JP2022129872A - 基板処理方法および基板処理装置 - Google Patents

基板処理方法および基板処理装置 Download PDF

Info

Publication number
JP2022129872A
JP2022129872A JP2021028727A JP2021028727A JP2022129872A JP 2022129872 A JP2022129872 A JP 2022129872A JP 2021028727 A JP2021028727 A JP 2021028727A JP 2021028727 A JP2021028727 A JP 2021028727A JP 2022129872 A JP2022129872 A JP 2022129872A
Authority
JP
Japan
Prior art keywords
substrate
temperature
oxide layer
metal oxide
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021028727A
Other languages
English (en)
Inventor
晃久 岩▲崎▼
Akihisa Iwasaki
泰利 奥野
Yasutoshi Okuno
真樹 鰍場
Maki Inaba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2021028727A priority Critical patent/JP2022129872A/ja
Priority to TW111103589A priority patent/TWI792896B/zh
Priority to KR1020220021467A priority patent/KR102553420B1/ko
Priority to CN202210171497.8A priority patent/CN114975111A/zh
Priority to US17/679,174 priority patent/US20220267909A1/en
Publication of JP2022129872A publication Critical patent/JP2022129872A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/12Gaseous compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30621Vapour phase etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02241III-V semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Drying Of Semiconductors (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

【課題】基板の主面の各位置においてナノメートル以下の精度で金属層のエッチング量を良好に制御する基板処理装置および基板処理方法を提供する。【解決手段】基板処理方法は、基板の主面に向けて酸化性流体を供給することによって、1原子層または数原子層からなる酸化金属層を金属層の表層に形成する酸化金属層形成工程と、ガス状態の水およびミスト状態の水の少なくともいずれかと、水とともに酸化金属層と反応する反応性ガスとを含有するエッチング流体を基板の主面に向けて供給することによって、酸化金属層をエッチングして基板の主面から選択的に除去する酸化金属層除去工程とを含む。酸化金属層形成工程および酸化金属層除去工程を1サイクルとするサイクル処理を少なくとも1サイクル実行することによって、サイクル毎にナノメートル以下の精度で金属層のエッチング量が制御される。【選択図】図5

Description

この発明は、基板を処理する基板処理方法と、基板を処理する基板処理装置とに関する。処理の対象となる基板には、たとえば、半導体ウェハ、液晶表示装置および有機EL(Electroluminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板等が含まれる。
下記特許文献1に開示されている基板処理では、ナノメートル以下の精度での金属層のエッチングを実現するために、過酸化水素水等の酸化剤で基板の主面の金属層を酸化させて1原子層または数原子層からなる酸化金属層を形成する酸化金属層形成工程と、希フッ酸等のエッチング液で酸化金属層を選択的に除去する酸化金属層除去工程とが繰り返される。酸化金属層形成工程および酸化金属層除去工程の間には、酸化剤やエッチング液を洗い流すリンス液でリンス工程が実行される。
特開2019-61978号公報
特許文献1に開示される基板処理のように、1原子層または数原子層単位で金属層を液体でエッチングする手法をALWE(Atomic Layer Wet Etching)という。ALWEでは、エッチング液やリンス液中の酸素の濃度(溶存酸素濃度)が高いと、エッチング液中の酸素によって金属層が酸化されて意図しない酸化金属層の形成が起きるおそれがある。そのため、ALWEでは、酸化金属層の除去選択性の低下を防止するために、エッチング液やリンス液中の溶存酸素を充分に低減する必要がある。さらに、リンス液やエッチング液が基板の主面の全体に行き渡らなかった場合には、基板の主面の各位置においてエッチング量のむらが発生するおそれがある。
そこで、この発明の1つの目的は、基板の主面の各位置においてナノメートル以下の精度で金属層のエッチング量を良好に制御する基板処理方法および基板処理装置を提供することである。
この発明の一実施形態は、金属層を主面に有する基板を処理する基板処理方法である。前記基板処理方法は、前記基板の主面に向けて酸化性流体を供給することによって、1原子層または数原子層からなる酸化金属層を前記金属層の表層に形成する酸化金属層形成工程と、ガス状態の水およびミスト状態の水の少なくともいずれかと、前記水とともに前記酸化金属層と反応する反応性ガスとを含有するエッチング流体を前記基板の主面に向けて供給することによって、前記酸化金属層をエッチングして前記基板から選択的に除去する酸化金属層除去工程とを含む。そして、前記酸化金属層形成工程および前記酸化金属層除去工程を1サイクルとするサイクル処理を少なくとも1サイクル実行することによって、ナノメートル以下の精度で前記金属層のエッチング量を制御する。
この基板処理方法では、酸化金属層形成工程では、1原子層または数原子層からなる酸化金属層が形成される。金属および酸化金属の1原子層の厚みは、1nm以下(たとえば、0.3nm以上0.4nm以下)である。数原子層とは、2原子層から10原子層のことをいう。そのため、酸化金属層の厚みは、数nm(たとえば、5nm)以下である。
そのため、酸化金属層除去工程において酸化金属層を選択的に除去することによって、金属層の表面から5nm以下の厚さの部分をエッチングすることができる。そして、この酸化金属層形成工程および酸化金属層除去工程を1サイクルとするサイクル処理が少なくとも1サイクル実行されることによって、サイクル毎にナノメートル以下の精度で金属層のエッチング量を制御することができる。ナノメートル以下の精度とは、数nm(たとえば、5nm)以下の精度をいう。
サイクル処理を1サイクル行うことによってエッチングされる金属層の厚みは、ほぼ一定である。そのため、酸化金属層形成工程および酸化金属層除去工程を繰り返し実行する回数を調節することによって、所望のエッチング量を達成することができる。
たとえば、サイクル処理を1サイクル行うことによって金属層が0.3nmエッチングされる場合、サイクル処理の実行数を調整することで、金属層が1.5nmエッチングされる基板処理を実行したり、金属層が1.8nmエッチングされる基板処理を実行したりすることができる。すなわち、概ね0.3nmの精度で金属層のエッチング量を制御することができる。
また、この基板処理方法では、酸化金属層を選択的に除去するために、ガス状態の水(水蒸気)およびミスト状態の水の少なくともいずれかと、反応性ガスとを含有するエッチング流体が用いられる。
この基板処理方法とは異なり、液体状態の水と、反応性ガスを液化させた反応性液体とを連続流で基板の主面に供給する場合、これらの液体と基板の主面との界面に凹凸が生じる。そのため、分子レベルでは、基板の主面の各位置において、基板の主面と反応性液体および反応性ガスを構成する分子(以下では、「反応性分子」という。)や水分子との衝突頻度にむらが生じる。
ガス状態の水またはミスト状態の水は、連続流の液体状態の水と比較して、基板の主面近傍で拡散しやすい。同様に、反応性ガスは、反応性液体と比較して基板の主面近傍で拡散しやすい。そのため、水分子および反応性分子を基板の主面の各位置において均等に衝突させやすい。したがって、ガス状態の水およびミスト状態の水の少なくともいずれかと反応性ガスとを含有するエッチング流体を用いる構成であれば、液体状態の水および反応性液体を含有するエッチング液を用いる構成と比較して、基板の主面におけるエッチング量のむらをナノメートル以下の精度で抑制しやすい。
その結果、基板の主面の各位置においてナノメートル以下の精度で金属層のエッチング量を良好に制御できる。
この発明の一実施形態では、前記基板処理方法は、前記酸化金属層除去工程の後、前記基板の主面へのガス状態の水およびミスト状態の水の少なくともいずれかの供給を継続して、前記基板の主面に接する空間から前記反応性ガスを排除する反応性ガス排除工程をさらに含む。
この基板処理方法によれば、エッチング流体の全体を別のガスで置換するのではなく、エッチング流体を構成するガス状態の水およびミスト状態の水の少なくともいずれかの供給を継続することで基板の主面に接する空間から反応性ガスが排除される。これにより、基板の主面に付着している反応性ガスの成分を水に吸着させて速やかに除去することができる。
この発明の一実施形態では、前記基板処理方法が、前記反応性ガス排除工程の後、前記基板の主面に接する空間に存在する水を不活性ガスで置換することによって、前記基板の主面に接する空間から水を排除する水排除工程をさらに含む。
この基板処理方法によれば、基板の主面に接する空間から水が不活性ガスによって置換されて当該空間から排除される。そのため、水分子に吸着されている微小量の酸素分子による意図しない金属層のエッチングを抑制できる。
この発明の一実施形態では、前記基板処理方法が、前記酸化金属層形成工程の後で、かつ、前記酸化金属層除去工程の前に、前記基板の主面に向けて不活性ガスを供給することによって、前記基板の主面に接する空間に存在する前記酸化性流体を不活性ガスで置換して、前記基板の主面に接する空間から前記酸化性流体を排除する酸化性流体排除工程をさらに含む。
この基板処理方法によれば、酸化金属層除去工程の前に、基板の主面に接する空間から酸化性流体が排除される。そのため、酸化金属層除去工程における意図しない金属層の酸化を抑制できる。
この発明の一実施形態では、前記酸化金属除去工程が、エッチング流体供給ユニットから前記基板の主面に向けてエッチング流体を供給するエッチング流体供給工程と、前記エッチング流体供給ユニットから供給されるエッチング流体よりも低い温度に前記基板の温度を調整する温度調整工程とを含む。
そのため、エッチング流体の温度が、基板の主面付近で低下するため、基板の主面付近において反応性分子および水分子の運動エネルギーが低下する。そのため、基板の主面に吸着された反応性分子および水分子が基板の主面から離れることが抑制される。言い換えると、基板の主面への反応性分子および水分子の吸着が促進される。これにより、金属層のエッチング速度を高めることができる。その結果、サイクル処理の1サイクル当たりのエッチング量を1原子層または数原子層に維持しながら、金属層のエッチング速度を高めることができる。
この発明の一実施形態では、前記酸化金属層形成工程が、前記基板を加熱しながら前記基板の主面に向けて前記酸化性流体を供給することによって、酸化金属層を形成する加熱酸化工程を含む。前記酸化金属層除去工程が、前記酸化金属層形成工程における前記基板の温度よりも前記基板の温度が低い状態で前記エッチング流体を前記基板の主面に向けて供給することによって、前記酸化金属層をエッチングする低温エッチング工程を含む。
この基板処理方法によれば、基板の温度が比較的高温(たとえば、100℃以上で、かつ、400℃以下)であるときに基板の主面の金属層が酸化される。そのため、金属層の酸化速度を高めることができる。一方、基板の温度が比較的低温(たとえば、25℃以上で、かつ、100℃未満)であるときにエッチングが行われる。基板の温度が比較的高温であれば、エッチング流体中に僅かに存在する酸素分子が酸化力を有する。そのため、エッチングが比較的低温で行われることで酸化金属層除去工程における金属層の意図しない酸化を抑制できる。
この発明の一実施形態では、前記加熱酸化工程において、前記基板の主面に向けて前記酸化性流体を供給しながらチャンバ内に配置された加熱部材の加熱面に前記基板を載置することによって、前記基板が加熱される。前記低温エッチング工程において、前記基板が前記加熱面に載置されている状態を維持しながら前記加熱部材の温度を低下させることで、前記基板の温度が低下する。
この基板処理方法によれば、単一の加熱部材の加熱面に基板が載置された状態で、基板の加熱および基板の温度低下の両方が行われる。そのため、基板の温度を変化させるために加熱部材とは別の部材に基板を移動させる構成と比較して、基板処理を簡略化できる。
この発明の一実施形態では、前記加熱酸化工程において、前記基板の主面に向けて前記酸化性流体を供給しながら第1チャンバ内に配置された第1温調部材の温度調節面に前記基板を載置することによって、前記基板が加熱される。そして、前記低温エッチング工程において、前記基板を前記温度調節面から移動させて第2チャンバ内に配置され前記第1温調部材よりも低温である第2温調部材の第2温度調節面に前記基板を載置することによって、前記基板の温度が低下される。
この基板処理方法によれば、基板の温度調節は、第1温調部材の第1温度調節面上で行われた後、第2温調部材の第2温度調節面上で行われる。つまり、2回の温度調節が別々の部材によって行われる。そのため、単一の温調部材の温度調節面の温度を変化させることで基板の温度を調節する構成と比較して、基板の温度調節に要する時間を短縮できる。
この発明の一実施形態では、前記金属層が、III族金属を含有する窒化金属層を含む。III族金属とは、周期表の第13族のうちの金属を意味する。III族金属は、具体的には、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)およびタリウム(Tl)のことである。III族金属を含有する金属窒化物は、酸化によって、水および反応性ガスと反応する酸化物を形成する。
たとえば、窒化金属層が窒化ガリウム層(GaN)であり、酸化性流体がオゾンガスであれば、下記化学反応式1に示すように、オゾン分子(O)によって窒化ガリウムが酸化されて、酸化ガリウム(Ga)が生成される。詳しくは、オゾン分子は、加熱によって酸素ラジカルを生成し、この酸素ラジカルによって、窒化ガリウムが酸化される。
Figure 2022129872000002
エッチング流体に含まれる反応性ガスがアンモニアガス(NH)である場合、下記化学反応式2および3に示す反応が起こる。化学反応式2に示すように、酸化ガリウムと水酸化物イオンとが反応し、酸化ガリウムがエッチング流体に溶解されてイオン状態となる。また、化学反応式3に示すように、酸化ガリウムと水とアンモニアとが反応し、酸化ガリウムがエッチング流体に溶解されてイオン状態となる。
Figure 2022129872000003
Figure 2022129872000004
エッチング流体に含まれる反応性ガスが塩化水素ガス(HCl)である場合、下記化学反応式4および5に示す反応が起こる。化学反応式4に示すように、酸化ガリウムと水と塩化水素とが反応し、酸化ガリウムがエッチング流体に溶解されイオン状態となる。また、化学反応式5に示すように、酸化ガリウムと塩化水素とが反応し、酸化ガリウムがエッチング流体に溶解されイオン状態となる。
Figure 2022129872000005
Figure 2022129872000006
この発明の一実施形態では、前記エッチング流体に含有される水がガス状態の水である。酸化金属層除去工程においてガス状態の水を用いた場合、ミスト状態の水を用いた場合と比較して、基板の主面にバルク状態(微小なサイズの液滴状態)の水が付着しにくい。したがって、エッチング流体に含有される水としてガス状態の水を用いる構成であれば、基板の主面の各位置に水分子を一層むらなく衝突させることができる。
この発明の他の実施形態は、金属層を主面に有する基板を処理する基板処理装置を提供する。前記基板処理装置は、前記基板が載置される温度調節面を有し、前記温度調節面に載置された前記基板の温度を、所定の第1温度と前記第1温度よりも低温の第2温度とに調節する温度調節部材と、前記温度調節部材を収容するチャンバと、前記チャンバ内に酸化性流体を供給し、1原子層または数原子層からなる酸化金属層を前記金属層の表層に形成する酸化性流体供給ユニットと、ガス状態の水およびミスト状態の水の少なくともいずれかと、前記水とともに前記酸化金属層と反応する反応性ガスとを含有するエッチング流体を前記チャンバ内に供給し、前記酸化金属層を選択的にエッチングするエッチング流体供給ユニットとを含む。
この基板処理装置によれば、酸化性流体供給ユニットから供給される酸化性流体によって、1原子層または数原子層からなる酸化金属層が形成される。そのため、エッチング流体供給ユニットから供給されるエッチング流体によって酸化金属層を選択的に除去することによって、金属層の表面から5nm以下の厚さの部分をエッチングすることができる。酸化性流体供給ユニットによる酸化金属層の形成およびエッチング流体供給ユニットによる酸化金属層の選択的除去を繰り返すことによって、ナノメートル以下の精度で金属層のエッチング量を制御することができる。
酸化性流体供給ユニットによる酸化金属層の形成およびエッチング流体供給ユニットによる酸化金属層の選択的除去をそれぞれ一回行うことによってエッチングされる金属層の厚みは、ほぼ一定である。そのため、酸化金属層の形成および酸化金属層の除去を繰り返し実行する回数を調節することによって、所望のエッチング量を達成することができる。
また、この基板処理装置では、酸化金属層を選択的に除去するために、ガス状態の水(水蒸気)およびミスト状態の水の少なくともいずれかと、反応性ガスとを含有するエッチング流体が用いられる。そのため、上述したように、水分子および反応性分子を基板の主面の各位置において均等に衝突させやすい。したがって、ガス状態の水およびミスト状態の水の少なくともいずれかと反応性ガスとを含有するエッチング流体を用いる構成であれば、液体状態の水および反応性液体を含有するエッチング液を用いる構成と比較して、基板の主面におけるエッチング量のむらをナノメートル以下の精度で抑制できる。
その結果、基板の主面の各位置においてナノメートル以下の精度で金属層のエッチング量を良好に制御できる。
この発明の他の実施形態では、前記基板処理装置が、前記酸化性流体供給ユニットおよび前記エッチング流体供給ユニットを制御するコントローラとを含む。前記コントローラが、前記酸化性流体供給ユニットから基板の主面に向けて前記酸化性流体を1原子層または数原子層からなる前記酸化金属層を前記金属層の表層に形成する酸化金属層形成工程と、前記エッチング流体供給ユニットから前記基板の主面に向けてエッチング流体を供給することによって、前記酸化金属層をエッチングして前記基板の主面から選択的に除去する酸化金属層除去工程とを実行するようにプログラムされている。そして、前記酸化金属層形成工程および前記酸化金属層除去工程を1サイクルとするサイクル処理が少なくとも1サイクル実行されることによって、サイクル毎にナノメートル以下の精度で前記金属層のエッチング量を制御する。
この基板処理装置によれば、酸化金属層形成工程および酸化金属層除去工程を1サイクルとするサイクル処理を自動的に所望のサイクル数実行できる。サイクル処理を1サイクル行うことによってエッチングされる金属層の厚みは、ほぼ一定である。そのため、酸化金属層形成工程および酸化金属層除去工程を実行する回数を調節することによって、所望のエッチング量を達成することができる。
この発明の他の実施形態では、前記エッチング流体供給ユニットは、前記チャンバ内で開口する流体導入ポートを介して前記チャンバ内にエッチング流体を供給するように構成されている。そして、前記第2温度が、前記流体導入ポートを介して前記チャンバ内に導入されるエッチング流体の温度よりも低い。
そのため、エッチング流体の温度が、基板の主面付近で低下するため、基板の主面付近において反応性分子および水分子の運動エネルギーが低下する。そのため、基板の主面に吸着された反応性分子および水分子が基板の主面から離れることが抑制される。言い換えると、基板の主面への反応性分子および水分子の吸着が促進される。これにより、金属層のエッチング速度を高めることができる。その結果、サイクル処理の1サイクル当たりのエッチング量を1原子層または数原子層に維持しながら、金属層のエッチング速度を高めることができる。
この発明の他の実施形態では、前記温度調節部材が、単一の前記温度調節面を有し、当該単一の温度調節面上に前記基板を際している状態で、前記基板の温度を、前記第1温度と前記第2温度とに調節するように構成されている。
この基板処理装置によれば、単一の温度調節面に基板が載置された状態で、基板の加熱および基板の温度低下の両方が行われる。そのため、基板の温度を変化させるために加熱部材とは別の部材に基板を移動させる構成と比較して、基板処理を簡略化できる。
この発明の他の実施形態では、前記温度調節部材が、前記温度調節面としての第1温度調節面を有し、前記第1温度調節面に載置された前記基板を前記第1温度に調節する第1温度調節部材と、前記温度調節面としての第2温度調節面を有し、前記第2温度調節面に載置された前記基板を前記第2温度に調節する第2温度調節部材とを有する。前記チャンバが、前記第1温度調節部材を収容する第1チャンバと、前記第2温度調節部材を収容する第2チャンバとを有する。そして、前記酸化性流体供給ユニットが、前記第1チャンバ内に酸化性流体を供給するように構成されており、前記エッチング流体供給ユニットが、前記第2チャンバ内にエッチング流体を供給するように構成されている。
この基板処理装置によれば、基板の温度調節は、第1温調部材の第1温度調節面上で行われた後、第2温調部材の第2温度調節面上で行われる。つまり、2回の温度調節が別々の部材によって行われる。そのため、単一の温調部材の温度調節面の温度を変化させることで基板の温度を調節する構成と比較して、基板の温度調節に要する時間を短縮できる。
この発明の他の実施形態では、前記第1温度が100℃以上で、かつ、400℃以下であり、前記第2温度が25℃以上で、かつ、100℃未満である。すなわち、基板の温度が比較的高温(たとえば、100℃以上で、かつ、400℃以下)であるときに基板の主面の金属層が酸化される。そのため、金属層の酸化速度を高めることができる。一方、基板の温度が比較的低温(たとえば、25℃以上で、かつ、100℃未満)であるときにエッチングが行われる。基板の温度が比較的高温であれば、エッチング流体中に僅かに存在する酸素分子が酸化力を有する。そのため、エッチングが比較的低温で行われることによって、金属層の意図しない酸化を抑制できる。
図1Aは、この発明の第1実施形態に係る基板処理装置の構成を説明するための平面図である。 図1Bは、前記基板処理装置の構成を説明するための図解的な立面図である。 図2は、前記基板処理装置に備えられる処理ユニットの構成例を説明するための模式的な断面図である。 図3は、前記基板処理装置に備えられる熱処理ユニットに基板を搬入および搬出するときの様子を説明するための模式図である。 図4は、前記基板処理装置の制御に関する構成例を説明するためのブロック図である。 図5は、前記基板処理装置による具体的な基板処理の流れを説明するためのフローチャートである。 図6は、前記基板処理において熱処理チャンバ内で行われる工程のタイムチャートである。 図7は、前記基板処理において酸化金属層形成工程と酸化金属層除去工程とが繰り返されることによる基板の表面状態の変化について説明するための模式図である。 図8は、前記熱処理ユニットの変形例の模式的な断面図である。 図9は、前記基板処理装置に備えられる処理ユニットの変形例の模式的な断面図である。 図10は、第2実施形態に係る基板処理装置に備えられる第1熱処理ユニットの構成例を説明するための模式的な断面図である。 図11は、第2実施形態に係る基板処理装置に備えられる第2熱処理ユニットの構成例を説明するための模式的な断面図である。 図12は、第2実施形態に係る基板処理装置による具体的な基板処理の流れを説明するためのフローチャートである。
以下では、この発明の実施の形態を、添付図面を参照して説明する。
<第1実施形態>
図1Aは、この発明の第1実施形態に係る基板処理装置1の構成を説明するための平面図である。図1Bは、基板処理装置1の構成を説明するための図解的な立面図である。
基板処理装置1は、シリコンウエハ等の基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状の基板である。基板Wは、たとえば、金属層が露出する第1主面W1(図1Bを参照)と、第1主面W1とは反対側の第2主面W2とを有する。
第1主面W1から露出する金属層は、たとえば、III族金属を含有する窒化金属層(金属窒化物層)である。III族金属とは、周期表の第13族のうちの金属を意味する。III族金属は、具体的には、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)およびタリウム(Tl)のことである。
基板処理装置1は、処理流体で基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容するキャリヤCが載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送する搬送ロボットIRおよびCRと、基板処理装置1を制御するコントローラ3とを含む。
搬送ロボットIRは、キャリヤCと搬送ロボットCRとの間で基板Wを搬送する。搬送ロボットCRは、搬送ロボットIRと処理ユニット2との間で基板Wを搬送する。搬送ロボットIR,CRは、複数のロードポートLPから複数の処理ユニット2に延びる搬送経路TR上に配置されている。
複数の処理ユニット2は、水平に離れた4つの位置にそれぞれ配置された4つの処理タワーを形成している。各処理タワーは、上下方向に積層された複数の処理ユニット2を含む。4つの処理タワーは、搬送経路TRの両側に2つずつ配置されている。この実施形態では、処理ユニット2は、基板Wに液体を供給することなく、酸化性ガスやエッチングガス等の処理ガスで当該基板Wを処理するドライ処理ユニットである。
処理ユニット2は、基板Wが通過する搬入搬出口4aが設けられたドライチャンバ4と、ドライチャンバ4内で基板Wを加熱しながら処理ガスを基板Wに供給する熱処理ユニット5とを含む。搬入搬出口4aには、開閉可能なシャッタ6が設けられている。搬送ロボットCRのハンドHが、搬入搬出口4aを介して、ドライチャンバ4に基板Wを出し入れする。
図2は、熱処理ユニット5の構成例を説明するための模式的な断面図である。
熱処理ユニット5は、加熱部材としてのホットプレート20と、ホットプレート20を収容する熱処理チャンバ30(チャンバ)と、ホットプレート20を貫通して上下動する複数のリフトピン40と、複数のリフトピン40を上下方向に移動させるピン昇降駆動機構41とを備えている。
ホットプレート20は、基板Wが載置される加熱面20aを有している。ホットプレート20にはヒータ21が内蔵されている。ヒータ21は、ヒータ21の温度とほぼ等しい温度に基板Wを加熱できる。ヒータ21は、加熱面20aに載置された基板Wを常温(たとえば、25℃)以上400℃以下の温度範囲で加熱できるように構成されている。具体的には、ヒータ21には、通電ユニット(図示せず)が接続されており、この通電ユニットから供給される電流が調整されることによって、ヒータ21の温度が温度範囲内の温度に変化する。ホットプレート20は、温度調節部材の一例であり、加熱面20aは、温度調節面の一例である。
熱処理チャンバ30は、チャンバ本体31と、チャンバ本体31の上方で上下動する蓋32とを備えている。熱処理ユニット5は、蓋32を昇降(上下方向に移動)させる蓋昇降駆動機構33を備えている。
チャンバ本体31は、上方に開放する開口を有している。詳しくは、チャンバ本体31は、ホットプレート20を支持する支持部34と、支持部34の周縁から上方に延びる筒部35とを含む。支持部34は、平面視において略円形状を有しており、それに応じて、筒部35は円筒形状を有している。筒部35によってチャンバ本体31の開口が形成されている。
蓋32は、加熱面20aに平行に延びるプレート部37と、プレート部37の周縁から下方に延びる筒部38とを含む。プレート部37は、平面視において略円形状であり、それに応じて、筒部38は円筒形状を有している。筒部38の下端は、チャンバ本体31の筒部35の上端に対向している。それにより、蓋32の上下動によって、チャンバ本体31の開口を開閉できる。チャンバ本体31の筒部35と蓋32の筒部38との間は、Oリング等の弾性部材39によって密閉される。プレート部37の下面は、ホットプレート20の加熱面20aと平行である。より具体的には、加熱面20aに基板Wが載置されているとき、基板Wとプレート部37との間に空間が形成される。
蓋32は、蓋昇降駆動機構33によって、チャンバ本体31の開口を塞いで内部に密閉処理空間SPを形成する下位置(図2に示す位置)と、開口を開放するように上方に退避した上位置(後述する図3に示す位置)との間で上下動される。蓋32が下位置に位置するとき、チャンバ本体31と蓋32とが接触する。密閉処理空間SPは、基板Wの上面に接する空間である。蓋32が上位置に位置するとき、搬送ロボットCRのハンドHが熱処理チャンバ30内にアクセスできる。
蓋昇降駆動機構33は、電動モータまたはエアシリンダであってもよいし、これら以外のアクチュエータであってもよい。
複数のリフトピン40は、連結プレート43によって連結されている。複数のリフトピン40は、ピン昇降駆動機構41が連結プレート43を昇降させることによって、加熱面20aよりも上方で基板Wを支持する上位置(後述する図3の位置)と、先端部(上端部)が加熱面20aよりも下方に没入する下位置(図2に示す位置)との間で上下動される。ピン昇降駆動機構41は、電動モータまたはエアシリンダであってもよいし、これら以外のアクチュエータであってもよい。
複数のリフトピン40は、ホットプレート20およびチャンバ本体31を貫通する複数の貫通孔22にそれぞれ挿入されている。熱処理チャンバ30の外から貫通孔22への流体の進入は、リフトピン40を取り囲むベローズ42によって防止される。ベローズ42は、連結プレート43の上下動に応じて伸縮し、かつ熱処理チャンバ30内の空間の気密性を保つ。
リフトピン40は、基板Wの下面に接触する半球状の上端部を含む。複数のリフトピン40の先端部は、同じ高さに配置されている。
熱処理ユニット5は、熱処理チャンバ30内の密閉処理空間SPにガスを導入する複数の流体導入ポート10を備えている。各流体導入ポート10は、蓋32のプレート部37を貫通する貫通孔である。複数の流体導入ポート10は、プレート部37の周方向および半径方向に間隔を開けて配置されている。
複数の流体導入ポート10は、不活性ガスおよび酸化性ガスを案内する第1流体ライン50が接続される複数の第1流体導入ポート10Aと、不活性ガスおよびエッチングガスを案内する第2流体ライン51が接続される複数の第2流体導入ポート10Bとを含む。第1流体ライン50および第2流体ライン51は、主に配管によって構成されている。
不活性ガスは、たとえば、窒素(N)ガスである。不活性ガスは、基板Wの第1主面W1から露出する窒化金属層と反応しない(窒化金属層に対して不活性な)ガスである。
不活性ガスは、窒素ガスに限られず、たとえば、アルゴン(Ar)ガス等の希ガスであってもよいし、窒素ガスおよび希ガスの混合ガスであってもよい。すなわち、不活性ガスは、窒素ガスおよび希ガスのうち少なくとも一方を含むガスであってもよい。
酸化性ガスは、たとえば、オゾン(O)ガスである。酸化性ガスは、基板Wの第1主面W1から露出する窒化金属層を酸化させて酸化金属層(金属酸化物層)を形成するガスである。酸化性ガスは、オゾンガスに限られず、たとえば、酸化性水蒸気、O、NO、NO、NO、または、F、Cl等のハロゲンガス等であってもよい。窒化金属層が窒化ガリウム層である場合、窒化金属層は、酸化性ガスによって酸化されて酸化ガリウム層に変化する。酸化性ガスは、ガス状酸化剤ともいう。
エッチングガスは、酸化金属層をエッチングして酸化金属層を基板Wの第1主面W1から除去するガスである。エッチングガスは、水蒸気と反応性ガスとの混合ガスである。反応性ガスは、水存在下で酸化金属層に対する反応性を有するガスであり、たとえば、アンモニア(NH)ガスである。水蒸気としては、充分に加熱された、すなわち、100℃以上に加熱された過熱水蒸気を用いることが好ましい。エッチングガスは、エッチング流体の一例である。
酸化金属層を構成する金属酸化物が反応性ガスおよび水蒸気と反応することによって、水蒸気に吸着される金属水酸化物が生成される。エッチングガス中の水蒸気に金属水酸化物が吸着されて、金属水酸化物が基板Wの上面から除去される。
反応性ガスは、アンモニアガスに限られず、水中でアルカリ性を示すアルカリ性成分を含有するアルカリ性ガスまたは水中で酸性を示す酸性成分を含有する酸性ガスであればよい。アルカリ性ガスとしては、たとえば、アンモニアガスが選択される。
酸性ガスは、典型的には、塩化水素(HCl)ガスである。酸性ガスは、塩化水素ガス、二酸化炭素ガス、硫化水素(HS)ガスおよび二酸化硫黄(SO)ガスのうちから選択された少なくとも1種類のガスによって構成されていてもよい。
III族金属は、シリコン(Si)と同様にパワーデバイスの材料として用いられる。III族金属の窒化物の結晶の表面に形成されたIII族金属酸化物は、炭化ケイ素(SiC)の結晶とは異なり、水存在下においてアルカリ性成分または酸性成分と反応して、水溶性の水酸化物を形成可能である。
窒化金属層が窒化ガリウム層である場合、上述した化学反応式1に示すように、窒化ガリウム層を構成する窒化ガリウムと酸化性ガスとしてのオゾンガスとが反応して、酸化金属層としての酸化ガリウム層を構成する酸化ガリウム(Ga)が生成される。反応性ガスがアンモニアガスである場合、酸化ガリウム層を構成する酸化ガリウムとアンモニアガスとが反応して、上述した化学反応式2および3に示すように、酸化ガリウムがアンモニアまたはアンモニアおよび水と反応してイオン状態(GaO3-)となる。エッチング流体に含まれる反応性ガスが塩化水素ガスである場合、上述した化学反応式4および5に示すように、酸化ガリウムが塩化水素または塩化水素および水と反応してイオン状態(GaO3-)となる。
第1流体ライン50には、不活性ガスを第1流体ライン50に供給する第1不活性ガスライン52と、酸化性ガスを第1流体ライン50に供給する酸化性流体ライン53とが接続されている。
第1不活性ガスライン52には、その流路を開閉する第1不活性ガスバルブ62Aと、第1流体ライン50に供給される不活性ガスの流量を調整する第1不活性ガス流量調整バルブ62Bとが介装されている。
酸化性流体ライン53には、その流路を開閉する酸化性流体バルブ63Aと、第1流体ライン50に供給される酸化性ガスの流量を調整する酸化性流体流量調整バルブ63Bとが介装されている。
第1不活性ガスバルブ62Aが開かれると、複数の第1流体導入ポート10Aから密閉処理空間SPに不活性ガスが導入され、基板Wの上面に向けて不活性ガスが供給される。酸化性流体バルブ63Aが開かれると、複数の第1流体導入ポート10Aから密閉処理空間SPに酸化性ガスが導入され、基板Wの上面に向けて酸化性ガスが供給される。
第1不活性ガスバルブ62Aおよび酸化性流体バルブ63Aの両方が開かれると、複数の第1流体導入ポート10Aから密閉処理空間SPに不活性ガスおよび酸化性ガスの混合ガスが導入される。第1不活性ガス流量調整バルブ62Bおよび酸化性流体流量調整バルブ63Bの開度を調整することで、複数の第1流体導入ポート10Aから密閉処理空間SPに導入される混合ガス中の酸化性ガス成分の濃度(分圧)を調整できる。
第1流体ライン50、第1不活性ガスライン52および第1不活性ガスバルブ62Aは、不活性ガス供給ユニットの一例である。第1流体ライン50、酸化性流体ライン53および酸化性流体バルブ63Aは、熱処理チャンバ30内に酸化性流体を供給する酸化性流体供給ユニットの一例である。
第2流体ライン51には、不活性ガスを第2流体ライン51に供給する第2不活性ガスライン54と、水蒸気を第2流体ライン51に供給する水ライン55と、反応性ガスを第2流体ライン51に供給する反応性ガスライン56とが接続されている。
第2不活性ガスライン54には、その流路を開閉する第2不活性ガスバルブ64Aと、第2流体ライン51に供給される不活性ガスの流量を調整する第2不活性ガス流量調整バルブ64Bとが介装されている。
水ライン55には、その流路を開閉する水バルブ65Aと、第2流体ライン51に供給される水蒸気の流量を調整する水流量調整バルブ65Bとが介装されている。
反応性ガスライン56には、その流路を開閉する反応性ガスバルブ66Aと、第2流体ライン51に供給される反応性ガスの流量を調整する反応性ガス流量調整バルブ66Bとが介装されている。
第2不活性ガスバルブ64Aが開かれると、複数の第2流体導入ポート10Bから密閉処理空間SPに不活性ガスが導入され、基板Wの上面に向けて不活性ガスが供給される。水バルブ65Aが開かれると、複数の第2流体導入ポート10Bから密閉処理空間SPに水蒸気が導入されて、基板Wの上面に向けて不活性ガスが供給される。反応性ガスバルブ66Aが開かれると、複数の第2流体導入ポート10Bから密閉処理空間SPに反応性ガスが導入されて、基板Wの上面に向けて不活性ガスが供給される。
第2不活性ガスバルブ64A、水バルブ65Aおよび反応性ガスバルブ66Aのうちの少なくとも2つが開かれると、複数の第2流体導入ポート10Bから密閉処理空間SPに、不活性ガス、水蒸気および反応性ガスのうちの開かれているバルブに対応するガスの混合ガスが導入(供給)される。水バルブ65Aおよび反応性ガスバルブ66Aの両方が開かれると、第2流体ライン51内で水蒸気および反応性ガスが混合されてエッチングガスが形成され、複数の第2流体導入ポート10Bから密閉処理空間SPにエッチングガスが導入される。
第2不活性ガス流量調整バルブ64B、水流量調整バルブ65B、および、反応性ガス流量調整バルブ66Bの開度を調整することで、複数の第2流体導入ポート10Bから密閉処理空間SPに導入されるガス中の反応性ガス成分および水蒸気の濃度(分圧)を調整できる。
第2流体ライン51、第2不活性ガスライン54および第2不活性ガスバルブ64Aは、不活性ガス供給ユニットの一例である。第2流体ライン51、水ライン55および水バルブ65Aは、水供給ユニット(水蒸気供給ユニット)の一例である。第2流体ライン51、反応性ガスライン56および反応性ガスバルブ66Aは、反応性ガス供給ユニットの一例である。水供給ユニットおよび反応性ガス供給ユニットは、熱処理チャンバ30内にエッチングガスを供給するエッチングガス供給ユニット(エッチング流体供給ユニット)として機能する。
熱処理ユニット5は、チャンバ本体31に形成され、熱処理チャンバ30の内部雰囲気を排気する複数の流体排出ポート15を備えている。各流体排出ポート15は、ホットプレート20の側方でチャンバ本体31の支持部34を貫通する貫通孔である。複数の流体排出ポート15は、支持部34の周方向に間隔を開けて配置されていることが好ましい。
複数の流体排出ポート15は、主に酸化性ガスを排気する第1流体排出ライン57が接続される複数の第1流体排出ポート15Aと、主にエッチングガスを排気する第2流体排出ライン58が接続される複数の第2流体排出ポート15Bとを含む。第1流体排出ライン57および第2流体排出ライン58は、主に配管によって構成されている。
第1流体排出ライン57には、その流路を開閉する第1流体排出バルブ67が介装されており、第2流体排出ライン58には、その流路を開閉する第2流体排出バルブ68が介装されている。第1流体排出ライン57および第2流体排出ライン58は、共通の排気装置(図示せず)に向けて流体を排出するように構成されていてもよいし、排気先が互いに異なっていてもよい。
図3は、熱処理ユニット5に基板Wを搬入および搬出するときの様子を説明するための模式図である。
熱処理ユニット5への基板Wの搬入は以下のように行われる。図3に示すように、蓋32が上位置に位置し、複数のリフトピン40が上位置に位置する状態で、搬送ロボットCRのハンドHが、熱処理チャンバ30内に進入し、複数のリフトピン40に基板Wを受け渡す。ハンドHを熱処理チャンバ30から退避させた後、ピン昇降駆動機構41が基板Wを下方から支持する複数のリフトピン40を下降させてホットプレート20の加熱面20a上に基板W載置させる(図2を参照)。基板Wが加熱面20a上に載置された状態で、蓋32を下位置に移動させて密閉処理空間SPを形成することで基板Wの搬入が終了する。
一方、熱処理ユニット5からの基板Wの搬出は以下のように行われる。図3に示すように、蓋昇降駆動機構33が蓋32を上位置に移動させ、かつ、ピン昇降駆動機構41が複数のリフトピン40を上位置に移動させる。蓋32が上位置に位置し、かつ、複数のリフトピン40が上位置に位置する状態で、搬送ロボットCRのハンドHが、熱処理チャンバ30内に進入し、複数のリフトピン40から基板Wを受け取る。その後、搬送ロボットCRのハンドHが熱処理チャンバ30から退避することで、基板Wの搬出が終了する。
図4は、基板処理装置1の主要部の電気的構成を示すブロック図である。コントローラ3は、マイクロコンピュータを備え、所定の制御プログラムに従って基板処理装置1に備えられた制御対象を制御する。
具体的には、コントローラ3は、プロセッサ(CPU)3aと、制御プログラムが格納されたメモリ3bとを含むコンピュータであってもよい。コントローラ3は、プロセッサ3aが制御プログラムを実行することによって、基板処理のための様々な制御を実行するように構成されている。
コントローラ3の具体的な制御対象は、搬送ロボットIR,CR、ピン昇降駆動機構41、蓋昇降駆動機構33、ピン昇降駆動機構41、ヒータ21、第1不活性ガスバルブ62A、第1不活性ガス流量調整バルブ62B、酸化性流体バルブ63A、酸化性流体流量調整バルブ63B、第2不活性ガスバルブ64A、第2不活性ガス流量調整バルブ64B、水バルブ65A、水流量調整バルブ65B、反応性ガスバルブ66A、反応性ガス流量調整バルブ66B、第1流体排出バルブ67、第2流体排出バルブ68等である。
以下では、基板Wの第1主面W1から露出する金属層が窒化ガリウム層であり、酸化性流体がオゾンガスであり、反応性ガスがアンモニアガスである基板処理の一例について説明する。図5は、基板処理装置1によって実行される基板処理の一例を説明するための流れ図である。図5は、主として、コントローラ3がプログラムを実行することによって実現される処理が示されている。
基板処理装置1による基板処理では、たとえば、図5に示すように、まず、基板搬入工程(ステップS1)、および、予備置換工程(ステップS2)がこの順番で実行される。その後、酸化性ガス供給工程(ステップS3)、酸化性ガス排除工程(ステップS4)、エッチングガス供給工程(ステップS5)、水供給継続工程(ステップS6)、および、水排除工程(ステップS7)が、この順番で少なくとも1回ずつ実行される。そして、最後の水排除工程の後、基板搬出工程(ステップS8)が実行される。
図6は、基板処理において熱処理チャンバ30内で行われる工程のタイムチャートである。以下では、主に、図2、図5および図6を参照する。
まず、未処理の基板Wは、搬送ロボットIR,CR(図1参照)によってキャリヤCから処理ユニット2に搬入される(基板搬入工程:ステップS1)。基板Wは、窒化ガリウム層が露出する第1主面W1を上方に向けた状態でホットプレート20の加熱面20a上に載置される(基板載置工程)。
その後、蓋32を下降させることによって、チャンバ本体31と蓋32とによって形成される密閉処理空間SP内で、ホットプレート20上に基板Wが載置された状態となる。加熱面20a上に載置された基板Wは、ホットプレート20によって、所定の酸化温度(第1温度)に加熱される(基板加熱工程)。所定の酸化温度は、たとえば、100℃以上で、かつ、400℃以下の温度である。
密閉処理空間SPが形成された状態で、第1流体排出バルブ67および第1不活性ガスバルブ62Aが開かれる。これにより、第1流体導入ポート10Aから密閉処理空間SPに不活性ガスが導入される一方で、密閉処理空間SP内の雰囲気が第1流体排出ポート15Aを介して熱処理チャンバ30の外部に排出される。つまり、密閉処理空間SPに酸化性ガスが供給される前に、密閉処理空間SP内の雰囲気が不活性ガスで置換される(予備置換工程:ステップS2)。
不活性ガスの供給を所定の置換時間継続することによって、密閉処理空間SP内の雰囲気が不活性ガスで充分に置換されて、密閉処理空間SPに不活性ガスが充満する。所定の置換時間は、たとえば、10秒以上で、かつ、120秒以下である。予備置換工程における不活性ガスの流量(予備置換流量)は、第1流量である。第1流量は、たとえば、5L/min以上で、かつ、50L/min以下である。予備置換流量は、複数の第1流体導入ポート10Aから密閉処理空間SPに導入される不活性ガスの流量の合計を意味する。
密閉処理空間SPに不活性ガスが充満している状態で、酸化性流体バルブ63Aが開かれる。これにより、複数の第1流体導入ポート10Aから密閉処理空間SPにオゾンガスが導入され、基板Wの第1主面W1に向けてオゾンガスが供給される(酸化性ガス供給工程:ステップS3)。酸化性ガス供給工程は、酸化性流体供給工程の一例である。
複数の第1流体導入ポート10Aから吐出されたオゾンガスによって、基板Wの第1主面W1が処理される(酸化処理工程)。詳しくは、基板Wの第1主面W1から露出する窒化ガリウム層の表層に、1原子層または数原子層からなる酸化ガリウム層が形成される(酸化金属層形成工程、酸化ガリウム層形成工程)。基板Wは、ホットプレート20上で酸化温度にまで加熱されている。そのため、酸化金属層形成工程では、基板Wを酸化温度に加熱しながら基板Wの第1主面W1に向けてオゾンガスを供給する加熱酸化工程が実行される。
密閉処理空間SPへのオゾンガスの導入は、所定の酸化処理時間継続される。所定の酸化処理時間は、たとえば、10秒以上で、かつ、300秒以下である。
酸化性ガス供給工程における酸化性ガスの流量は、所定の酸化流量である。酸化流量は、たとえば、5L/min以上で、かつ、50L/min以下である。酸化流量は、全ての第1流体導入ポート10Aから密閉処理空間SPに導入される酸化性ガスの流量の合計を意味する。
密閉処理空間SPへの酸化性ガスの導入中、不活性ガスの流量は、第1分圧調整流量に調整される。第1分圧調整流量は、たとえば、第1流量よりも低い第2流量である。第2流量は、たとえば、0L/min以上であり、50L/min以下である。第1分圧調整流量は、複数の第1流体導入ポート10Aから密閉処理空間SPに導入される不活性ガスの流量の合計を意味する。
不活性ガスの流量を調整することによって、密閉処理空間SP内におけるオゾンガスの分圧を、窒化ガリウム層の表層の1原子層または数原子層の部分を酸化するのに適した分圧に調整できる(オゾンガス分圧調整工程、酸化性ガス分圧調整工程)。
オゾンガスの供給中においても第1流体排出バルブ67が開かれた状態が継続されているため、密閉処理空間SP内のオゾンガスは第1流体排出ライン57から排気される。
オゾンガスで基板Wの第1主面W1を処理した後、酸化性流体バルブ63Aが閉じられる。これにより、複数の第1流体導入ポート10Aからの不活性ガスの吐出が継続される一方で、オゾンガスの吐出が停止される。
基板Wの主面に向けて不活性ガスを供給することで、密閉処理空間SP内の雰囲気が不活性ガスで置換され、密閉処理空間SPからオゾンガスが排除される(酸化性ガス排除工程:ステップS4)。酸化性ガス排除工程は、酸化性流体排除工程の一例である。
酸化性流体バルブ63Aが閉じられると同時に、あるいは、酸化性流体バルブ63Aが閉じられた後、第1不活性ガス流量調整バルブ62Bが制御されて、不活性ガスの流量が、所定の酸化性流体排除流量に変更される。酸化性流体排除流量は、たとえば、第1流量である。酸化性流体排除流量は、全ての第1流体導入ポート10Aから密閉処理空間SPに導入される不活性ガスの流量の合計を意味する。
オゾンガスで基板Wの第1主面W1を処理した後、基板Wが加熱面20aに載置されている状態を維持しながらホットプレート20の温度が低下される。ホットプレート20の温度の低下に伴って、基板Wの温度が低下する。具体的には、ヒータ温度をエッチング温度に変更することで、ホットプレート20および基板Wの温度が徐々に低下し、エッチング温度(第2温度)に達する。このように、基板Wに対する加熱が弱められて、基板Wの温度が酸化温度よりも低い所定のエッチング温度に調整される(温度調整工程、加熱弱化工程、低温加熱工程)。エッチング温度は、たとえば、25℃以上で、かつ、100℃未満の温度である。
ホットプレート20は、温度調節面としての加熱面20aに載置された基板Wの温度を、第1温度と第2温度とに調節する温度調節部材として機能する。
基板Wの温度を低下させる過程で、第1流体排出バルブ67が閉じられ第2流体排出バルブ68が開かれる。これにより、密閉処理空間SPからの雰囲気の排気先が第1流体排出ライン57から第2流体排出ライン58に変更される(流体排出ライン変更工程)。
基板Wの温度の低下中に、第1不活性ガスバルブ62Aが閉じられ、第2不活性ガスバルブ64Aが開かれる。これにより、複数の第1流体導入ポート10Aからの不活性ガスの吐出が停止され、複数の第2流体導入ポート10Bからの不活性ガスの吐出が開始される。第2不活性ガス流量調整バルブ64Bが制御されて、複数の第2流体導入ポート10Bから密閉処理空間SPに導入される不活性ガスの流量は、第1流量に調整される。
基板Wの温度がエッチング温度に達した後、水バルブ65Aおよび反応性ガスバルブ66Aが開かれる。これにより、複数の第2流体導入ポート10Bから密閉処理空間SPにエッチングガス(水蒸気およびアンモニアガスの混合ガス)が導入されることで、基板Wの第1主面W1に向けてエッチングガスが供給される(エッチングガス供給工程:ステップS5)。エッチングガス供給工程は、エッチング流体供給工程の一例である。
複数の第2流体導入ポート10Bから吐出されたエッチングガスによって、基板Wの第1主面W1が処理される(エッチング処理工程)。詳しくは、基板Wの第1主面W1に形成された酸化ガリウム層がエッチングされて、酸化ガリウム層が選択的に除去される(酸化金属層除去工程、酸化ガリウム層除去工程)。酸化金属層除去工程では、基板Wの温度がエッチング温度である状態で酸化ガリウム層がエッチングされる(低温エッチング工程)。
密閉処理空間SPへのエッチングガスの導入は、所定のエッチング処理時間継続される。所定のエッチング処理時間は、たとえば、5秒以上で、かつ、120秒以下である。
エッチングガス供給工程における水蒸気の流量は、所定の第1エッチング流量である。第1エッチング流量は、たとえば、5L/min以上で、かつ、50L/min以下である。エッチングガス供給工程における水蒸気の流量は、全ての第2流体導入ポート10Bから密閉処理空間SPに導入される水蒸気の流量の合計を意味する。
エッチングガス供給工程におけるアンモニアガスの流量は、所定の第2エッチング流量である。第2エッチング流量は、たとえば、1L/min以上で、かつ、50L/min以下である。エッチングガス供給工程におけるアンモニアガスの流量は、全ての第2流体導入ポート10Bから密閉処理空間SPに導入されるアンモニアガスの流量の合計を意味する。
複数の第2流体導入ポート10Bから密閉処理空間SPにエッチングガスが導入されている間、第2不活性ガス流量調整バルブ64Bの開度を調整することによって、不活性ガスの流量は、第2分圧調整流量に調整される。第2分圧調整流量は、予備置換流量よりも低く、たとえば、第2流量である。第2分圧調整流量は、複数の第2流体導入ポート10Bから密閉処理空間SPに導入される不活性ガスの流量の合計を意味する。
不活性ガスの流量を調整することによって、密閉処理空間SP内における水蒸気の分圧およびアンモニアガスの分圧を、酸化ガリウム層の選択的なエッチングに適した分圧に調整できる(エッチングガス分圧調整工程)。
複数の第2流体導入ポート10Bから吐出される水蒸気の温度は、エッチングガス供給工程における基板Wの温度(エッチング温度)よりも高い。そのため、基板Wの第1主面W1の近傍では、水蒸気の温度が低下し、微細な液状の水が形成される。
この微細なミスト状の水に溶け込むアンモニアガスの濃度が1×10-6mol/L以上で、かつ、15mol/L以下であれば、1原子または数原子層の厚みを有する酸化ガリウム層の選択的なエッチングが達成される。この微細なミスト状の水に溶け込むアンモニアガスの濃度は、1mol/Lであることが特に好ましい。
基板Wの第1主面W1から酸化ガリウム層が除去された後、水バルブ65Aが開かれた状態に維持される一方で、反応性ガスバルブ66Aが閉じられる。これにより、複数の第2流体導入ポート10Bから密閉処理空間SPへのアンモニアガスの導入が停止され、複数の第2流体導入ポート10Bから密閉処理空間SPへの水蒸気の導入が継続される(水蒸気供給継続工程:ステップS6)。酸化金属層除去工程の後、密閉処理空間SPへの水蒸気の導入を継続することによって、密閉処理空間SPから反応性ガスが排除される(反応性ガス排除工程、アンモニアガス排除工程)。
反応性ガスの供給停止後、密閉処理空間SPへの水蒸気の導入は、所定の水供給継続時間継続される。所定の水供給継続時間は、たとえば、10秒以上で、かつ、120秒以下である。
密閉処理空間SPへの水蒸気の供給が継続されている間、第2不活性ガス流量調整バルブ64Bの開度を調整することによって、不活性ガスの流量は、所定のアンモニアガス排除流量に調整される。アンモニアガス排除流量は、たとえば、第2分圧調整流量と等しく第2流量である。水蒸気供給継続工程における不活性ガスの流量は、複数の第2流体導入ポート10Bから密閉処理空間SPに導入される不活性ガスの流量の合計を意味する。
水蒸気の供給が所定の水供給継続時間継続された後、水バルブ65Aが閉じられる。これにより、密閉処理空間SPへの水蒸気の供給が停止される。その一方で、密閉処理空間SPへの不活性ガスの供給が継続されるため、密閉処理空間SPから水蒸気が排除される(水排除工程、水蒸気排除工程:ステップS7)。
水バルブ65Aが閉じられると同時に、あるいは、水バルブ65Aが閉じられた後に、基板Wに対する加熱が強められて、基板Wの温度が酸化温度に調整される(加熱強化工程)。具体的には、ヒータ温度を所定のエッチング温度に変更することで、ホットプレート20および基板Wの温度が徐々に上昇し、所定の酸化温度に達する。
基板Wの温度を上昇させる過程で、第2流体排出バルブ68が閉じられ第1流体排出バルブ67が開かれる。これにより、密閉処理空間SPからの雰囲気の排気先が第2流体排出ライン58から第1流体排出ライン57に変更される(流体排出ライン変更工程)。
水バルブ65Aが閉じられると同時に、あるいは、水バルブ65Aが閉じられた後、不活性ガスの流量が、所定の水排除流量に変更される。水排除流量は、たとえば、第1流量である。水排除工程における不活性ガスの流量は、全ての第2流体導入ポート10Bから密閉処理空間SPに導入される不活性ガスの流量の合計を意味する。
その後、再び、酸化性ガス供給工程(ステップS3)~水排除工程(ステップS7)が1回ずつ以上実行されてもよい。図5における「N」は、0以上の整数(N=0,1,2・・・)を意味している。サイクル処理が合計で1回以上行われ、その後、最後の水排除工程(ステップS7)において加熱強化工程を行うことなく、基板搬出工程(ステップS8)が実行される。熱処理ユニット5から搬出された基板Wは、搬送ロボットCRから搬送ロボットIRへと渡され、搬送ロボットIRによって、キャリヤCに収納される。
図7は、基板処理において酸化金属層形成工程と酸化金属層除去工程とが繰り返されることによる基板Wの表面状態の変化について説明するための模式図である。
酸化金属層形成工程(ステップS3)および酸化金属層除去工程(ステップS5)による窒化ガリウム層100の表層の様子の変化について図7を用いて説明する。図7(a)および図7(b)に示すように、オゾンガスを基板Wの第1主面W1に供給することによって、1原子層または数原子層からなる酸化ガリウム層101が窒化ガリウム層100の表層に形成される(酸化金属層形成工程)。酸化ガリウム層101の厚みD1は、0.3nm以上でかつ5nm以下である。
酸化金属層形成工程では、1原子層または数原子層からなる酸化ガリウム層101が形成される。窒化ガリウム層100の1原子層の厚みと酸化ガリウム層101の1原子層の厚みはほぼ同じである。酸化ガリウム層101の1原子層の厚みは、1nm以下(たとえば、0.3nm~0.4nm)である。上述したように、数原子層とは、2原子層から10原子層のことをいう。
そして、図7(c)および図7(d)に示すように、エッチングガスを酸化ガリウム層101に向けて供給することによって、酸化ガリウム層101が基板Wから選択的に除去される(酸化金属層除去工程)。すなわち、窒化ガリウム層100の表層に形成された1原子層または数原子層の酸化ガリウム層101の全体が除去される。このように、酸化金属層形成工程および酸化金属層除去工程を1サイクルとするサイクル処理を1サイクル行うことによって、1原子層または数原子層の厚みD1分の窒化ガリウム層100がエッチングされる。
その後、図7(e)および図7(f)に示すようにサイクル処理をさらに1サイクル行うことによって、1原子層または数原子層の厚みD1分の窒化ガリウム層100がエッチングされる。サイクル処理を1サイクル行うことによってエッチングされる窒化ガリウム層100の厚みD1は、ほぼ一定である。
サイクル処理が複数サイクル実行される場合、図7(g)に示すように、窒化ガリウム層100の表層において、厚みD1とサイクル数(図7(g)では3サイクル)との積に相当する厚みD2の部分が基板Wから除去される(D2=D1xサイクル数)。サイクル処理を複数サイクル行うことによってエッチングされる窒化ガリウム層100の量が、厚みD2に相当する。
そのため、酸化金属層形成工程および酸化金属層除去工程を繰り返し実行する回数を調節することによって、所望のエッチング量(厚みD2と同じ量)を達成することができる。
たとえば、サイクル処理を1サイクル行うことによって窒化ガリウム層100が0.3nmエッチングされる場合、サイクル処理の実行回数を調整することで、窒化ガリウム層100が1.5nmエッチングされる基板処理を実行したり、窒化ガリウム層100が1.8nmエッチングされる基板処理を実行したりすることができる。すなわち、サイクル毎にナノメートル以下の精度で窒化ガリウム層100のエッチング量を制御することができる。
また、この基板処理方法では、酸化ガリウム層101を選択的に除去するために水蒸気と反応性ガスとを含有するエッチングガスが用いられる。
この基板処理方法とは異なり、液体状態の水と反応性液体とを連続流で基板Wの第1主面W1に供給する構成であれば、液体状態の水と基板Wの第1主面W1との界面に凹凸が生じる。そのため、分子レベルでは基板Wの第1主面W1の各位置において基板Wの第1主面W1と水分子および反応性分子との衝突頻度にむらが生じる。
さらに、熱処理ユニット5では、熱処理中に基板Wが回転されないため、液体状態の水と反応性液体とを連続流で基板Wの第1主面W1に供給する場合、基板Wの第1主面W1を充分に乾燥できず、ウォータマークが発生するおそれがある。
水蒸気は、液体状態の水と比較して、基板Wの第1主面W1付近で拡散しやすい。そのため、水分子を基板Wの第1主面W1の各位置において均等に衝突させやすい。したがって、酸化ガリウム層101の除去に液体を用いる場合と比較して、基板Wの第1主面W1におけるエッチング量のむらをナノメートル以下の精度で抑制できる。特に、サイクル処理が複数サイクル実行される場合に、基板Wの第1主面W1におけるエッチング量のむらの抑制効果が顕著となる。
窒化金属層を構成する物質が、窒化ガリウム以外のIII族金属の窒化物である場合であっても、上述したように、水蒸気および反応性ガスによるナノメートル以下の精度でのエッチングが可能である。
以上のように、サイクル処理を少なくとも1サイクル実行することによって、基板Wの第1主面W1の各位置においてナノメートル以下の精度でIII族窒化金属層のエッチング量を良好に制御できる。
反応性ガスとして塩化水素ガスを用いる場合には、炭化シリコン膜を熱処理チャンバ30の内壁に設け、塩化水素による腐食から熱処理チャンバを保護する必要がある。一方、反応性ガスとしてアンモニアガスを用いれば、炭化シリコン膜等の保護膜を熱処理チャンバ30の内壁に設ける必要がない。そのため、基板処理装置1のコストの低減を図れる。
第1実施形態によれば、エッチングガスの全体を別のガスで置換するのではなく、エッチングガスを構成する水蒸気の供給を継続することで密閉処理空間SPから反応性ガスが排除される(反応性ガス排除工程)。これにより、基板Wの第1主面W1に付着している反応性ガスの成分を水に吸着させて速やかに除去することができる。
第1実施形態によれば、反応性ガス排除工程の後、密閉処理空間SPに存在する水蒸気を不活性ガスで置換することによって、密閉処理空間SPから水蒸気が排除される(水排除工程)。そのため、水分子または水中に僅かに溶け込んでいる酸素分子による意図しない窒化金属層のエッチングを抑制できる。
第1実施形態によれば、酸化金属層形成工程の後で、かつ、酸化金属層除去工程の前に、基板Wの第1主面W1に不活性ガスを供給することによって、密閉処理空間SPに存在する酸化性ガスを不活性ガスで置換される。これにより、酸化金属層除去工程の前に、密閉処理空間SPから酸化性ガスが排除される(酸化性ガス排除工程)。そのため、酸化金属層除去工程における意図しない窒化金属層の酸化を抑制できる。
第1実施形態によれば、酸化金属層除去工程において、基板Wの第1主面W1に向けてエッチング流体供給ユニットから供給されるエッチングガスよりも低い温度に基板Wの温度が調整される(温度調整工程)。そのため、エッチングガスの温度が、基板Wの第1主面W1付近で低下するため、基板Wの第1主面W1付近において反応性分子および水分子の運動エネルギーが低下する。そのため、基板Wの第1主面W1に吸着された反応性分子および水分子が基板Wの第1主面W1から離れることが抑制される。言い換えると、基板Wの第1主面W1への反応性分子および水分子の吸着が促進される。これにより、窒化金属層のエッチング速度を高めることができる。その結果、サイクル処理の1サイクル当たりのエッチング量を1原子層または数原子層に維持しながら、窒化金属層のエッチング速度を高めることができる。
第1実施形態によれば、酸化金属層形成工程において、基板Wを酸化温度(第1温度)に加熱しながら基板Wの第1主面W1に向けて酸化性ガスを供給することによって、酸化金属層が形成される(加熱酸化工程)。そして、酸化金属層除去工程において、基板Wの温度がエッチング温度(第2温度)である状態でエッチング流体を基板Wの第1主面W1に向けて供給することによって、酸化金属層がエッチングされる(低温エッチング工程)。
具体的には、基板Wの温度が比較的高温な酸化温度(たとえば、100℃以上で、かつ、400℃以下)であるときに基板Wの第1主面W1の窒化金属層が酸化され、基板Wの温度が比較的低温なエッチング温度(たとえば、25℃以上で、かつ、100℃未満)であるときにエッチングが行われる。
そのため、酸化金属層形成工程において、窒化金属層の酸化速度を高めることができる。一方、酸化金属除去工程において基板Wの温度が比較的高温であれば、エッチング流体に僅かに含有される酸素が酸化力を有するところ、エッチングが比較的低温で行われる。そのため、酸化金属層除去工程において窒化金属層の意図しない酸化を抑制できる。
第1実施形態によれば、単一のホットプレート20の加熱面20aに基板Wが載置された状態で、基板Wの加熱および基板Wの温度低下の両方が行われる。そのため、基板Wの温度を変化させるためにホットプレート20とは別の部材に基板Wを移動させる構成と比較して、基板処理を簡略化できる。
また、第1実施形態によれば、コントローラ3によって、酸化金属層形成工程および酸化金属層除去工程を1サイクルとするサイクル処理が所望のサイクル数自動的に実行される。そのため、酸化金属層形成工程および酸化金属層除去工程を実行する回数を調節することによって、所望のエッチング量を達成することができる。
図8は、第1実施形態の熱処理ユニット5の変形例の模式的な断面図である。変形例に係る熱処理ユニット5は、ホットプレート20に接触し、ホットプレート20の温度を低下させるクールプレート70を含んでいてもよい。クールプレート70は、チャンバ本体31の支持部34とホットプレート20との間に介在されている。クールプレート70の内部には、冷媒(典型的には冷却水)が循環する冷媒経路(図示せず)が形成されている。
この変形例に係る熱処理ユニット5を用いて基板処理を行う場合、ホットプレート20のヒータ出力を変更せずに、冷却水の循環を開始することによって速やかにホットプレート20の温度を低下させることができる。すなわち、基板Wの温度を速やかに低下させることができる。
図9は、第1実施形態の処理ユニット2の変形例の模式的な断面図である。図9に示すように、処理ユニット2は、熱処理ユニット5によって加熱された基板Wをドライチャンバ4内で冷却する冷却ユニット80と、ドライチャンバ4内で基板Wを搬送する室内搬送機構90とをさらに含んでいてもよい。搬入搬出口4aの近傍のドライチャンバ4内に冷却ユニット80が配置されている。
冷却ユニット80は、クールプレート81と、クールプレート81を貫通して上下動する複数のリフトピン82と、リフトピン82を上下動させるピン昇降駆動機構83とを含む。クールプレート81は、基板Wが載置される冷却面81aを有する。複数のリフトピン82は、連結プレート84によって連結されている。
クールプレート81の内部には、冷媒(典型的には冷却水)が循環する冷媒経路(図示省略)が形成されている。複数のリフトピン82は、冷却面81aよりも上方で基板Wを支持する上位置と、先端が冷却面81aよりも下方に没入する下位置との間で上下動される。
室内搬送機構90は、ドライチャンバ4の内部で基板Wを搬送する。より具体的には、室内搬送機構90は、冷却ユニット80と熱処理ユニット5との間で基板Wを搬送する室内搬送ハンド90Hを備えている。室内搬送ハンド90Hは、冷却ユニット80の複数のリフトピン82との間で基板Wを受け渡しでき、かつ熱処理ユニット5のリフトピン40との間で基板Wを受け渡しできるように構成されている。それにより、室内搬送ハンド90Hは、冷却ユニット80のリフトピン40から基板Wを受け取って熱処理ユニット5のリフトピン40にその基板Wを渡すように動作できる。さらに、室内搬送ハンド90Hは、熱処理ユニット5のリフトピン40から基板Wを受け取って冷却ユニット80のリフトピン40にその基板Wを渡すように動作できる。
搬送ロボットCR(図1参照)が基板Wをドライチャンバ4に搬入するとき、シャッタ6は、搬入搬出口4aを開放する開位置に制御される。その状態で、搬送ロボットCRのハンドHがドライチャンバ4に進入し、基板Wをクールプレート81の上方に配置する。すると、複数のリフトピン82が上位置まで上昇し、搬送ロボットCRのハンドHから基板Wを受け取る。その後、搬送ロボットCRのハンドHはドライチャンバ4外へと後退する。
次に、室内搬送機構90の室内搬送ハンド90Hは、複数のリフトピン82から基板Wを受け取って熱処理ユニット5へと基板Wを搬送する。このとき蓋32は開位置(上位置)にあり、複数のリフトピン40は受け取った基板Wを上位置で支持する。室内搬送ハンド90Hが熱処理チャンバ30から退避した後、リフトピン40は下位置まで下降して、基板Wを加熱面20a(図2を参照)に載置する。一方、蓋32は、閉位置(下位置)へと下降し、ホットプレート20を内包する密閉処理空間SPを形成する。この状態で、基板Wに対する熱処理(たとえば、図4のステップS2~ステップS8)が行われる。
熱処理を終えると、蓋32が開位置(上位置)へと上昇して熱処理チャンバ30が開放される。さらに、複数のリフトピン40が上位置へと上昇し、基板Wを加熱面20aの上方へと押し上げる。その状態で、室内搬送機構90の室内搬送ハンド90Hは、複数のリフトピン40から基板Wを受け取って、冷却ユニット80の複数のリフトピン82へとその基板Wを搬送する。冷却ユニット80は、受け取った基板Wを上位置で支持する。室内搬送ハンド90Hの退避を待って、複数のリフトピン82が下位置へと下降し、それにより、基板Wがクールプレート81の冷却面81aに載置される。それにより、基板Wが冷却される。
基板Wの冷却を終えると、リフトピン82が上位置へと上昇し、それにより、基板Wを冷却面81aの上方へと押し上げる。その状態で、シャッタ6が開かれ、搬送ロボットCRのハンドHがドライチャンバ4へと進入し、上位置にあるリフトピン40によって支持された基板Wの下方に配置される。その状態で、リフトピン40が下降することにより、搬送ロボットCRのハンドHに基板Wが渡される。基板Wを保持したハンドHは、ドライチャンバ4外へと退避し、その後に、シャッタ6が搬入搬出口4aを閉じる。
<第2実施形態>
以下では、この発明の第2実施形態に係る基板処理装置1Pの構成について説明する。
第2実施形態に係る基板処理装置1Pが、第1実施形態に係る基板処理装置1と主に異なる点は、基板処理装置1Pの熱処理ユニット5が、第1熱処理ユニット5A(図10を参照)および第2熱処理ユニット5B(図11を参照)を含む点である。図10は、第1熱処理ユニット5Aの構成例を説明するための模式的な断面図である。図11は、第2熱処理ユニット5Bの構成例を説明するための模式的な断面図である。図10および図11ならびに後述する図12において、前述の図1~図9に示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。
図10を参照して、第1熱処理ユニット5Aが、第1実施形態に係る熱処理ユニット5と主に異なる点は、第1熱処理ユニット5Aには、第2流体ライン51(図2を参照)が設けられておらず、第1熱処理ユニット5Aの全ての流体導入ポート10には、第1流体ライン50が接続されている点である。つまり、第1熱処理ユニット5Aに設けられている流体導入ポート10は、全て、第1流体導入ポート10Aである。また、第1熱処理ユニット5Aに設けられている流体排出ポート15は、全て、主に酸化性ガスを排気する第1流体排出ポート15Aである。
以下では、第1熱処理ユニット5Aに備えられた熱処理チャンバ30、密閉処理空間SP、ホットプレート20、および、リフトピン40をそれぞれ、第1熱処理チャンバ30A(第1チャンバ)、第1密閉処理空間SP1、第1ホットプレート20A、および第1リフトピン40Aともいう。
図11を参照して、第2熱処理ユニット5Bが、第1実施形態に係る熱処理ユニット5と主に異なる点は、第2熱処理ユニット5Bには、第1流体ライン50が設けられておらず、第2熱処理ユニット5Bの全ての流体導入ポート10には、第2流体ライン51が接続されている点である。つまり、第2熱処理ユニット5Bに設けられている流体導入ポート10は、全て、第2流体導入ポート10Bである。また、第2熱処理ユニット5Bに設けられている流体排出ポート15は、全て、主にエッチングガスを排気する第2流体排出ポート15Bである。
以下では、第2熱処理ユニット5Bに備えられた熱処理チャンバ30、密閉処理空間SP、ホットプレート20、およびリフトピン40をそれぞれ、第2熱処理チャンバ30B(第2チャンバ)、第2密閉処理空間SP2、第2ホットプレート20Bおよび第2リフトピン40Bともいう。
第2実施形態に係る基板処理装置1Pによる基板処理は、第1実施形態に係る基板処理装置1とは異なる。具体的には、酸化金属層形成工程と、酸化金属層除去工程とが別々の熱処理ユニット5で実行される。図12は、基板処理装置1Pによって実行される基板処理の一例を説明するための流れ図である。
基板処理装置1Pによる基板処理では、たとえば、図12に示すように、まず、第1基板搬入工程(ステップS11)、第1予備置換工程(ステップS12)、酸化性ガス供給工程(ステップS13)、酸化性ガス排除工程(ステップS14)、第1基板搬出工程(ステップS15)、第2基板搬入工程(ステップS16)、第2予備置換工程(ステップS17)、エッチングガス供給工程(ステップS18)、水供給継続工程(ステップS19)、および、水排除工程(ステップS20)、第2基板搬出工程(ステップS21)が、この順番で少なくとも1回ずつ実行される。
以下では、主に、図10~図12を参照する。
まず、未処理の基板Wは、搬送ロボットIR,CR(図1参照)によってキャリヤCから第1熱処理ユニット5Aに搬入される(第1基板搬入工程:ステップS11)。基板Wは、窒化ガリウムが露出する第1主面W1を上方に向けた状態で第1ホットプレート20Aの加熱面20a上に載置される(第1基板載置工程)。
その後、第1熱処理チャンバ30Aの蓋32を下降させることによって、チャンバ本体31と蓋32とによって形成される第1密閉処理空間SP1内で、第1ホットプレート20A上に基板Wが載置された状態となる。加熱面20a上に載置された基板Wは、第1ホットプレート20Aによって、所定の酸化温度に加熱される(基板加熱工程)。所定の酸化温度は、たとえば、100℃以上で、かつ、400℃以下の温度である。第1ホットプレート20Aは、第1温度調節部材の一例であり、第1ホットプレート20Aの加熱面20aは、第1温度調節面の一例である。
第1密閉処理空間SP1が形成された状態で、第1流体排出バルブ67および第1不活性ガスバルブ62Aが開かれる。これにより、複数の第1流体導入ポート10Aから第1密閉処理空間SP1に不活性ガスが導入される一方で、第1密閉処理空間SP1内の雰囲気が複数の第1流体排出ポート15Aを介して熱処理チャンバ30の外部に排出される。つまり、第1密閉処理空間SP1に酸化性ガスが供給される前に、第1密閉処理空間SP1内の雰囲気が不活性ガスで置換される(第1予備置換工程:ステップS12)。
不活性ガスの供給を所定の第1置換時間継続することによって、第1密閉処理空間SP1内の雰囲気が不活性ガスで充分に置換されて、第1密閉処理空間SP1に不活性ガスが充満する。所定の第1置換時間は、たとえば、10秒以上で、かつ、120秒以下である。第1予備置換工程における不活性ガスの流量(第1予備置換流量)は、所定の第1流量である。第1流量は、たとえば、5L/min以上で、かつ、50L/min以下である。第1予備置換工程における不活性ガスの流量は、複数の第1流体導入ポート10Aから第1密閉処理空間SP1に導入される不活性ガスの流量の合計を意味する。
第1密閉処理空間SP1に不活性ガスが充満している状態で、酸化性流体バルブ63Aが開かれる。これにより、複数の第1流体導入ポート10Aから第1密閉処理空間SP1にオゾンガスが導入され、基板Wの第1主面W1に向けてオゾンガスが供給される(酸化性ガス供給工程、オゾンガス供給工程:ステップS13)。
複数の第1流体導入ポート10Aから吐出されたオゾンガスによって、基板Wの第1主面W1が処理される(酸化処理工程)。詳しくは、基板Wの第1主面W1から露出する窒化ガリウム層の表層に、1原子層または数原子層からなる酸化ガリウム層が形成される(酸化金属層形成工程、酸化ガリウム層形成工程)。第1密閉処理空間SP1へのオゾンガスの導入は、所定の酸化処理時間継続される。所定の酸化処理時間は、たとえば、10秒以上で、かつ、120秒以下である。
酸化性ガス供給工程における酸化性ガスの流量は、所定の酸化流量である。酸化流量は、たとえば、5L/min以上で、かつ、50L/min以下である。酸化性ガス供給工程における酸化性ガスの流量は、全ての第1流体導入ポート10Aから第1密閉処理空間SP1に導入される酸化性ガスの流量の合計を意味する。
第1密閉処理空間SP1への酸化性ガスの導入中、第1不活性ガス流量調整バルブ64Bが制御されて、不活性ガスの流量は、第1分圧調整流量に調整される。第1分圧調整流量は、たとえば、第1流量よりも低い第2流量である。第2流量は、たとえば、5L/min以上であり、50L/min以下である。第1分圧調整流量は、複数の第1流体導入ポート10Aから密閉処理空間SPに導入される不活性ガスの流量の合計を意味する。
不活性ガスの流量を調整することによって、第1密閉処理空間SP1内におけるオゾンガスの分圧を、窒化ガリウム層の表層の1原子層または数原子層の部分を酸化するのに適した分圧に調整できる(オゾンガス分圧調整工程、酸化性ガス分圧調整工程)
オゾンガスの供給中においても第1流体排出バルブ67が開かれた状態が継続されているため、第1密閉処理空間SP1内のオゾンガスは第1流体排出ライン57から排気される。
オゾンガスで基板Wの第1主面W1を処理した後、酸化性流体バルブ63Aが閉じられる。これにより、複数の第1流体導入ポート10Aからの不活性ガスの吐出が継続される一方で、オゾンガスの吐出が停止される。
基板Wの主面に向けて不活性ガスを供給することで、第1密閉処理空間SP1内の雰囲気が不活性ガスで置換され、第1密閉処理空間SP1からオゾンガスが排除される(酸化性ガス排除工程:ステップS14)。
酸化性流体バルブ63Aが閉じられると同時に、あるいは、酸化性流体バルブ63Aが閉じられた後、第1不活性ガス流量調整バルブ62Bが制御されて、不活性ガスの流量が、所定の酸化性流体排除流量に変更される。酸化性流体排除流量は、たとえば、第1流量である。酸化性流体排除流量は、複数の第1流体導入ポート10Aから第1密閉処理空間SP1に導入される不活性ガスの流量の合計を意味する。
その後、酸化処理済みの基板Wが第1熱処理ユニット5A外へと搬出される(ステップS15:第1基板搬出工程)。
第1熱処理ユニット5Aから搬出された基板Wは、搬送ロボットCRによって、第2熱処理ユニット5Bに搬入される(ステップS16:第2基板搬入工程)。基板Wは、第1主面W1を上方に向けた状態で第2ホットプレート20Bの加熱面20a上に載置される(第2基板載置工程)。
その後、第2熱処理チャンバ30Bの蓋32を下降させることによって、チャンバ本体31と蓋32とによって形成される第2密閉処理空間SP2内で、第2ホットプレート20B上に基板Wが載置された状態となる。加熱面20a上に載置された基板Wの温度は、第2ホットプレート20Bによって、所定のエッチング温度に調節される(温度調節工程)。所定のエッチング温度は、たとえば、25℃以上で、かつ、100℃未満の温度である(低温加熱工程)。第2ホットプレート20Bは、第1温度調節部材よりも低温である第2温度調節部材の一例であり、第2ホットプレート20Bの加熱面20aは、第2温度調節面の一例である。
第2熱処理チャンバ30Bに搬入される基板Wが既にエッチング温度よりも低い温度に冷却されている場合、基板Wは、第2ホットプレート20Bの加熱面20aに載置されることでエッチング温度にまで加熱される。逆に、第2熱処理チャンバ30Bに搬入される基板Wの温度がエッチング温度よりも高い場合、基板Wは、第2ホットプレート20Bの加熱面20aに載置されることでエッチング温度にまで冷却される。
第2密閉処理空間SP2が形成された状態で、第2流体排出バルブ68および第2不活性ガスバルブ64Aが開かれる。これにより、複数の第2流体導入ポート10Bから第2密閉処理空間SP2に不活性ガスが導入される一方で、第2密閉処理空間SP2内の雰囲気が複数の第2流体排出ポート15Bを介して第2熱処理チャンバ30Bの外部に排出される。つまり、第2密閉処理空間SP2に酸化性ガスが供給される前に、第2密閉処理空間SP2内の雰囲気が不活性ガスで置換される(第2予備置換工程:ステップS17)。
不活性ガスの供給を所定の第2置換時間継続することによって、第2密閉処理空間SP2内の雰囲気が不活性ガスで充分に置換されて、第2密閉処理空間SP2に不活性ガスが充満する。所定の第2置換時間は、たとえば、30秒である。第2予備置換工程における不活性ガスの流量(第2予備置換流量)は、たとえば、5L/min以上で、かつ、50L/min以下である。第2予備置換流量は、第1予備置換流量と同じ第1流量であってもよい。第2予備置換工程における不活性ガスの流量は、全ての第2流体導入ポート10Bから第2密閉処理空間SP2に導入される不活性ガスの流量の合計を意味する。
基板Wの温度がエッチング温度に達した後、水バルブ65Aおよび反応性ガスバルブ66Aが開かれる。これにより、複数の第2流体導入ポート10Bから第2密閉処理空間SP2にエッチングガス(水蒸気およびアンモニアガスの混合ガス)が供給される(エッチングガス供給工程:ステップS18)。
複数の第2流体導入ポート10Bから吐出されたエッチングガスによって、基板Wの第1主面W1が処理される(エッチング処理工程)。詳しくは、基板Wの第1主面W1に形成された酸化ガリウム層がエッチングされて、酸化ガリウム層が選択的に除去される(酸化金属層除去工程、酸化ガリウム層除去工程)。酸化金属層除去工程では、基板Wの温度がエッチング温度である状態で酸化ガリウム層がエッチングされる(低温エッチング工程)。
第2密閉処理空間SP2へのエッチングガスの導入は、所定のエッチング処理時間継続される。所定のエッチング処理時間は、たとえば、10秒以上で、かつ、120秒以下である。
エッチングガス供給工程における水蒸気の流量は、所定の水蒸気流量である。水蒸気流量は、たとえば、5L/min以上で、かつ、50L/min以下である。エッチングガス供給工程における水蒸気の流量は、全ての第2流体導入ポート10Bから第2密閉処理空間SP2に導入される水蒸気の流量の合計を意味する。
エッチングガス供給工程におけるアンモニアガスの流量は、所定のアンモニア流量である。アンモニア流量は、たとえば、5L/min以上で、かつ、50L/min以下である。エッチングガス供給工程におけるアンモニアガスの流量は、全ての第2流体導入ポート10Bから第2密閉処理空間SP2に導入されるアンモニアガスの流量の合計を意味する。
複数の第2流体導入ポート10Bから第2密閉処理空間SP2にエッチングガスが導入されている間、第2不活性ガス流量調整バルブ64Bが制御され、不活性ガスの流量は、第2分圧調整流量に調整される。第2分圧調整流量は、予備置換流量よりも低く、たとえば、第2流量である。第2分圧調整流量は、複数の第2流体導入ポート10Bから密閉処理空間SPに導入される不活性ガスの流量の合計を意味する。
不活性ガスの流量を低減することによって、第2密閉処理空間SP2内における水蒸気の分圧およびアンモニアガスの分圧を、酸化ガリウム層の選択的なエッチングに適した分圧に調整できる(エッチングガス分圧調整工程)。
複数の第2流体導入ポート10Bから吐出される水蒸気の温度は、エッチングガス供給工程における基板Wの温度(エッチング温度)よりも高い。そのため、基板Wの第1主面W1の近傍では、水蒸気の温度が低下し、微細なミスト状の水が形成される。この微細なミスト状の水に溶け込むアンモニアガスの濃度が1×10-6mol/L以上で、かつ、15mol/L以下であれば、1原子または数原子層の厚みを有する酸化ガリウム層の選択的なエッチングが達成される。この微細なミスト状の水に溶け込むアンモニアガスの濃度は、1mol/Lであることが特に好ましい。
基板Wの第1主面W1から酸化ガリウム層が除去された後、水バルブ65Aが開かれた状態に維持される一方で、反応性ガスバルブ66Aが閉じられる。これにより、複数の第2流体導入ポート10Bから第2密閉処理空間SP2へのアンモニアガスの導入が停止され、複数の第2流体導入ポート10Bから第2密閉処理空間SP2への水蒸気の導入が継続される(水蒸気供給継続工程:ステップS19)。第2密閉処理空間SP2への水蒸気の導入を継続することによって、第2密閉処理空間SP2から反応性ガスが排除される(反応性ガス排除工程、アンモニアガス排除工程)。
反応性ガスの供給停止後、第2密閉処理空間SP2への水蒸気の導入は、所定の水供給継続時間継続される。所定の水供給継続時間は、たとえば、10秒以上で、かつ、120秒以下である。
第2密閉処理空間SP2への水蒸気の供給が継続されている間、不活性ガスの流量は、所定のアンモニアガス排除流量に調整される。アンモニアガス排除流量は、たとえば、第2分圧調整流量と等しく第2流量である。水蒸気供給継続工程における不活性ガスの流量は、複数の第2流体導入ポート10Bから第2密閉処理空間SP2に導入される不活性ガスの流量の合計を意味する。
水蒸気の供給が所定の水供給継続時間継続された後、水バルブ65Aが閉じられる。これにより、第2密閉処理空間SP2への水蒸気の供給が停止される。その一方で、第2密閉処理空間SP2への不活性ガスの供給が継続されるため、第2密閉処理空間SP2から水蒸気が排除される(水排除工程、水蒸気排除工程:ステップS20)。
水バルブ65Aが閉じられると同時に、あるいは、水バルブ65Aが閉じられた後、不活性ガスの流量が、所定の水排除流量に変更される。水排除流量は、たとえば、第1流量である。水排除工程における不活性ガスの流量は、全ての第2流体導入ポート10Bから第2密閉処理空間SP2に導入される不活性ガスの流量の合計を意味する。
その後、再び、第1基板搬入工程(ステップS11)~第2基板搬出工程(ステップS21)が1回ずつ以上実行されてもよい。図12における「N」は、0以上の整数(N=0,1,2・・・)を意味している。サイクル処理が合計で1回以上行われ、エッチング処理済みの基板Wが第2熱処理ユニット5B外へと搬出する(ステップS21:第2基板搬出工程)。その後、最後の第2基板搬出工程では、基板W、搬送ロボットCRから搬送ロボットIRへと渡され、搬送ロボットIRによって、キャリヤCに収納される。
第2実施形態によれば、第1実施形態と同様の効果を奏する。ただし、第2実施形態によれば、基板Wの温度調節は、第1ホットプレート20Aの加熱面20a上で行われた後、第2ホットプレート20Bの加熱面20a上で行われる。つまり、2回の温度調節(たとえば、基板Wの加熱と冷却)が別々の部材(第1ホットプレート20Aおよび第2ホットプレート20B)によって行われる。そのため、第1実施形態のように単一のホットプレート20の加熱面20aの温度を変化させることで基板Wの温度を調節する構成と比較して、基板Wの温度調節に要する時間を短縮できる。
第2実施形態においても、第1実施形態の変形例(図8および図9を参照)を適用することが可能である。その場合、第1基板搬出工程(ステップS15)および第2基板搬出工程(ステップS21)において、基板Wは、搬送ロボットCRによって処理ユニット2から搬出される前に、クールプレート70,81によって、常温にまで冷却される。
<その他の実施形態>
この発明は、以上に説明した実施形態に限定されるものではなく、さらに他の形態で実施することができる。
たとえば、上述の実施形態では、酸化金属層除去工程において水蒸気が用いられる。しかしながら、酸化金属層除去工程では、エッチング流体として、水蒸気、ミスト状態の水および反応性ガスの混合流体が用いられてもよいし、ミスト状態の水および反応性ガスの混合流体が用いられてもよい。
ただし、上述の各実施形態のように第2流体導入ポート10Bから吐出されるエッチングガスに含有される水蒸気である場合、ミスト状態の水を用いた場合と比較して、基板Wの第1主面W1にバルク状態(微小なサイズの液滴状態)の水が付着しにくい。したがって、エッチングガスに含有される水として水蒸気を用いる構成であれば、基板Wの第1主面W1の各位置に水分子を一層むらなく衝突させることができる。
また、酸化金属形成工程では、必ずしもオゾンガス等の酸化性ガスを用いる必要はなく、過酸化水素水等の酸化性液体を用いることも可能である。酸化性液体が過酸化水素水である場合、過酸化水素水中の過酸化水素の濃度は、1ppm以上で、かつ、100ppm以下であることが好ましい。酸化性ガスおよび酸化性液体をまとめて酸化性流体をいう。
酸化金属形成工程では、空気中の酸素をUV照射して励起することによって生成されるOラジカルを用いて金属層を形成してもよい。酸化金属形成工程では、UV照射によよって形成されるOラジカルと、酸化性流体とを組み合わせてもよい。
上述の実施形態では、基板処理装置1,1Pが、搬送ロボットIR,CRと、処理ユニット2と、コントローラ3とを備えている。しかしながら、単一の処理ユニット2が、本発明の基板処理装置を構成していてもよい。言い換えると、処理ユニット2が基板処理装置の一例であってもよい。
上述の各実施形態では、不活性ガスおよび酸化性ガスが共通の第1流体ライン50を通って、第1流体導入ポート10Aから熱処理チャンバ30(第1熱処理チャンバ30A)内に導入され、不活性ガス、水蒸気および反応性ガスが共通の第2流体ライン51を通って、第2流体導入ポート10Bから熱処理チャンバ30(第2熱処理チャンバ30B)内に導入される。しかしながら、各流体は、第1流体ライン50や第2流体ライン51のような共通ラインを通らずに、流体導入ポート10に直接接続された不活性ガスライン、酸化性ガスライン、水ライン、反応性ガスライン等から流体導入ポート10に送られてもよい。また、第1流体ライン50および第2流体ライン51には、流体を混合するためのミキシングバルブが設けられていてもよい。
また、各流体が、熱処理チャンバ30(第1熱処理チャンバ30A、第2熱処理チャンバ30B)内に設けられたノズルから吐出されるように構成されていてもよい。
また、エッチングガス(エッチング流体)は、第2流体ライン51内で混合される必要はなく、予め混合されたエッチングガス(エッチング流体)が、供給源から第2流体ライン51等に供給されてもよい。
酸化金属層除去工程における基板Wの温度(エッチング温度)が常温(たとえば、25℃)である場合、第1実施形態の基板処理では、ホットプレート20による加熱を停止することで、基板Wの温度を低下させてもよい。
酸化金属層除去工程における基板Wの温度(エッチング温度)が常温(たとえば、25℃)である場合、第2実施形態の基板処理では、第2ホットプレート20Bによる加熱を行う必要がない。
その他、特許請求の範囲に記載した範囲で種々の変更を行うことができる。
1 :基板処理装置
1P :基板処理装置
2 :処理ユニット(基板処理装置)
3 :コントローラ
10 :流体導入ポート
10A :第1流体導入ポート
10B :第2流体導入ポート
20 :ホットプレート(温度調節部材)
20A :第1ホットプレート(第1温度調節部材)
20B :第2ホットプレート(第2温度調節部材)
20a :加熱面(温度調節面、第1温度調節面、第2温度調節面)
30 :熱処理チャンバ(チャンバ)
30A :第1熱処理チャンバ(第1チャンバ)
30B :第2熱処理チャンバ(第2チャンバ)
50 :第1流体ライン(酸化性流体供給ユニット)
51 :第2流体ライン(エッチング流体供給ユニット)
53 :酸化性流体ライン(酸化性流体供給ユニット)
55 :水ライン(エッチング流体供給ユニット)
56 :反応性ガスライン(エッチング流体供給ユニット)
63A :酸化性流体バルブ(酸化性流体供給ユニット)
65A :水バルブ(エッチング流体供給ユニット)
66A :反応性ガスバルブ(エッチング流体供給ユニット)
100 :窒化ガリウム層(金属層)
101 :酸化ガリウム層(酸化金属層)
SP :密閉処理空間(基板の主面に接する空間)
SP1 :第1密閉処理空間
SP2 :第2密閉処理空間
W :基板
W1 :第1主面
その結果、基板の主面の各位置においてナノメートル以下の精度で金属層のエッチング量を良好に制御できる。
この発明の他の実施形態では、前記基板処理装置が、前記酸化性流体供給ユニットおよび前記エッチング流体供給ユニットを制御するコントローラをさらに含む。前記コントローラが、前記酸化性流体供給ユニットから基板の主面に向けて前記酸化性流体を供給することによって、1原子層または数原子層からなる前記酸化金属層を前記金属層の表層に形成する酸化金属層形成工程と、前記エッチング流体供給ユニットから前記基板の主面に向けてエッチング流体を供給することによって、前記酸化金属層をエッチングして前記基板の主面から選択的に除去する酸化金属層除去工程とを実行するようにプログラムされている。そして、前記酸化金属層形成工程および前記酸化金属層除去工程を1サイクルとするサイクル処理が少なくとも1サイクル実行されることによって、サイクル毎にナノメートル以下の精度で前記金属層のエッチング量を制御する。
この発明の他の実施形態では、前記温度調節部材が、単一の前記温度調節面を有し、当該単一の温度調節面上に前記基板を載置している状態で、前記基板の温度を、前記第1温度と前記第2温度とに調節するように構成されている。
この基板処理装置によれば、単一の温度調節面に基板が載置された状態で、基板の加熱および基板の温度低下の両方が行われる。そのため、基板の温度を変化させるために加熱部材とは別の部材に基板を移動させる構成と比較して、基板処理を簡略化できる。

Claims (20)

  1. 金属層を主面に有する基板を処理する基板処理方法であって、
    前記基板の主面に向けて酸化性流体を供給することによって、1原子層または数原子層からなる酸化金属層を前記金属層の表層に形成する酸化金属層形成工程と、
    ガス状態の水およびミスト状態の水の少なくともいずれかと、前記水とともに前記酸化金属層と反応する反応性ガスとを含有するエッチング流体を前記基板の主面に向けて供給することによって、前記酸化金属層をエッチングして前記基板から選択的に除去する酸化金属層除去工程とを含み、
    前記酸化金属層形成工程および前記酸化金属層除去工程を1サイクルとするサイクル処理を少なくとも1サイクル実行することによって、サイクル毎にナノメートル以下の精度で前記金属層のエッチング量を制御する、基板処理方法。
  2. 前記酸化金属層除去工程の後、前記基板の主面へのガス状態の水およびミスト状態の水の少なくともいずれかの供給を継続して、前記基板の主面に接する空間から前記反応性ガスを排除する反応性ガス排除工程をさらに含む、請求項1に記載の基板処理方法。
  3. 前記反応性ガス排除工程の後、前記基板の主面に接する空間に存在する水を不活性ガスで置換することによって、前記基板の主面に接する空間から水を排除する水排除工程をさらに含む、請求項2に記載の基板処理方法。
  4. 前記酸化金属層形成工程の後で、かつ、前記酸化金属層除去工程の前に、前記基板の主面に向けて不活性ガスを供給することによって、前記基板の主面に接する空間に存在する前記酸化性流体を不活性ガスで置換して、前記基板の主面に接する空間から前記酸化性流体を排除する酸化性流体排除工程をさらに含む、請求項1~3のいずれか一項に記載の基板処理方法。
  5. 前記酸化金属層除去工程が、エッチング流体供給ユニットから前記基板の主面に向けてエッチング流体を供給するエッチング流体供給工程と、前記エッチング流体供給ユニットから供給されるエッチング流体よりも低い温度に前記基板の温度を調整する温度調整工程とを含む、請求項1~4のいずれか一項に記載の基板処理方法。
  6. 前記酸化金属層形成工程が、前記基板を加熱しながら前記基板の主面に向けて前記酸化性流体を供給することによって、前記酸化金属層を形成する加熱酸化工程を含み、
    前記酸化金属層除去工程が、前記酸化金属層形成工程における前記基板の温度よりも前記基板の温度が低い状態で前記エッチング流体を前記基板の主面に向けて供給することによって、前記酸化金属層をエッチングする低温エッチング工程を含む、請求項1~5のいずれか一項に記載の基板処理方法。
  7. 前記加熱酸化工程における前記基板の温度が100℃以上で、かつ、400℃以下であり、前記低温エッチング工程における前記基板の温度が25℃以上で、かつ、100℃未満である、請求項6に記載の基板処理方法。
  8. 前記加熱酸化工程において、前記基板の主面に向けて前記酸化性流体を供給しながらチャンバ内に配置された加熱部材の加熱面に前記基板を載置することによって、前記基板が加熱され、
    前記低温エッチング工程において、前記基板が前記加熱面に載置されている状態を維持しながら前記加熱部材の温度を低下させることで、前記基板の温度が低下する、請求項6または7に記載の基板処理方法。
  9. 前記加熱酸化工程において、前記基板の主面に向けて前記酸化性流体を供給しながら第1チャンバ内に配置された第1温度調節部材の第1温度調節面に前記基板を載置することによって、前記基板が加熱され、
    前記低温エッチング工程において、前記基板を前記第1温度調節面から移動させて第2チャンバ内に配置され前記第1温度調節部材よりも低温である第2温度調節部材の第2温度調節面に前記基板を載置することによって、前記基板の温度が低下される、請求項6または7に記載の基板処理方法。
  10. 前記酸化金属層形成工程において形成された前記酸化金属層の厚みが5nm以下である、請求項1~9のいずれか一項に記載の基板処理方法。
  11. 前記金属層が、III族金属を含有する窒化金属層を含む、請求項1~10のいずれか一項に記載の基板処理方法。
  12. 前記窒化金属層が、窒化ガリウム層である、請求項11に記載の基板処理方法。
  13. 前記エッチング流体に含有される水がガス状態の水である、請求項1~12のいずれか一項に記載の基板処理方法。
  14. 前記反応性ガスが、アンモニアガスである、請求項1~13のいずれか一項に記載の基板処理方法。
  15. 金属層を主面に有する基板を処理する基板処理装置であって、
    前記基板が載置される温度調節面を有し、前記温度調節面に載置された前記基板の温度を、所定の第1温度と前記第1温度よりも低温の第2温度とに調節する温度調節部材と、
    前記温度調節部材を収容するチャンバと、
    前記チャンバ内に酸化性流体を供給し、1原子層または数原子層からなる酸化金属層を前記金属層の表層に形成する酸化性流体供給ユニットと、
    ガス状態の水およびミスト状態の水の少なくともいずれかと、前記水とともに前記酸化金属層と反応する反応性ガスとを含有するエッチング流体を前記チャンバ内に供給し、前記酸化金属層を選択的にエッチングするエッチング流体供給ユニットとを含む、基板処理装置。
  16. 前記酸化性流体供給ユニットおよび前記エッチング流体供給ユニットを制御するコントローラとを含み、
    前記コントローラが、前記酸化性流体供給ユニットから基板の主面に向けて前記酸化性流体を1原子層または数原子層からなる前記酸化金属層を前記金属層の表層に形成する酸化金属層形成工程と、前記エッチング流体供給ユニットから前記基板の主面に向けてエッチング流体を供給することによって、前記酸化金属層をエッチングして前記基板の主面から選択的に除去する酸化金属層除去工程とを実行するようにプログラムされており、
    前記酸化金属層形成工程および前記酸化金属層除去工程を1サイクルとするサイクル処理が少なくとも1サイクル実行されることによって、サイクル毎にナノメートル以下の精度で前記金属層のエッチング量を制御する、請求項15に記載の基板処理装置。
  17. 前記エッチング流体供給ユニットは、前記チャンバ内で開口する流体導入ポートを介して前記チャンバ内にエッチング流体を供給するように構成されており、
    前記第2温度が、前記流体導入ポートを介して前記チャンバ内に導入されるエッチング流体の温度よりも低い、請求項15または16に記載の基板処理装置。
  18. 前記温度調節部材が、単一の前記温度調節面を有し、当該単一の温度調節面上に前記基板を際している状態で、前記基板の温度を、前記第1温度と前記第2温度とに調節するように構成されている、請求項15~17のいずれか一項に記載の基板処理装置。
  19. 前記温度調節部材が、前記温度調節面としての第1温度調節面を有し、前記第1温度調節面に載置された前記基板を前記第1温度に調節する第1温度調節部材と、前記温度調節面としての第2温度調節面を有し、前記第2温度調節面に載置された前記基板を前記第2温度に調節する第2温度調節部材とを有し、
    前記チャンバが、前記第1温度調節部材を収容する第1チャンバと、前記第2温度調節部材を収容する第2チャンバとを有し、
    前記酸化性流体供給ユニットが、前記第1チャンバ内に酸化性流体を供給するように構成されており、
    前記エッチング流体供給ユニットが、前記第2チャンバ内にエッチング流体を供給するように構成されている、請求項15~17のいずれか一項に記載の基板処理装置。
  20. 前記第1温度が100℃以上で、かつ、400℃以下であり、前記第2温度が25℃以上で、かつ、100℃未満である、請求項15~19のいずれか一項に記載の基板処理装置。
JP2021028727A 2021-02-25 2021-02-25 基板処理方法および基板処理装置 Pending JP2022129872A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021028727A JP2022129872A (ja) 2021-02-25 2021-02-25 基板処理方法および基板処理装置
TW111103589A TWI792896B (zh) 2021-02-25 2022-01-27 基板處理方法及基板處理裝置
KR1020220021467A KR102553420B1 (ko) 2021-02-25 2022-02-18 기판 처리 방법 및 기판 처리 장치
CN202210171497.8A CN114975111A (zh) 2021-02-25 2022-02-24 衬底处理方法及衬底处理装置
US17/679,174 US20220267909A1 (en) 2021-02-25 2022-02-24 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021028727A JP2022129872A (ja) 2021-02-25 2021-02-25 基板処理方法および基板処理装置

Publications (1)

Publication Number Publication Date
JP2022129872A true JP2022129872A (ja) 2022-09-06

Family

ID=82901099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021028727A Pending JP2022129872A (ja) 2021-02-25 2021-02-25 基板処理方法および基板処理装置

Country Status (5)

Country Link
US (1) US20220267909A1 (ja)
JP (1) JP2022129872A (ja)
KR (1) KR102553420B1 (ja)
CN (1) CN114975111A (ja)
TW (1) TWI792896B (ja)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433846B1 (ko) * 2001-05-23 2004-06-04 주식회사 하이닉스반도체 반도체장치의 금속도전막 형성방법
JP2003282872A (ja) * 2002-03-20 2003-10-03 Japan Science & Technology Corp プラズマ処理を含む基板材料及び半導体デバイスの製造方法
US7135421B2 (en) * 2002-06-05 2006-11-14 Micron Technology, Inc. Atomic layer-deposited hafnium aluminum oxide
US7312120B2 (en) * 2004-09-01 2007-12-25 Micron Technology, Inc. Method for obtaining extreme selectivity of metal nitrides and metal oxides
US8962469B2 (en) * 2012-02-16 2015-02-24 Infineon Technologies Ag Methods of stripping resist after metal deposition
US9466464B1 (en) * 2015-01-23 2016-10-11 Multibeam Corporation Precision substrate material removal using miniature-column charged particle beam arrays
WO2017213842A2 (en) * 2016-05-23 2017-12-14 The Regents Of The University Of Colorado, A Body Corporate Enhancement of thermal atomic layer etching
WO2018106955A1 (en) * 2016-12-09 2018-06-14 Asm Ip Holding B.V. Thermal atomic layer etching processes
US10283319B2 (en) * 2016-12-22 2019-05-07 Asm Ip Holding B.V. Atomic layer etching processes
TW201834075A (zh) * 2017-03-01 2018-09-16 力晶科技股份有限公司 30078 新竹科學工業園區力行一路12號 金屬絕緣體金屬元件的製造方法
US10832909B2 (en) * 2017-04-24 2020-11-10 Lam Research Corporation Atomic layer etch, reactive precursors and energetic sources for patterning applications
JP7034645B2 (ja) * 2017-09-22 2022-03-14 株式会社Screenホールディングス 基板処理方法および基板処理装置
US20190131130A1 (en) * 2017-10-31 2019-05-02 Lam Research Corporation Etching metal oxide substrates using ale and selective deposition
CN112074939A (zh) * 2018-03-20 2020-12-11 东京毅力科创株式会社 具有集成计量的衬底加工工具及其使用方法
US10573527B2 (en) * 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
JP6826558B2 (ja) * 2018-06-04 2021-02-03 株式会社Kokusai Electric クリーニング方法、半導体装置の製造方法、基板処理装置、およびプログラム
US20230036221A1 (en) * 2020-02-13 2023-02-02 Mitsubishi Electric Corporation Method for fabricating silicon carbide semiconductor device and power conversion device using the silicon carbide semiconductor device

Also Published As

Publication number Publication date
KR20220121718A (ko) 2022-09-01
TW202234624A (zh) 2022-09-01
US20220267909A1 (en) 2022-08-25
TWI792896B (zh) 2023-02-11
KR102553420B1 (ko) 2023-07-07
CN114975111A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
JP5084250B2 (ja) ガス処理装置およびガス処理方法ならびに記憶媒体
JP5898549B2 (ja) 基板処理方法および基板処理装置
WO2015115002A1 (ja) 微細パターンの形成方法、半導体装置の製造方法、基板処理装置及び記録媒体
WO2019171670A1 (ja) 基板処理方法および基板処理装置
JP2014236055A (ja) エッチング方法
JP6262333B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
WO2015016149A1 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
WO2017077876A1 (ja) 基板処理方法及び基板処理装置
JP6073172B2 (ja) エッチング方法
JP2020088003A (ja) 基板処理方法、3次元メモリデバイスの製造方法および基板処理装置
US20210090896A1 (en) Etching method, damage layer removal method, and storage medium
JP7307575B2 (ja) 基板処理装置および基板処理方法
KR102553420B1 (ko) 기판 처리 방법 및 기판 처리 장치
KR20230136517A (ko) 가스 클리닝 방법, 기판 처리 방법, 반도체 장치의 제조 방법, 프로그램 및 기판 처리 장치
JP6376960B2 (ja) 基板処理装置および基板処理方法
JP2017157660A (ja) 半導体装置の製造方法および基板処理装置
JP2008251657A (ja) 基板処理装置
JP6236105B2 (ja) 基板処理方法および基板処理装置
JP4589161B2 (ja) 基板処理装置
JP2003092330A (ja) 熱処理装置および熱処理方法
WO2017026001A1 (ja) 半導体装置の製造方法、基板処理装置および記録媒体
WO2022196072A1 (ja) 基板処理方法、および、基板処理装置
US20240203757A1 (en) Control unit and semiconductor manufacturing equipment including the same
US20230215754A1 (en) Substrate processing apparatus and substrate transfer method
KR102318392B1 (ko) 기판 처리 장치 및 기판 처리 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231218