む無機バインダーを塗布し、熱圧着によりセラミックス基板と接合した。
次いで、セラミックス基板と無機基板の接合体と、冷却部をシリコーン接着剤により接合することで、保持装置を得た。使用したシリコーン接着剤のヤング率は3.0MPa、伸びは160%であり、硬化後の厚みは750μmに調整した。またシリコーン接着剤の熱伝導率は1.4W/(m・K)であった。
・実施例5
まず、実施例1と同様の手法でセラミックス基板を得た。
無機基板として、ガラスウールをシリカおよびアルミナを主成分とする金属アルコキシド溶液に含浸させ、乾燥、硬化させることで得られる緻密な無機基板を使用した。無機基板のヤング率は8000MPa、伸びは3%であり、硬化後の厚みは650μmに調整した。また無機基板の熱伝導率は0.7W/(m・K)であった。
無機バインダー溶液含浸後の無機基板に乾燥のみを行い、所定のサイズに切断し、穴あけ加工を行ったのち、セラミックス基板に熱圧着することで、硬化と接合を同時に行った。
次いで、セラミックス基板と無機基板の接合体と、冷却部をシリコーン接着剤により接合することで、保持装置を得た。使用したシリコーン接着剤のヤング率は3.0MPa、伸びは160%であり、硬化後の厚みは750μmに調整した。またシリコーン接着剤の熱伝導率は1.4W/(m・K)であった。
・実施例6
まず、実施例1と同様の手法でセラミックス基板を得た。
無機基板として、ガラスウールをシリカおよびアルミナを主成分とする金属アルコキシド溶液に含浸させ、乾燥、硬化させることで得られる緻密な無機基板を使用した。無機基板のヤング率は6000MPa、伸びは4%であり、硬化後の厚みは300μmに調整した。また無機基板の熱伝導率は0.7W/(m・K)であった。
無機バインダー溶液含浸後の無機基板に乾燥のみを行い、所定のサイズに切断し、穴あけ加工を行ったのち、セラミックス基板に熱圧着することで、硬化と接合を同時に行った。
次いで、セラミックス基板と無機基板の接合体と、冷却部をシリコーン接着剤により接合することで、保持装置を得た。使用したシリコーン接着剤のヤング率は0.2MPa、伸びは350%であり、硬化後の厚みは400μmに調整した。またシリコーン接着剤の熱伝導率は0.4W/(m・K)であった。
・実施例7
まず、実施例1と同様の手法でセラミックス基板を得た。
無機基板として、ガラスウールをシリカおよびアルミナを主成分とする金属アルコキシド溶液に含浸させ、乾燥、硬化させることで得られる緻密な無機基板を使用した。無機基板のヤング率は6000MPa、伸びは3%であり、硬化後の厚みは300μmに調整した。また無機基板の熱伝導率は0.7W/(m・K)であった。
無機バインダー溶液含浸後の無機基板に乾燥のみを行い、所定のサイズに切断し、穴あけ加工を行ったのち、セラミックス基板に熱圧着することで、硬化と接合を同時に行った。
次いで、セラミックス基板と無機基板の接合体と、冷却部をシリコーン接着剤により接合することで、保持装置を得た。使用したシリコーン接着剤のヤング率は3.0MPa、伸びは160%であり、硬化後の厚みは700μmに調整した。またシリコーン接着剤の熱伝導率は1.4W/(m・K)であった。
・実施例8
まず、実施例1と同様の手法でセラミックス基板を得た。
無機基板として、ガラスウールをシリカおよびアルミナを主成分とする金属アルコキシド溶液に含浸させ、乾燥、硬化させることで得られる緻密な無機基板を使用した。無機基板のヤング率は6000MPa、伸びは30%であり、硬化後の厚みは300μmに調整した。また無機基板の熱伝導率は0.7W/(m・K)であった。
無機バインダー溶液含浸後の無機基板に乾燥のみを行い、所定のサイズに切断、穴あけ加工を行ったのち、セラミックス基板に熱圧着することで、硬化と接合を同時に行った。
次いで、セラミックス基板と無機基板の接合体と、冷却部をシリコーン接着剤により接合することで、保持装置を得た。使用したシリコーン接着剤のヤング率は1.0MPa、伸びは200%であり、硬化後の厚みは700μmに調整した。またシリコーン接着剤の熱伝導率は0.9W/(m・K)であった。
・実施例9
まず、実施例1と同様の手法でセラミックス基板を得た。
無機基板として、ガラスウールをシリカおよびアルミナを成分とする金属アルコキシド溶液に含浸させ、乾燥、硬化させることで得られる緻密な無機基板を使用した。無機基板のヤング率は6000MPa、伸びは5%であり、硬化後の厚みは300μmに調整した。また無機基板の熱伝導率は0.8W/(m・K)であった。
無機バインダー溶液含浸後の無機基板に乾燥のみを行い、所定のサイズに切断、穴あけ加工を行ったのち、セラミックス基板に熱圧着することで、硬化と接合を同時に行った。
次いで、セラミックス基板と無機基板の接合体と、冷却部をシリコーン接着剤により接合することで、保持装置を得た。使用したシリコーン接着剤のヤング率は1.0MPa、伸びは200%であり、硬化後の厚みは700μmに調整した。またシリコーン接着剤の熱伝導率は0.9W/(m・K)であった。
・比較例1
まず、実施例1と同様の手法でセラミックス基板を得た。
無機基板として、ガラスウールをシリカおよびアルミナを主成分とする金属アルコキシド溶液に含浸させ、乾燥、硬化させることで得られる緻密な無機基板を使用した。無機基板のヤング率は4000MPa、伸びは30%であり、硬化後の厚みは150μmに調整した。また無機基板の熱伝導率は0.7W/(m・K)であった。
無機バインダー溶液含浸後の無機基板に乾燥のみを行い、所定のサイズに切断、穴あけ加工を行ったのち、セラミックス基板に熱圧着することで、硬化と接合を同時に行った。
次いで、セラミックス基板と無機基板の接合体と、冷却部をシリコーン接着剤により接合することで、保持装置を得た。使用したシリコーン接着剤のヤング率は1.0MPa、伸びは200%であり、硬化後の厚みは100μmに調整した。またシリコーン接着剤の熱伝導率は0.9W/(m・K)であった。
・比較例2
まず、実施例1と同様の手法で複数のセラミックスグリーンシートを積層して熱圧着した。比較例2では実施例3と同様に、無機基板として多孔質アルミナ基板を使用しており、上記の通り熱圧着されたセラミックグリーンシート積層体に、カーボンを含むアルミナグリーンシートを積層し、還元雰囲気下1400℃~1600℃で同時焼成を行う事でセラミックス基板と一体化した無機基板を得た。無機基板のヤング率は8000MPa、伸びは3%であり、硬化後の厚みは800μmに調整した。また無機基板の熱伝導率は0.7W/(m・K)であった。
無機バインダー溶液含浸後の無機基板に乾燥のみを行い、所定のサイズに切断し、穴あけ加工を行ったのち、セラミックス基板に熱圧着することで、硬化と接合を同時に行った。
次いで、セラミックス基板と無機基板の接合体と、冷却部をシリコーン接着剤により接合することで、保持装置を得た。使用したシリコーン接着剤のヤング率は1.0MPa、伸びは200%であり、硬化後の厚みは700μmに調整した。またシリコーン接着剤の熱伝導率は0.9W/(m・K)であった。
・比較例3
まず、実施例1と同様の手法でセラミックス基板を得た。
無機基板として、マイカ板を使用した。無機基板のヤング率は6000MPa、伸びは4%であり、硬化後の厚みは800μmに調整した。また無機基板の熱伝導率は0.7W/(m・K)であった。
無機基板を所定のサイズに切断し、穴あけ加工を行い、シランカップリング剤を含む無機バインダーを塗布し、熱圧着によりセラミックス基板と接合した。
次いで、セラミックス基板と無機基板の接合体と、冷却部をシリコーン接着剤により接合することで、保持装置を得た。使用したシリコーン接着剤のヤング率は0.2MPa、伸びは350%であり、硬化後の厚みは700μmに調整した。またシリコーン接着剤の熱伝導率は0.4W/(m・K)であった。
・比較例4
まず、実施例1と同様の手法でセラミックス基板を得た。
無機基板として、ガラスウールをシリカおよびアルミナを主成分とする金属アルコキシド溶液に含浸させ、乾燥、硬化させることで得られる緻密な無機基板を使用した。無機基板のヤング率は6000MPa、伸びは30%であり、硬化後の厚みは800μmに調整した。また無機基板の熱伝導率は0.8W/(m・K)であった。
無機バインダー溶液含浸後の無機基板に乾燥のみを行い、所定のサイズに切断し、穴あけ加工を行ったのち、セラミックス基板に熱圧着することで、硬化と接合を同時に行った。
次いで、セラミックス基板と無機基板の接合体と、冷却部をシリコーン接着剤により接合することで、保持装置を得た。使用したシリコーン接着剤のヤング率は3.0MPa、伸びは160%であり、硬化後の厚みは700μmに調整した。またシリコーン接着剤の熱伝導率は1.4W/(m・K)であった。
2.分析手法
以下に説明する方法により、実施例1~9、および比較例1~4の保持装置を測定した。
・ヤング率、伸び
無機基板、および接合部のヤング率と伸びは材料の引張試験機(島津製作所製 AG-IS)によって測定した。硬化させた各材料を1cm幅×3cmの小片を作製し引張試験を行い、S-Sカーブからヤング率と伸びを得た。ここでヤング率は弾性変形領域で算出するものとする。試料は単独で硬化させた場合と、保持装置から切り出した場合のどちらでも良く、結果は同じとなる。
・厚み
保持装置を断面視ができるよう短冊状に切断し、短冊状試験片のどちらか一方の端部から5cm間隔ごとに、光学顕微鏡を用いて厚みを測定した。測定した厚みの平均値を計算し、各層の厚みとした。
・熱伝導率
各材料の熱伝導率はレーザーフラッシュ法によって熱拡散率から算出した。計算に用いた密度はアルキメデス法により測定した。ここで試料は単独で硬化させた場合と、保持装置から切り出した場合のどちらでも良く、結果は同じとなる。
・熱抵抗値
各材料の熱抵抗値は、測定した熱伝導率と厚みから算出した。
・接合部上面温度
無機基板と接合部の間に熱電対を挿入した保持装置を用い、セラミックス部を250℃、冷却部を80℃で稼働させて温度を測定し、温度が上がりきった(略一定になった)ときの温度を接合部上面温度とした。
・剥がれ
保持装置の剥がれは超音波探傷測定(日本電磁測器製 UVS-101)で測定した。保持装置の稼働前、およびセラミックス部を250℃、冷却部を80℃とした状態で200時間稼働させ室温に戻した後の保持装置について測定した。接合状態は稼働前後における超音波像の差から判断した。
3.分析結果
表1は、実施例1~9、および比較例1~4の要件(後述する)適否と評価結果を示す。表1では、要件を満たすものに〇印、満たさないものに×印を付している。接合部上面温度は、180℃~200℃を△とし、180℃未満を〇とした。表2は分析結果を示す。
Figure 2023132402000002
Figure 2023132402000003
実施例1~9は、下記〔1〕の要件を満たしている(表1)。
〔1〕無機基板のヤング率をE1、伸びをε1、厚みをt1とし、接合部のヤング率をE2、伸びをε2、厚みをt2としたとき、
E1>E2かつ、
ε1<ε2かつ、
t1<t2を
満たす。
実施例2~4、6~9は、上記〔1〕の要件に加え、さらに、下記〔2〕の要件を満たしている。
〔2〕無機基板の厚みは、200μm以上、600μm以下である。
実施例3~5、7~9は、さらに、下記〔3〕の要件を満たしている。
〔3〕無機基板の熱伝導率をλ1、接合部の熱伝導率をλ2としたとき、
λ1<λ2であり、
λ1は0.3W/(m・K)以上、1.0W/(m・K)以下である。
実施例1、2、4、6~9は、さらに、下記〔4〕の要件を満たしている。
〔4〕無機基板の熱抵抗をθ1、接合部の熱抵抗をθ2としたとき、θ1<θ2である。
これに対して、比較例1~4は、上記〔1〕、〔2〕の要件を、いずれも満たしていない。
実施例1、3~9はいずれも、接合部上部温度が接合部の耐熱温度未満であり、実施例2は接合部上部温度が接合部の耐熱温度と同じであり、実施例1~9はいずれも、セラミックス基板と無機基板との界面、および無機基板と接合部との界面のいずれにも剥がれが確認されなかった。これに対し、比較例1~4は、無機基板と接合部との界面に剥がれが確認され、接合部上部温度を測定できなかった。比較例1~4は、要件1のうち、E1>E2かつ、ε1<ε2を満たすものの、t1<t2を満たしていない。すなわち、E1>E2かつ、ε1<ε2かつ、t1<t2を満たすことにより、接合部上面温度を下げることができ、無機基板と接合部との界面の剥がれを抑制することができる。
また、実施例3~5、7~9は、上記〔3〕の要件を満たしているため、実施例1、26と比較して、接合部上面温度を抑制することができた。
<本実施形態の変形例>
本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
・上記実施形態では、セラミックス基板100の第1面S1の上に対象物が保持される例を示したが、セラミックス基板100の上に、さらに別のセラミックス基板を接合し、その上に対象物が保持される構成にしてもよい。
・上記実施形態において、保持装置として静電チャックを例示したが、保持装置は、静電チャックに限定されない。例えば、CVD、PVD、PLD(Pulsed Laser Deposition)等の真空装置用ヒータ装置、サセプタ、載置台として構成することができる。
・上記実施形態において、保持装置として、略円形平面の板状部材の積層体を備える例を示したが、平面形状は上記実施形態に限定されない。例えば、矩形平面、多角形平面等であってもよい。
本開示は、上述の実施形態、実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10…静電チャック
100…セラミックス基板
110…第1セラミックス部
120…第2セラミックス部
130…吸着電極
140…ヒータ
200…冷却部
210…冷媒流路
300、300P…無機基板
400…接合部
S1…第1面
S2…第2面
W…ウェハ

Claims (4)

  1. 対象物を保持する保持装置であって、
    セラミックスを主成分とし、第1面と、前記第1面の裏面である第2面と、を有するセラミックス基板と、
    無機材料を主成分とし、前記セラミックス基板より熱伝導率が低い無機基板であって、前記セラミックス基板に対して、前記第2面側に配置された無機基板と、
    前記無機基板に対して、前記セラミックス基板とは反対側に配置された冷却部と、
    前記無機基板と前記冷却部との間に配置され、前記無機基板と前記冷却部とを接合する接合部と、
    を備え、
    前記無機基板のヤング率をE1、伸びをε1、厚みをt1とし、前記接合部のヤング率をE2、伸びをε2、厚みをt2としたとき、
    E1>E2かつ、
    ε1<ε2かつ、
    t1<t2を
    満たすことを特徴とする、
    保持装置。
  2. 請求項1に記載の保持装置であって、
    前記無機基板の厚みは、200μm以上、600μm以下であることを特徴とする、
    保持装置。
  3. 請求項1または請求項2に記載の保持装置であって、
    前記無機基板の熱伝導率をλ1、前記接合部の熱伝導率をλ2としたとき、
    λ1<λ2であり、
    λ1は0.3W/(m・K)以上、1.0W/(m・K)以下であることを特徴とする、
    保持装置。
  4. 請求項1から請求項3のいずれか一項に記載の保持装置であって、
    前記無機基板の熱抵抗をθ1、前記接合部の熱抵抗をθ2としたとき、
    θ1<θ2であることを特徴とする、
    保持装置。
JP2022037692A 2022-03-11 2022-03-11 保持装置 Active JP7509814B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022037692A JP7509814B2 (ja) 2022-03-11 2022-03-11 保持装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022037692A JP7509814B2 (ja) 2022-03-11 2022-03-11 保持装置

Publications (2)

Publication Number Publication Date
JP2023132402A true JP2023132402A (ja) 2023-09-22
JP7509814B2 JP7509814B2 (ja) 2024-07-02

Family

ID=88065110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022037692A Active JP7509814B2 (ja) 2022-03-11 2022-03-11 保持装置

Country Status (1)

Country Link
JP (1) JP7509814B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102217054B (zh) 2008-11-25 2013-05-08 京瓷株式会社 晶片加热装置、静电卡盘以及晶片加热装置的制造方法
JP6653535B2 (ja) 2015-08-07 2020-02-26 日本発條株式会社 ヒータユニット
JP6580999B2 (ja) 2016-01-13 2019-09-25 日本特殊陶業株式会社 保持装置
JP6859309B2 (ja) 2018-10-22 2021-04-14 日本特殊陶業株式会社 保持装置

Also Published As

Publication number Publication date
JP7509814B2 (ja) 2024-07-02

Similar Documents

Publication Publication Date Title
JP5811513B2 (ja) 静電チャック
JP5117146B2 (ja) 加熱装置
JP5447123B2 (ja) ヒータユニット及びそれを備えた装置
JP6432474B2 (ja) 静電チャック
JP4986830B2 (ja) 基板保持体及びその製造方法
KR102450072B1 (ko) 기판 고정 장치
JP6008063B1 (ja) 静電チャック装置
JP2009094138A (ja) ウエハ保持体および半導体製造装置
KR101636764B1 (ko) 정전척 및 이를 포함하는 기판 처리 장치
WO2017130827A1 (ja) 静電チャック装置
JP5434636B2 (ja) 静電チャックを備えた基板保持体
JP4614868B2 (ja) 接合体及びその製造方法
JP2020068219A (ja) 保持装置
JP6060889B2 (ja) ウエハ加熱用ヒータユニット
JP7509814B2 (ja) 保持装置
JP7388998B2 (ja) 保持装置
JP2009094137A (ja) ウエハ保持体および半導体製造装置
JP7509731B2 (ja) 保持装置
JP2024013794A (ja) 保持装置
JP6642170B2 (ja) 静電チャック装置及びその製造方法
JP6597437B2 (ja) 静電チャック装置
JP2024019807A (ja) 保持装置
US11309203B2 (en) Wafer stage and method of manufacturing the same
JP2023102317A (ja) 保持装置
TWI840328B (zh) 基板固定裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240620