JP2022107543A - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP2022107543A
JP2022107543A JP2022074315A JP2022074315A JP2022107543A JP 2022107543 A JP2022107543 A JP 2022107543A JP 2022074315 A JP2022074315 A JP 2022074315A JP 2022074315 A JP2022074315 A JP 2022074315A JP 2022107543 A JP2022107543 A JP 2022107543A
Authority
JP
Japan
Prior art keywords
moving body
control unit
unit
information
scanning range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022074315A
Other languages
English (en)
Inventor
武浩 松田
Takehiro Matsuda
宏 青山
Hiroshi Aoyama
陽 河野
Akira Kono
英治 黒木
Eiji Kuroki
淳一 古川
Junichi Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Publication of JP2022107543A publication Critical patent/JP2022107543A/ja
Priority to JP2023185416A priority Critical patent/JP2024012422A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9322Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using additional data, e.g. driver condition, road state or weather data

Abstract

Figure 2022107543000001
【課題】計測装置のスキャン領域を動的に変更する場合に、変更後のスキャン領域が望ましい領域からずれることを抑制する技術を提供する。
【解決手段】計測装置(200)は、移動体に配置される装置であり、電磁波を照射して物体の走査を行う計測部(202)を有する。計測部(202)は、制御部(204)を有する計測部の制御装置(203)によって制御される。制御部(204)は、所定距離先の位置の情報を用いて計測部(202)の走査範囲を設定する。詳細には、制御部(204)は、移動体(240)の予測進路において、当該移動体(240)の現在位置から所定距離先の位置を特定する。また、制御部(204)は、当該所定距離先の位置の情報を用いて計測部(202)の走査範囲を設定する。
【選択図】図1

Description

本発明は、制御装置、計測装置、制御方法、およびプログラムに関する。
電磁波を照射して物体を走査することで障害物などの検出を行う技術が開発されている。例えば、下記特許文献1は、自動車等に設置される装置において、レーザ光を照射して目標領域内でスキャンを行うことで、障害物などの検出を行う技術を開示している。また特許文献1では、自動車の操舵角度に応じて、スキャン領域の横方向の中心軸を変更する技術が開示されている。
特開2006-258604号公報
しかしながら、特許文献1に開示される手法では、自動車の操舵部が実際に操作されてからスキャン領域が変更されるため、スキャン領域の変更動作が間に合わず、望ましい領域からずれた領域をスキャン領域としてしまう可能性がある。この問題は、自動車の移動速度が大きいほど顕著となる。
本発明は、上述の課題に鑑みてなされたものであり、計測装置のスキャン領域を動的に変更する場合に、変更後のスキャン領域が望ましい領域からずれることを抑制する技術を提供することを一つの目的とする。
本開示に係る第1の発明は、
電磁波を照射して走査を行う、移動体に配置された計測部を制御する制御部を備え、
前記制御部は、前記移動体の現在位置を示す情報と、前記移動体の予測進路を示す情報と、に基づいて、前記計測部の走査範囲を設定する制御装置である。
本開示には、
移動体に配置される計測装置であって、
電磁波を照射して走査を行う計測部と、
前記計測部を制御する制御部と、を備え、
前記制御部は、前記移動体の現在位置を示す情報と、前記移動体の予測進路を示す情報と、に基づいて、前記計測部の走査範囲を設定する計測装置が含まれる。
本開示には、
電磁波を照射して物体の走査を行う、移動体に配置される計測装置をコンピュータによって制御する制御方法であって、
前記移動体の現在位置を示す情報と、前記移動体の予測進路を示す情報と、に基づいて、前記計測装置の走査範囲を設定する工程を含む制御方法が含まれる。
本開示には、
上述の制御方法をコンピュータに実行させるためのプログラムが含まれる。
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1実施形態に係る計測装置の機能構成を例示するブロック図である。 第1実施形態の計測装置によって実行される処理の流れを例示するフローチャートである。 制御部のハードウエア構成を例示する図である。 計測部のハードウエア構成を例示する図である。 光を照射する計測部のハードウエア構成を例示する図である。 移動体に設置されている計測装置を例示する図である。 第1実施形態の第1の具体例の処理の流れを示すフローチャートである。 図7のフローチャートで示される処理の流れを具体的に説明するための図である。 図7のフローチャートで示される処理の流れを具体的に説明するための図である。 図7のフローチャートで示される処理の流れを具体的に説明するための図である。 第1実施形態の第2の具体例の処理の流れを示すフローチャートである。 図11のフローチャートで示される処理の流れを具体的に説明するための図である。 図11のフローチャートで示される処理の流れを具体的に説明するための図である。 道路勾配に関する情報を用いて、計測部の走査範囲を縦方向で制御する処理を説明するための図である。 第2実施形態の計測装置によって実行される処理の流れの一例を示すフローチャートである。 第2実施形態の計測装置によって実行される処理の流れの他の一例を示すフローチャートである。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
[第1実施形態]
<計測装置の機能構成>
図1は、第1実施形態に係る計測装置200の機能構成を例示するブロック図である。図1において、各ブロックは、ハードウエア単位の構成ではなく、機能単位の構成を表している。計測装置200のハードウエア構成については、図3から図5を用いて後述する。
計測装置200は、移動体240に配置される装置であり、計測部202を有する。計測部202は、電磁波を照射して物体の走査を行う。ここで計測部202は、縦方向と横方向の2次元において電磁波の照射方向を変えながら、物体の走査を行うことができる。なお、縦方向は略鉛直方向を意味する。また、横方向は略水平方向を意味する。
また図1の例において、計測装置200は、計測部の制御装置203を含んで構成されている。計測部の制御装置203は、計測部202を制御する制御部204を有する。具体的には、制御部204は、移動体240の現在位置を示す情報(現在位置情報)と、当該移動体240の予測進路を示す情報と、に基づいて、計測部202の走査範囲を設定する。ここで「計測部202の走査範囲を設定する」とは、計測部202から出力される電磁波を所望のエリアに照射できるように、計測部202に備えられている電磁波照射用の機構(図示せず)の動きを制御することを言う。具体的には、制御部204が、計測部202の電磁波照射用の機構の動きを制御するための制御信号を生成し、該制御信号を計測部202に送信することを言う。電磁波照射用の機構は、例えば後述するような、電磁波を反射して向きを変更する機構(例:ミラー)、又は、高さ方向及び横方向に回転する機構(例:アクチュエータ)などである。なお、制御部204の詳細な動作については後述する。
なお、図1の例に限らず、計測装置200と計測部の制御装置203は互いに別々の装置として設けられていてもよい。計測装置200と計測部の制御装置203が互いに別々の装置として設けられる場合、これらの装置は、有線または無線によって通信可能に接続される。またこの場合、計測部の制御装置203は、移動体240に組み込むタイプ或いは移動体240に配置するタイプの装置であってもよいし、例えばサーバといった移動体240から離れた場所に配置される装置であってもよい。後者の場合、制御部204は、例えば3G回線やLTE(Long Term Evolution)回線等を介して移動体240に設けられる通信部と通信して、移動体240に設けられる位置測定部(例:GPSモジュールなど)により測定される移動体240の現在位置情報を取得する。そして、制御部204は、移動体240から取得した当該移動体240の現在位置情報を用いて、詳しくは後述するような処理を実行する。そして、制御部204は、処理の結果として得られる計測部202の走査範囲を、例えば3G回線やLTE回線等を介して、計測部202に通知する。
以上、本実施形態の計測装置200は、移動体240の予測進路と移動体240の現在位置とを用いることにより、移動体240の操舵部が操作されることによって操舵信号が生成されるよりも前に、設定すべき計測部202の走査範囲を判断することができる。すなわち、移動体240の操舵部が操作されるよりも前の段階において、計測部202の走査範囲を変更可能な状態とすることができる。そのため、計測部202の変更動作が間に合わず、計測部202の変更後の走査範囲が望ましい領域からずれるといった問題が発生することを抑制できる。
以下、本実施形態の計測装置200についてさらに詳細に説明する。
<処理の流れ>
図2は、第1実施形態の計測装置200によって実行される処理の流れを例示するフローチャートである。制御部204は、移動体240の予測進路を特定する(S102)。例えば、制御部204は、移動体240の現在位置を示す情報と、移動体240が移動すべき経路として予め設定された情報(設定経路情報)を用いて、移動体240の予測進路を特定することができる。また詳細を後述するように、制御部204は、移動体240の現在位置を示す情報、移動体240の進行方向、並びに移動体240の現在位置周辺の地図データを用いて、移動体240の予測進路を特定することもできる。なお、制御部204は、移動体240の移動方向を、例えば移動体240の位置の変化に基づいて特定することができる。そして制御部204は、移動体240の予測進路に基づいて、計測部202の走査範囲を設定する(S104)。計測部202は、制御部204により設定された走査範囲に従って電磁波を照射して、物体を走査する(S106)。
<計測装置200のハードウエア構成の例>
計測装置200および計測部の制御装置203の各機能構成部は、各機能構成部を実現するハードウエア(例:ハードワイヤードされた電子回路など)で実現されてもよいし、ハードウエアとソフトウエアとの組み合わせ(例:電子回路とそれを制御するプログラムの組み合わせなど)で実現されてもよい。以下、計測装置200および計測部の制御装置203の各機能構成部がハードウエアとソフトウエアとの組み合わせで実現される場合について、さらに説明する。
<<制御部204のハードウエア構成例>>
図3は、制御部204のハードウエア構成を例示する図である。集積回路100は、制御部204を実現する集積回路である。例えば、集積回路100はSoC(System On Chip)である。
集積回路100は、バス102、プロセッサ104、メモリ106、ストレージデバイス108、入出力インタフェース110、及びネットワークインタフェース112を有する。バス102は、プロセッサ104、メモリ106、ストレージデバイス108、入出力インタフェース110、及びネットワークインタフェース112が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ104などを互いに接続する方法は、バス接続に限定されない。プロセッサ104は、マイクロプロセッサなどを用いて実現される演算処理装置である。メモリ106は、RAM(Random Access Memory)などを用いて実現されるメモリである。ストレージデバイス108は、ROM(Read Only Memory)やフラッシュメモリなどを用いて実現されるストレージデバイスである。
入出力インタフェース110は、集積回路100を周辺デバイスと接続するためのインタフェースである。図3において、入出力インタフェース110には照射器の駆動回路30が接続されている。なお、照射器の駆動回路30については後述する。また、入出力インタフェース110には移動体240の現在位置情報を取得するためのGPSモジュール40が接続されている。なお、周辺基地局の位置情報をネットワークインタフェース112を介して取得し、当該周辺基地局の位置情報を用いて移動体240の現在位置情報を特定することもできる。この場合、入出力インタフェース110にはGPSモジュール40が接続されていなくてもよい。また、制御部204が、例えばサーバといった、移動体240から離れた場所に配置される装置で実現される場合、GPSモジュール40は、入出力インタフェース110ではなく、ネットワークインタフェース112を介して接続されることになる。
ネットワークインタフェース112は、集積回路100を通信網に接続するためのインタフェースである。この通信網は、例えばCAN(Controller Area Network)通信網などである。なお、ネットワークインタフェース112が通信網に接続する方法は、無線接続であってもよいし、有線接続であってもよい。
ストレージデバイス108は、制御部204の機能を実現するためのプログラムモジュールを記憶している。プロセッサ104は、このプログラムモジュールをメモリ106に読み出して実行することで、制御部204の機能を実現する。
集積回路100のハードウエア構成は図3に示した構成に限定されない。例えば、プログラムモジュールはメモリ106に格納されてもよい。この場合、集積回路100は、ストレージデバイス108を備えていなくてもよい。
<<計測部202のハードウエア構成例>>
図4は、計測部202のハードウエア構成を例示する図である。計測部202は、照射器10、照射器の駆動回路30、及び受信器50を有する。照射器10は、走査に用いる電磁波を照射する。ここで、照射器10は照射方向が可変な構成となっており、様々な方向へ電磁波を照射することができる。照射器の駆動回路30は、照射器10を駆動させる回路である。受信器50は、計測装置200の外部へ照射された電磁波の反射波を受信する。
制御部204は、受信器50によって反射波が受信されたことを検出する。例えば、受信器50は、反射波を受信したことに応じて制御部204へ所定の信号を送信するように構成される。制御部204は、この信号を受信することにより、受信器50によって反射波が受信されたことを検出する。
照射器10によって照射される電磁波は、レーザ光などの光であってもよいし、ミリ波などの電波であってもよい。以下、照射器10が光を照射する場合における計測部202のハードウエア構成について例示する。照射器10が電磁波を照射する場合の計測部202についても、同様の構成を採用することが可能である。
図5は、光を照射する計測部202のハードウエア構成を例示する図である。図5の投光器12及び投光器の駆動回路32はそれぞれ、図4における照射器10及び照射器の駆動回路30の一例である。投光器12は、光源14及び可動反射部16を有する。投光器の駆動回路32は光源の駆動回路34及び可動反射部の駆動回路36を有する。
光源14は、光を照射する任意の光源である。光源の駆動回路34は、光源14への電力の供給を制御することによって光源14を駆動させる回路である。光源14によって照射される光は、例えばレーザ光である。この場合、例えば光源14は、レーザ光を照射する半導体レーザである。
可動反射部16は、光源14から照射された光を反射する。可動反射部16によって反射された光は、計測装置200の外部へ照射される。可動反射部の駆動回路36は、可動反射部16を駆動させる回路である。例えば可動反射部16は、少なくとも高さ方向と横方向の2方向(2軸)それぞれについて回転可能に構成されている1つのミラーを有する。このミラーは、例えばMEMS(Micro Electro Mechanical System)ミラーである。なお、可動反射部16は、例えば1方向に走査可能なMEMSミラーとその垂直方向に走査可能なモータとによって、2方向それぞれについて走査可能とする構成としてもよい。
可動反射部16の構成は、図5に示す構成に限定されない。例えば可動反射部16は、回転軸が互いに交わる2つのミラーで構成されていてもよい。
さらに図5において、計測部202は受光器52を有する。受光器52は、図4における受信器50の一例である。受光器52は、計測装置200の外部へ照射された光の反射光を受光する。例えば受光器52は、APD(Avalanche Photodiode)を有している。
なお、計測部202の構成は図4や図5に示す構成に限定されない。例えば図5において、計測部202は、光源14から照射された光を可動反射部16によって反射することにより、様々な方向へ光を照射できるように構成されている。しかし、様々な方向へ光を照射する構成は、図5に示す構成に限定されない。例えば、光源14自体が、高さ方向及び横方向に回転する機構を有していてもよい。この場合、計測部202は、光源14の姿勢を制御することによって様々な方向へ光を照射できる。またこの場合、計測部202は、可動反射部16及び可動反射部の駆動回路36を有さなくてもよい。さらにこの場合、光源の駆動回路34は、光源14による光の照射に加え、光源14の姿勢の制御を行う。
なお、制御部204を実現するハードウエア(図3参照)と計測部202を実現するハードウエア(図4や図5参照)は、同一の筐体にパッケージされていてもよいし、別々の筐体にパッケージされていてもよい。
<計測装置200の設置例>
計測装置200は、例えば自動車や電車などの移動体に設置される。図6は、移動体240に設置されている計測装置200を例示する図である。図6において、計測装置200は、移動体240の上部に固定されている。また、計測装置200は、CAN通信網242を介して制御装置244と接続されている。制御装置244は、移動体240を制御する制御装置である。例えば制御装置244は、ECU(Electronic Control Unit)である。
ここで制御部204は、移動体240を制御する制御装置244の一部として実現されてもよい。この場合、制御装置244が有するストレージデバイスに、前述した制御部204を実現するプログラムモジュールが記憶される。
なお、計測装置200が設置される場所は移動体240の上部に限定されない。例えば計測装置200は、移動体240の内部(例えば室内)に設置されてもよいし、移動体240の前面(例えばバンパー部の周辺など)に設置されてもよい。また、複数の計測装置200が移動体240に設置されていてもよい。
(第1の具体例)
第1の具体例において、制御部204は、移動体240が移動すべき経路として予め設定された設定経路情報を移動体240の予測進路を示す情報として用いる。制御部204は、設定経路情報及び移動体240の現在位置の情報を用いて、移動体240の予測進路における当該移動体240の現在位置から所定距離先の位置を特定する。
図7から図10を用いて、第1実施形態の第1の具体例について説明する。図7は、第1実施形態の第1の具体例の処理の流れを示すフローチャートである。図8から図10は、図7のフローチャートで示される処理の流れを具体的に説明するための図である。
制御部204は、移動体240の現在の位置情報を取得する(S202)。移動体240の現在の位置情報は、例えばGPSモジュール40によって所定の間隔で計測されている。制御部204は、このように計測される移動体240の現在の位置情報をGPSモジュール40から取得する。図8における位置P1が、移動体240の現在位置に相当する。
次いで、制御部204は、設定経路情報が示す経路上において、移動体240の現在位置から所定距離先の位置を特定する(S204)。具体的には、制御部204は次のように動作する。まず、制御部204は設定経路情報を取得する。特に限定されないが、設定経路情報は、例えば、ナビゲーション機能において提供される、出発地から目的地までの走行経路を示す情報や、自動運転機能において利用される、道路上での移動体240の走行位置を示す情報などである。制御部204は、ネットワークインタフェース112を介して、例えば、移動体240に搭載される組込型のナビゲーション装置、移動体240のダッシュボードの上などに配置する外付け型のナビゲーション装置、或いは、スマートフォンなどの携帯端末上で起動されるナビゲーション用のアプリケーションなどから設定経路情報を取得することができる。設定経路情報は、ストレージデバイス108などに記憶されており、制御部204は、ストレージデバイス108から当該設定経路情報を読み出すように構成されていてもよい。そして、制御部204は、読み出した設定経路情報が示す経路において、S202で取得した移動体240の現在の位置情報に対応する位置を起点として、その位置から所定距離先の位置を特定する。図8の例では、制御部204は、経路R上で、移動体240の現在の位置P1を起点として所定距離d先の位置P2を特定する。なお、所定距離dは2点間(図8ではP1とP2との間)の直線距離であってもよい。所定距離dは、例えば、制御部204の機能を実現するプログラムモジュールの中で定義される。
ここで、所定距離dが固定である場合、移動体240の速度が速いほど、移動体240が所定距離d先の位置に到達するまでの時間が短くなる。そこで、制御部204は、移動体240の速度に応じて所定距離dを変更するように構成されていてもよい。具体的には、制御部204は、移動体240の移動速度が速いほど、長い所定距離dを用いるように構成される。例えば、複数の所定距離が、速度に関する閾値と紐付けてテーブル形式で定義されていてもよい。この場合、制御部204は、移動体240の速度とテーブル内の速度に関する閾値とを比較し、当該移動体240の速度に対応する所定距離を特定することができる。また例えば、所定距離は、移動体240の速度をパラメータとして用いる関数によって、当該速度が速いほど大きな値を取るように定義されていてもよい。この場合、制御部204は、例えば、CAN通信網242を介して取得できる移動体240の速度情報を関数のパラメータとして代入し、所定距離を算出することができる。
移動体240の速度によって所定距離を長くすることで、移動体240の速度が速くても、計測部202の走査範囲を移動させるための時間を十分に確保することができる。これにより、計測部202の変更動作が間に合わず、計測部202の変更後の走査範囲が望ましい領域からずれるといった問題が発生することを、より高い精度で抑制できる。
次いで、制御部204は移動体240の予測進路を判定する(S206)。具体的には、制御部204は、S204で特定した位置またはその位置の周辺において、移動体240が直進するか、或いは、曲がるかを判定する。特に限定されないが、制御部204は、例えば、設定経路情報が示す経路の軌跡を基に、S204で特定した位置またはその位置の周辺における移動体240の予測進路を判定することができる。図8の例の経路Rによれば、移動体240は、前方の交差点(位置P2の周辺)において、右折する予定であることが分かる。制御部204は、この経路R上で特定した位置P2を基に、移動体240が現在位置から所定距離d先の位置で右に曲がると判定する。また図の例に限らず、設定経路情報が所定距離毎に分割されたブロック単位で経路Rを管理している場合、制御部204は、移動体240の現在位置に対応するブロックの次のブロックにおける経路が直進かいずれかの方向に曲がっているかによって移動体240の予測進路を判定することもできる。
制御部204は、移動体240がある方向に曲がると判定した場合(S206-1)、移動体240が曲がる方向(図8の例では右方向)に計測部202の走査範囲を移動させる(S208)。
例えば、図5の可動反射部16がMEMSミラーである場合、当該MEMSミラーの圧電アクチュエータ(図示せず)に印加される電圧によって、当該MEMSミラーの角度が定まる。ここで、制御部204は、例えば周期的に値が変動する電圧(例:sin波など)をMEMSミラー(可動反射部16)の圧電アクチュエータに印加するように、可動反射部の駆動回路36を制御している。光源14から照射される光はMEMSミラーを介して進む。そのため、MEMSミラーの角度によって、光源14からの光の照射方向が定まる。つまり、MEMSミラーの角度が目的とする方向に対応する角度となるタイミングで光源14を発光させることにより、計測装置200は、所望の領域を走査することができる。よって、制御部204は、電圧値が目的の角度に対応する値となったときに光源14を発光させるように、光源の駆動回路34を制御する。また、他の例として、MEMSミラーに角度センサを集積しておけば、当該角度センサによってミラーの角度を検出することができる。この場合、制御部204は、当該角度センサからMEMSミラーの角度を取得し、所望のタイミングで光源14を発光させるように光源の駆動回路34を制御できる。
S208の処理について、図9を用いてより具体的に説明する。図9では、図8に示される状態を、移動体240からの視点で立体的に表現している。図9の一点鎖線は、移動体240の中心軸Cを示している。図9の例において、制御部204は、図8の位置P1に到達する前は、移動体240の中心軸Cを基準とする範囲224Aを計測部202の走査範囲として設定しているものとする。その後、移動体240が位置P1に到達した場合には、制御部204は、中心軸Cに対して右側にずらした範囲224Bを計測部202の走査範囲として設定する。なお、制御部204は、照射器10の照射可能範囲226の中で、走査範囲224を設定することができる。照射器10の照射可能範囲226は、照射器10の可動部位の物理的特性によって決定される。
ここで、制御部204は、計測部202の走査範囲の移動幅を、例えばカーブの曲率などに応じて決定することができる。具体的には、制御部204は、カーブの曲率が大きい(すなわち、急なカーブである)ほど、計測部202の走査範囲の移動幅を大きくする。制御部204は、例えば、設定経路情報が示す経路Rの軌跡からカーブの曲率を算出することができる。また、設定経路情報にカーブ部分の曲率を示す情報が予め埋め込まれている場合などには、制御部204は、当該設定経路情報に埋め込まれた曲率の情報を取得すればよい。そして、制御部204は、曲率をパラメータとして用いる関数などによって、走査範囲224の移動幅を算出し、当該移動幅に応じて計測部202の走査範囲を設定する。
図7に戻り、制御部204は、移動体240が直進すると判定した場合(S206-2)、移動体240の中心軸に計測部202の走査範囲を合わせる(S210)。制御部204は、S208において走査範囲を移動させる場合と同様に、計測部202の可動反射部16を制御することにより、電磁波の照射範囲(走査範囲)を制御することができる。具体的には、図10に例示されるように、移動体240の中心軸Cに合わせて走査範囲224が設定される。
移動体240は設定経路情報によって示される経路に従って進む可能性が高い。そのため、移動体240の現在位置情報と設定経路情報とを組み合わせて用いることで、今後の移動体240の進路を高い確度で予測することができる。これにより、移動体240の操舵部が操作されるよりも前の段階で、制御部204が計測部202の走査範囲を設定することができる。
(第2の具体例)
第2の具体例において、制御部204は、移動体240の移動体の現在位置の情報、当該移動体240の移動方向を示す情報、並びに当該移動体240の現在位置周辺の地図データを用いて、移動体240の予測進路及び当該予測進路における移動体240の現在位置から所定距離先の位置を特定する。
図11から図13を用いて、第1実施形態の第2の具体例について説明する。図11は、第1実施形態の第2の具体例の処理の流れを示すフローチャートである。図12および図13は、図11のフローチャートで示される処理の流れを具体的に説明するための図である。
制御部204は、移動体240の現在の位置情報を取得する(S302)。移動体240の現在の位置情報は、例えばGPSモジュール40によって所定の間隔で計測されている。制御部204は、このように計測される移動体240の現在の位置情報をGPSモジュール40から取得する。また、制御部204は地図データMDを読み出す(S304)。地図データMDは、移動体240が走行可能な道路に関する情報(道路情報)を少なくとも含んでいる。道路情報には、例えば、当該道路情報に対応する道路の始点および終点の位置、当該道路の曲率、当該道路の起伏(勾配)、白線の位置、縁石の位置などの情報が含まれる。制御部204は、ネットワークインタフェース112を介して、例えば、移動体240に搭載される組込型のナビゲーション装置、移動体240のダッシュボードの上などに配置する外付け型のナビゲーション装置、或いは、スマートフォンなどの携帯端末上で起動されるナビゲーション用のアプリケーションから地図データを取得することができる。地図データはストレージデバイス108などに記憶されており、制御部204は、ストレージデバイス108から当該地図データを読み出すように構成されていてもよい。
次いで、制御部204は、移動体240の現在位置の変化から、移動体240の移動方向を特定する(S304)。図12の例では、位置P1が移動体240の現在位置を示し、位置P0が移動体240の過去の位置を示している。制御部204は、例えば、位置P0から位置P1に向かう方向(図中点線の矢印によって示される方向)を、移動体240の移動方向として特定する。
次いで、制御部204は、地図データMD上において、移動体240の現在位置から所定距離先の位置を特定する(S308)。具体的には、制御部204は次のように動作する。まず、制御部204は、S302で取得した移動体240の現在位置に対応する位置を、地図データMD上で特定する。そして、制御部204は、特定した地図データMD上の位置を起点として、S306で特定した方向において所定距離d先の位置を特定する。図12の例では、位置P2が、移動体240の現在位置から所定距離先の位置となる。所定距離dは、例えば、制御部204の機能を実現するプログラムモジュールの中で定義される。
ここで、所定距離dが固定である場合、移動体240の速度が速いほど、移動体240が所定距離d先の位置に到達するまでの時間が短くなる。そこで、制御部204は、移動体240の速度に応じて所定距離dを変更するように構成されていてもよい。具体的には、制御部204は、移動体240の移動速度が速いほど、長い所定距離dを用いるように構成される。例えば、複数の所定距離が、速度に関する閾値と紐付けてテーブル形式で定義されていてもよい。この場合、制御部204は、移動体240の速度とテーブル内の速度に関する閾値とを比較し、当該移動体240の速度に対応する所定距離を特定することができる。また例えば、所定距離は、移動体240の速度をパラメータとして用いる関数によって、当該速度が速いほど大きな値を取るように定義されていてもよい。この場合、制御部204は、例えば、CAN通信網242を介して取得できる移動体240の速度情報を関数のパラメータとして代入し、所定距離を算出することができる。
移動体240の速度によって所定距離を長くすることで、移動体240の速度が速くても、計測部202の走査範囲を移動させるための時間を十分に確保することができる。これにより、計測部202の変更動作が間に合わず、計測部202の変更後の走査範囲が望ましい領域からずれるといった問題が発生することを、より高い精度で抑制できる。
次いで、制御部204は移動体240の予測進路を判定する(S310)。具体的には、制御部204は、S308で特定した位置に対応する道路情報を地図データMDから取得する。制御部204は、道路情報に含まれる、道路の始点および終点の位置、道路の曲率、或いは、白線の位置といった情報を用いて、特定した位置の道路の形状を判別することができる。図12の例では、位置P2に対応する道路は斜線で示す部分であり、制御部204は、この斜線部分の道路に対応する道路情報から、移動体240が位置P2に対応する道路が左にカーブしていると判別できる。そして、制御部204は、この判別結果に従い、移動体240が現在位置から所定距離d先の位置で道に沿って左側に曲がると判定する。また、図には表れていないが、移動体240の現在位置から所定距離先の位置に対応する道路が2つ以上の分岐を有している場合、制御部204は、例えば、方向指示器の状態を示す情報をCAN通信網242を介して取得することにより、移動体240の予測進路を判定できる。方向指示器は、通常、操舵部を操作する前に操作される。そのため、方向指示器の情報と地図データとを用いることによって、操舵信号を受け取るよりも早く移動体240の進路を予測することができる。
制御部204は、移動体240がある方向に曲がると判定した場合(S310-1)、移動体240が曲がる方向(図12の例では左方向)に計測部202の走査範囲を移動させる(S312)。
例えば、図5の可動反射部16がMEMSミラーである場合、当該MEMSミラーの圧電アクチュエータ(図示せず)に印加される電圧によって、当該MEMSミラーの角度が定まる。ここで、制御部204は、周期的に値が変動する電圧(例:sin波など)をMEMSミラー(可動反射部16)の圧電アクチュエータに印加するように、可動反射部の駆動回路36を制御している。光源14から照射される光は、MEMSミラーを介して進む。そのため、MEMSミラーの角度によって、光源14からの光の照射方向が定まる。つまり、MEMSミラーの角度が目的とする方向に対応する角度となるタイミングで光源14を発光させることにより、計測装置200は、所望の領域を走査することができる。そのため、制御部204は、電圧値が目的の角度に対応する値となったときに光源14を発光させるように、光源の駆動回路34を制御する。また、他の例として、MEMSミラーに角度センサを集積しておき、制御部204は当該角度センサからMEMSミラーの角度を取得し、所望のタイミングで光源14を発光させるように光源の駆動回路34を制御することもできる。
S312の処理について、図13を用いてより具体的に説明する。図13では、図12に示される状態を、移動体240からの視点で立体的に表現している。図13の一点鎖線は、移動体240の中心軸Cを示している。図13の例において、制御部204は、図12の位置P1に到達する前は、移動体240の中心軸Cを基準とする範囲224Cを計測部202の走査範囲として設定しているものとする。その後、移動体240が位置P1に到達した場合には、制御部204は、中心軸Cに対して左側にずらした範囲224Dを計測部202の走査範囲として設定する。なお、制御部204は、照射器10の照射可能範囲226の中で、走査範囲224を設定することができる。照射器10の照射可能範囲226は、照射器10の可動部位の物理的特性によって決定される。
ここで、制御部204は、計測部202の走査範囲の移動幅を、例えばカーブの曲率などに応じて決定することができる。具体的には、制御部204は、カーブの曲率が大きい(すなわち、急なカーブである)ほど、計測部202の走査範囲の移動幅を大きくする。制御部204は、例えば、道路情報に含まれる曲率を取得する。そして、制御部204は、曲率をパラメータとして用いる関数などによって、走査範囲224の移動幅を算出し、当該移動幅に応じて計測部202の走査範囲を設定する。
図11に戻り、制御部204は、移動体240が直進すると判定した場合(S310-2)、移動体240の中心軸に計測部202の走査範囲を合わせる(S314)。制御部204は、S312において走査範囲を移動させる場合と同様に、計測部202の可動反射部16を制御することにより、電磁波の照射範囲(走査範囲)を制御することができる。この場合、図10に例示されるように、移動体240の中心軸Cに合わせて走査範囲224が設定される。
地図データに含まれる道路情報と移動体240の現在位置の情報とを用いて、移動体240の所定距離先の道路の形状(直進、カーブ、交差点等)を特定することにより、今後の移動体240の進路を高い確度で予測することができる。これにより、移動体240の操舵部が操作されるよりも前の段階で、制御部204が計測部202の走査範囲を設定することができる。
なお上述の各具体例では、計測部202の走査範囲を横方向で制御する例を示したが、制御部204は、更に、計測部202の走査方向を縦方向で制御するように構成されていてもよい。例えば、設定経路情報や地図データに含まれる道路情報に、道路勾配に関する情報が含まれている場合、当該情報を用いて縦方向の動きを制御できる。これを、図14を用いて説明する。図14は、道路勾配に関する情報を用いて、計測部202の走査範囲を縦方向で制御する処理を説明するための図である。
図14(a)では、所定距離先の位置が下り勾配であるケースが例示されている。この場合、図に示されるように、下り勾配の手前の位置では、電磁波の照射範囲に対して下方向に死角が生まれてしまう。この場合、制御部204は、照射器の駆動回路30に制御信号を送信し、照射器の駆動回路30が当該制御信号に従って、照射器10からの電磁波の照射範囲を下側に移動させる。これにより、下り勾配部分の死角を消すことができる。
また、図14(b)では、所定距離先の位置が上り勾配であるケースが例示されている。この場合、図に示されるように、上り勾配の手前の位置では、電磁波の照射範囲に対して上方向に死角が生まれてしまう。この場合、制御部204は、照射器の駆動回路30に制御信号を送信し、照射器の駆動回路30が当該制御信号に従って、照射器10からの電磁波の照射範囲を上側に移動させる。これにより、上り勾配部分の死角を消すことができる。
なお、制御部204は、勾配の度合をパラメータとする関数を用いて、所定距離先の位置の勾配の度合に応じた縦方向の移動幅を算出することができる。また、制御部204は、勾配の度合と縦方向の移動幅とを対応付けて記憶するテーブルを用いて、所定距離先の位置の勾配の度合に応じた縦方向の移動幅を特定することもできる。
なお、本実施形態においては、図13に示すとおり、図13における中心軸Cに垂直な方向(図13における横方向)に走査範囲をずらす(移動させる)こと、または図14に示すとおり、走査範囲を縦方向にずらすこと、とした。これらの制御は、両方なされても良いし、少なくとも一方がなされるようにしてもよい。
[第2実施形態]
第2実施形態の計測装置200は、第1実施形態の計測装置200と同様に、例えば図1によって表される。下記で説明する点を除き、第2実施形態の計測装置200が有する機能は、第1実施形態の計測装置200が有する機能と同じである。
本実施形態において、制御部204は、移動体240の速度情報を更に取得する。そして、制御部204は、当該移動体240の移動速度に基づいて、第1実施形態で説明したように移動体240の予測進路における所定距離先の位置の情報を用いて計測部202の走査範囲を設定するか、移動体240の操舵方向を示す操舵信号を用いて計測部202の走査範囲を設定するかを切り替える。移動体240の速度情報および移動体240の操舵信号は、CAN通信網242などを介して取得することができる。
具体的には、制御部204は、移動体240の速度情報の速度が第1基準値以下の場合に、操舵信号を用いて計測部202の走査範囲を設定する。また、制御部204は、速度情報の速度が第2基準値以上の場合には、移動体240の予測進路における所定距離先の位置の情報を用いて計測部202の走査範囲を設定する。ここで、第1基準値と第2基準値は同じ値であってもよいし、異なる値であってもよい。第1基準値と第2基準値が異なる値である場合、第1基準値は第2基準値よりも大きい値として設定される。これにより、移動体240の速度が第2基準値以上かつ第1基準値未満の場合は、移動体240の予測進路における所定距離先の位置の情報および操舵信号を用いて、計測部202の走査範囲を設定することができる。また、この場合には、制御部204は、例えば、移動体240の予測進路における所定距離先の位置の情報に基づいて得られる走査範囲の移動幅と、操舵信号に基づいて得られる移動幅とを平均することにより、計測部202の走査範囲の移動幅を算出してもよい。
第2実施形態における計測装置200の動作を、図15および図16を用いて説明する。図15は、第2実施形態の計測装置200によって実行される処理の流れの一例を示すフローチャートである。図16は、第2実施形態の計測装置200によって実行される処理の流れの他の一例を示すフローチャートである。
まず、図15のフローチャートにおける処理について説明する。図15のフローチャートでは、第1基準値と第2基準値とが互いに異なる値である場合における処理の流れを例示している。
制御部204は、CAN通信網242などを介して、移動体240の速度情報(速度V)を取得する(S402)。制御部204は、S402で取得した速度情報によって示される速度Vと、移動体240の速度に関する第1基準値R1とを比較する(S404)。なお、第1基準値R1は、計測部202の走査範囲を設定する際に操舵信号を用いるか否かを決定する基準値であり、例えば、制御部204の機能を実現するプログラムモジュールの中で定義される。さらに、制御部204は、S402で取得した速度情報によって示される速度Vと、移動体240の速度に関する第2基準値R2とを比較する(S406)。なお、第2基準値は、計測部202の走査範囲を設定する際に移動体240の予測進路を示す情報を用いるか否かを決定する基準値であり、例えば、制御部204の機能を実現するプログラムモジュールの中で定義される。また、この例において、第1基準値R1は第2基準値R2よりも大きい値である。
制御部204は、S402における速度Vと第1基準値R1の比較結果と、S406における速度Vと第2基準値R2の比較結果とを用いて、計測部202の走査範囲を設定するために用いる情報の判定を行う(S408)。ここで、上述したように、本例では第1基準値R1>第2基準値R2という関係を前提としている。そのため、速度V、第1基準値R1、及び第2基準値R2の関係は、(1)速度V>第1基準値R1(>第2基準値R2)、(2)第1基準値R1≧速度V≧第2基準値R2、(3)(第1基準値R1>)第2基準値R2>速度V、の3つのパターンのいずれかとなる。
上述のパターン(1)の関係が成り立つ場合(S408-1)、移動体240の速度Vは第1基準値R1よりも大きく、操舵信号を用いる条件が満たされない。また、移動体240の速度Vは第2基準値R2以上であり、移動体240の予測進路を示す情報を用いる条件が満たされる。そのため、この場合には、制御部204は移動体240の予測進路を特定する(S410)。そして、制御部204は、移動体240の予測進路に基づいて計測部202の走査範囲を設定する(S416)。具体的には、制御部204は、第1実施形態の各具体例で説明したように、移動体240の予測進路を特定し、計測部202の走査範囲の移動幅を決定する。
また、上述のパターン(2)の関係が成り立つ場合(S408-2)、移動体240の速度Vは第1基準値R1以下であり、操舵信号を用いる条件が満たされる。また、移動体240の速度Vは第2基準値R2以上であり、移動体240の予測進路を示す情報を用いる条件が満たされる。そのため、この場合には、制御部204は、移動体240の予測進路を特定すると共に、移動体240の操舵信号を取得する(S412)。そして、制御部204は、移動体240の予測進路と操舵信号とに基づいて、計測部202の走査範囲を設定する(S416)。この場合、例えば、制御部204は、移動体240の予測進路に基づいて得られる走査範囲の移動幅と、操舵信号に基づいて得られる走査範囲の移動幅との平均値を算出し、計測部202の走査範囲を、算出した平均値に従って移動させることができる。
また、上述のパターン(3)の関係が成り立つ場合(S408-3)、移動体240の速度Vは第1基準値R1以下であり、操舵信号を用いる条件が満たされる。また、移動体240の速度Vは第2基準値R2未満であり、移動体240の予測進路を示す情報を用いる条件が満たされない。そのため、この場合には、制御部204は、CAN通信網242を介して、移動体240の操舵方向を示す操舵信号を取得する(S414)。そして、制御部204は、操舵信号に基づいて、計測部202の走査範囲を設定する(S416)。例えば、移動体240の進行方向を右に向ける操舵信号が取得された場合、制御部204は、図9に例示されるように、走査範囲224を移動体240の中心軸から右側に移動させる。
次に、図16のフローチャートにおける処理について説明する。図16のフローチャートでは、第1基準値と第2基準値とが同じ値である場合における処理の流れを例示している。この場合、第1基準値と第2基準値は、1つの基準値として解釈できる。
制御部204は、CAN通信網242などを介して、移動体240の速度情報を取得する(S502)。そして、制御部204は、S502で取得した速度情報によって示される速度が基準値以上か否かを判定する(S504)。なお、基準値は、例えば、制御部204の機能を実現するプログラムモジュールの中で定義される。
S502で取得した速度情報によって示される速度が基準値以上の場合(S504:YES)、制御部204は移動体240の予測進路を特定する(S506)。そして、制御部204は、移動体240の予測進路に基づいて計測部202の走査範囲を設定する(S510)。具体的には、制御部204は、第1実施形態の各具体例で説明したように、移動体240の予測進路を特定し、計測部202の走査範囲の移動幅を決定する。
S502で取得した速度情報によって示される速度が基準値未満の場合(S504:NO)、制御部204は、CAN通信網242を介して、移動体240の操舵方向を示す操舵信号を取得する(S508)。そして、制御部204は、操舵信号に基づいて、計測部202の走査範囲を設定する(S510)。例えば、移動体240の進行方向を右に向ける操舵信号が取得された場合、制御部204は、図9に例示されるように、走査範囲224を移動体240の中心軸から右側に移動させる。
本実施形態では、移動速度に応じて、操舵信号を用いて計測部202の走査範囲を設定するか、移動体240の現在位置から所定距離先の位置の情報を用いて計測部202の走査範囲を設定するかが切り替えられる。ここで、操舵信号は、移動体240の操舵部を実際に操作した結果として得られるため、移動体240の向きをより正確に示す情報と言える。また、移動体240の速度がある程度遅い状態であれば、操舵信号を受けてから計測部202の走査範囲を変更しても、計測部202の変更後の走査範囲が望ましい領域からずれる可能性は低くなる。以上、本実施形態によれば、移動体240の速度に応じて、より適切な手法で計測部202の走査範囲を制御することができる。
以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
この出願は、2016年8月31日に出願された日本出願特願2016-170039号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (1)

  1. 電磁波を照射して走査を行う、移動体に配置された計測部を制御する制御部を備え、
    前記制御部は、
    前記移動体の現在位置を示す情報と、前記移動体の予測進路の道路勾配を示す道路勾配情報と、に基づいて、前記計測部の走査範囲を少なくとも俯角に向けるように制御可能であり、
    前記予測進路における前記移動体の現在位置から所定距離先の位置に対応する道路情報に含まれる前記道路勾配を示す情報に基づいて、前記走査範囲を設定し、
    前記移動体の速度情報を取得し、当該速度情報を用いて前記所定距離を設定する、制御装置。
JP2022074315A 2016-08-31 2022-04-28 制御装置 Pending JP2022107543A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023185416A JP2024012422A (ja) 2016-08-31 2023-10-30 制御装置、制御方法およびプログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016170039 2016-08-31
JP2016170039 2016-08-31
JP2018537332A JPWO2018043540A1 (ja) 2016-08-31 2017-08-30 制御装置、制御方法、およびプログラム
PCT/JP2017/031103 WO2018043540A1 (ja) 2016-08-31 2017-08-30 制御装置、計測装置、制御方法、およびプログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018537332A Division JPWO2018043540A1 (ja) 2016-08-31 2017-08-30 制御装置、制御方法、およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023185416A Division JP2024012422A (ja) 2016-08-31 2023-10-30 制御装置、制御方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2022107543A true JP2022107543A (ja) 2022-07-21

Family

ID=61301743

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018537332A Pending JPWO2018043540A1 (ja) 2016-08-31 2017-08-30 制御装置、制御方法、およびプログラム
JP2022074315A Pending JP2022107543A (ja) 2016-08-31 2022-04-28 制御装置
JP2023185416A Pending JP2024012422A (ja) 2016-08-31 2023-10-30 制御装置、制御方法およびプログラム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018537332A Pending JPWO2018043540A1 (ja) 2016-08-31 2017-08-30 制御装置、制御方法、およびプログラム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023185416A Pending JP2024012422A (ja) 2016-08-31 2023-10-30 制御装置、制御方法およびプログラム

Country Status (4)

Country Link
US (1) US20190204438A1 (ja)
EP (1) EP3508883A4 (ja)
JP (3) JPWO2018043540A1 (ja)
WO (1) WO2018043540A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017210045A1 (de) * 2017-06-14 2018-12-20 Robert Bosch Gmbh Sensorvorrichtung für ein automatisiertes Fahrzeug
DE112018007636T5 (de) * 2018-06-22 2021-03-04 Mitsubishi Electric Corporation Sensorsteuervorrichtung, fahrzeug, abtastverfahren und sensorsteuerprogramm
TWI689432B (zh) * 2018-12-26 2020-04-01 財團法人工業技術研究院 車用感測器自動調整方法及其系統

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118926A (ja) * 1997-10-21 1999-04-30 Mitsubishi Electric Corp 車載監視装置
JP2002162470A (ja) * 2000-11-28 2002-06-07 Nhk Spring Co Ltd 物体検出装置及びその基準軸設定方法
JP2006258604A (ja) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd 検出装置
JP2006329971A (ja) * 2005-04-27 2006-12-07 Sanyo Electric Co Ltd 検出装置
KR20150047215A (ko) * 2013-10-24 2015-05-04 현대모비스 주식회사 회전형 라이다 센서를 이용한 타겟 차량 감지 장치 및 회전형 라이다 센서
JP2015094994A (ja) * 2013-11-08 2015-05-18 日立建機株式会社 鉱山用運搬車両
JP2016053915A (ja) * 2014-09-04 2016-04-14 日立建機株式会社 障害物検出システム及び運搬車両
JP2018537332A (ja) * 2015-10-27 2018-12-20 浙江吉利控股集団有限公司Zhejiang Geely Holding Group Co.,Ltd. 人物の顔認証に基づく車両制御システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4995652A (ja) * 1973-01-12 1974-09-11
JPS59203975A (ja) * 1983-05-06 1984-11-19 Nissan Motor Co Ltd 車両用光レ−ダ装置
JPH01197148A (ja) * 1988-01-30 1989-08-08 Toshiba Corp 走行車の障害物検出装置
JP2910377B2 (ja) * 1992-01-20 1999-06-23 日産自動車株式会社 車両用レーダ装置
JPH08285941A (ja) * 1995-04-17 1996-11-01 Fujitsu Ten Ltd 車載用レーダ装置
JP3580288B2 (ja) * 2002-01-11 2004-10-20 日産自動車株式会社 車間距離計測装置
JP4176690B2 (ja) * 2004-09-03 2008-11-05 本田技研工業株式会社 車両の走行制御装置
US7566861B2 (en) * 2005-04-27 2009-07-28 Sanyo Electric Co., Ltd. Detection device controlled by driving speed and driving direction
JP5639874B2 (ja) * 2010-12-24 2014-12-10 株式会社日立製作所 運転支援装置
JP6003349B2 (ja) * 2012-07-27 2016-10-05 トヨタ自動車株式会社 車両挙動予測装置
DE102013011623A1 (de) * 2013-07-12 2015-01-15 Wabco Gmbh Verfahren und Vorrichtung zur automatischen Regelung einer Längsdynamik eines Kraftfahrzeugs
JP6500403B2 (ja) * 2014-11-28 2019-04-17 三菱自動車工業株式会社 車両の障害物検知装置及びそれを用いた誤発進抑制装置
JP2016170039A (ja) 2015-03-12 2016-09-23 株式会社デンソー 液面検出装置及びその製造方法
US11003922B2 (en) * 2016-04-20 2021-05-11 Mitsubishi Electric Corporation Peripheral recognition device, peripheral recognition method, and computer readable medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118926A (ja) * 1997-10-21 1999-04-30 Mitsubishi Electric Corp 車載監視装置
JP2002162470A (ja) * 2000-11-28 2002-06-07 Nhk Spring Co Ltd 物体検出装置及びその基準軸設定方法
JP2006258604A (ja) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd 検出装置
JP2006329971A (ja) * 2005-04-27 2006-12-07 Sanyo Electric Co Ltd 検出装置
KR20150047215A (ko) * 2013-10-24 2015-05-04 현대모비스 주식회사 회전형 라이다 센서를 이용한 타겟 차량 감지 장치 및 회전형 라이다 센서
JP2015094994A (ja) * 2013-11-08 2015-05-18 日立建機株式会社 鉱山用運搬車両
JP2016053915A (ja) * 2014-09-04 2016-04-14 日立建機株式会社 障害物検出システム及び運搬車両
JP2018537332A (ja) * 2015-10-27 2018-12-20 浙江吉利控股集団有限公司Zhejiang Geely Holding Group Co.,Ltd. 人物の顔認証に基づく車両制御システム

Also Published As

Publication number Publication date
EP3508883A1 (en) 2019-07-10
EP3508883A4 (en) 2020-04-15
US20190204438A1 (en) 2019-07-04
JP2024012422A (ja) 2024-01-30
WO2018043540A1 (ja) 2018-03-08
JPWO2018043540A1 (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
JP2022107543A (ja) 制御装置
CN108474851B (zh) 机动车上的激光雷达扫描装置
WO2019082700A1 (ja) 制御装置、制御方法、プログラム及び記憶媒体
US11892539B2 (en) Measurement device, measurement method, and non-transitory storage medium
JP6413470B2 (ja) 車載レーダ装置
CN111398934B (zh) 使用多棱镜的lidar 3d设计
JP2017162178A (ja) 判定装置、判定方法、および判定プログラム
JP2004184331A (ja) 車両用物体認識装置
JP2020016572A (ja) レーダセンサ
JP2006242622A (ja) 車載用レーダ装置および車両搭載方法
JP6203536B2 (ja) リアフォグランプ制御装置及びリアフォグランプシステム
JP2011220766A (ja) 物体認識装置
JP2018205042A (ja) レーザー測距装置
JPH09304535A (ja) 計測装置および方法
WO2022065378A1 (ja) Lidar装置
JP2019132795A (ja) 距離算出装置および距離算出方法
CN110573909A (zh) 定向光源的控制
JP2012228976A (ja) 車両用前照灯装置
US11768273B2 (en) Light detection and range (LIDAR) device with a single spinning mirror for autonomous driving vehicles
WO2018038263A1 (ja) 計測装置、計測方法及びプログラム
JP2021177189A (ja) 計測装置、制御装置、制御方法、及びプログラム
JP2019078688A (ja) 地物データ構造、記憶装置、制御装置、制御方法、プログラム及び記憶媒体
KR101313859B1 (ko) 무인 이동 로봇 및 그 주행 방법
JP2018072033A (ja) 制動試験用装置及び制動試験システム
JP2017010079A (ja) 車線変更時の安全制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230801