JP2022034072A - 計測装置、設定装置、設定方法、修正方法、及びプログラム - Google Patents

計測装置、設定装置、設定方法、修正方法、及びプログラム Download PDF

Info

Publication number
JP2022034072A
JP2022034072A JP2021214557A JP2021214557A JP2022034072A JP 2022034072 A JP2022034072 A JP 2022034072A JP 2021214557 A JP2021214557 A JP 2021214557A JP 2021214557 A JP2021214557 A JP 2021214557A JP 2022034072 A JP2022034072 A JP 2022034072A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
unit
light source
measuring device
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021214557A
Other languages
English (en)
Other versions
JP7379455B2 (ja
Inventor
庄悟 宮鍋
Shiyougo Miyanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Publication of JP2022034072A publication Critical patent/JP2022034072A/ja
Application granted granted Critical
Publication of JP7379455B2 publication Critical patent/JP7379455B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】計測装置における迷光の発生を抑制する。【解決手段】計測装置(200)は、計測部(202)及び制御部(204)を有する。計測部(202)は、電磁波を照射し、照射した電磁波の反射波を受信することで、物体の走査を行う。制御部(204)は、計測部(202)による物体の走査を制御する。具体的には、制御部(204)は、計測部(202)において受信される電磁波の強さが所定レベル以上になる回数が、計測部(202)による1回の走査につき所定回数未満となるように、計測部(202)による電磁波の照射を制御する。【選択図】図1

Description

本発明は、電磁波を照射して計測を行う技術に関する。
電磁波を照射して物体を走査することで障害物などの検出を行う技術が開発されている。特許文献1は、自動車等に設置される装置において、レーザ光を照射して目標領域内でスキャンを行うことで、障害物などの検出を行う技術を開示している。また特許文献1では、自動車の操舵角度に応じて、スキャン領域の横方向の中心軸を変更する技術が開示されている。
特開2006-258604号公報
計測装置の内部では、光源から照射された電磁波が光学系を通過する。この際、光学系によって電磁波の一部が反射されたりすることにより、迷光が発生することがある。このような迷光は、計測装置による計測の精度を下げる要因となる。
本発明は、上述の課題鑑みてなされたものであり、計測装置における迷光の発生を抑制する技術を提供することを一つの目的とする。
第1の発明は、計測装置の発明である。当該計測装置は、(1)光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信することで走査を行う計測部と、前記光源に前記電磁波を照射させるタイミングを光源駆動信号により制御し、且つ前記計測部から前記電磁波が照射される方向である照射方向を制御する制御部と、を有する。前記制御部は、前記計測部から照射された前記電磁波の前記反射波以外の反射波を受信した場合に、前記電磁波を受信した前記照射方向において、前記電磁波を照射しないように前記光源が制御される前記光源駆動信号を生成する。
第2の発明は、計測装置の設定を行う設定装置の発明である。
前記計測装置は、
光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信することで走査を行う計測部と、駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、を有する。
当該設定装置は、(1)所定の信号が前記駆動信号として設定された前記計測装置を動作させて、前記計測装置による計測結果を取得し、(2)前記計測部から照射された前記電磁波の前記反射波以外の反射波を受信した場合に前記所定の駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にする。
第3の発明は、計測装置の設定方法の発明である。
前記計測装置は、光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信することで走査を行う計測部と、駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、を有する。
当該設定方法は、(1)所定の信号が前記駆動信号として設定された前記計測装置を動作させて、前記計測装置による計測結果を取得するステップと、(2)前記計測部から照射された前記電磁波の前記反射波以外の反射波を受信した場合に前記所定の駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にするステップと、を有する。
第4の発明は、請求項5に記載の設定方法の各ステップをコンピュータに実行させるプログラムの発明である。
第5の発明は、計測装置の発明である。
当該計測装置は、(1)光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信することで走査を行う計測部と、(2)駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、(3)前記駆動信号を修正する修正部と、を有する。
前記修正部は、前記計測部から照射された前記電磁波の前記反射波以外の反射波を受信した場合に前記駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にする。
第6の発明は、計測装置によって実行される修正方法の発明である。
計測装置によって実行される修正方法であって、
前記計測装置は、光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信することで走査を行う計測部と、駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、を有する。
当該修正方法は、前記計測部から照射された前記電磁波の前記反射波以外の反射波を受信した場合に前記駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にするステップを有する。
第7の発明は、請求項10に記載の修正方法の各ステップをコンピュータに実行させるプログラムの発明である。
第8の発明は、計測装置の発明である。
当該計測装置は、(1)光源と、前記光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信する受信部と、を有する計測部と、(2)前記計測部から前記電磁波が照射される方向を制御する制御部と、を有する。
前記制御部は、前記光源から照射された前記電磁波が前記光学系において反射された前記反射波を、前記受信部が所定以上の強さで受信した場合に、前記反射波となる前記電磁波を照射した照射タイミングを変更する。
第9の発明は、計測装置の発明である。
当該計測装置は、(1)光源と、前記光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信する受信部と、を有する計測部と、(2)前記受信部が前記光源から照射された前記電磁波が前記光学系にて反射された前記反射波を所定以上の強さで受信した場合に、前記反射波となる前記電磁波を照射した照射タイミングを変更する処理を実行する制御部と、を有する。
前記制御部は、当該計測装置の周辺であってなおかつ前記電磁波が照射される方向に、前記電磁波を反射する物体が存在しない状況下であると判断した場合に、前記処理を実行する。
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施形態1に係る計測装置を例示するブロック図である。 計測部による走査の様子を例示する図である。 受信器によって受信される迷光の強さを例示する図である。 制御部のハードウエア構成を例示する図である。 計測部のハードウエア構成を例示する図である。 光を照射する計測部のハードウエア構成を例示する図である。 光源駆動信号を生成する手順の流れを例示する第1のフローチャートである。 デフォルト信号を例示する図である。 迷光の発生源である電磁波の照射タイミングを特定する方法を説明するための図である。 制御部に設定する光源駆動信号とデフォルト信号を比較する図である。 光源駆動信号を生成する手順の流れを例示する第2のフローチャートである。 設定装置を実現するための計算機を例示する図である。 移動体に設置されている計測装置を例示する図である。 実施形態2の計測装置を例示するブロック図である。 光源駆動信号を生成する手順の流れを例示する第1のフローチャートである。 光源駆動信号を生成する手順の流れを例示する第2のフローチャートである。 図15のフローチャートに示す動作を実行するのに適した場所を特定し、当該場所においてその動作を実行する機能を有する計測装置200を例示するブロック図である。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
図1は、実施形態1に係る計測装置200を例示するブロック図である。図1において、各ブロックは、ハードウエア単位の構成ではなく、機能単位の構成を表している。計測装置200のハードウエア構成については、図4から図6を用いて後述する。
計測装置200は、計測部202及び制御部204を有する。計測部202は、電磁波を照射し、照射した電磁波の反射波を受信することで、物体の走査を行う。制御部204は、計測部202による物体の走査を制御する。さらに制御部204は、計測部202によって電磁波が照射されてからその電磁波の反射波が受信されるまでの時間を測定する。
ここで計測部202は、高さ方向と横方向の2次元において電磁波の照射方向を変えながら、物体の走査を行う。なお、高さ方向は略鉛直方向を意味する。また、横方向は略水平方向を意味する。
図2は、計測部202による走査の様子を例示する図である。この例では、走査範囲224内でラスタスキャンが行われている。このラスタスキャンにおいて、主走査方向は横方向であり、副走査方向は高さ方向である。
軌跡1は、計測部202による走査の軌跡を表している。照射器10による電磁波の照射方向は、軌跡1に沿って時間と共に変化する。各×印は、照射器10から照射された電磁波が通過する位置を表している。つまり、照射器10からは、各×印を通過するタイミングで電磁波が照射されている。
計測部202は、照射器10、光学系20、及び受信器50を有する。照射器10は、照射方向を変えながら電磁波を照射する。光学系20は、照射器10から照射された電磁波を収束させる。受信器50は電磁波を受信する。
ここで、受信器50は、計測部202から照射された電磁波が物体に反射されたもの(以下、反射波)を受信するために設けられている。しかし受信器50が受信する電磁波には、計測部202から照射された電磁波の反射波以外も含まれうる。例えば受信器50が受信する電磁波には、照射器10から照射された電磁波が光学系20の表面などで反射されたもの(いわゆる迷光)なども含まれうる。
受信器50によって受信される迷光の強さは、照射器10から電磁波が照射される方向によって異なる。照射器10から電磁波が照射される方向により、電磁波が光学系20に進入する角度や、電磁波が光学系20に進入する位置などが異なるためである。
図3は、受信器50によって受信される迷光の強さを例示する図である。照射器10は、横方向を主走査方向とするラスタスキャンを行っている(図2参照)。また、照射器10は電磁波を所定の間隔で(グラフ60参照)発光している。さらに、計測装置200の周囲に物体が存在しないとする。
グラフ60は、照射器10から電磁波が照射されるタイミングをパルス信号で表している。具体的には、グラフ60において信号の値が0から1に変化するタイミングで、照射器10から電磁波が照射される。グラフ62は、受信器50によって受信された電磁波の強さを表している。
計測装置200の周囲に物体が存在しないため、物体によって反射された電磁波が受信器50によって受信されることはほとんど無い。そのため、グラフ62では、ほとんどの時点において、受信器50によって受信される電磁波の強さがほぼゼロである。
ところが、いくつかの時点では、受信器50によって受信される電磁波の強さが強くなっている。これは、特定のタイミングで照射される電磁波(特定の方向へ照射される電磁波)によって迷光が発生し、その迷光が受信器50によって受信されたためである。
例えば時点 t1 において、受信器50によって迷光が受信されている。この迷光は、時点 t2 において照射器10から照射された電磁波によって発生したものであると言える。なぜなら、照射器10と光学系20との距離は短いため、迷光の原因となる照射器10が照射されるタイミングと、その迷光が受信器50によって受信されるタイミングとの時間差は短いと考えられるためである。
このように受信器50によって迷光が受信されると、計測装置200の計測結果が不正確になってしまう。例えば計測装置200が、所定値以上の強さの電磁波を受信した場合に、物体によって反射された反射波を受信したと判定するとする。この場合、計測装置200は、迷光を受信した場合に、物体によって反射された反射波を受信したと誤判定してしまう。
そこで本実施形態の計測装置200では、迷光が発生するタイミングを避けて照射器10から電磁波が照射されるように、照射器10から電磁波が照射されるタイミングを制御する。具体的には、「どのタイミングで電磁波を照射すると迷光が発生してしまうか」を予め把握しておき、そのタイミングを避けて電磁波を照射するようにする。言い換えれば、「どの方向へ電磁波を照射すると迷光が発生してしまうか」を予め把握しておき、その方向には電磁波が照射されないようにする。
より具体的には、本実施形態の制御部204は、計測部202において受信される電磁波の強さが所定レベル以上になる回数が、計測部202による1回の走査(例えば1回のラスタスキャン)につき所定回数未満となるように、計測部202による電磁波の照射を制御する。
こうすることで、本実施形態の計測装置200によれば、照射器10から照射される電磁波によって迷光が発生することを防ぐことができる。よって、計測装置200による計測の精度が向上する。
以下、本実施形態の計測装置200についてさらに詳細に説明する。
<計測装置200のハードウエア構成の例>
計測装置200の各機能構成部は、各機能構成部を実現するハードウエア(例:ハードワイヤードされた電子回路など)で実現されてもよいし、ハードウエアとソフトウエアとの組み合わせ(例:電子回路とそれを制御するプログラムの組み合わせなど)で実現されてもよい。以下、計測装置200の各機能構成部がハードウエアとソフトウエアとの組み合わせで実現される場合について、さらに説明する。
<<制御部204のハードウエア構成の例>>
図4は、制御部204のハードウエア構成を例示する図である。集積回路100は、制御部204を実現する集積回路である。例えば、集積回路100は SoC(System On Chip)である。
集積回路100は、バス102、プロセッサ104、メモリ106、ストレージデバイス108、入出力インタフェース110、及びネットワークインタフェース112を有する。バス102は、プロセッサ104、メモリ106、ストレージデバイス108、入出力インタフェース110、及びネットワークインタフェース112が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ104などを互いに接続する方法は、バス接続に限定されない。プロセッサ104は、マイクロプロセッサなどを用いて実現される演算処理装置である。メモリ106は、RAM(Random Access Memory)などを用いて実現される主記憶装置である。ストレージデバイス108は、ROM(Read Only Memory)やフラッシュメモリなどを用いて実現される補助記憶装置である。
入出力インタフェース110は、集積回路100を周辺デバイスと接続するためのインタフェースである。図4において、入出力インタフェース110には照射器の駆動回路30が接続されている。照射器の駆動回路30については後述する。
ネットワークインタフェース112は、集積回路100を通信網に接続するためのインタフェースである。この通信網は、例えば CAN(Controller Area Network)通信網である。なお、ネットワークインタフェース112が通信網に接続する方法は、無線接続であってもよいし、有線接続であってもよい。
ストレージデバイス108は、制御部204の機能を実現するためのプログラムモジュールを記憶している。プロセッサ104は、このプログラムモジュールをメモリ106に読み出して実行することで、制御部204の機能を実現する。
集積回路100のハードウエア構成は図4に示した構成に限定されない。例えば、プログラムモジュールはメモリ106に格納されてもよい。この場合、集積回路100は、ストレージデバイス108を備えていなくてもよい。
<<計測部202のハードウエア構成例>>
図5は、計測部202のハードウエア構成を例示する図である。計測部202は、照射器10、光学系20、照射器の駆動回路30、及び受信器50を有する。照射器10は、物体の走査に用いる電磁波を照射する。ここで、照射器10は照射方向が可変な構成となっており、様々な方向へ電磁波を照射することができる。照射器の駆動回路30は、照射器10を駆動させる回路である。より具体的には、照射器の駆動回路30は、電磁波を照射する機構(例えば光源)を駆動する回路、及び照射器10の照射方向を変更する機構(例えばミラー)を駆動する回路を含む。光学系20は、照射器10から照射された電磁波を収束させる。受信器50は、計測装置200の外部へ照射された電磁波の反射波を受信する。
制御部204は、受信器50によって反射波が受信されたことを検出する。例えば受信器50は、反射波を受信したことに応じて制御部204へ所定の信号を送信するように構成される。制御部204は、この所定の信号を受信することにより、受信器50によって反射波が受信されたことを検出する。
制御部204は、照射器10から電磁波が照射されてからその電磁波の反射波が受信器50によって受信されるまでの経過時間を計測し、その計測時間を電磁波の照射方向(電磁波の照射タイミング)と対応づけて記憶装置(例えばストレージデバイス108)に記憶させる。この経過時間は、例えば照射器10から電磁波が照射されてからその電磁波の反射波が受信されるまでの間にカウントされたクロック信号の数にクロック周期を乗算した値で表される。また例えば、この経過時間は、上記カウントされたクロック信号の数で表されてもよい。この経過時間に基づいて、例えば、走査された物体と計測装置200との距離を算出することができる。
照射器10によって照射される電磁波は、レーザ光などの光であってもよいし、ミリ波などの電波であってもよい。以下、照射器10が光を照射する場合における計測部202のハードウエア構成について例示する。照射器10が電磁波を照射する場合の計測部202についても、同様の構成を採用することが可能である。
図6は、光を照射する計測部202のハードウエア構成を例示する図である。図6の投光器12及び投光器の駆動回路32はそれぞれ、図5における照射器10及び照射器の駆動回路30の一例である。投光器12は、光源14及び可動反射部16を有する。投光器の駆動回路32は光源の駆動回路34及び可動反射部の駆動回路36を有する。
光源14は、光を照射する任意の光源である。光源の駆動回路34は、光源14への電力の供給を制御することによって光源14を駆動させる回路である。光源14によって照射される光は、例えばレーザ光である。この場合、例えば光源14は、レーザ光を照射する半導体レーザである。
可動反射部16は、光源14から照射された光を反射する。可動反射部16によって反射された光は、レンズ22を通過した後、計測装置200の外部へ照射される。レンズ22は、図5における光学系20の一例である。
可動反射部の駆動回路36は、可動反射部16を駆動させる回路である。例えば可動反射部16は、少なくとも高さ方向と横方向の2方向それぞれについて回転可能に構成されている1つのミラーを有する。このミラーは、例えば MEMS(Micro Electro Mechanical System)ミラーである。
可動反射部16の構成は、図6に示す構成に限定されない。例えば可動反射部16は、回転軸が互いに交わる2つのミラーで構成されていてもよい。
光源の駆動回路34及び可動反射部の駆動回路36の動作は、制御部204によって制御される。具体的には、制御部204は、光源の駆動回路34に対し、光源14の駆動を指示する駆動信号を送信する。この駆動信号は、例えばストレージデバイス108から読み出される。光源の駆動回路34は、受信した駆動信号に基づいて、光源14を駆動させる。例えば駆動信号がハイとローという2値で構成されるパルス信号である場合、光源の駆動回路34は、パルス信号がローからハイに変化するタイミングで光源14を駆動させる(光源14から光を照射させる)。
同様に、制御部204は、可動反射部の駆動回路36に対し、可動反射部16の駆動を指示する駆動信号を送信する。この駆動信号も、例えばストレージデバイス108から読み出される。可動反射部の駆動回路36は、この駆動信号に基づいて、可動反射部16の姿勢を制御する。この制御により、光の照射方向が制御される。例えば光の照射方向は、図2の軌跡1のように制御される。
さらに計測部202は、受光器52を有する。受光器52は、図5における受信器50の一例である。例えば受光器52は、APD(Avalanche Photodiode)を用いて構成される。
なお、計測部202の構成は図5や図6に示す構成に限定されない。例えば図6において、計測部202は、光源14から照射された光を可動反射部16によって反射することにより、様々な方向へ光を照射できるように構成されている。しかし、様々な方向へ光を照射する構成は、図6に示す構成に限定されない。例えば、光源14自体が、高さ方向及び横方向に回転する機構を有していてもよい。この場合、計測部202は、光源14の姿勢を制御することによって様々な方向へ光を照射できる。またこの場合、計測部202は、可動反射部16及び可動反射部の駆動回路36を有さなくてもよい。さらにこの場合、光源の駆動回路34は、光源14に光を照射させる駆動回路と、光源14の姿勢を変更する駆動回路とを含む。
なお、制御部204を実現するハードウエア(図4参照)と計測部202を実現するハードウエア(図5や図6参照)は、同一の筐体にパッケージされていてもよいし、別々の筐体にパッケージされていてもよい。
以下の説明では、特に断らない限り、計測部202のハードウエア構成が図6で表されるケースについて説明する。
<計測部202が電磁波を照射するタイミングの決定方法について>
前述したように、本実施形態の計測装置200では、計測部202から電磁波が照射されるタイミングを予め適切に設定しておくことで、迷光の発生を抑制する。この設定は、例えば計測装置200の運用開始前(例えば計測装置200の出荷前)に行っておく。
上記設定は、光源の駆動回路34に対して送信する駆動信号(以下、光源駆動信号)を適切に生成しておくことで実現する。生成した光源駆動信号は、例えばストレージデバイス108に記憶させておく。制御部204は、このように予め適切に生成しておいた光源駆動信号をストレージデバイス108から読み出し、光源の駆動回路34へ送信する。こうすることで、迷光が発生しない適切なタイミングで照射器10から電磁波が照射される。
以下、この光源駆動信号の生成方法を具体的に説明する。以下の説明において、計測部202はラスタスキャンを行うとする。また、光源の駆動回路34に対して送信される光源駆動信号は、前述したパルス信号であるとする。
さらに以下の説明において、光源駆動信号の生成は、計算機によって行われる。光源駆動信号を生成する計算機を、設定装置300と呼ぶ。設定装置300は、PC(Personal Computer)、サーバ装置、又は携帯端末などの任意の計算機を用いて実現される。なお、光源駆動信号は、設定装置300によって実行される一連の処理と同様の処理を人手で行うことで生成されてもよい。
光源駆動信号の生成は、計測装置200をテスト環境で動作させることで行われる。テスト環境は、計測装置200から照射される電磁波の反射波が受信器50によって受信されない環境か、又は受信される反射波の強さが無視できる程度に小さい環境であることが好適である。
<<光源駆動信号を生成する手順の例1>>
図7は、光源駆動信号を生成する手順の流れを例示する第1のフローチャートである。設定装置300は、制御部204が計測部202の制御に用いる光源駆動信号として、デフォルト信号を設定する(S102)。具体的には、設定装置300は、制御部204が有するストレージデバイス108に、デフォルト信号を記憶させる。
デフォルト信号は、制御部204に初期設定を施すために予め定義されている任意の駆動信号である。例えばデフォルト信号は、1回の主走査(軌跡1における横方向1行の走査)で行われる複数回の電磁波の照射が、等しい時間間隔で行われるように定義されている。この時間間隔の長さを p クロックとおく(p は正の整数)。図8は、デフォルト信号を例示する図である。なお、デフォルト信号を定義する情報(デフォルト信号そのものでもよい)は、設定装置300が有する記憶装置に予め記憶させておく。
設定装置300は計測装置200に計測を実行させる(S104)。ここでは、デフォルト信号に従って計測部202から電磁波が照射される。
設定装置300は、計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S106)。具体的には、まず設定装置300は、受信器50によって所定値以上の強さの電磁波(迷光)が受信された時点を特定する。そして設定装置300は、その時点で受信された迷光の発生源である電磁波の照射タイミングを特定する。
図9は、迷光の発生源である電磁波の照射タイミングを特定する方法を説明するための図である。図9において、時点 c1 クロックで、所定値以上の強さの電磁波(迷光)が受信されている。そこで設定装置300は、この迷光の発生源である電磁波の照射タイミングを特定する。
ここで、連続する2つの電磁波の照射タイミングの時間間隔である p クロックは、電磁波が照射器10から照射された時点とその電磁波により生じた迷光が受信器50によって受信される時点との時間間隔よりも十分長い。そのため、迷光の発生源である電磁波の照射タイミングは、迷光が受信された時点 c1 よりも前の照射タイミングのうち、最も遅い照射タイミングである時点 c2 クロックであると推定できる。
そこで設定装置300は、迷光の発生源である電磁波の照射タイミングとして、c2 クロックを特定する。
なお、1回の走査(軌跡1で表される一連の電磁波の照射)で迷光が複数回発生する場合、「受信器50によって所定値以上の強さの電磁波が受信された時点」が複数個存在する。この場合、設定装置300は、これら複数個の時点それぞれから、迷光を発生させた複数の電磁波それぞれの照射タイミングを特定する。
設定装置300は、S106において、迷光を発生させた電磁波の照射タイミングが1つ以上特定されたか否かを判定する(S108)。迷光を発生させた電磁波の照射タイミングが1つも特定されていない場合(S108:NO)、図7の処理は終了する。よって、制御部204に設定される光源駆動信号は、デフォルト信号のままとなる。このケースでは、制御部204がデフォルト信号で計測部202を制御しても、迷光が発生していない。そのため、制御部204は、運用時においてもデフォルト信号を用いて計測部202を制御する。
一方、迷光を発生させた電磁波の照射タイミングが1つ以上特定された場合(S108:YES)、設定装置300は、デフォルト信号の一部を変更することで、制御部204に設定する光源駆動信号を生成する(S110)。具体的には、設定装置300は、デフォルト信号における電磁波の照射タイミングのうち、迷光が発生した電磁波の照射タイミングのみを変更することで、制御部204に設定する光源駆動信号を生成する。つまり、制御部204に設定する光源駆動信号は、(1)デフォルト信号において迷光を発生させた電磁波の照射タイミングについては、デフォルト信号における照射タイミングから所定クロック k ずれており、(2)それ以外の電磁波の照射タイミングについては、デフォルト信号における照射タイミングと一致している。
なお、図7の例では、S108において、迷光を発生させた電磁波の照射タイミングが1つでも特定されれば、デフォルト信号の変更が行われる。しかしながら、設定装置300は、S108において、迷光を発生させた電磁波の照射タイミングがN個(Nは2以上の整数)以上特定された場合に、デフォルト信号の一部を変更するように構成されてもよい。この場合、迷光を発生させた電磁波の照射タイミングがN個未満であれば、迷光が計測に与える影響は小さいと判断し、デフォルトの信号から変更しないようにすることができる。
また、S110において、迷光が発生した電磁波の照射タイミングを変更することに変えて、当該迷光が発生した電磁波の照射タイミングにおいては、電磁波を照射しないようにすることとしてもよい。こうすることにより、より簡易な処理で迷光による影響を低減させることができる。なお、この方法では、デフォルト信号を用いる場合と比較して電磁波の照射回数が減るものの、迷光を発生させた電磁波の照射タイミングが多くなければ、実使用上においての影響は小さいと考えられる。
図10は、制御部204に設定する光源駆動信号とデフォルト信号を比較する図である。図10における受信波の強さとデフォルト信号の関係は、図9と同様である。そのため、デフォルト信号に従って照射器10から電磁波を照射すると、時点 c2 クロックにおいて照射される電磁波によって迷光が発生する。そこで設定装置300は、デフォルト信号において時点 c2 クロックで照射される電磁波の照射タイミングを、制御部204に設定する光源駆動信号においては時点 c2+k クロックに変更している。
ここで、電磁波の照射タイミングの時間間隔は p クロックであるため、所定クロック k は、-p/2 ≦ k ≦ p/2 を満たすように定めておく。なお、p/2 が整数でない場合、k の範囲の下限値を -p/2 以上の最小の整数とし、k の範囲の上限値を p/2 以下の最大の整数とする。
そして設定装置300は、制御部204が計測部202の制御に用いる光源駆動信号として、S110で生成した光源駆動信号を設定する(S112)。具体的には、設定装置300は、S110で生成した光源駆動信号を、制御部204が有するストレージデバイス108に記憶させる。
<<光源駆動信号を生成する手順の例2>>
この例において、設定装置300は、デフォルト信号における電磁波の照射タイミングを全体的にシフトさせることで、制御部204に設定する光源駆動信号を生成する。例えばデフォルト信号を関数 f(t) と表すと、デフォルト信号を全体的に k クロックシフトさせた信号は f(t-k) で表される。
ただし、このようにデフォルト信号を全体的にシフトさせた信号を光源駆動信号にすると、デフォルト信号では迷光を発生させなかった電磁波によって、新たに迷光が発生するようになってしまう可能性がある。そこで設定装置300は、例えば以下の手順で光源駆動信号を生成する。
図11は、光源駆動信号を生成する手順の流れを例示する第2のフローチャートである。この処理において、設定装置300は、迷光を発生させる電磁波の照射タイミングの数が所定値未満となる光源駆動信号を、制御部204に設定する。この所定値は、設定装置300が有する記憶装置に予め記憶されているものとする。なお、図11のS102及びS106はそれぞれ、図7のS102及びS104と同じ処理である。そこで、以下ではS202以降の処理について説明する。
設定装置300は、シフト量を表す変数 i に初期値1を設定する(S202)。S204からS222は、迷光を発生させる電磁波の照射タイミングの数が所定値以上である間繰り返し実行されるループ処理Aである。S204において、設定装置300は、迷光を発生させる電磁波の照射タイミングの数が所定値以上であるか否かを判定する。迷光を発生させる電磁波の照射タイミングの数が所定値以上でない場合、図11の処理は終了する。一方、迷光を発生させる電磁波の照射タイミングの数が所定値以上である場合、図11の処理はS206に進む。
S206において、設定装置300は、デフォルト信号を全体的に +i クロックシフトさせた信号を、光源駆動信号として制御部204に設定する。設定装置300は、計測装置200に計測を実行させる(S208)。設定装置300は、計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S210)。
設定装置300は、迷光を発生させる電磁波の照射タイミングの数が所定値以上であるか否かを判定する(S212)。迷光を発生させる電磁波の照射タイミングの数が所定値以上でない場合(S212:NO)、図11の処理は終了する。一方、迷光を発生させる電磁波の照射タイミングの数が所定値以上である場合(S212:YES)、図11の処理はS214に進む。
S214において、設定装置300は、デフォルト信号を全体的に -i クロックシフトさせた信号を、光源駆動信号として制御部204に設定する。設定装置300は、計測装置200を動作させる(S216)。設定装置300は、計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S218)。設定装置300は、シフト量 i に1を加算する(S220)。
S222は、ループ処理Aの終端である。そこで、図11の処理はS204に進む。
<設定装置300のハードウエア構成の例>
設定装置300の各機能構成部は、各機能構成部を実現するハードウエア(例:ハードワイヤードされた電子回路など)で実現されてもよいし、ハードウエアとソフトウエアとの組み合わせ(例:電子回路とそれを制御するプログラムの組み合わせなど)で実現されてもよい。以下、設定装置300の各機能構成部がハードウエアとソフトウエアとの組み合わせで実現される場合について、さらに説明する。
図12は、設定装置300を実現するための計算機400を例示する図である。計算機400は任意の計算機である。例えば計算機400は、Personal Computer(PC)、サーバマシン、タブレット端末、又はスマートフォンなどである。計算機400は、設定装置300を実現するために設計された専用の計算機であってもよいし、汎用の計算機であってもよい。
計算機400は、バス402、プロセッサ404、メモリ406、ストレージデバイス408、入出力インタフェース410、及びネットワークインタフェース112を有する。バス402は、プロセッサ404、メモリ406、ストレージデバイス408、入出力インタフェース410、及びネットワークインタフェース412が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ404などを互いに接続する方法は、バス接続に限定されない。プロセッサ404は、CPU(Central Processing Unit)や GPU(Graphics Processing Unit)などの演算装置である。メモリ406は、RAM(Random Access Memory)などを用いて実現される主記憶装置である。ストレージデバイス408は、ハードディスク、SSD(Solid State Drive)、メモリカード、又は ROM(Read Only Memory)などを用いて実現される補助記憶装置である。ただし、ストレージデバイス408は、RAM など、主記憶装置を構成するハードウエアと同様のハードウエアで構成されてもよい。
入出力インタフェース410は、計算機400と入出力デバイスとを接続するためのインタフェースである。ネットワークインタフェース412は、計算機400を通信網に接続するためのインタフェースである。この通信網は、例えば LAN(Local Area Network)や WAN(Wide Area Network)である。ネットワークインタフェース412が通信網に接続する方法は、無線接続であってもよいし、有線接続であってもよい。
例えば計算機400は、入出力インタフェース410又はネットワークインタフェース412を介して、計測装置200と接続されている。
ストレージデバイス408は、設定装置300の各機能を実現するプログラムモジュールを記憶している。プロセッサ404は、このプログラムモジュールをメモリ406に読み出して実行することで、このプログラムモジュールに対応する機能を実現する。
<計測装置200の設置例>
計測装置200は、例えば自動車や電車などの移動体に設置される。移動体に設置される計測装置200は、例えばライダ(LIDAR: Light Detection and Ranging)として実現される。
図13は、移動体に設置されている計測装置200を例示する図である。図13において、計測装置200は、移動体240の上部に固定されている。また、計測装置200は制御装置244と接続されている。制御装置244は、移動体240を制御する制御装置である。例えば制御装置244は、ECU(Electronic Control Unit)である。
ここで制御部204は、移動体240を制御する制御装置244の一部として実現されてもよい。この場合、制御装置244が有するストレージデバイスに、前述した制御部204を実現するプログラムモジュールが記憶される。
なお、計測装置200が設置される場所は移動体240の上部に限定されない。例えば計測装置200は、移動体240の内部(例えば室内)に設置されてもよい。また計測装置200は、移動しない物体に設置されてもよい。
[実施形態2]
図14は、実施形態2の計測装置200を例示するブロック図である。以下で説明する事項を除き、実施形態2の計測装置200は、実施形態1の計測装置200と同様の機能を有する。
実施形態2の計測装置200は、計測装置200の運用中、動的に電磁波の照射タイミングを変更することで、迷光の発生を抑制する。そのために、実施形態2の計測装置200は修正部206を有する。
修正部206は、計測装置200における迷光の発生を検出し、迷光の影響を抑制するように、照射器10に電磁波を照射させるタイミングを変更する。具体的には、修正部206は、受信器50によって所定以上の強さの電磁波が受信された場合に、照射器10の照射タイミングを変更する。言い換えれば、修正部206は、迷光を発生させる電磁波の照射タイミングを特定し、特定した照射タイミングに基づいて、制御部204に設定されている光源駆動信号(ストレージデバイス108に記憶されている光源駆動信号)を修正する。
ここで、図7のフローチャートで説明したように受信器(受光器)の受信強度に基づいて迷光の発生源である電磁波の照射タイミングを特定する動作を実行する場合には、移動体240(又は計測装置200)の周辺に、電磁波を反射する物体(例えば、地物や歩行者や他車両等)が存在しない状況下で実行することが望ましい。例えば、計測装置200が計測可能は範囲内に、電磁波を反射する物体が存在しない状況下で実行することが望ましい。
従って、以下に記載するとおりに、図15のフローチャートに示す動作を実行するのに適した場所を特定し、当該場所において図15のフローチャートに示す動作を実行するようにしてもよい。図17は、この場合における計測装置200を例示するブロック図を図17に示す。
現在位置取得部208は、例えば GPS(Global Positioning System)等で構成され、移動体240(又は計測装置200)の現在位置に関する現在位置情報を取得する。なお、現在位置取得部は図示しない外部の装置から通信等により当該現在位置情報を取得するような構成であってもよい。
地図情報取得部210は、例えば通信によって、外部の地図情報配信サーバ等から地図情報を取得する。なお、計測装置200は、当該取得した地図情報を記憶する地図情報記憶部を備えるようにしてもよい。また、地図情報記憶部は、予め所定の地図情報が記憶されるようにしてもよい。
ここで、地図情報記憶部が記憶する地図情報には、地物に関する様々な情報を含んだ地物情報が含まれる。また、当該地物情報は、地図情報とは別に管理・記憶されるような構成であってもよい。地物情報には、少なくとも、当該地物が存在する位置に関する情報が含まれている。
実行位置特定部212は、現在位置取得部208によって取得された現在位置情報と、地図情報取得部210が取得した地図情報に含まれる地物情報と、に基づいて、後述する「迷光を発生させた電磁波の照射タイミングを特定する処理」を実行するのに適した位置又は領域を特定する。具体的には、現在位置周辺であってなおかつ電磁波が照射される方向に、電磁波を反射する地物が存在しない位置を、当該処理を実行するのに適した位置又は領域として特定する。
ここで、修正部206が制御部204に設定されている光源駆動信号を修正する方法は、実施形態1の設定装置300が制御部204に設定する光源駆動信号を生成する方法と同様である。以下、修正部206が光源駆動信号を修正する方法を例示する。
<光源駆動信号を修正する方法の例1>
図15は、光源駆動信号を生成する手順の流れを例示する第1のフローチャートである。図15のフローチャートに示す動作は、例えば所定の頻度(例えば1分間に1回の頻度)で繰り返し実行される。なお、図15のフローチャートにおいて光源駆動信号を修正する方法は、図7のフローチャートにおいてデフォルト信号から制御部204に設定する光源駆動信号を生成する方法と同様である。
また、図15のフローチャートに示す動作は、上述した実行位置特定部212によって特定された位置又は領域に移動体240(又は計測装置200)が到達したときに、所定の頻度で繰り返し実行されるようにしてもよい。例えば、本動作を開始する前に、予め実行位置特定部212が「迷光を発生させた電磁波の照射タイミングを特定する処理」を実行するのに適した位置又は領域を特定しておき、現在位置取得部208が取得した現在位置情報が示す現在位置が、当該特定した位置と一致したとき(又は特定した領域内に含まれることとなったとき)に、図15のフローチャートに示す動作を開始する。なお、計測装置200は、現在位置が特定した位置又は領域外となった場合に、当該動作を停止するように構成されていてもよい。
修正部206は、計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S302)。S302において修正部206が行う具体的な処理は、S106において設定装置300が行う処理と同様である。
修正部206は、S302において、迷光を発生させた電磁波の照射タイミングが1つ以上特定されたか否かを判定する(S304)。迷光を発生させた電磁波の照射タイミングが1つも特定されていない場合(S304:NO)、図15の処理は終了する。このケースでは、現状の光源駆動信号を用いた制御において迷光が発生していない。そのため、光源駆動信号の修正は行われない。
一方、迷光を発生させた電磁波の照射タイミングが1つ以上特定された場合(S304:YES)、修正部206は、現在制御部204に設定されている光源駆動信号の一部を修正する(S306)。具体的には、修正部206は、修正前の光源駆動信号における電磁波の照射タイミングのうち、迷光が発生した電磁波の照射タイミングのみを変更したものを、修正後の光源駆動信号とする。つまり、修正後の光源駆動信号は、(1)修正前の光源駆動信号において迷光を発生させた電磁波の照射タイミングについては、修正ませの光源駆動信号における照射タイミングから所定クロック k ずれており、(2)それ以外の電磁波の照射タイミングについては、修正前の光源駆動信号における照射タイミングと一致している。このように、S306における修正前の光源駆動信号と修正後の光源駆動信号との関係は、図7のS110におけるデフォルト信号と制御部204に設定する光源駆動信号との関係と同様である。
<光源駆動信号を修正する方法の例2>
図16は、光源駆動信号を生成する手順の流れを例示する第2のフローチャートである。図16のフローチャートに示す動作は、例えば所定の頻度(例えば1分間に1回の頻度)で繰り返し実行される。なお、図16のフローチャートにおいて光源駆動信号を修正する方法は、図11のフローチャートにおいてデフォルト信号から制御部204に設定する光源駆動信号を生成する方法と同様である。
修正部206は、計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S402)。修正部206は、シフト量を表す変数 i に初期値1を設定する(S404)。S406からS418は、迷光を発生させる電磁波の照射タイミングの数が所定値以上である間繰り返し実行されるループ処理Bである。S406において、修正部206は、迷光を発生させる電磁波の照射タイミングの数が所定値以上であるか否かを判定する。迷光を発生させる電磁波の照射タイミングの数が所定値以上でない場合、図16の処理は終了する。一方、迷光を発生させる電磁波の照射タイミングの数が所定値以上である場合、図16の処理はS408に進む。
S408において、修正部206は、修正前の光源駆動信号を全体的に +i クロックシフトさせた信号を、修正後の光源駆動信号として制御部204に設定する。修正部206は、上記光源駆動信号を用いて動作した計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S410)。
修正部206は、迷光を発生させる電磁波の照射タイミングの数が所定値以上であるか否かを判定する(S412)。迷光を発生させる電磁波の照射タイミングの数が所定値以上でない場合(S412:NO)、図16の処理は終了する。一方、迷光を発生させる電磁波の照射タイミングの数が所定値以上である場合(S412:YES)、図11の処理はS414に進む。
S414において、修正部206は、修正前の光源駆動信号を全体的に -i クロックシフトさせた信号を、修正後の光源駆動信号として制御部204に設定する。修正部206は、上記光源駆動信号を用いて動作した計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S416)。修正部206は、i に1を加算する(S418)。
S420は、ループ処理Bの終端である。そこで、図11の処理はS406に進む。
本実施形態の計測装置200によれば、計測装置200の運用中(例えば自動運転モードで走行中の自動車において計測装置200が利用されている最中)に、計測部202の内部で発生している迷光を抑制することができる。
ここで、計測装置200の運用開始前に、迷光が発生しないように計測装置200を適切に設定したとしても、計測装置200を運用している間に、計測装置200の内部で迷光が発生してしまう可能性がある。例えば、計測装置200に加わる振動などの影響により、照射器10と光学系20との位置関係がずれてしまうことにより、迷光が発生しうる。
そこで本実施形態の計測装置200は、計測装置200の運用中に迷光の発生を検出して、光源駆動信号を修正する。こうすることで、計測装置200の内部における迷光の発生をより確実に抑制することができる。また、当該修正を、移動体(計測装置)の周辺に地物がない状況下で行なうことで、適切な修正を行なうことが可能となる。
<ハードウエア構成の例>
実施形態2の計測装置200のハードウエア構成は、実施形態1の計測装置200のハードウエア構成と同様に、例えば図4から図6で表される。また本実施形態において、前述したストレージデバイス108に記憶されるプログラムモジュールには、本実施形態で説明した機能を実現するプログラムがさらに含まれる。
なお図14において、修正部206と制御部204は別々の機能構成部として記載されているものの、修正部206は制御部204の内部に含まれる機能構成部であってもよい。この場合、前述した修正部206によって行われる処理は、制御部204によって行われる処理であるとも表現できる。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記各実施形態の組み合わせ、又は上記以外の様々な構成を採用することもできる。
この出願は、2016年11月30日に出願された日本出願特願2016-232162号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (14)

  1. 光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信することで走査を行う計測部と、
    前記光源に前記電磁波を照射させるタイミングを光源駆動信号により制御し、且つ前記計測部から前記電磁波が照射される方向である照射方向を制御する制御部と、を有し、
    前記制御部は、前記計測部から照射された前記電磁波の前記反射波以外の反射波を受信した場合に、前記電磁波を受信した前記照射方向において、前記電磁波を照射しないように前記光源が制御される前記光源駆動信号を生成する、計測装置。
  2. 計測装置の設定を行う設定装置であって、
    前記計測装置は、
    光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信することで走査を行う計測部と、
    駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、を有し、
    当該設定装置は、
    所定の信号が前記駆動信号として設定された前記計測装置を動作させて、前記計測装置による計測結果を取得し、
    前記計測部から照射された前記電磁波の前記反射波以外の反射波を受信した場合に前記所定の駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にする、設定装置。
  3. 前記取得した計測結果を用いて、前記計測装置によって所定値以上の強さで受信される電磁波が前記計測装置によって照射されるタイミングを特定し、
    前記所定の信号に示される電磁波の照射タイミングのうち、前記特定されたタイミングのみを所定クロック前又は後ろに変更した信号を、前記駆動信号として前記制御部に設定する、請求項2に記載の設定装置。
  4. 前記計測部による1回の走査において所定値以上の強さで受信される電磁波を前記計測部が照射する回数が、所定回数以上であるか否かを判定し、
    前記回数が前記所定回数以上であると判定された場合に、前記所定の信号全体を所定クロック前又は後ろにシフトさせた信号を、前記駆動信号として前記制御部に設定する、請求項2に記載の設定装置。
  5. 計測装置の設定方法であって、
    前記計測装置は、
    光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信することで走査を行う計測部と、
    駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、を有し、
    当該設定方法は、
    所定の信号が前記駆動信号として設定された前記計測装置を動作させて、前記計測装置による計測結果を取得するステップと、
    前記計測部から照射された前記電磁波の前記反射波以外の反射波を受信した場合に前記所定の駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にするステップと、を有する設定方法。
  6. 請求項5に記載の設定方法の各ステップをコンピュータに実行させるプログラム。
  7. 光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信することで走査を行う計測部と、
    駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、
    前記駆動信号を修正する修正部と、を有し、
    前記修正部は、
    前記計測部から照射された前記電磁波の前記反射波以外の反射波を受信した場合に前記駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にする、計測装置。
  8. 前記修正部は、前記駆動信号が示す照射タイミングのうち、前記計測部において所定値以上の強さで受信される電磁波の照射タイミングのみを、所定クロック前又は後に変更する、請求項7に記載の計測装置。
  9. 前記修正部は、前記駆動信号が示す電磁波の照射タイミング全てを所定クロック前又は後に変更する、請求項7に記載の計測装置。
  10. 計測装置によって実行される修正方法であって、
    前記計測装置は、
    光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信することで走査を行う計測部と、
    駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、を有し、
    当該修正方法は、前記計測部から照射された前記電磁波の前記反射波以外の反射波を受信した場合に前記駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にするステップを有する、修正方法。
  11. 請求項10に記載の修正方法のステップをコンピュータに実行させるプログラム。
  12. 光源と、前記光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信する受信部と、を有する計測部と、
    前記計測部から前記電磁波が照射される方向を制御する制御部と、を有し、
    前記制御部は、前記光源から照射された前記電磁波が前記光学系において反射された前記反射波を、前記受信部が所定以上の強さで受信した場合に、前記反射波となる前記電磁波を照射した照射タイミングを変更する、計測装置。
  13. 前記取得した計測結果を用いて、前記計測装置によって所定値以上の強さで受信される電磁波が前記計測装置によって照射されるタイミングを特定し、
    前記制御部は、前記所定の信号に示される電磁波の照射タイミングのうち、前記特定されたタイミングでは前記光源から前記電磁波が照射されないように前記計測部を制御する、請求項2に記載の設定装置。
  14. 光源と、前記光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された反射波を受信する受信部と、を有する計測部と、
    前記受信部が前記光源から照射された前記電磁波が前記光学系にて反射された前記反射波を所定以上の強さで受信した場合に、前記反射波となる前記電磁波を照射した照射タイミングを変更する処理を実行する制御部と、
    を有し、
    前記制御部は、当該計測装置の周辺であってなおかつ前記電磁波が照射される方向に、前記電磁波を反射する物体が存在しない状況下であると判断した場合に、前記処理を実行する、計測装置。
JP2021214557A 2016-11-30 2021-12-28 計測装置、設定装置、設定方法、修正方法、及びプログラム Active JP7379455B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016232162 2016-11-30
JP2016232162 2016-11-30
PCT/JP2017/042728 WO2018101293A1 (ja) 2016-11-30 2017-11-29 計測装置、設定装置、設定方法、修正方法、及びプログラム
JP2018554176A JPWO2018101293A1 (ja) 2016-11-30 2017-11-29 計測装置、設定装置、設定方法、修正方法、及びプログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018554176A Division JPWO2018101293A1 (ja) 2016-11-30 2017-11-29 計測装置、設定装置、設定方法、修正方法、及びプログラム

Publications (2)

Publication Number Publication Date
JP2022034072A true JP2022034072A (ja) 2022-03-02
JP7379455B2 JP7379455B2 (ja) 2023-11-14

Family

ID=62242518

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018554176A Ceased JPWO2018101293A1 (ja) 2016-11-30 2017-11-29 計測装置、設定装置、設定方法、修正方法、及びプログラム
JP2021214557A Active JP7379455B2 (ja) 2016-11-30 2021-12-28 計測装置、設定装置、設定方法、修正方法、及びプログラム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018554176A Ceased JPWO2018101293A1 (ja) 2016-11-30 2017-11-29 計測装置、設定装置、設定方法、修正方法、及びプログラム

Country Status (2)

Country Link
JP (2) JPWO2018101293A1 (ja)
WO (1) WO2018101293A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113835444A (zh) * 2021-10-11 2021-12-24 广州穿越千机创新科技有限公司 编队无人机地面磁场自动检测系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229255A (ja) * 2008-03-24 2009-10-08 Hokuyo Automatic Co 走査式測距装置
JP2011214926A (ja) * 2010-03-31 2011-10-27 Hokuyo Automatic Co マルチ信号処理装置、測距装置、及びマルチ測距システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184003A (ja) * 1997-09-04 1999-03-26 Nikon Corp 光波測距装置
JPH11142519A (ja) * 1997-11-06 1999-05-28 Omron Corp 光学式距離測定装置
JP2001074842A (ja) * 1999-09-07 2001-03-23 Minolta Co Ltd 測距装置
JP4098341B1 (ja) * 2006-12-28 2008-06-11 北陽電機株式会社 走査式測距装置の光学窓汚れ検出装置
JP5573598B2 (ja) * 2010-10-28 2014-08-20 株式会社デンソー レーダ装置
JP2012118266A (ja) * 2010-11-30 2012-06-21 Sanyo Electric Co Ltd ビーム照射装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229255A (ja) * 2008-03-24 2009-10-08 Hokuyo Automatic Co 走査式測距装置
JP2011214926A (ja) * 2010-03-31 2011-10-27 Hokuyo Automatic Co マルチ信号処理装置、測距装置、及びマルチ測距システム

Also Published As

Publication number Publication date
WO2018101293A1 (ja) 2018-06-07
JPWO2018101293A1 (ja) 2019-10-24
JP7379455B2 (ja) 2023-11-14

Similar Documents

Publication Publication Date Title
US9046599B2 (en) Object detection apparatus and method
JP5187319B2 (ja) 対象物測定装置、及び当該装置で用いられる方法
JPH11242518A (ja) レーダー装置
JP6424522B2 (ja) 車載装置、車載測距システム
CN107728131B (zh) 激光雷达及激光雷达控制方法
WO2016208318A1 (ja) 距離画像処理装置、距離画像処理方法、距離画像処理プログラムおよび記録媒体
JP2006349694A (ja) 物体検知装置および方法
US20200300987A1 (en) Electronic apparatus and method
JP7379455B2 (ja) 計測装置、設定装置、設定方法、修正方法、及びプログラム
US11892539B2 (en) Measurement device, measurement method, and non-transitory storage medium
JP2022107543A (ja) 制御装置
JP2023076825A (ja) 計測装置
JP2023040167A (ja) 走査方法の決定方法
EP3709052A1 (en) Object detector
JP2023015204A (ja) 調整方法、検出機器及び検出装置
US11921216B2 (en) Electronic apparatus and method for controlling thereof
CN116413680A (zh) 基于激光雷达和毫米波雷达的扫描方法及探测系统
JP2022042771A (ja) 測距システム
US20200166339A1 (en) Sensor Control Device
US20230066857A1 (en) Dynamic laser emission control in light detection and ranging (lidar) systems
US20230079909A1 (en) Dynamic laser emission control in light detection and ranging (lidar) systems
JP2024074150A (ja) 光空間通信装置および光空間通信装置の制御方法
JP2021181980A (ja) 光測距装置
JP2023060126A (ja) 光制御装置
JP2022095980A (ja) センサ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231101

R150 Certificate of patent or registration of utility model

Ref document number: 7379455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150