JP2023081583A - 厚さ測定装置及び厚さ測定方法 - Google Patents

厚さ測定装置及び厚さ測定方法 Download PDF

Info

Publication number
JP2023081583A
JP2023081583A JP2021195408A JP2021195408A JP2023081583A JP 2023081583 A JP2023081583 A JP 2023081583A JP 2021195408 A JP2021195408 A JP 2021195408A JP 2021195408 A JP2021195408 A JP 2021195408A JP 2023081583 A JP2023081583 A JP 2023081583A
Authority
JP
Japan
Prior art keywords
unit
temperature
thickness
duration
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021195408A
Other languages
English (en)
Inventor
良宜 時岡
Yoshinori Tokioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2021195408A priority Critical patent/JP2023081583A/ja
Publication of JP2023081583A publication Critical patent/JP2023081583A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

【課題】対象物の温度を用いて厚さの測定精度を向上させる。【解決手段】厚さ測定装置100は、励磁コイル11を介して対象物9に渦電流を誘起させる励磁部77と、対象物9の渦電流を検出コイル12(検出センサ)を介して検出する検出部78と、対象物9の温度を取得する温度取得部79と、検出部78によって検出された渦電流の継続時間を、温度に対する継続時間の関係を示す近似式及び温度取得部79によって取得された温度を用いて補正する補正部86と、補正部86によって補正された継続時間に基づいて対象物9の厚さを求める厚さ導出部84と、対象物9の異なる温度における複数の渦電流を含む参照データに基づいて近似式を求めると共に、近似式を求める際の条件を切り替え可能に構成されている近似部85とを備える。【選択図】図3

Description

ここに開示された技術は、厚さ測定装置及び厚さ測定方法に関する。
従来より、渦電流を用いた測定装置が知られている。例えば、特許文献1には、渦電流を用いて対象物の探傷を行う測定装置が開示されている。特許文献1の測定装置は、透磁率等の温度依存性を考慮して、対象物の温度に基づいて検出信号等を補正している。
特開昭58-102150号公報
ところで、渦電流を用いた測定装置には、対象物の厚さを測定する厚さ測定装置がある。このような厚さ測定装置においても、特許文献1の測定装置のように、対象物の温度を考慮することによって測定精度を向上させることができる。しかしながら、対象物の温度をどのように用いるかなど、測定精度の向上にはまだまだ改善の余地がある。
ここに開示された技術は、かかる点に鑑みてなされたものであり、その目的とするところは、対象物の厚さ測定において対象物の温度を用いて測定精度を向上させることにある。
ここに開示された厚さ測定装置は、励磁コイルを介して対象物に渦電流を誘起させる励磁部と、前記対象物の前記渦電流を検出センサを介して検出する検出部と、前記対象物の温度を取得する温度取得部と、前記検出部によって検出された前記渦電流の継続時間を、前記温度に対する前記継続時間の関係を示す近似式及び前記温度取得部によって取得された前記温度を用いて補正する補正部と、前記補正部によって補正された前記継続時間に基づいて前記対象物の厚さを求める厚さ導出部と、前記対象物の異なる温度における複数の前記渦電流を含む参照データに基づいて前記近似式を求めると共に、前記近似式を求める際の条件を切り替え可能に構成されている近似部とを備える。
ここに開示された厚さ測定方法は、励磁コイルを介して対象物に渦電流を誘起させることと、前記対象物の前記渦電流を検出センサを介して検出することと、前記対象物の温度を取得することと、検出された前記渦電流の継続時間を、前記温度に対する前記継続時間の関係を示す近似式及び取得された前記温度を用いて補正することと、補正された前記継続時間に基づいて前記対象物の厚さを求めることとを含み、前記近似式は、前記対象物の異なる温度における複数の前記渦電流を含む参照データに基づいて求められ、前記近似式を求める際の条件は、切り替え可能になっている。
前記厚さ測定装置によれば、対象物の温度を用いて厚さの測定精度を向上させることができる。
前記厚さ測定方法によれば、対象物の温度を用いて厚さの測定精度を向上させることができる。
図1は、厚さ測定装置のブロック図である。 図2は、処理装置の制御部の制御系統の構成を示すブロック図である。 図3は、演算装置の制御部の制御系統の構成を示すブロック図である。 図4は、渦電流に対応する電圧信号V(t)の時間変化を示すグラフである。 図5は、厚さ測定のフローチャートである。 図6は、参照データを収集するデータ収集のサブルーチンのフローチャートである。 図7は、近似式作成のサブルーチンのフローチャートである。 図8は、継続時間偏差Δτ及び温度偏差ΔTを表すグラフである。 図9は、継続時間偏差Δτ及び温度偏差ΔTの別の例を表すグラフである。
以下、例示的な実施形態を図面に基づいて詳細に説明する。図1は、厚さ測定装置100のブロック図である。厚さ測定装置100は、パルス渦電流探傷(PEC:Pulsed Eddy Current)によって対象物9の厚さを測定する。厚さ測定装置100は、プローブ1を制御する処理装置7と対象物9の厚さを求める演算装置8とを備えている。例えば、対象物9は、蒸気又はドレンが流通する金属製の配管である。配管は、円管状に形成されている。
プローブ1は、対象物9に渦電流を発生させ且つ発生した渦電流を検出するために用いられる。プローブ1は、非接触型のプローブであり、対象物9に近接して配置される。尚、「非接触型」とは、非接触でも使用可能であることを意味し、接触状態での使用を除外するものではない。プローブ1は、対象物9の表面に対向するように設置される。例えば、プローブ1は、断熱性を有するスペーサ(図示省略)を介して対象物9に設置される。
プローブ1は、変動磁場を形成することによって対象物9に渦電流を発生させる。また、プローブ1は、対象物9に発生した渦電流の変化を誘導電圧として検出する。具体的には、プローブ1は、励磁電流による磁束で対象物9に渦電流を誘起させる励磁コイル11と、対象物9の渦電流を検出する検出コイル12とを備える。プローブ1は、励磁コイル11によって対象物9に渦電流を誘起させ、誘起した渦電流を検出コイル12で検出する。
それに加えて、プローブ1は、対象物9の温度を検出する温度センサ15をさらに備え、温度センサ15によって対象物9の温度を検出する。さらに、プローブ1は、励磁コイル11、検出コイル12及び温度センサ15を収容するケーシングをさらに備えていてもよい。検出コイル12は、検出センサの一例である。
図1の例では、励磁コイル11の軸心と検出コイル12の軸心とが一直線状になるように、励磁コイル11と検出コイル12とが配列されている。このとき、検出コイル12の方が対象物9の近くに配置されている。プローブ1は、励磁コイル11及び検出コイル12を複数組有していてもよい。図1では、プローブ1は、2組の励磁コイル11及び検出コイル12を有している。
さらに、プローブ1は、励磁コイル11及び検出コイル12に挿入されたコア13を備えていてもよい。コア13は、全体として概ねU字状に形成されている。より詳しくは、コア13は、パーマロイで形成された、概ねU字状の複数の薄板が積層されて形成されている。コア13の一方の端部における直線状の部分は、一方の組の励磁コイル11及び検出コイル12に挿入されている。コア13の他方の端部における直線状の部分は、他方の組の励磁コイル11及び検出コイル12に挿入されている。コア13は、2組の励磁コイル11及び検出コイル12を磁気的に接続している。
励磁コイル11は、電流が印加されることによって、その軸心の方向に磁場を形成する。一方の励磁コイル11と他方の励磁コイル11とは、軸心の方向において互いに反対向きの磁場を形成するように電流が印加される。その結果、コア13には、コア13の長手方向に沿った磁場が形成される。すなわち、コア13の一方の端部がN極となるときには、コア13の他方の端部はS極となる。逆に、コア13の一方の端部がS極となるときには、コア13の他方の端部はN極となる。例えば、一方の励磁コイル11から対象物9へ向かって磁束が発生し、対象物9から他方の励磁コイル11へ向かって磁束が発生する。詳しくは、一方の励磁コイル11から発せられる大部分の磁束は、一方の励磁コイル11の軸心の方向に出て対象物9内へ入り、対象物9内を略円弧状に通過し、他方の励磁コイル11の軸心の方向へ向かい他方の励磁コイル11に入っていく。励磁コイル11に印加する電流を変動させることによって、対象物9に発生する磁場が変動し、対象物9に渦電流が発生する。
一方、対象物9のうち検出コイル12の近傍の部分に発生した渦電流によって、検出コイル12を貫通する磁束が形成される。検出コイル12を貫通する磁束が変化すると、検出コイル12に誘導起電力が発生する。検出コイル12は、この誘導起電力を検出することによって、対象物9の渦電流を検出する。つまり、検出コイル12によって誘導起電力を検出することを、渦電流を検出するともいう。
温度センサ15は、例えば、熱電対である。
処理装置7は、プローブ1を用いて、対象物9に渦電流を発生させ且つ発生した渦電流を検出すると共にそのときの対象物9の温度を取得する。演算装置8は、処理装置7によって検出された渦電流の継続時間(詳しくは後述するが、渦電流が急激に減衰するまでの時間)に基づいて対象物9の厚さを求める。それに加えて、演算装置8は、対象物9の厚さを求める際に用いる継続時間を対象物9の温度に基づいて補正する。
処理装置7は、送信部71と受信部72と検温部73と通信部74と制御部75と記憶部76とを有している。
送信部71は、励磁コイル11にパルス状の励磁電流を印加する。送信部71は、パルス発生器71aと送信アンプ71bとを有している。パルス発生器71aは、制御部75からの指令に基づいてパルス信号を発生する。送信アンプ71bは、パルス発生器71aからのパルス信号を増幅して、励磁電流として励磁コイル11へ出力する。
受信部72は、対象物9の渦電流に応じて検出コイル12に発生する誘導起電力を受信する。受信部72は、検出コイル12に発生する電圧が入力され、該電圧を増幅する受信アンプ72aを少なくとも有している。受信部72は、電圧信号にフィルタ処理を施すフィルタをさらに有していてもよい。
検温部73は、温度センサ15の出力が入力される。検温部73は、温度センサ15の検出信号が入力され、該検出信号を増幅する受信アンプを有していてもよい。
通信部74は、外部機器と無線通信を行う。例えば、通信部74は、受信部72によって検出された電圧信号(即ち、検出信号)及び検温部73によって検出された検出信号を演算装置8に送信する。
制御部75は、処理装置7の全体を制御する。制御部75は、各種の演算処理を行う。例えば、制御部75は、CPU(Central Processing Unit)等のプロセッサで形成されている。制御部75は、MCU(Micro Controller Unit)、MPU(Micro Processor Unit)、FPGA(Field Programmable Gate Array)、PLC(Programmable Logic Controller)、システムLSI等で形成されていてもよい。
例えば、制御部75は、送信部71に所定期間だけ励磁電流を出力させる一方、励磁電流の出力停止後に受信部72を介して検出信号を取得する。制御部75は、受信部72による検出信号を取得するタイミングで、検温部73による検出信号も取得する。制御部75は、受信部72及び検温部73からの検出信号を記憶部76に記憶させ、記憶部76に記憶された検出信号を通信部74を介して演算装置8に適宜、送信する。
記憶部76は、制御部75で実行されるプログラム及び各種データを格納している。例えば、記憶部76は、制御プログラムが格納されている。記憶部76は、不揮発性メモリ、HDD(Hard Disc Drive)又はSSD(Solid State Drive)等で形成される。
図2は、処理装置7の制御部75の制御系統の構成を示すブロック図である。制御部75は、記憶部76から制御プログラムをメモリに読み出して展開することによって、各種機能を実現する。具体的には、制御部75は、励磁コイル11を介して対象物9に渦電流を誘起させる励磁部77と、対象物9の渦電流を検出コイル12を介して検出する検出部78と、対象物9の温度を取得する温度取得部79と、継続時間の補正のための参照データを収集するデータ収集部710として機能する。
励磁部77は、送信部71に励磁コイル11へ励磁電流を印加させる。具体的には、励磁部77は、パルス発生器71aに指令を出力し、パルス発生器71aにパルス信号を発生させる。その結果、励磁電流が送信アンプ71bから励磁コイル11へ印加される。
検出部78は、対象物9の渦電流として、渦電流に対応する電圧信号を検出する。具体的には、検出部78は、検出コイル12の誘導起電力に対応する電圧信号を検出する。さらに詳しくは、検出部78は、励磁コイル11への励磁電流の印加が停止されてから所定の期間、電圧信号の検出を継続する。つまり、検出部78は、励磁コイル11への励磁電流の印加が停止されてからの対象物9の渦電流の計時変化(即ち、過渡変化)を検出している。検出部78は、検出された渦電流、即ち、電圧信号を記憶部76に保存する。以下、説明の便宜上、検出部78によって検出された電圧信号を単に「渦電流」と称する場合がある。例えば、記憶部76に保存された、渦電流に対応する電圧信号も単に「渦電流」と称する。
温度取得部79は、検出部78による電圧信号の取得時の対象物9の温度を温度センサ15を介して取得する。温度取得部79は、対象物9の温度を記憶部76に保存する。
記憶部76においては、検出部78によって検出された渦電流と、該渦電流が検出されたときに温度取得部79によって取得された対象物9の温度とが互いに関連づけられて記憶されている。つまり、記憶部76には、渦電流と温度とが1つの組み合わせとして記憶されている。
データ収集部710は、厚さ測定のための測定データと補正のための参照データとを取得する。測定データ及び参照データの何れの場合であっても、データ収集部710は、励磁部77による励磁、検出部78による渦電流の検出及び温度取得部79による温度の取得を行うことによって、渦電流及び温度の組み合わせデータを取得する。データ収集部710は、取得された渦電流及び温度を記憶部76に保存する。データ収集部710は、測定データを取得する場合には、所定の測定周期ごとに渦電流及び温度の組み合わせデータを取得する。
データ収集部710は、参照データを取得する場合には、渦電流の継続時間の補正を行う前の所定の収集期間中に渦電流及び温度を複数組収集する。具体的には、データ収集部710は、励磁部77による励磁、検出部78による渦電流の検出及び温度取得部79による温度の取得を複数回行うことによって、複数組の渦電流及び温度を参照データとして収集する。収集期間は、対象物9の厚さの変化が無視できる期間であり、対象物9の物性及び使用状況等によって異なる。結果として、データ収集部710は、対象物9の温度が異なる複数の渦電流を収集する。複数の渦電流は、対象物9の厚さの変化の影響をほとんど受けていない。収集された複数の渦電流の差異は、主として対象物9の温度に依存する。
制御部75は、記憶部76に保存された対象物9の渦電流及び温度を演算装置8へ通信部74を介して送信する。
演算装置8は、コンピュータ又はコンピュータネットワーク(所謂、クラウド)で形成されている。演算装置8は、通信部81と制御部82と記憶部83とを有している。
通信部81は、外部機器と無線通信を行う。例えば、通信部81は、処理装置7からの信号等を受信する。
制御部82は、演算装置8の全体を制御する。制御部82は、各種の演算処理を行う。例えば、制御部82は、CPU(Central Processing Unit)等のプロセッサで形成されている。制御部82は、MCU(Micro Controller Unit)、MPU(Micro Processor Unit)、FPGA(Field Programmable Gate Array)、PLC(Programmable Logic Controller)、システムLSI等で形成されていてもよい。
記憶部83は、制御部82で実行されるプログラム及び各種データを格納している。例えば、記憶部83は、制御プログラムが格納されている。記憶部83は、不揮発性メモリ、HDD(Hard Disc Drive)又はSSD(Solid State Drive)等で形成される。また、記憶部83は、処理装置7から送信される信号等を保存する。具体的には、記憶部83は、処理装置7によって取得された対象物9の渦電流及び温度を保存する。
図3は、演算装置8の制御部82の制御系統の構成を示すブロック図である。制御部82は、記憶部83から制御プログラムをメモリに読み出して展開することによって、各種機能を実現する。具体的には、制御部82は、厚さ導出部84と、近似部85と、補正部86として機能する。
厚さ導出部84は、対象物9の渦電流の継続時間に基づいて対象物9の厚さを求める。詳しくは詳述するが、励磁コイル11によって対象物9に誘起された渦電流は、対象物9の表面(プローブ1が対向している面)から裏面に浸透し、裏面に到達すると急激に減衰する。対象物9の渦電流の継続時間とは、渦電流が対象物9に誘起されてから急激に減衰するまでの時間である。対象物9の渦電流の継続時間は、対象物9の厚さと相関がある。
厚さ導出部84は、処理装置7によって検出された渦電流(具体的には、電圧信号)の継続時間を求める。厚さ導出部84は、継続時間と厚さとの相関関係に基づいて、継続時間から対象物9の厚さを求める。
近似部85は、参照データに基づいて、対象物9の温度に対する継続時間の関係を示す近似式を求める。近似部85は、記憶部83に保存された参照データのうちそれぞれの渦電流の継続時間を求める。近似部85は、複数組の継続時間及び温度に基づいて近似式を求める。
補正部86は、前述の厚さ導出部84による厚さの導出に用いられる継続時間を、近似式及び対象物9の温度を用いて補正する。つまり、対象物9の渦電流と該渦電流が検出されたときの対象物9の温度とが記憶部83に保存されている。厚さ導出部84は、記憶部83に保存された渦電流から継続時間を求める。補正部86は、求められた継続時間を近似式及び対象物9の温度に基づいて補正する。厚さ導出部84は、補正された継続時間に基づいて対象物9の厚さを求める。
続いて、渦電流と対象物9の厚さとの関係について詳しく説明する。図4は、渦電流に対応する電圧信号V(t)の時間変化を示すグラフである。図4のグラフは、両対数グラフである。図4において、電圧信号V0(t)は、厚さd0を有する対象物9の電圧信号であり、電圧信号V1(t)は、厚さd0よりも薄い厚さd1を有する対象物9の電圧信号である。
渦電流は、対象物9に浸透していくのに従って減衰していく。渦電流は、対象物9の表面(プローブ1が対向している面)から裏面に到達するまでの間は徐々に減衰し、裏面に到達すると急激に減衰する。電圧信号V(t)も渦電流と同様の変化を示す。つまり、電圧信号V(t)の過渡変化は、渦電流の過渡変化に相当する。渦電流が対象物9の裏面に達するまでの間の電圧信号V(t)の変化は、両対数グラフ上では直線的(線形的)に表される。その後、電圧信号V(t)は、急激に減衰していく。このように変化する電圧信号V(t)は、以下の式(1)のように表される。
Figure 2023081583000002
ここで、Aは、受信アンプ72aの増幅率である。nは、電圧信号V(t)の減衰の程度に関連する定数であり、-nは、両対数グラフにおける電圧信号V(t)の傾きを表す。
式(1)からもわかるように、電圧信号V(t)は、徐々に減衰するものの時間τまでは継続し、時間τにおいて急激に減衰する。説明の便宜上、τを「継続時間」と称する。継続時間τは、以下の式(2)で表わされる。
τ=σμd ・・・(2)
ここで、σは、対象物9の導電率であり、μは、対象物9の透磁率であり、dは、対象物9の厚さである。
つまり、継続時間τは、対象物9の厚さdに依存して変化する。対象物9の導電率σ及び透磁率μが一定であると仮定すると、継続時間τは、対象物9の厚さdに依存して変化する。また、継続時間τ及び厚さdが変化しても、τ/dは、一定である。そのため、既知の厚さd0に対する継続時間τ0と、未知の厚さdxに対する継続時間τxとがわかれば、以下の式(3)に基づいて、未知の厚さdxを求めることができる。
Figure 2023081583000003
例えば、図4において電圧信号V0(t),V1(t)を比較すると、厚さd0の対象物9の電圧信号V0(t)は、継続時間τ0まで継続する。対象物9の厚さdがd0からd1に減少すると、継続時間τは、τ0からτ1に減少する。尚、電圧信号V(t)のうち両対数グラフで直線状の部分の変化態様は、式(1)からわかるように厚さdに依存しないので、電圧信号V0(t),V1(t)で実質的に同じである。厚さd0及び継続時間τ0,τ1を式(3)に代入することによって、厚さd1を求めることができる。
ただし、実際の対象物9の導電率σ及び透磁率μは、温度依存性を有する。そのため、継続時間τも温度依存性を有する。例えば、炭素鋼であれば、一般的に、導電率σは、負の温度特性を有し、透磁率μは、正の温度特性を有する。例えば、導電率σ及び透磁率μの温度依存性を考慮すると、継続時間τは、以下の式(4)のように表すことができる。
Figure 2023081583000004
ここで、α、α、β、βは、係数である。
継続時間τを式(4)におけるTの一次の項及びTの二次の項に対応するように補正することで、対象物9の温度に応じた補正継続時間τ’を求めることができる。
厚さ測定装置100においては、近似部85が、対象物9の温度に対する継続時間の関係を示す近似式を求め、補正部86が、近似式を用いて継続時間τを補正する。続いて、厚さ導出部84が、補正継続時間τ’に基づいて対象物9の厚さを求める。このような厚さ測定についてフローチャートを用いてさらに詳細に説明する。図5は、厚さ測定のフローチャートである。
まず、厚さ測定の準備段階として、ステップS101において、処理装置7が参照データを取集する。例えば、処理装置7は、外部からの指令を受けて、参照データの収集を実行する。具体的には、プローブ1の対象物9への設置が完了した後であって対象物9の厚さ測定を開始する前に、ユーザが演算装置8を操作して、参照データの収集の実行を入力する。処理装置7は、演算装置8を介して収集指令を受け取り、参照データの収集を開始する。尚、ユーザは、処理装置7を操作することによって、処理装置7に直接、収集の実行を入力してもよい。
参照データの収集は、図6のフローチャートに従って実行される。図6は、参照データを収集するデータ収集のサブルーチンのフローチャートである。処理装置7は、ステップS201において、収集周期が到来したか否かを判定する。収集周期は、渦電流の検出等を繰り返し実行する周期である。尚、収集周期は、測定データを取得する測定周期よりも長い。収集周期が到来していない場合には、処理装置7は、ステップS201の判定を繰り返して、収集周期の到来を待機する。
収集周期が到来すると、処理装置7は、ステップS202において、現在が所定の収集期間内か否かを判定する。具体的には、処理装置7は、参照データの収集を開始してから収集期間が経過していないか否かを判定する。収集期間は、収集周期よりも長い期間である。
収集期間内である場合には、処理装置7は、一組の参照データを取得する。具体的には、励磁部77は、ステップS203において、励磁コイル11へ励磁電流を印加して励磁する。励磁コイル11は、励磁電流の印加によって軸心の方向へ磁場を形成する。一方の励磁コイル11と他方の励磁コイル11とは、軸心の方向において互いに反対向きの磁場を形成する。例えば、一方の励磁コイル11から対象物9へ向かって磁束が発生し、対象物9から他方の励磁コイル11へ向かって磁束が発生する。
続いて、ステップS204において、励磁部77は、励磁電流の出力を停止させ、検出部78は、対象物9に発生した渦電流を検出する。検出部78は、電圧信号の検出を所定期間継続する。こうして、検出部78は、検出コイル12の誘導起電力の過渡変化(経時変化)、即ち、対象物9に発生する渦電流の過渡変化を検出する。
さらに、ステップS205において、温度取得部79は、対象物9の温度を取得する。処理装置7は、一組の渦電流及び温度を記憶部76に保存する。これにより、一組の参照データの取得が完了する。
その後、処理装置7は、ステップS201へ戻って、次の収集周期が到来したか否かを判定する。次の収集周期が到来すると、収集期間内である場合には、さらに一組の参照データが取得される。つまり、処理装置7は、収集期間が終了するまで、収集周期ごとに一組の参照データを取得する。
ステップS202において収集期間が終了していると、処理装置7は、記憶部76に保存された参照データ、即ち、複数組の渦電流及び温度を演算装置8へ送信する。これにより、処理装置7による参照データの取集が終了する。演算装置8は、受信した参照データを記憶部83に保存する。
続いて、厚さ測定のフローチャートのステップS102において、演算装置8は、近似式を作成する。近似式の作成は、図7のフローチャートに従って実行される。図7は、近似式作成のサブルーチンのフローチャートである。
まず、近似部85は、ステップS301において、近似部85は、記憶部83に保存された参照データのうちそれぞれの渦電流の継続時間を求める。つまり、近似部85は、複数組の渦電流及び温度の参照データから複数組の継続時間及び温度のデータを作成する。
次に、近似部85は、ステップS302において、複数組の継続時間及び温度から近似式を作成する。ステップS302で作成される近似式は、暫定的な近似式である。
例えば、近似部85は、複数組の継続時間及び温度から基準となる基準継続時間τr及び基準温度Trを求める。近似部85は、複数の継続時間の平均値を基準継続時間τrに設定し、複数の温度の平均値を基準温度Trに設定する。あるいは、近似部85は、複数の継続時間の平均値に最も近い継続時間及びそのときの温度をそれぞれ基準継続時間τr及び基準温度Trに設定してもよい。あるいは、近似部85は、複数の温度の平均値に最も近い温度及びそのときの継続時間をそれぞれ基準温度Tr及び基準継続時間τrに設定してもよい。あるいは、近似部85は、複数組の継続時間及び温度のうち最も早く検出された継続時間及びそのときの温度をそれぞれ基準継続時間τr及び基準温度Trに設定してもよい。
近似部85は、複数組の継続時間及び温度から、基準継続時間τr及び基準温度Trとの偏差である継続時間偏差Δτ(=τ―τr)及び温度偏差ΔT(=T-Tr)を求める。例えば、図8は、得られた継続時間偏差Δτ及び温度偏差ΔTを表すグラフである。図中の各点は、一組の継続時間偏差Δτ及び温度偏差ΔTを表す。
近似部85は、複数組の継続時間偏差Δτ及び温度偏差ΔTから最小二乗法によって近似式を求める。つまり、近似部85は、温度偏差ΔTに対する継続時間偏差Δτの関係を示す近似式を対象物9の温度に対する継続時間の関係を示す近似式として求める。このとき、近似式を求める条件が設定されている。まずは、近似部85は、近似式を求める条件を式(5)で示すように二次関数に設定し、近似式を求める。図8の例では、実線で示すような二次関数の近似式が求められる。
Figure 2023081583000005
ここで、γ、γ、γは、係数である。
続いて、近似部85は、ステップS303において、求められた近似式の二次の項の係数γが正か否かを判定する。図8の例では、二次の項の係数γは、正である。二次の項の係数γが正の場合には、近似部85は、求められた近似式を確定的な近似式とし、近似式の作成を終了する。
図9は、継続時間偏差Δτ及び温度偏差ΔTの別の例を表すグラフである。図中の実線は、二次関数の近似式に対応する曲線である。図9の例では、二次の項の係数γは、負である。二次の項の係数γが負の場合には、近似部85は、ステップS304において、近似式を求める条件を式(6)で示すように一次関数に変更して、近似式を再度求める。図9の例では、二点鎖線で示すような一次関数の近似式が求められる。近似部85は、求められた近似式を確定的な近似式とし、近似式の作成を終了する。
Figure 2023081583000006
ここで、δ、δは、係数である。
近似式の作成が終了すると、厚さ測定が開始される。例えば、厚さ導出部84は、厚さ測定のフローチャートのステップS103において所定の測定周期が到来したか否かを判定する。測定周期は、対象物9の厚さ測定を求める周期である。測定周期が到来していない場合には、厚さ導出部84は、ステップS103の判定を繰り返して、測定周期の到来を待機する。
測定周期が到来すると、厚さ導出部84は、処理装置7に指令を出力して、処理装置7に測定データを取得させる。測定データは、対象物9の厚さ測定を行うための渦電流及び温度である。具体的には、処理装置7が演算装置8からの指令を受けると、励磁部77は、ステップS104において、励磁コイル11へ励磁電流を印加して励磁する。続いて、ステップS105において、検出部78は、対象物9に発生した渦電流を検出する。さらに、ステップS106において、温度取得部79は、対象物9の温度を取得する。処理装置7は、測定データとしての一組の渦電流及び温度を演算装置8へ送信する。演算装置8は、受信した一組の渦電流及び温度を記憶部83に保存する。
続いて、厚さ導出部84は、ステップS107において、記憶部83に保存された測定データのうち渦電流の継続時間τxを求める。
その後、補正部86は、ステップS108において、継続時間τxを近似式及び測定データの温度を用いて補正する。具体的には、補正部86は、基準温度Trと測定データの温度Txとの偏差である温度偏差ΔT(=Tx-Tr)を求める。補正部86は、求められた温度偏差ΔTを近似式に代入して、継続時間偏差Δτを求める。補正部86は、継続時間τxを求められた継続時間偏差Δτで補正して、補正継続時間τx’(=τx+Δτ)を求める。
そして、厚さ導出部84は、ステップS109において、補正継続時間τx’を式(3)のτxに代入することによって、対象物9の厚さdxを求める。
その後、厚さ導出部84は、ステップS110において、厚さ測定を終了するか否かを判定する。例えば、厚さ導出部84は、厚さ測定の終了指令が入力されているか否かを判定する。例えば、ユーザが演算装置8を操作して、厚さ測定の終了を入力する。終了指令が入力されていない場合には、厚さ導出部84は、ステップS103へ戻って、次の測定周期が到来したか否かを判定する。次の測定周期が到来すると、測定データが再び取得され、測定データに基づいて対象物9の厚さが求められる。つまり、演算装置8は、測定周期ごとに測定データの取得及び対象物9の厚さの導出を繰り返す。
ステップS110において、終了指令が入力されている場合には、厚さ測定が終了される。
このように、厚さ測定装置100は、対象物9に渦電流を発生させると共に発生した渦電流を検出し、渦電流の継続時間τに基づいて対象物9の厚さを測定する。ここで、渦電流の継続時間τは温度依存性を有するので、厚さ測定装置100は、対象物9の温度に対する継続時間の関係を示す近似式を用いて、継続時間τを対象物9の温度で補正する。厚さ測定装置100は、複数組の継続時間及び温度の参照データから近似式を求める。その際、厚さ測定装置100は、近似式を求める条件を切り替えることによって、参照データへの近似式の近似の精度を向上させることができる。厚さ測定装置100は、このように作成された近似式を用いて継続時間τを補正することによって、継続時間τの温度補正の精度を向上させることができ、ひいては、対象物9の厚さを高い精度で求めることができる。
温度に対する継続時間の関係は、対象物9によって異なる。例えば、温度に応じて継続時間が増加するか又は減少するか、そのときの変化が二次関数的か一次関数的か等は、対象物9によって決まる。この例では、厚さ測定装置100は、まずは近似式を求める条件を二次関数に設定して近似式を求める。求められた近似式の二次の項の係数が正の場合は、その近似式が採用される。二次の項の係数が負の場合には、近似式を求める条件として、近似式が一次関数に変更される。その結果、一次関数の近似式が求められる。この例の対象物9の温度に応じた継続時間の変化態様は、二次の項の係数が正の二次関数が最も適合する。次点としては、二次の項の係数が負の二次関数よりも一次関数の方が、対象物9の温度に応じた継続時間の変化態様に合っている。前述のような条件で近似式を求めることによって、このような傾向に適合した近似式を求めることができる。
以上のように、厚さ測定装置100は、励磁コイル11を介して対象物9に渦電流を誘起させる励磁部77と、対象物9の渦電流を検出コイル12(検出センサ)を介して検出する検出部78と、対象物9の温度を取得する温度取得部79と、検出部78によって検出された渦電流の継続時間を、温度に対する継続時間の関係を示す近似式及び温度取得部79によって取得された温度を用いて補正する補正部86と、補正部86によって補正された継続時間に基づいて対象物9の厚さを求める厚さ導出部84と、対象物9の異なる温度における複数の渦電流を含む参照データに基づいて近似式を求めると共に、近似式を求める際の条件を切り替え可能に構成されている近似部85とを備える。
換言すると、厚さ測定方法は、励磁コイル11を介して対象物9に渦電流を誘起させることと、対象物9の渦電流を検出コイル12(検出センサ)を介して検出することと、対象物9の温度を取得することと、検出された渦電流の継続時間を、温度に対する継続時間の関係を示す近似式及び取得された温度を用いて補正することと、補正された継続時間に基づいて対象物9の厚さを求めることとを含み、近似式は、対象物9の異なる温度における複数の渦電流を含む参照データに基づいて求められ、近似式を求める際の条件は、切り替え可能になっている。
この構成によれば、基本的には、対象物9に渦電流が誘起され、誘起された渦電流が検出され、検出された渦電流の継続時間に基づいて対象物9の厚さが求められる。このとき、継続時間は、対象物9の温度に対する継続時間の関係を示す近似式と対象物9の温度とを用いて補正される。近似式は、対象物9の異なる温度における複数の渦電流を含む参照データに基づいて求められる。ここで、近似式を求める際の条件が切り替え可能に構成されているので、参照データにより適合した近似式を求めることができる。これにより、渦電流の継続時間を対象物9の温度に応じてより適切に補正することができ、その結果、対象物9の厚さの測定精度を向上させることができる。
具体的には、近似部85は、近似式を一次関数で求めるか又は二次関数で求めるかを切り替え可能に構成されている。
この構成によれば、参照データへの適合性が高くなるように、近似式を一次関数と二次関数とで切り替えることができる。対象物9の温度に応じた継続時間の変化態様は、対象物9の物性及び使用状況等によって異なる。近似式を一次関数と二次関数とで切り替えることによって、近似式の近似の精度を向上させることができる。
あるいは、近似部85は、近似式を二次関数で求める場合の二次関数の二次の項の係数を正と負とで切り替え可能に構成されている。
この構成によれば、対象物9の物性及び使用状況等に応じて、二次関数の近似式の二次の項の係数を正と負とで切り替えることによって、近似式の近似の精度を向上させることができる。
また、厚さ測定装置100は、参照データを収集するデータ収集部710をさらに備え、データ収集部710は、継続時間の補正を行う前の所定の収集期間中に、励磁部77による励磁、検出部78による渦電流の検出及び温度取得部79による温度の取得を複数回行うことによって、渦電流及び温度の組み合わせを複数組、参照データとして収集する。
この構成によれば、厚さ測定装置100は、近似式を求めるための参照データを収集するデータ収集部710を備えている。データ収集部710は、厚さ測定のためのデータを取得する場合と同様に、励磁部77による励磁、検出部78による渦電流の検出及び温度取得部79による温度の取得を行う。つまり、データ収集部710は、厚さ測定を行うときと同じ対象物9及び同じ状況において参照データを収集することができる。その結果、厚さ測定の実情に即した参照データを取得することができる。
さらにまた、データ収集部710は、厚さ導出部84による厚さの導出が開始される前に参照データを収集する。
この構成によれば、厚さ導出部84による厚さの導出の開始時から継続時間を対象物9の温度で補正して、厚さの測定精度を向上させることができる。また、厚さの導出が開始される前なので、対象物9の厚さの変動が少ない時期に参照データが収集される。つまり、厚さ変動の影響が小さい参照データを収集することができる。
《その他の実施形態》
以上のように、本出願において開示する技術の例示として、前記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、前記実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、前記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
前記実施形態について、以下のような構成としてもよい。
例えば、厚さ測定装置100の構成も一例に過ぎない。処理装置7と演算装置8は、一体的に構成されていてもよい。すなわち、1つの装置が処理装置7及び演算装置8の機能を有していてもよい。また、処理装置7と演算装置8とが有線で接続されていてもよい。また、1つの演算装置8に対して複数の処理装置7が接続されていてもよい。また、演算装置8は、無線又は有線により接続された他の装置に対して、演算した厚さに関するデータを送信するようにしてもよい。
プローブ1は、前述の構成に限られない。例えば、プローブ1は、2組の励磁コイル11及び検出コイル12を備えているが、励磁コイル11及び検出コイル12は、1組でもよく、3組以上であってもよい。励磁コイル11と検出コイル12とはそれぞれの軸心が一直線状になるように配置されていなくてもよい。励磁コイル11と検出コイル12とはそれぞれの軸心が一直線状になるように配置される場合、検出コイル12よりも励磁コイル11の方が対象物9の近くに配置されてもよい。さらに、プローブ1の検出部は、検出コイル12に限定されない。検出部は、対象物9の渦電流を直接的又は間接的に検出できるものであればよく、例えば、ホール素子であってもよい。また、プローブ1は、コア13を備えていなくてもよい。
温度センサ15は、熱電対に限定されない。温度センサは、対象物の温度を検出できればよく、例えば、サーミスタであってもよい。温度センサ15の個数は、1個に限定されず、複数個であってもよい。
さらに、厚さ測定装置100による厚さ測定は、一例に過ぎない。PECによる厚さ測定方法は、様々であるので、任意の測定手法を採用することができる。また、対象物9の温度を考慮した、対象物9の厚さの算出方法は、前述の方法に限定されるものではない。
また、渦電流の継続時間τの補正方法も一例に過ぎない。例えば、参照データは、実際の厚さ測定を行うプローブ1及び対象物9で取得されたデータでなくてもよい。つまり、厚さ測定を行うプローブ1及び対象物9と同種であるが別のプローブ1及び対象物9を用いて参照データが取得されてもよい。演算装置8は、厚さ測定を行うプローブ1及び対象物9とは別で取得された参照データを外部から受け取り、該参照データを用いて近似式を作成してもよい。
参照データから近似式を求める方法は、最小二乗法以外の方法であってもよい。近似式を求める条件は、前述の条件に限定されない。近似式を求める条件及びその条件を切り替える条件(以下、「切替条件」という)は、対象物9によって変更され得る。例えば、最初に設定される近似式を求める条件は、二次関数ではなく、一次関数でなくてもよい。あるいは、近似式を求める条件は、単に一次関数であるというだけでなく、傾きの正負まで限定されてもよい。
切替条件は、前述のように、二次関数の二次の項が負であることに限定されない。例えば、近似式を求める最初の条件が一次関数である場合には、切替条件は、求められた一次関数の傾き(即ち、一次の項の係数)が正であることであってもよい。あるいは、切替条件は、近似式の残差の二乗和が所定の閾値以上であることであってもよい。
あるいは、厚さ測定装置100は、近似式を求める条件をユーザが設定可能に構成されていてもよい。例えば、厚さ測定装置100は、近似式を求める条件として、一次関数、二次の項の係数が正の二次関数、及び、二次の項の係数が負の二次関数を選択肢として有し、ユーザが近似式を求める条件を選択して設定可能に構成されていてもよい。この場合、厚さ測定装置100は、まずは暫定的な条件で暫定的な近似式を作成した後、暫定的な近似式をユーザに提示し、ユーザからの条件の変更を受け付けるように構成されていてもよい。あるいは、厚さ測定装置100は、最初からユーザに設定された条件に従って近似式を作成してもよい。
また、近似式の作成は、厚さ測定を開始する前に限定されない。例えば、厚さ測定を開始する前に近似式が作成され、厚さ測定が開始された後に、参照データが再収集されて近似式が更新されてもよい。
フローチャートは、一例に過ぎない。フローチャートにおけるステップを適宜、変更、置き換え、付加、省略等を行ってもよい。また、フローチャートにおけるステップの順番を変更したり、直列的な処理を並列的に処理したりしてもよい。例えば、厚さ測定のフローチャート(図5)において、ステップS106の温度取得は、ステップS104の励磁又はステップS105の渦電流検出より前に又は並行して行われてもよい。
本明細書で開示する要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、および/または、それらの組み合わせ、を含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウェアであるか、または、列挙された機能を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットはハードウェアとソフトウェアの組み合わせであり、ソフトウェアはハードウェアおよび/またはプロセッサの構成に使用される。
100 厚さ測定装置
11 励磁コイル
12 検出コイル(検出センサ)
15 温度センサ
7 処理装置
77 励磁部
78 検出部
79 温度取得部
710 データ収集部
8 演算装置
84 厚さ導出部
85 近似部
9 対象物

Claims (6)

  1. 励磁コイルを介して対象物に渦電流を誘起させる励磁部と、
    前記対象物の前記渦電流を検出センサを介して検出する検出部と、
    前記対象物の温度を取得する温度取得部と、
    前記検出部によって検出された前記渦電流の継続時間を、前記温度に対する前記継続時間の関係を示す近似式及び前記温度取得部によって取得された前記温度を用いて補正する補正部と、
    前記補正部によって補正された前記継続時間に基づいて前記対象物の厚さを求める厚さ導出部と、
    前記対象物の異なる温度における複数の前記渦電流を含む参照データに基づいて前記近似式を求めると共に、前記近似式を求める際の条件を切り替え可能に構成されている近似部とを備える厚さ測定装置。
  2. 請求項1に記載の厚さ測定装置において、
    前記近似部は、前記近似式を一次関数で求めるか又は二次関数で求めるかを切り替え可能に構成されている厚さ測定装置。
  3. 請求項1に記載の厚さ測定装置において、
    前記近似部は、前記近似式を二次関数で求める場合の前記二次関数の二次の項の係数を正と負とで切り替え可能に構成されている厚さ測定装置。
  4. 請求項1乃至3の何れか1つに記載の厚さ測定装置において、
    前記参照データを収集するデータ収集部をさらに備え、
    前記データ収集部は、所定の収集期間中に、前記励磁部による励磁、前記検出部による前記渦電流の検出及び前記温度取得部による前記温度の取得を複数回行うことによって、前記渦電流及び前記温度の組み合わせを複数組、前記参照データとして収集する厚さ測定装置。
  5. 請求項4に記載の厚さ測定装置において、
    前記データ収集部は、前記厚さ導出部による厚さの導出が開始される前に前記参照データを収集する厚さ測定装置。
  6. 励磁コイルを介して対象物に渦電流を誘起させることと、
    前記対象物の前記渦電流を検出センサを介して検出することと、
    前記対象物の温度を取得することと、
    検出された前記渦電流の継続時間を、前記温度に対する前記継続時間の関係を示す近似式及び取得された前記温度を用いて補正することと、
    補正された前記継続時間に基づいて前記対象物の厚さを求めることとを含み、
    前記近似式は、前記対象物の異なる温度における複数の前記渦電流を含む参照データに基づいて求められ、
    前記近似式を求める際の条件は、切り替え可能になっている厚さ測定方法。
JP2021195408A 2021-12-01 2021-12-01 厚さ測定装置及び厚さ測定方法 Pending JP2023081583A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021195408A JP2023081583A (ja) 2021-12-01 2021-12-01 厚さ測定装置及び厚さ測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021195408A JP2023081583A (ja) 2021-12-01 2021-12-01 厚さ測定装置及び厚さ測定方法

Publications (1)

Publication Number Publication Date
JP2023081583A true JP2023081583A (ja) 2023-06-13

Family

ID=86727976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021195408A Pending JP2023081583A (ja) 2021-12-01 2021-12-01 厚さ測定装置及び厚さ測定方法

Country Status (1)

Country Link
JP (1) JP2023081583A (ja)

Similar Documents

Publication Publication Date Title
AU2010337180B2 (en) Temperature-measurement probe
JP7245673B2 (ja) プローブ及び厚さ測定装置
US20160054360A1 (en) Current measurement apparatus, device-behavior detection system, current measurement method, and program
WO2007083498A1 (ja) 温度推定方法および装置
JP2016538016A5 (ja)
CN103234647A (zh) 一种嵌入式系统的温度校准方法及系统
JP2021074806A5 (ja)
JP2023081583A (ja) 厚さ測定装置及び厚さ測定方法
JP2014521982A5 (ja)
JP6788511B2 (ja) 厚さ測定装置及び厚さ測定方法
JP6905884B2 (ja) プローブ
US9696219B2 (en) Method for calibrating a measuring device in a mobile terminal
WO2017046911A1 (ja) カプセル内視鏡システム
JP4559435B2 (ja) 測定対象のオブジェクト厚さ及び電気伝導度を測定するための方法及びデバイス
KR20210130639A (ko) 압연기에서 작업 물품의 두께 측정 방법
JP5188466B2 (ja) パルス励磁型渦電流探傷方法及びこれを用いたパルス励磁型渦電流探傷装置
JP2023094280A (ja) 厚さ測定装置及び厚さ測定方法
RU2664897C1 (ru) Способ измерения тепловой постоянной времени термодатчика
CN114206156A (zh) 头发造型设备
JP2023092658A (ja) 検出装置及び厚さ測定装置
JP2008151739A (ja) 温度推定方法および装置
KR101392303B1 (ko) 웨이블릿 변환을 이용한 주파수 해석식 자왜센서
JP6182695B2 (ja) 複素透磁率測定装置とその測定方法および応用。
JP2024059042A (ja) 処理装置
JP2012032249A (ja) 渦電流探傷方法及び渦電流探傷システム

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230331