JP2023096894A - カーボン膜の形成方法及び半導体装置の製造方法 - Google Patents

カーボン膜の形成方法及び半導体装置の製造方法 Download PDF

Info

Publication number
JP2023096894A
JP2023096894A JP2021212932A JP2021212932A JP2023096894A JP 2023096894 A JP2023096894 A JP 2023096894A JP 2021212932 A JP2021212932 A JP 2021212932A JP 2021212932 A JP2021212932 A JP 2021212932A JP 2023096894 A JP2023096894 A JP 2023096894A
Authority
JP
Japan
Prior art keywords
ruthenium
carbon film
gas
forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021212932A
Other languages
English (en)
Inventor
正 光成
Tadashi Mitsunari
宏貴 荒井
Hirotaka Arai
勝 堀
Masaru Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Tokyo Electron Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Tokai National Higher Education and Research System NUC filed Critical Tokyo Electron Ltd
Priority to JP2021212932A priority Critical patent/JP2023096894A/ja
Publication of JP2023096894A publication Critical patent/JP2023096894A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】プラズマエッチング耐性を有し、かつ、容易に除去可能なカーボン膜の形成方法及び半導体装置の製造方法を提供する。【解決手段】下地層が形成された基板を準備する工程と、前記下地層の上に炭素含有化合物とルテニウム含有化合物によりルテニウムを添加したカーボン膜を成膜する工程と、有する、カーボン膜の形成方法。【選択図】図1

Description

本発明は、カーボン膜の形成方法及び半導体装置の製造方法に関する。
特許文献1には、耐プラズマ性が高く、低温成膜が可能なアモルファスカーボン膜の成膜方法、および、そのようなアモルファスカーボン膜の成膜方法を適用した半導体装置の製造方法が開示されている。
特開2007-224383号公報
ところで、基板に形成された下地層をプラズマエッチングする処理において、例えば、マスク材料としてカーボン膜を用いる場合がある。このカーボン膜には、プラズマエッチング耐性の向上が求められている。また、下地層のプラズマエッチング処理後に、基板から容易に除去することが求められている。
上記課題に対して、一側面では、プラズマエッチング耐性を有し、かつ、容易に除去可能なカーボン膜の形成方法及び半導体装置の製造方法を提供することを目的とする。
上記課題を解決するために、一の態様によれば、下地層が形成された基板を準備する工程と、前記下地層の上に炭素含有化合物とルテニウム含有化合物によりルテニウムを添加したカーボン膜を成膜する工程と、有する、カーボン膜の形成方法が提供される。
一の側面によれば、プラズマエッチング耐性を有し、かつ、容易に除去可能なカーボン膜の形成方法及び半導体装置の製造方法を提供することができる。
一実施形態に係る基板処理方法を説明するフローチャートである。 基板の断面模式図の一例である。 成膜装置の概略構成を示す図である。 一実施形態に係る半導体装置の製造方法を説明するフローチャートである。 基板の断面模式図の一例である。 アッシング装置の概略構成を示す図である。 ルテニウムを添加したカーボン膜のプラズマエッチング耐性を示すグラフの一例である。 ルテニウムを添加したカーボン膜のアッシングレートを示すグラフの一例である。
以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
<基板処理方法>
一実施形態に係る基板処理方法について、図1及び図2を用いて説明する。図1は、一実施形態に係る基板処理方法を説明するフローチャートである。図2は、基板Wの断面模式図の一例である。図1に示す基板処理方法では、基板Wにカーボン膜を形成する。
ステップS101において、基板Wを準備する。ここで、基板Wには、下地層200(図2参照)が形成されている。下地層200は、例えば、プラズマエッチング処理が施される被エッチング膜である。下地層200は、例えば、SiO膜、SiN膜、SiO膜とSiN膜を交互に積層した積層膜等であってよい。
ステップS102において、基板Wの下地層200の上にルテニウムを添加したカーボン膜(以下、RuC膜ともいう。)210を成膜する。下地層200の上にルテニウムを添加したカーボン膜210が成膜された基板Wの一例を図2に示す。
ここで、ステップS102において、基板Wに形成された下地層200の上にルテニウムを添加したカーボン膜210を成膜する成膜装置300について、図3を用いて説明する。図3は、成膜装置300の概略構成を示す図である。成膜装置300は、プラズマCVD(chemical vapor deposition)装置であって、基板Wにルテニウムを添加したカーボン膜210を成膜する成膜装置である。
成膜装置300は、略円筒状の気密な処理容器1を有する。処理容器1の内部には、基板Wを載置するステージ2が設けられている。ステージ2は、円筒状の支持部材3によって支持されている。ステージ2の外縁部には、基板Wをガイドするためのガイドリング4が設けられている。これにより、ステージ2及びガイドリング4によって、ステージ2の上面に基板Wを載置するための略円形状の凹部が形成されている。ステージ2には、モリブデンなどの高融点金属で構成されたヒータ5が埋め込まれている。ヒータ5は、ヒータ電源6から給電され、ステージ2に載置された基板Wを所定の温度に加熱する。また、ステージ2は、平行平板電極の下部電極として機能する。ステージ2は、伝送路43を介して接地されている。また、ステージ2には、バイアスを印加するために高周波電源や直流電源が接続されていてもよい。
処理容器1の天壁1aには、絶縁部材9を介してシャワーヘッド10が設けられている。シャワーヘッド10は、平行平板電極の上部電極として機能し、下部電極としてのステージ2と対向している。シャワーヘッド10には、整合器41を介して高周波電源42が接続されている。高周波電源42から上部電極(シャワーヘッド10)に例えば、400kHz~100MHzの高周波電力を供給することによって、上部電極(シャワーヘッド10)と下部電極(ステージ2)との間に高周波電界が生成され、容量結合プラズマが生成する。プラズマ生成部40は、整合器41と、高周波電源42と、を含む。なお、プラズマ生成部40は、容量結合プラズマに限らず、誘導結合プラズマなど他のプラズマを生成するものであってもよい。
シャワーヘッド10は、ベース部材11と、シャワープレート12と、を有する。ベース部材11とシャワープレート12との間には、ガス拡散空間13が形成されている。シャワープレート12には、ガス拡散空間13から処理容器1内へガスを分散供給するための多数のガス吐出孔14が例えば均等に配置されている。ベース部材11の中央付近には、ガス拡散空間13と連通するガス導入孔15が形成されている。ガス導入孔15は、ガス配管16を介して、ガス供給部20のガス供給ライン21d~24dと接続されている。なお、ベース部材11の上部に形成された凹部には、断熱部材17が設けられている。
ガス供給部20は、カーボン含有ガス供給源21と、ルテニウム含有ガス供給源22と、Arガス供給源23と、Heガス供給源24と、を有する。
カーボン含有ガス供給源21は、炭素(C)含有化合物ガス(カーボン(C)含有ガス)を供給する。具体的には、カーボン含有ガス供給源21は、炭化水素ガス(Cガス)を供給する。炭化水素ガスとして、例えば、CH、C、C、C、C等のうち少なくとも1つを含むガスを用いることができる。
ルテニウム含有ガス供給源22は、ルテニウム(Ru)含有化合物ガス(ルテニウム(Ru)含有ガス)を供給する。具体的には、ルテニウム含有ガス供給源22は、ルテニウム前駆体ガスを供給する。ルテニウム前駆体ガスとして、例えば、EtCpRu((CRu)、Ru(C、Ru(C1119、Ru(CO)12等の有機ルテニウムガスのうち少なくとも1つを含むガスを用いることができる。
Arガス供給源23は、プラズマ生成ガスやパージガス、カーボン含有ガスやルテニウム含有ガスのキャリアガスなどとして用いるArガスを供給する。
Heガス供給源24は、プラズマ生成ガスやパージガス、カーボン含有ガスやルテニウム含有ガスのキャリアガスなどとして用いるHeガスを供給する。
カーボン含有ガス供給源21は、ガス供給ライン21dを介して、ガス配管16に接続される。ガス供給ライン21dには、バルブ21a、マスフローコントローラ21b、バルブ21cが設けられる。マスフローコントローラ21bは、ガス供給ライン21dを流れる炭素(C)含有化合物ガスの流量を制御する。バルブ21a,21cは、開閉動作により、ガス配管16への炭素(C)含有化合物ガスの供給・遮断を行う。
ルテニウム含有ガス供給源22は、ガス供給ライン22dを介して、ガス配管16に接続される。ガス供給ライン22dには、バルブ22a、マスフローコントローラ22b、バルブ22cが設けられる。マスフローコントローラ22bは、ガス供給ライン22dを流れるルテニウム(Ru)含有化合物ガスの流量を制御する。バルブ22a,22cは、開閉動作により、ガス配管16へのルテニウム(Ru)含有化合物ガスの供給・遮断を行う。
Arガス供給源23は、ガス供給ライン23dを介して、ガス配管16に接続される。ガス供給ライン23dには、バルブ23a、マスフローコントローラ23b、バルブ23cが設けられる。マスフローコントローラ23bは、ガス供給ライン23dを流れるArガスの流量を制御する。バルブ23a,23cは、開閉動作により、ガス配管16へのArガスの供給・遮断を行う。
Heガス供給源24は、ガス供給ライン24dを介して、ガス配管16に接続される。ガス供給ライン24dには、バルブ24a、マスフローコントローラ24b、バルブ24cが設けられる。マスフローコントローラ24bは、ガス供給ライン24dを流れるHeガスの流量を制御する。バルブ24a,24cは、開閉動作により、ガス配管16へのHeガスの供給・遮断を行う。
そして、ガス供給ライン21d~24dからガス配管16に供給されたガスは、ガス導入孔15を介してガス拡散空間13に供給され、シャワープレート12のガス吐出孔14を通り、処理容器1内に吐出される。
処理容器1の底壁1bの中央部には、略円形の穴50が形成されている。また、底壁1bには、穴50を覆うように下方に向けて突出する排気室51が設けられている。排気室51の側面には、排気管52が接続されている。排気管52には、排気装置53が接続されている。これにより、排気管52は、排気装置53によって処理容器1内を減圧できるように構成されている。
ステージ2には、基板Wを支持して昇降させるための複数(たとえば、3本)のウェハ支持ピン54が設けられる。複数のウェハ支持ピン54は、ステージ2の表面に対して突没可能に設けられ、支持板55に支持される。そして、ウェハ支持ピン54は、駆動機構56により、支持板55を介して昇降可能に構成される。
処理容器1の側壁には、搬送口57が設けられている。搬送口57は、ゲートバルブ58によって開閉される。処理容器1内と搬送室(図示せず)との間における基板Wの搬入出は、搬送口57を介して行われる。
また、成膜装置300は、制御装置60を備えている。制御装置60は、例えばコンピュータであって、制御部61と、記憶部62と、を備えている。記憶部62には、成膜装置300において実行される各種の処理を制御するプログラムが格納される。制御部61は、記憶部62に記憶されたプログラムを読み出して実行することによって成膜装置300の動作を制御する。
また、制御装置60には、ユーザーインターフェース63が接続されている。ユーザーインターフェース63は、オペレータが成膜装置300を管理するためにコマンドの入力操作などを行う入力装置や、成膜装置300の稼働状況を可視化して表示するディスプレイなどの出力装置を有している。
このような構成により、成膜装置300は、ガス供給部20から炭素(C)含有化合物ガス及びルテニウム(Ru)含有化合物ガスを同時に処理容器1内に供給することにより、プラズマCVD処理によって、基板Wにルテニウムを添加したカーボン膜210を成膜することができる。換言すれば、成膜装置300は、ガス供給部20から炭素(C)含有化合物ガスを処理容器1内に供給してプラズマCVD処理によって基板Wにカーボン膜を成膜する。ここで、成膜装置300は、同時にガス供給部20からルテニウム(Ru)含有化合物ガスを処理容器1内に供給することにより、カーボン膜にルテニウム(Ru)を添加し、基板Wにルテニウムを添加したカーボン膜210を成膜することができる。
また、成膜装置300は、ルテニウム含有ガス供給源22からガス配管16に供給されるルテニウム(Ru)含有化合物ガスの流量を制御することにより、基板Wに成膜されるカーボン膜におけるルテニウムの添加量を制御することができる。
なお、成膜装置300は、プラズマCVD処理によって、基板Wにルテニウムを添加したカーボン膜210を成膜するものとして説明したが、これに限られるものではない。例えば、成膜装置300は、ガス供給部20から炭素(C)含有化合物ガスとルテニウム(Ru)含有化合物ガスを交互に処理容器1内に供給することにより、基板Wにルテニウムを添加したカーボン膜210を成膜してもよい。具体的には、成膜装置300は、ガス供給部20から炭素(C)含有化合物ガスを処理容器1内に供給することにより、プラズマCVD処理によって、基板Wにカーボン膜を成膜するカーボン膜成膜工程を行う。次に、成膜装置300は、ガス供給部20からルテニウム(Ru)含有化合物ガスを処理容器1内に供給することにより、基板Wに形成されたカーボン膜の表面にルテニウム(Ru)を吸着させるルテニウム吸着工程を行う。そして、カーボン膜成膜工程とルテニウム吸着工程とを交互に繰り返すことにより、基板Wにルテニウムを添加したカーボン膜210を成膜してもよい。
また、例えば、成膜装置300は、ガス供給部20から炭素(C)含有化合物ガスの供給中にルテニウム(Ru)含有化合物ガスを間欠的に処理容器1内に供給することにより、基板Wにルテニウムを添加したカーボン膜210を成膜してもよい。これにより、カーボン膜中のルテニウムの添加量を制御することができる。
また、成膜装置300は、処理容器1に炭素(C)含有化合物ガス及びルテニウム(Ru)含有化合物ガスを供給して、基板Wにルテニウムを添加したカーボン膜210を成膜するものとして説明したが、これに限られるものではない。基板Wにルテニウムを添加したカーボン膜210を成膜する成膜装置は、ターゲットをスパッタして基板Wに成膜するスパッタ装置であってもよい。即ち、成膜装置は、炭素(C)含有化合物のターゲットと、ルテニウム(Ru)含有化合物のターゲットと、を有し、プラズマを用いて2つのターゲットをスパッタすることにより、ルテニウムを添加したカーボン膜210を成膜してもよい。なお、スパッタ装置は、2つのターゲットを同時にスパッタする構成であってもよく、2つのターゲットを交互にスパッタする構成であってもよい。また、スパッタ装置は、2つのターゲットを任意のタイミングでスパッタする構成であってもよく、これにより、ルテニウムの添加量を制御することができる。
以上のように、成膜装置300によれば、ルテニウムの添加量を制御して、基板Wにルテニウムを添加したカーボン膜210を成膜することができる。
<半導体装置の製造方法>
次に、上述したルテニウムを添加したカーボン膜をハードマスクとして用い、下地層をエッチングすることにより半導体装置を製造する、半導体装置の製造方法について、図4及び図5を用いて説明する。図4は、一実施形態に係る半導体装置の製造方法を説明するフローチャートである。図5は、基板Wの断面模式図の一例である。
ステップS401において、基板Wを準備する。ここで、基板Wには、下地層500(図5(a)参照)が形成されている。下地層500は、後述するハードマスク510をマスクとして、プラズマエッチング処理が施される被エッチング膜である。下地層500は、例えば、SiO膜、SiN膜、SiO膜とSiN膜を交互に積層した積層膜等であってよい。
ステップS402において、基板Wの下地層500の上にルテニウムを添加したカーボン膜(RuC膜)で形成されたハードマスク510を成膜する。なお、ハードマスク510の成膜方法は、図1から図3に示すルテニウムを添加したカーボン膜210の成膜方法と同様であり、重複する説明を省略する。ここで、図5(a)に示すように、下地層500の上にハードマスク510が成膜される。
ステップS403において、ハードマスク510にパターンを形成する。ここでは、ハードマスク510の上にSiON膜520を成膜し、SiON膜520の上にパターンを有するレジスト膜530を成膜する。次に、パターンが形成されたレジスト膜530をマスクとして、SiON膜520をエッチングすることにより、SiON膜520にパターンを形成する。次に、パターンが形成されたレジスト膜530及びSiON膜520をマスクとして、ハードマスク510をエッチングすることにより、ハードマスク510にパターンを形成する。これにより、図5(b)に示すように、ハードマスク510には、ビア、ホール、トレンチ等のパターンを有する凹部515が形成される。
なお、レジスト膜530及びSiON膜520をマスクとしてハードマスク510をエッチングする処理は、例えば、エッチングガスとしてOガスやHガスを用いて、ルテニウムを添加したカーボン膜(ハードマスク510)をエッチングする。
ステップS404において、凹部515が形成されたハードマスク510をマスクとして、下地層500をプラズマエッチングする。これにより、図5(c)に示すように、下地層500には、凹部505が形成される。
ここで、下地層500をエッチングする際、基板Wの温度が0℃以下の低温でエッチング処理される。また、ハードマスク510をマスクとして下地層500をエッチングする処理は、下地層500(例えば、SiO膜、SiN膜、SiO膜とSiN膜を交互に積層した積層膜等)をエッチングする処理と同様の条件で行うことができる。例えば、エッチングガスとしてフッ素含有ガス(例えば、C、C、O、CHのうち少なくとも1つを含むガス)を用いて、高バイアスを印加する条件で下地層500をエッチングする。
ステップS405において、ハードマスク510を基板Wから除去する。以上のように、図4のフローチャートに示す処理によって、図5(d)に示すように、基板Wの下地層500に凹部505のパターンを形成することができる。
ここで、ステップS405において、ハードマスク510を除去するアッシング装置600について、図6を用いて説明する。図6は、アッシング装置600の概略構成を示す図である。アッシング装置600は、ハードマスク510を除去(アッシング)する成膜装置である。
アッシング装置600(図6参照)は、成膜装置300(図3参照)と比較して、処理容器1に供給するガスが異なっている。即ち、ガス供給部20が供給するガスが異なっている。その他のアッシング装置600の構成は、成膜装置300の構成と同様であり、重複する説明は省略する。
アッシング装置600のガス供給部20は、酸素含有ガス供給源25を有する。
酸素含有ガス供給源25は、酸素(O)含有ガスを供給する。具体的には、酸素含有ガス供給源25は、例えばOガスを供給する。
酸素含有ガス供給源25は、ガス供給ライン25dを介して、ガス配管16に接続される。ガス供給ライン25dには、バルブ25a、マスフローコントローラ25b、バルブ25cが設けられる。マスフローコントローラ25bは、ガス供給ライン25dを流れる酸素(O)含有ガスの流量を制御する。バルブ25a,25cは、開閉動作により、ガス配管16への酸素(O)含有ガスの供給・遮断を行う。
そして、ガス供給ライン25dからガス配管16に供給されたガスは、ガス導入孔15を介してガス拡散空間13に供給され、シャワープレート12のガス吐出孔14を通り、処理容器1内に吐出される。
このような構成により、アッシング装置600は、ガス供給部20から酸素(O)含有ガスを処理容器1内に供給し、処理容器1内に酸素プラズマを生成することによって、基板W形成されたハードマスク510をアッシングにより除去する。
ここで、ハードマスク510中の炭素(C)は、プラズマ中の酸素(O)と結合し、ガスとして排気装置53によって排気される。
C+2O→CO↑(気体)
また、ハードマスク510中のルテニウム(Ru)は、プラズマ中の酸素(O)と結合し、ガスとして排気装置53によって排気される。
Ru+4O→RuO↑(気体)
このように、アッシング装置600は、カーボン膜をアッシングするとともに、カーボン膜中に添加されたルテニウム(Ru)もアッシングすることができる。これにより、アッシング装置600は、基板Wからハードマスク510を除去することができる。
次に、ステップS102、および、ステップS402で成膜したルテニウムを添加したカーボン膜210(ハードマスク510)の特性について、図7及び図8を用いて説明する。
図7は、下地層200(下地層500)をプラズマエッチングする処理における、ルテニウムを添加したカーボン膜210(ハードマスク510)のプラズマエッチング耐性を示すグラフの一例である。
ここでは、ステップS102(ステップS402)における成膜装置300としてスパッタ装置を用いて、基板Wに対しルテニウムの添加量を変更したルテニウムを添加したカーボン膜210(ハードマスク510)をそれぞれ成膜した。そして、ルテニウムを添加したカーボン膜210(ハードマスク510)が成膜された基板Wに対し、ステップS404における処理条件でプラズマエッチング処理をそれぞれ行った。
図7に示すグラフにおいて、横軸は、カーボン膜中に添加されるルテニウムの添加量(ルテニウムを添加したカーボン膜210(ハードマスク510)をRu1-Xと示した場合のRuとCの原子数濃度比X(%))を示す。即ち、横軸が0%は、ルテニウムを添加しないカーボン膜(丸印で示す。)であることを示す。横軸が100%は、ルテニウム膜(三角印で示す。)であることを示す。横軸が0%と100%の間は、ルテニウムを添加したカーボン膜(菱形印で示す。)であることを示す。
また、図7に示すグラフにおいて、縦軸は、アモルファスカーボン膜のエッチングレートを1として正規化した各ルテニウムを添加したカーボン膜210(ハードマスク510)のエッチングレート比を示す。
0%に示すカーボン膜(丸印参照)において、スパッタで成膜したカーボン膜は、アモルファスカーボン膜と比較して、エッチングレートが高くなっている。
一方、100%に示すルテニウム膜(三角印参照)において、スパッタで成膜したルテニウム膜は、アモルファスカーボン膜と比較して、エッチングレートが低くなっている。即ち、エッチング耐性が向上している。
また、カーボン膜に添加するルテニウムの添加量が原子数濃度比で5%以上(菱形印参照)からエッチングレートが大きく低下する。このため、カーボン膜に添加するルテニウムの添加量は、原子数濃度比で5%以上が好ましい。これにより、ルテニウムを添加したカーボン膜210(ハードマスク510)のエッチング耐性を大幅に向上することができる。
また、カーボン膜に添加するルテニウムの添加量が原子数濃度比で30%(菱形印参照)以上に達すると、ルテニウム膜(三角印参照)と同程度にエッチングレートが低下する。このため、カーボン膜に添加するルテニウムの添加量は、原子数濃度比で30%以下が好ましい。これにより、ルテニウムを添加したカーボン膜210(ハードマスク510)に含まれるルテニウムの添加量を抑制しつつ、高いエッチング耐性を確保することができる。また、ルテニウムの添加量を減らすことにより、ルテニウムを添加したカーボン膜210(ハードマスク510)のコストを低減することができる。また、ルテニウムを添加したカーボン膜210(ハードマスク510)に使用される金属原子を低減することができるので、処理容器1内の金属汚染を抑制することができる。
このように、ルテニウムを添加したカーボン膜を用いることにより、プラズマエッチング処理において、ルテニウムを添加したカーボン膜210(ハードマスク510)のエッチングを抑制しつつ、下地層200(下地層500)をエッチングすることができる。即ち、ルテニウムを添加したカーボン膜を用いることにより、プラズマエッチング処理におけるルテニウムを添加したカーボン膜210(ハードマスク510)と下地層200(下地層500)の選択比を改善することができる。これにより、例えば下地層200(下地層500)に形成されるトレンチ等の凹部の形状(例えば、凹部505)の精度を向上させることができる。
また、ルテニウムを添加することによりカーボン膜の伝導性制御が可能である。カーボンの成膜条件にもよるが、例えば200℃以下の成膜温度で成膜したカーボンは、膜中のsp3比率が向上し絶縁性の高いいわゆるダイヤモンドライクカーボンとなる場合が多い。その際、ハードマスクのチャージアップにより、イオンの直進性が悪化する現象が起きうる。これに対し、ルテニウム添加したカーボン膜では、ルテニウムの金属由来の導電作用を適切に材料に付加することが可能となる。
また、下地層200(下地層500)のプラズマエッチング処理において、基板Wの温度が0℃以下の低温で、エッチングガスとしてフッ素含有ガスが用いられている。このため、ルテニウムを添加したカーボン膜210(ハードマスク510)の材料は、室温以下の温度でフッ化物の蒸気圧が低いことが求められる。即ち、ルテニウムを添加したカーボン膜210(ハードマスク510)の材料のフッ化物が気体ではない材料が望ましい。ここで、ルテニウム(Ru)のフッ化物は、常温付近で固体である。このため、ハードマスク510の材料として、ルテニウムを添加したカーボン膜を用いるこことができる。
このように、ハードマスク510の材料として、ルテニウムを添加したカーボン膜を用いることにより、下地層500をプラズマエッチングする際、ハードマスク510の上側角部がエッチングされ凸形状となることを抑制することができる。これにより、下地層500に形成される凹部505の加工精度を向上させることができる。
図8は、アッシング処理における、ルテニウムを添加したカーボン膜210(ハードマスク510)のアッシングレートを示すグラフの一例である。
ここでは、ステップS102(ステップS402)における成膜装置300としてスパッタ装置を用いて、基板Wに対しルテニウムの添加量を変更したルテニウムを添加したカーボン膜210(ハードマスク510)をそれぞれ成膜した。そして、ルテニウムを添加したカーボン膜210(ハードマスク510)が成膜された基板Wに対し、アッシング処理をそれぞれ行った。ここでは、基板温度:60℃、HF:1kW、LF:0.3kW、圧力:30mT、供給ガス:Oガス、流量:800sccm、エッチング時間:20minでプラズマアッシングを行った。
図8に示すグラフにおいて、横軸は、カーボン膜中に添加されるルテニウムの添加量(ルテニウムを添加したカーボン膜210(ハードマスク510)をRu1-Xと示した場合のRuとCの原子数濃度比X(%))を示す。縦軸は、アッシングレート(nm/min)を示す。
図8に示すように、ルテニウムを添加しないカーボン膜(0%)において、Oガスのプラズマを用いて、カーボン膜がアッシングできることを示している。
ここで、ルテニウム(Ru)は、酸素(O)と結合することにより、常温付近、常圧で揮発性のある化合物を形成する。このため、図8に示すように、ルテニウムを添加したカーボン膜においても、カーボン膜(0%)のアッシング処理と同様にOガスのプラズマを用いて、ルテニウムを添加したカーボン膜もアッシング可能であることを示している。
以上のように、カーボン膜にルテニウムを添加することにより、エッチング耐性を向上させることができる。これにより、プラズマエッチングする際に、ルテニウムを添加したカーボン膜210(ハードマスク510)と下地層200(下地層500)との選択比を向上させることができる。
また、カーボン膜にルテニウムを添加することにより、ルテニウムを添加しないカーボン膜と同様に、アッシングにより除去することができる。
200,500 下地層
210 ルテニウムを添加したカーボン膜
300 成膜装置
510 ハードマスク
520 SiON膜
530 レジスト膜
600 アッシング装置

Claims (11)

  1. 下地層が形成された基板を準備する工程と、
    前記下地層の上に炭素含有化合物とルテニウム含有化合物によりルテニウムを添加したカーボン膜を成膜する工程と、有する、
    カーボン膜の形成方法。
  2. 前記ルテニウムを添加したカーボン膜をRu1-Xと示した場合のRuとCの原子数濃度比Xは、0.05≦X≦0.3の範囲である、
    請求項1に記載のカーボン膜の形成方法。
  3. 前記ルテニウムを添加したカーボン膜を成膜する工程は、
    前記炭素含有化合物を含むガスと前記ルテニウム含有化合物を含むガスを同時に前記基板を収容する処理容器に供給し、前記処理容器内にプラズマを生成して、前記ルテニウムを添加したカーボン膜を成膜する、
    請求項1または請求項2に記載のカーボン膜の形成方法。
  4. 前記ルテニウムを添加したカーボン膜を成膜する工程は、
    前記炭素含有化合物を含むガスを前記基板を収容する処理容器に供給し前記処理容器内にプラズマを生成して、前記基板にカーボン膜を成膜する工程と、
    前記ルテニウム含有化合物を含むガスを前記処理容器に供給して、前記カーボン膜にルテニウムを吸着させる工程と、を繰り返す、
    請求項1または請求項2に記載のカーボン膜の形成方法。
  5. 前記炭素含有化合物を含むガスは、CH、C、C、C、Cのうち少なくとも1つを含むガスである、
    請求項3または請求項4に記載のカーボン膜の形成方法。
  6. 前記ルテニウム含有化合物を含むガスは、EtCpRu((CRu)、Ru(C、Ru(C1119、Ru(CO)12のうち少なくとも1つを含むガスである、
    請求項3乃至請求項5のいずれか1項に記載のカーボン膜の形成方法。
  7. 前記ルテニウムを添加したカーボン膜を成膜する工程は、
    前記炭素含有化合物を含むターゲットと前記ルテニウム含有化合物を含むターゲットをスパッタして、前記ルテニウムを添加したカーボン膜を成膜する、
    請求項1または請求項2に記載のカーボン膜の形成方法。
  8. 請求項1乃至請求項7のいずれか1項に記載のカーボン膜の形成方法によって、前記基板に形成された前記下地層の上にハードマスクを形成する工程と、
    前記ハードマスクにパターンを形成する工程と、
    前記パターンが形成された前記ハードマスクを介して、前記下地層をプラズマエッチングする工程と、
    前記ハードマスクをアッシングする工程と、を有する、
    半導体装置の製造方法。
  9. 前記下地層をエッチングする工程は、
    フッ素含有ガスを用いる、
    請求項8に記載の半導体装置の製造方法。
  10. 前記下地層をエッチングする工程は、
    前記基板の温度が0℃以下で処理される、
    請求項8または請求項9に記載の半導体装置の製造方法。
  11. 前記ハードマスクをアッシングする工程は、
    ガスのプラズマを用いる、
    請求項8乃至請求項10のいずれか1項に記載の半導体装置の製造方法。
JP2021212932A 2021-12-27 2021-12-27 カーボン膜の形成方法及び半導体装置の製造方法 Pending JP2023096894A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021212932A JP2023096894A (ja) 2021-12-27 2021-12-27 カーボン膜の形成方法及び半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021212932A JP2023096894A (ja) 2021-12-27 2021-12-27 カーボン膜の形成方法及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2023096894A true JP2023096894A (ja) 2023-07-07

Family

ID=87005496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021212932A Pending JP2023096894A (ja) 2021-12-27 2021-12-27 カーボン膜の形成方法及び半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2023096894A (ja)

Similar Documents

Publication Publication Date Title
TWI760555B (zh) 蝕刻方法
JP2017199909A (ja) Aleおよび選択的蒸着を用いた基板のエッチング
US10494715B2 (en) Atomic layer clean for removal of photoresist patterning scum
JP4652140B2 (ja) プラズマエッチング方法、制御プログラム、コンピュータ記憶媒体
US11270890B2 (en) Etching carbon layer using doped carbon as a hard mask
KR100979716B1 (ko) 비결정 탄소막의 성막 방법 및 이를 이용한 반도체 장치의 제조 방법
TWI446436B (zh) Plasma etching method, plasma etching device, control program and computer memory media
US8409460B2 (en) Forming method of amorphous carbon film, amorphous carbon film, multilayer resist film, manufacturing method of semiconductor device, and computer-readable storage medium
TWI697046B (zh) 蝕刻方法
JP2016208027A (ja) コバルトのエッチバック
WO2020096817A1 (en) Directional deposition in etch chamber
JP2008028022A (ja) プラズマエッチング方法およびコンピュータ読取可能な記憶媒体
JP6050944B2 (ja) プラズマエッチング方法及びプラズマ処理装置
JP7174634B2 (ja) 膜をエッチングする方法
JP6388553B2 (ja) 基板処理装置及び基板処理方法
TWI766866B (zh) 蝕刻方法
JP6388552B2 (ja) 基板処理装置及び基板処理方法
JP6049527B2 (ja) プラズマ処理方法及びプラズマ処理装置
JP2012233259A (ja) アモルファスカーボン膜の成膜方法、それを用いた半導体装置の製造方法、およびコンピュータ読取可能な記憶媒体
JP2023096894A (ja) カーボン膜の形成方法及び半導体装置の製造方法
JP2023096895A (ja) カーボン膜の形成方法及び半導体装置の製造方法
JP5089871B2 (ja) 半導体装置の製造方法
JP7178918B2 (ja) エッチング方法、プラズマ処理装置、及び処理システム
JP6770988B2 (ja) 基板処理装置および半導体装置の製造方法
TW202032662A (zh) 電漿處理方法及電漿處理裝置