WO2016208318A1 - 距離画像処理装置、距離画像処理方法、距離画像処理プログラムおよび記録媒体 - Google Patents

距離画像処理装置、距離画像処理方法、距離画像処理プログラムおよび記録媒体 Download PDF

Info

Publication number
WO2016208318A1
WO2016208318A1 PCT/JP2016/065405 JP2016065405W WO2016208318A1 WO 2016208318 A1 WO2016208318 A1 WO 2016208318A1 JP 2016065405 W JP2016065405 W JP 2016065405W WO 2016208318 A1 WO2016208318 A1 WO 2016208318A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance image
noise
region
distance
predetermined
Prior art date
Application number
PCT/JP2016/065405
Other languages
English (en)
French (fr)
Inventor
泰士 渡部
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP16814089.5A priority Critical patent/EP3315999A4/en
Priority to US15/737,032 priority patent/US20180172830A1/en
Priority to JP2017524765A priority patent/JPWO2016208318A1/ja
Publication of WO2016208318A1 publication Critical patent/WO2016208318A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection

Definitions

  • the present invention relates to a distance image processing apparatus for processing a distance image, a distance image processing method, a distance image processing program, and a recording medium on which the distance image processing program is recorded.
  • the distance image is an image composed of a plurality of pixels expressed by information representing the distance to the subject, and is formed by assigning different colors depending on the distance to the subject, for example.
  • a distance image is acquired using, for example, LIDAR (Laser Imaging Detection and Ranging) technology.
  • This three-dimensional distance image technique obtains a time (transmission / reception time) until the transmitted wave hits the object and returns as the reflected wave by receiving a reflected wave of the transmitted wave from the object, and the propagation of the transmitted wave
  • the distance image is generated by calculating the distance to the subject by multiplying the speed by half of the transmission / reception time.
  • the image processing apparatus disclosed in Patent Document 1 includes a preprocessing unit that removes a ghost portion from a distance image based on a luminance image, and an edge extraction unit that extracts an edge from the distance image from which the ghost portion has been removed.
  • a removal unit that removes the pixel distance value of the edge portion extracted by the edge extraction unit in the distance image from which the ghost portion has been removed.
  • the luminance is defined as representing the intensity of the reflected wave.
  • the image processing apparatus disclosed in Patent Document 1 removes a ghost part from a distance image based on a luminance image, and therefore, image processing for obtaining a luminance image is required in addition to the distance image. Further, since the image processing apparatus disclosed in Patent Document 1 removes a ghost part from a distance image based on a luminance image, it is removed as a ghost part even when a part with low reflectance exists on one surface. There is a risk of being.
  • the present invention has been made in view of the above-described circumstances, and its purpose is to acquire a more accurate range image even when a plurality of objects are arranged back and forth along the traveling direction of the transmission wave.
  • a distance image processing apparatus, a distance image processing method, and a distance image processing program are provided.
  • the present invention is to provide a recording medium on which the distance image processing program is recorded.
  • a distance image processing apparatus, a distance image processing method, and a distance image processing program according to the present invention provide a distance image having a plurality of pixels corresponding to a plurality of different directions based on a plurality of transmission waves and a plurality of reflected waves. And when the predetermined region in the distance image is the attention region, the slope of the distance value between the attention region and the peripheral region with respect to the attention region is within a predetermined range, and the attention region When the pulse width of the reflected wave with respect to is larger than the pulse width of the reflected wave with respect to the peripheral region, the region of interest is determined as noise.
  • the recording medium records such a distance image processing program.
  • the distance image processing apparatus, the distance image processing method, and the distance image processing program according to the present invention can obtain a more accurate distance image even when a plurality of objects are arranged back and forth along the traveling direction of the transmission wave. You can get it.
  • a recording medium on which this distance image processing program is recorded can be provided.
  • FIG. 10 is a diagram in which the distance image of FIG. 4 excluding the white area in FIG. 9 is displayed as a three-dimensional point group.
  • the distance image processing device transmits a predetermined pulsed transmission wave in a plurality of directions different from each other, receives a plurality of reflected waves based on each of the plurality of transmission waves, A distance image acquisition unit that acquires a distance image having a plurality of pixels corresponding to each of the plurality of directions based on a plurality of reflected waves, and the attention area when the predetermined area in the distance image is the attention area And a slope of a distance value between the target region and a peripheral region located in a predetermined periphery is within a predetermined range, and a pulse width of the reflected wave related to the target region is the reflected wave related to the peripheral region And a noise determination unit that determines that the region of interest is noise.
  • Such a distance image processing apparatus may be incorporated in an apparatus for an appropriate application, or may be configured by a single apparatus, for example, a computer having the distance image acquisition unit.
  • a distance image processing apparatus incorporated in a radar will be described.
  • FIG. 1 is a block diagram showing a configuration of a radar using the range image processing apparatus of the embodiment.
  • FIG. 2 is a perspective view showing an external configuration of the radar.
  • FIG. 3 is a diagram for explaining a basic mechanism for generating a distance image in the radar.
  • FIG. 3A shows a state of scanning
  • FIG. 3B is a diagram for explaining a transmission / reception time.
  • FIG. 4 is a diagram illustrating an example of a distance image (distance image before noise removal processing) generated by the basic mechanism.
  • the radar S using the distance image processing apparatus of the embodiment includes a transmission / reception unit 1, a control processing unit 2, a storage unit 3, and a housing HG (see FIG. 2).
  • the housing HG includes a bottomed semi-cylindrical lower member HG1, and an upper member HG2 connected to the upper part of the lower member HG1 and having a closed hollow semicircular truncated cone, and the lower member HG1 and the upper part.
  • the protective member HG3 is fitted and fixed to the opening WD opened on the obliquely curved side surface of the upper member HG2.
  • the control processing unit 2 and the storage unit 3 in the radar S may be housed in the housing HG or may be provided outside the housing HG.
  • the protection member HG3 is formed of a material that transmits a transmission wave and a reflected wave, which will be described later, and is a member for protecting the transmission / reception unit 1, and therefore requires a certain degree of strength.
  • the protective member HG3 since the transmission wave is laser light and the reflected wave is reflected light of this laser light, the protective member HG3 transmits light in a predetermined wavelength range with the wavelength of the laser light as the center wavelength.
  • it is made of a material such as polycarbonate or glass.
  • the transmission / reception unit 1 is connected to the control processing unit 2, and transmits predetermined pulsed transmission waves in a plurality of different directions according to the control of the control processing unit 2, and a plurality of reflections based on the plurality of transmission waves, respectively.
  • the receiving unit 12 outputs a digital signal corresponding to the intensity of the received reflected wave to the control processing unit 2.
  • the transmission wave is, for example, an electromagnetic wave such as light or millimeter wave, or a sound wave such as an ultrasonic wave.
  • the transmission wave is a pulsed laser beam.
  • the transmitter 11 sequentially irradiates, for example, a laser light source that emits a laser beam such as a semiconductor laser in a pulsed manner and a laser beam emitted from the laser light source in a plurality of different directions.
  • Scanning optical system includes an actuator such as a motor and a mirror (reflecting mirror), for example, and the incident angle of the laser light emitted from the laser light source is increased by rotating the mirror around a predetermined axis by the actuator. Change sequentially.
  • the scanning optical system sequentially irradiates the pulsed laser light emitted from the laser light source in a plurality of different directions within a predetermined irradiation range AR shown in FIG. 3A, for example.
  • the forward direction of the radar S is the X direction
  • the height direction of the radar S orthogonal to the X direction is the Z direction
  • the X direction and the direction orthogonal to each of the Z directions are the Y directions.
  • the irradiation range AR is the deviation in the example shown in FIG. 3A.
  • the angle ⁇ is 90 ° ⁇ ⁇ ( ⁇ is, for example, 5 °, 7 °, 10 °, 15 °, etc.), and the deflection angle ⁇ is in a range of ⁇ 90 °.
  • the declination angle ⁇ is an angle formed by the projection of the moving radius r on the XY plane and the X axis, and the declination ⁇ is the angle formed by the moving radius r and the Z axis.
  • the irradiation range AR shown in FIG. 3A is merely an example, and the irradiation range AR is arbitrary and is not limited to the example shown in FIG. 3A.
  • the storage unit 3 is a circuit that is connected to the control processing unit 2 and stores various predetermined programs and various predetermined data under the control of the control processing unit 2.
  • the various predetermined programs include, for example, a transmission / reception program for transmitting the transmission waves in a plurality of different directions and receiving a plurality of reflected waves based on the plurality of transmission waves, and the plurality of transmission waves, for example.
  • a control processing program such as a distance image generation program for generating a distance image having a plurality of pixels corresponding to each of the plurality of directions based on the plurality of reflected waves.
  • a distance to a subject (object) is obtained based on a transmission wave corresponding to the pixel (the direction) and a reflected wave thereof.
  • the distance image preprocessing program for generating the distance image before noise removal or the predetermined area in the distance image generated by the distance image preprocessing program is set as the attention area, the attention area and the predetermined area for the attention area When the gradient of the distance value between the surrounding area and the surrounding area located in the vicinity of is within a predetermined range, and the pulse width of the reflected wave related to the attention area is larger than the pulse width of the reflected wave related to the surrounding area.
  • a noise determination program for determining the region of interest as noise, or a pixel in the region of interest determined as noise by the noise determination program The include noise removal program for setting a predetermined noise pixel values representing noise.
  • the various predetermined data includes various data such as data necessary for executing various programs and data obtained by executing various programs.
  • the storage unit 3 includes, for example, a ROM (Read Only Memory) that is a nonvolatile storage element, an EEPROM (Electrically Erasable Programmable Read Only Memory) that is a rewritable nonvolatile storage element, and the like.
  • the storage unit 3 includes a RAM (Random Access Memory) that serves as a working memory of the so-called control processing unit 2 that stores data generated during execution of the predetermined program.
  • control processing unit 2 is connected to the transmission / reception unit 1 and the storage unit 3 and controls each unit of the radar S according to the function of each unit, and transmits and receives the transmission wave and the reflected wave to the distance. It is a circuit for generating an image.
  • the control processing unit 2 includes, for example, a CPU (Central Processing Unit) and its peripheral circuits.
  • the control processing unit 2 functionally includes a control unit 21 and a distance image generation unit 22 by executing the control processing program.
  • the control unit 21 controls each part of the radar S according to the function of each part.
  • the distance image generation unit 22 generates a distance image having a plurality of pixels corresponding to each of the plurality of directions based on the plurality of transmission waves and the plurality of reflected waves.
  • the distance image generation unit 22 functionally includes a distance image preprocessing unit 221, a noise determination unit 222, and a noise removal unit 223.
  • the distance image pre-processing unit 221 calculates the distance to the subject (object) for each of the plurality of pixels (the plurality of directions) based on the transmission wave corresponding to the pixel (the direction) and the reflected wave. is there. Thus, the distance image preprocessing unit 221 generates a distance image before noise removal. More specifically, for each of the plurality of pixels (the plurality of directions), the distance image preprocessing unit 221 starts from the transmission time of the transmission wave corresponding to the pixel (the direction) as illustrated in FIG. 3B.
  • the transmission time and the reception time are, for example, a pulse peak time and a pulse rise time, respectively. In this case, for example, as disclosed in JP-A-62-134584, an intermediate time between the rising time and the falling time of the pulse may be set as the peak time.
  • An example of the distance image before noise removal generated by the distance image preprocessing unit 221 is shown in FIG. The distance image shown in FIG.
  • FIG. 4 is obtained by using a landscape where a person stands in front of a white wall as a subject.
  • pixel values are set so that the closer the subject is to the radar S, the closer to black, and the closer the subject is to the radar S, the closer to white.
  • the noise determination unit 222 is located in the region of interest and a predetermined region around the region of interest.
  • the gradient Gr of the distance value between and the distance between the two regions is within a predetermined range thg1 to thg2 (thg1 ⁇ Gr ⁇ thg2), and the pulse width PW1 of the reflected wave related to the region of interest is When the pulse width is larger than PW2 (PW1> PW2), the region of interest is determined as noise.
  • the gradient Gr of the distance value between the attention area and the peripheral area is the pixel value at the center position of the attention area (distance in the X direction, the distance in the front-rear direction) and the pixel value at the center position of the peripheral area (in the X direction).
  • the difference between the distance and the distance in the front-rear direction is divided by the difference between the center position of the attention area and the center position of the peripheral area in a vertical plane orthogonal to the X direction.
  • the pulse width PW1 of the reflected wave relating to the attention area is an average value of the pulse width of the reflected wave relating to pixels belonging to the attention area.
  • the pulse width PW2 of the reflected wave related to the peripheral region is an average value of the pulse width of the reflected wave related to the pixels belonging to the peripheral region.
  • the noise determination unit 222 divides the distance image before noise removal into a plurality of regions, and for each of the plurality of regions, a distance value between the region and a peripheral region located in a predetermined periphery with respect to the region.
  • the gradient Gr is within a predetermined range thg1 to thg2 (thg1 ⁇ Gr ⁇ thg2) and the pulse width PW1 of the reflected wave related to the region is larger than the pulse width PW2 of the reflected wave related to the peripheral region (PW1 > PW2)
  • the region may be determined as noise.
  • the noise determination unit 22 determines the pixel (target pixel) and the pixel for each of the plurality of pixels (a plurality of directions).
  • the gradient Gr of the distance value with respect to the peripheral pixels located in a predetermined periphery with respect to the predetermined range is within a predetermined range thg1 to thg2 (thg1 ⁇ r ⁇ thg2), and determines if the pulse width PW1 of the reflected wave related to the pixels the larger the pulse width PW2 of the reflected wave related to the peripheral pixels (PW1> PW2), the pixel noise.
  • the gradient Gr of the distance value between the pixel and its surrounding pixels is the pixel value of the pixel (distance in the X direction, distance in the front-rear direction) and the pixel value of the peripheral pixel (distance in the X direction, front-rear direction). Is divided by the difference between the position of the pixel in the vertical plane perpendicular to the X direction and the position of the surrounding pixels.
  • the noise determination unit 222 functionally includes an inclination processing unit 2221, a pulse width processing unit 2222, and a determination unit 2223.
  • the inclination processing unit 2221 obtains an inclination Gr of a distance value between the pixel and a peripheral pixel located in a predetermined vicinity with respect to the pixel, and the inclination value It is determined whether or not the inclination Gr is within a predetermined range thg1 to thg2, and this determination result (inclination determination result) is notified to the determination unit 2223.
  • the pulse width processing unit 2222 determines, for each of the plurality of pixels (a plurality of directions), whether or not the pulse width PW1 of the reflected wave related to the pixel is larger than the pulse width PW2 of the reflected wave related to the surrounding pixels, This determination result (pulse width determination result) is notified to the determination unit 2223.
  • the determination unit 2223 determines whether the pixel is noise based on the inclination determination result of the inclination processing unit 2221 and the pulse width determination result of the pulse width processing unit 2222. Judgment.
  • the noise removing unit 223 sets the pixel value of the attention area determined as noise by the noise determining unit 222 to a predetermined noise pixel value representing noise. Thus, a distance image after noise removal is generated.
  • the noise removal unit 223 sets the pixel value of the pixel determined as noise by the determination unit 2223 of the noise determination unit 222 as the noise pixel value.
  • the noise pixel value is a predetermined pixel value set in advance as a pixel value representing noise, for example, a value representing infinite distance.
  • FIG. 5 is a diagram in which the distance image shown in FIG. 4 is displayed as a three-dimensional point group.
  • FIG. 6 is a diagram for explaining a case where noise is not generated by a front object and a back object positioned in front and back along the transmission direction of the pulse laser beam.
  • FIG. 7 is a diagram for explaining a case where noise is generated by an object in the foreground and an object in the back positioned forward and backward along the transmission direction of the pulse laser beam.
  • FIG. 6A and 7A show beam-like transmission waves (in this embodiment, pulse laser light, which are irradiated to the front object Obf and the back object Obr positioned back and forth along the transmission direction (X direction) of the pulse laser light.
  • FIG. 6B and 7B show signal waveforms of reflected waves reflected by the near object Obf inside the beam diameter from the end of the near object Obf in the lateral direction (Y direction) orthogonal to the transmission direction.
  • FIGS. 6C and 7C show signal waveforms of reflected waves reflected near the front of the object Obf on the near side of the object Obr in the lateral direction (Y direction).
  • FIG. 6D and FIG. 7D show signal waveforms of reflected waves reflected by the back object Obr inside the beam diameter from the end of the back object Obr in the lateral direction (Y direction).
  • the distance image before noise removal generated by the distance image preprocessing unit 221 shown in FIG. 4 shown as an example is displayed as a three-dimensional point group
  • the distance image before noise removal is shown in FIG.
  • the point group shown in FIG. 5 is obtained by a known method from the pixel value (distance), declination angle ⁇ (vertical direction angle), and declination angle ⁇ (left-right direction angle) of the distance image shown in FIG.
  • the front object Obf In the example shown in FIGS.
  • a point group PGf (a point group PG1 corresponding to the person Ob1 in the example shown in FIG. 5) and a back object Obr (a white wall in the examples shown in FIGS. 4 and 5).
  • a point group PGn is also generated between the point group PGr representing Ob2) (a point group PG2 corresponding to the white wall Ob2 in the example shown in FIG. 5).
  • the point group PGn existing between these point groups PGf and PGr is not a point group that should be generated originally because no object exists between the front object Obf and the back object Obr. It is.
  • the transmission wave is reflected only by the front object Obf, and the signal waveform of the reflected wave is as shown in FIG. A single-peak pulse waveform having one peak, similarly, the transmission wave is reflected only by the back object Obr, as shown in FIG. 6A, inside the beam diameter from the end of the back object Obr, As shown in FIG. 6D, the signal waveform of the reflected wave is a unimodal pulse waveform having one peak.
  • FIG. 6A when the distance between the front object Obf and the back object Obr decreases from the aspect shown in FIG. 6A (when the front object Obf and the back object Obr approach each other), FIG.
  • FIG. 6C When the peaks in the bimodal pulse waveform shown in FIG. 6C approach each other, and the distance between the front object Obf and the back object Obr is relatively close as shown in FIG.
  • the signal waveform of the reflected wave is a unimodal pulse waveform, and this unimodal pulse waveform is composed of a reflected wave generated by a part of the transmitted wave being reflected by the front object Obf and the transmitted wave.
  • the transmitted wave is reflected when only the object Obf in front or only the object Obr in the back is reflected.
  • the threshold determination makes it impossible to distinguish the front object Obf and the back object Obr, and the unimodal pulse waveform as shown in FIG. 7C.
  • the peak time of the pulse waveform indicates the peak time and the transmitted wave applied to the signal waveform of the reflected wave (shown by a broken line in FIG.
  • the signal waveform of the reflected wave when the transmitted wave is reflected from the end of the front object Obf inside the beam diameter ( FIG. 7B) and the signal waveform (FIG. 7D) of the reflected wave when the transmitted wave is reflected from the end of the object Obr at the inner side of the beam diameter are the same as those shown in FIGS. 6B and 6D, respectively. .
  • the signal waveform of the reflected wave is changed from a bimodal pulse waveform to a single-peak pulse waveform is related to the distance between the front object Obf and the back object Obr, and with respect to the attention area and the attention area.
  • the determination can be made based on the gradient Gr between the peripheral region located in a predetermined periphery (in this embodiment, the gradient Gr of the distance value between the pixel and a peripheral pixel located in the predetermined periphery with respect to the pixel).
  • the unimodal pulse waveform is a reflected wave reflected near the front of the object Obr on the back side of the object Obr is related to the pulse width
  • the pulse width PW1 of the reflected wave related to the region of interest and the The determination can be made based on the pulse width PW2 of the reflected wave related to the peripheral region (in this embodiment, the pulse width PW1 of the reflected wave related to the pixel and the pulse width PW2 of the reflected wave related to the peripheral pixel). From these determination results (inclination determination result and pulse width determination result), it can be determined whether or not the pixel value of the pixel in the distance image is noise.
  • the radar using the range image processing apparatus of the present embodiment includes the noise determination unit 222 as described above, and is as follows. Is working.
  • FIG. 8 is a flowchart showing the operation of the radar.
  • FIG. 9 is a diagram showing the noise area determined by the processing shown in the flowchart of FIG. 8 as white and the area determined not to be noise as black.
  • FIG. 10 is a diagram in which the distance image in FIG. 4 excluding the white area in FIG. 9 is displayed as a three-dimensional point group.
  • the control processing unit 2 is functionally configured with a control unit 21 and a distance image generation unit 22.
  • the distance image generation unit 22 includes a distance image preprocessing unit 221, a noise determination unit. 222 and the noise removal unit 223 are functionally configured, and the noise determination unit 222 is functionally configured with an inclination processing unit 2221, a pulse width processing unit 2222, and a determination unit 2223.
  • the control processing unit 2 measures the transmission / reception time for each of the plurality of directions. More specifically, the control processing unit 2 causes the control unit 21 to transmit a transmission wave to the transmission unit 11 in the direction to be measured first in the plurality of directions, and to transmit the transmission wave (transmission timing). (Time) is notified to the distance image pre-processing unit 221.
  • the receiving unit 12 When receiving the reflected wave with respect to the transmission wave, the receiving unit 12 outputs a digital signal corresponding to the intensity of the reflected wave to the control processing unit 2.
  • the distance image pre-processing unit 221 of the control processing unit 2 receives the digital signal from the reception unit 12 from the transmission timing (transmission time) of the transmission wave in the first direction (that is, the first signal).
  • the transmission / reception time ⁇ 1 up to the reception time of the reflected wave based on the transmission wave with respect to the direction is determined.
  • the distance image preprocessing unit 221 calculates the distance in the first direction in the plurality of directions by multiplying the transmission speed of the transmission wave by half of the determined transmission / reception time ⁇ 1. Further, a time during which the reflected wave is equal to or greater than a predetermined threshold value set in advance is counted, and the measured time is set as a pulse width. Thereby, the pixel value of the first corresponding pixel is obtained.
  • the control processing unit 2 causes the control unit 21 to transmit a transmission wave to the transmission unit 11 in the second direction to be measured in the plurality of directions.
  • the receiving unit 12 When receiving the reflected wave with respect to the transmission wave, the receiving unit 12 outputs a digital signal corresponding to the intensity of the reflected wave to the control processing unit 2.
  • the distance image preprocessing unit 221 of the control processing unit 2 receives the digital signal from the reception unit 12 from the transmission timing (transmission time) of the transmission wave in the second direction (that is, the second time).
  • the transmission / reception time ⁇ 2 up to the reception time of the reflected wave based on the transmission wave with respect to the direction is determined.
  • the distance image pre-processing unit 221 obtains the distance in the second direction among the plurality of directions by multiplying the half of the obtained transmission / reception time ⁇ 2 by the propagation speed of the transmission wave. Further, the time during which the reflected wave is equal to or greater than the predetermined threshold is counted, and the measured time is set as the pulse width. Thereby, the pixel value of the second corresponding pixel is obtained. Thereafter, the control processing unit 2 performs the measurement in the same manner up to the last order in the plurality of directions (the plurality of measurement points), similarly, the distance image preprocessing unit 221 obtains the distance, and all the directions (all The measurement of the transmission / reception time ⁇ and the calculation of the distance are executed for each of the measurement points).
  • the noise determination unit 222 first displays the noise image before noise removal generated by the distance image preprocessing unit 221.
  • a predetermined target pixel is selected and extracted from the distance image. For example, a pixel corresponding to the first direction is selected and extracted as a target pixel (S1).
  • the noise determination unit 222 selects and extracts peripheral pixels located in a predetermined periphery with respect to the target pixel extracted in the process S1 (S2). For example, the noise determination unit 222 extracts one or a plurality of pixels located along the left and right directions ( ⁇ Y direction and + Y direction) from the target pixel extracted in the process S1 as peripheral pixels. Further, for example, the noise determination unit 222 extracts one or a plurality of pixels positioned along the vertical direction (+ Z direction and ⁇ Z direction) from the target pixel extracted in the processing S1 as peripheral pixels.
  • the noise determination unit 222 includes one or more pixels positioned along the left-right direction from the target pixel extracted in step S1, and one or more pixels positioned along the vertical direction from the target pixel. Are extracted as peripheral pixels.
  • the noise determination unit 222 extracts a plurality of pixels located over the entire circumference of the target pixel extracted in the process S1 as peripheral pixels.
  • the noise determination unit 222 includes one pixel located along the left direction ( ⁇ Y direction) from the target pixel extracted in step S1, and the right position (+ Y direction) from the target pixel.
  • One pixel to be extracted is extracted as a peripheral pixel.
  • the noise determination unit 222 executes a determination process based on the distance by using the inclination processing unit 2221 (S3-1), and executes a determination process based on the pulse width by the pulse width processing unit 2222 (S3-2).
  • the discrimination process S3-1 based on the distance and the discrimination process S3-2 based on the pulse width may be executed in parallel or may be executed in a time division manner. In the case of time division, any of the determination processes S3-1 and S3-2 may be performed first.
  • the gradient processing unit 2221 obtains the gradient Gr of the distance value between the target pixel extracted in step S1 and the peripheral pixels extracted in step S2 (S11).
  • the peripheral pixels are one pixel in the ⁇ Y direction and one pixel in the + Y direction
  • the gradient Gr1 of the distance value between the one pixel in the ⁇ Y direction and the target pixel and the one in the + Y direction are set.
  • a gradient Gr2 of the distance value between the pixel and the target pixel is obtained.
  • the noise determination unit 222 is positioned along the left direction ( ⁇ Y direction) from the target pixel and the right direction (+ Y direction) from the target pixel.
  • the gradients Gr1-1, Gr1-2, and Gr1-2 of each distance value between each of the two pixels in the ⁇ Y direction and the target pixel are extracted.
  • the gradients Gr2-1 and Gr2-2 of each distance value between each of the two pixels in the + Y direction and the target pixel are obtained.
  • the maximum gradient and the minimum gradient among the gradients Gr1-1, Gr1-2, Gr2-1, and Gr2-2 of these four distance values are set as the gradients of the distance values of the surrounding pixels. Also good.
  • the inclination processing unit 2221 determines whether or not the inclination Gr of the distance value obtained in this process S11 is within a predetermined range thg1 to thg2 (S12).
  • the predetermined ranges thg1 to thg2 are appropriately set based on the above-described noise generation mechanism, and are set based on, for example, a result using a plurality of samples.
  • the gradient processing unit 2221 displays the gradient determination result associated with the target pixel.
  • the distance noise flag to be represented is set to “1” (S13), and the discrimination process based on this distance is terminated.
  • the inclination processing unit 2221 ends the discrimination process based on this distance.
  • the distance noise flag “1” represents that the gradient Gr of the distance value is within a predetermined range
  • the distance noise flag “0” represents that the gradient Gr of the distance value is not within the predetermined range.
  • the distance noise flag is provided for each pixel in the distance image, and is set to the default “0” in the above-described initialization.
  • the inclination processing unit 2221 includes the gradient Gr1 of the distance value between the one pixel in the ⁇ Y direction and the target pixel and the distance value between the one pixel in the + Y direction and the target pixel. It is determined whether each of the slopes Gr2 is within the predetermined range thg1 to thg2, and when both the slopes Gr1 and Gr2 are within the predetermined range thg1 to thg2 (Yes, thg1 ⁇ Gr1, Gr2 ⁇ thg2) ), The process based on the distance is completed by executing step S13, and when at least one of the gradients Gr1 and Gr2 of the distance values is not within the predetermined range thg1 to thg2 (No, Gr1 ⁇ thg1) , Thg2 ⁇ Gr1, Gr2 ⁇ thg1, and thg2 ⁇ Gr2 are satisfied) To terminate the management.
  • the pulse width processing unit 2222 obtains the pulse width PW1 in the signal waveform of the reflected wave related to the target pixel extracted in step S1 and the pulse width PW2 in the signal waveform of the reflected wave related to the peripheral pixel extracted in step S2 (S21).
  • the pulse width processing unit 2222 uses the pulse width PW21 in the signal waveform of the reflected wave for one pixel in the ⁇ Y direction and The pulse width PW22 in the signal waveform of the reflected wave for one pixel in the + Y direction is obtained, and the average value of the obtained pulse widths PW21 and PW22 is obtained as the pulse width PW2.
  • the pulse width processing unit 2222 determines whether or not the pulse width PW1 of the reflected wave related to the target pixel is larger than the pulse width PW2 of the reflected wave related to the surrounding pixels. More specifically, the pulse width processing unit 2222 calculates the pulse width PW1 applied to the pixel of interest and the pulse width PW2 applied to the peripheral pixels obtained in step S21 (in this embodiment, the average value of the pulse width PW21 and the pulse width PW22). (S22), and the pulse width processing unit 2222 determines whether or not the difference PWs obtained in step S22 is equal to or greater than a predetermined threshold thp (S23).
  • the predetermined threshold thp is appropriately set based on the above-described noise generation mechanism, and is set from, for example, a result using a plurality of samples. As a result of this determination, when the difference PWs is equal to or greater than the predetermined threshold thp (Yes, thp ⁇ PWs), the pulse width processing unit 2222 represents a pulse width determination result associated with the target pixel. When the pulse width noise flag is set to “1” (S23), the discrimination process based on the pulse width is finished.
  • the pulse width processing unit 2222 ends the discrimination processing based on the pulse width.
  • the pulse width noise flag “1” indicates that the difference PWs is greater than or equal to the threshold thp, that is, the pulse width PW1 of the reflected wave related to the target pixel is larger than the pulse width PW2 of the reflected wave related to the surrounding pixels.
  • the noise flag “0” indicates that the difference PWs is not greater than or equal to the threshold thp, that is, the pulse width PW1 of the reflected wave related to the target pixel is not greater than the pulse width PW2 of the reflected wave related to the surrounding pixels.
  • the pulse width noise flag is provided for each pixel in the distance image, and is set to the default “0” in the above-described initialization.
  • step S5 As a result of the determination in step S5, when the AND calculation result is 1 (Yes), the determination unit 2223 sets “1” in the noise pixel flag indicating whether or not the pixel is noise in the target pixel (S6). ), The next process S7 is executed. On the other hand, as a result of the determination in the process S5, when the and operation result is not 1 (No), the determination unit 2223 executes the next process S7.
  • the noise pixel flag “1” indicates that it is noise
  • the noise pixel flag “0” indicates that it is not noise. Note that the noise pixel flag is provided for each pixel in the distance image, and is set to the default “0” in the above-described initialization.
  • the noise determination part 222 determines whether the above-mentioned process was performed about all the pixels in the distance image before noise removal. As a result of this determination, when the above processing is not executed for all pixels (No), noise determination is performed in order to process the next pixel of interest, for example, the pixel corresponding to the second direction as the pixel of interest. The unit 222 returns the process to the process S1, while if the result of the determination is that the above-described process is executed for all pixels (Yes), the noise determination unit 222 ends the above-described process.
  • the noise removal unit 223 determines the pixel value of the region of interest determined as noise by the noise determination unit 222 as follows. A predetermined noise pixel value representing noise is set. More specifically, the noise removing unit 223 sets a pixel value of a pixel having a noise pixel flag “1” as the noise pixel value. Thus, a distance image after noise removal is generated.
  • the noise pixel flag “1” is a white pixel value
  • the noise pixel flag “0” is a black pixel value.
  • the distance image shown in FIG. 4 becomes a point group shown in FIG. 10 when the pixel having the noise pixel flag “1” is removed and displayed as a three-dimensional point group.
  • the noise point group PGn is removed, and it can be seen that the noise is extracted by the above-described processing.
  • the distance image processing apparatus incorporated in the radar S, the distance image processing method and the distance image processing program installed therein determine noise based on the gradient Gr and the pulse widths PW1 and PW2. Therefore, there is no need to obtain a luminance image, and it is possible to reduce erroneous determination as noise when there is a portion with low reflectance on one surface. Therefore, the distance image processing device, the distance image processing method, and the distance image processing program incorporated in the radar S are more accurate even when a plurality of objects Obk are arranged back and forth along the traveling direction of the transmission wave. A range image can be acquired.
  • the distance image processing apparatus, the distance image processing method, and the distance image processing program incorporated in the radar S further include a noise removing unit 223, the noise of the attention region (target pixel) determined as noise by the noise determination unit 222 It is possible to obtain a distance image after removing noise from which noise is removed.
  • control processing program including the distance image generation program may be provided by a recording medium that stores the control processing program.
  • the radar S further includes an interface for inputting data of the recording medium, and the control processing program is installed in the storage unit 3 from the recording medium via the interface.
  • the distance image processing device incorporated in the radar S may include the noise correction unit 224 indicated by a broken line in FIG. 1 instead of the noise removal unit 223.
  • the noise correction unit 224 is functionally configured in the distance image generation unit 22, and the pixel value of the attention region (target pixel) determined as noise by the noise determination unit 222 is set to a predetermined value for the attention region (target pixel). This is set to the noise correction value obtained based on the pixel value of the area (pixel) not determined as noise in the second peripheral area (second peripheral pixel) located in the vicinity.
  • the noise pixel value is, for example, a minimum value of pixel values of a region (pixel) that is not determined as noise in the second peripheral region (second peripheral pixel).
  • the noise correction unit 224 since the noise correction unit 224 is provided, the pixel value of the attention region (target pixel) determined as noise by the noise determination unit 222 is determined as the noise in the second peripheral region (second peripheral pixel). A corrected distance image corrected with a noise correction value obtained based on a pixel value of a region (pixel) that has not been determined can be acquired.
  • the range image processing device incorporated in the radar S may further include an edge region extraction unit 225 indicated by a broken line in FIG.
  • the edge region extraction unit 225 is functionally configured in the distance image generation unit 22 and uses the pixel value of the attention region (target pixel) determined as noise by the noise determination unit 222 as an edge region representing an edge. is there. According to this, since the edge region extraction unit 225 is provided, the edge region can be further extracted with the attention region (target pixel) determined as noise by the noise determination unit 222 as the edge region.
  • the predetermined ranges thg1 to thg2 are preset and fixedly used. However, a plurality of the ranges thg1 to thg2 are prepared in advance in association with a predetermined condition, and the plurality of the ranges The ranges thg1 to thg2 that meet the current conditions may be selected from the ranges thg1 to thg2.
  • the threshold value thp is preset and used in a fixed manner. However, a plurality of threshold values thp are prepared in advance in association with a predetermined condition, and the current condition is met from the plurality of threshold values thp. The threshold thp may be selected and used.
  • the predetermined ranges thg1 to thg2 may be changed according to the pixel value (distance value) of the target pixel.
  • the threshold thp may be changed according to the pixel value (distance value) of the target pixel.
  • the predetermined range thg1 to thg2 is changed so that the difference between thg1 and thg2 is increased and the threshold value thp is increased as the pixel of interest moves from near the radar S to a far position. Let This corresponds to an increase in the spot size of the transmitted laser as the distance to the radar S increases.
  • the distance image processing apparatus transmits a predetermined pulsed transmission wave in a plurality of different directions, receives a plurality of reflected waves based on each of the plurality of transmission waves, and transmits the plurality of transmission waves and A distance image acquisition unit that acquires a distance image having a plurality of pixels corresponding to each of the plurality of directions based on the plurality of reflected waves, and when the predetermined region in the distance image is a region of interest, the attention A slope of a distance value between a region and a peripheral region located in a predetermined periphery with respect to the region of interest is within a predetermined range, and a pulse width of the reflected wave related to the region of interest is the reflection related to the peripheral region And a noise determination unit that determines that the region of interest is noise when the wave width is larger than the pulse width.
  • the noise determination unit divides the distance image into a plurality of regions, and for each of the plurality of regions, the region and a peripheral region located in a predetermined periphery with respect to the region. If the slope of the distance value between them is within a predetermined range and the pulse width of the reflected wave related to the region is larger than the pulse width of the reflected wave related to the peripheral region, the region is determined as noise.
  • the noise determination unit has, for each of the plurality of pixels, a slope of a distance value between the pixel and a peripheral pixel located in a predetermined periphery with respect to the pixel is a predetermined value. If the pulse width of the reflected wave related to the pixel is within the range and is larger than the pulse width of the reflected wave related to the peripheral pixel, the pixel is determined as noise.
  • the distance image processing apparatus can acquire a more accurate distance image even when a plurality of objects are arranged back and forth along the traveling direction of the transmission wave.
  • the above-described distance image processing apparatus further includes a noise removal unit that sets a pixel value of a region of interest determined as noise by the noise determination unit to a predetermined noise pixel value representing noise.
  • the noise pixel value is a pixel value representing distance infinity.
  • Such a distance image processing apparatus further includes the noise removing unit, so that it is possible to obtain a distance image after noise removal in which the noise of the attention area determined as noise by the noise determining unit is removed.
  • the pixel value of the attention area determined as noise by the noise determination unit is set as the noise in the second peripheral area located in a predetermined periphery with respect to the attention area.
  • the image processing apparatus further includes a noise correction unit that sets the noise correction value obtained based on the pixel value of the area that has not been determined.
  • the noise pixel value is a minimum value of pixel values of an area that is not determined as noise in the second peripheral area.
  • such a distance image processing apparatus further includes the noise correction unit, the pixel value of the attention region determined as noise by the noise determination unit is not determined as noise in the second peripheral region It is possible to acquire a corrected distance image corrected with a noise correction value obtained based on the pixel value.
  • the above-described range image processing apparatus further includes an edge region extraction unit that uses the region of interest determined as noise by the noise determination unit as an edge region representing an edge.
  • Such a distance image processing apparatus can further extract an edge region using the attention region determined by the noise determination unit as an edge region.
  • the distance image processing method transmits a predetermined pulsed transmission wave in a plurality of different directions, receives a plurality of reflected waves based on each of the plurality of transmission waves, and transmits the plurality of transmissions.
  • the distance image processing program transmits a predetermined transmission wave in a pulse form in a plurality of different directions, receives a plurality of reflected waves based on each of the plurality of transmission waves, and transmits the plurality of transmissions.
  • a computer having a distance image acquisition unit that acquires a distance image having a plurality of pixels corresponding to each of the plurality of directions based on a wave and the plurality of reflected waves, with a predetermined region in the distance image as a region of interest
  • a slope of a distance value between the region of interest and a peripheral region located in a predetermined periphery with respect to the region of interest is within a predetermined range, and a pulse width of the reflected wave related to the region of interest is
  • a distance image processing program for causing a region of interest to function as a noise determination unit that determines that the region of interest is noise when the pulse width of the reflected wave is larger than that of a surrounding region A gram.
  • the recording medium on which the distance image processing program according to another aspect is recorded transmits a predetermined transmission wave in a pulse shape in a plurality of different directions, and a plurality of reflected waves based on each of the plurality of transmission waves.
  • a computer having a distance image acquisition unit that receives and acquires a distance image having a plurality of pixels corresponding to each of the plurality of directions based on the plurality of transmission waves and the plurality of reflected waves is provided in the distance image.
  • the region is a region of interest
  • the slope of the distance value between the region of interest and a peripheral region located in a predetermined periphery with respect to the region of interest is within a predetermined range
  • the region related to the region of interest When the pulse width of the reflected wave is larger than the pulse width of the reflected wave related to the surrounding area, it functions as a noise determination unit that determines the region of interest as noise
  • the distance image processing method and the distance image processing program can acquire a more accurate distance image even when a plurality of objects are arranged back and forth along the traveling direction of the transmission wave.
  • the recording medium can provide such a distance image processing program.
  • a distance image processing apparatus a distance image processing method, a distance image processing program, and a recording medium can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

本発明にかかる距離画像処理装置、距離画像処理方法および距離画像処理プログラムは、複数の送信波および複数の反射波に基づいて、互いに異なる複数の方向それぞれに対応した複数の画素を持つ距離画像を取得し、前記距離画像における所定の領域を注目領域とした場合に、前記注目領域と前記注目領域に対する周辺領域との間における距離値の傾きが所定の範囲内であって、かつ、前記注目領域に関する前記反射波のパルス幅が前記周辺領域に関する前記反射波のパルス幅より大きい場合に、前記注目領域をノイズと判定する。そして、記録媒体は、このような距離画像処理プログラムを記録する。

Description

距離画像処理装置、距離画像処理方法、距離画像処理プログラムおよび記録媒体
 本発明は、距離画像を処理する距離画像処理装置、距離画像処理方法、距離画像処理プログラムおよび前記距離画像処理プログラムを記録した記録媒体に関する。
 距離画像は、被写体までの距離を表す情報で表現された複数の画素で構成された画像であり、例えば、被写体までの距離に応じて異なる色を割り当てることで、形成される。このような距離画像は、例えば、LIDAR(Laser Imaging Detection and Ranging)技術を用いて取得される。
 この3次元距離画像技術は、例えば、送信波の被写体による反射波を受信することで、前記送信波が前記被写体に当たって前記反射波として戻るまでの時間(送受信時間)を求め、前記送信波の伝播速度に前記送受信時間の半分を乗算することで、前記被写体までの距離を求めて前記距離画像を生成する技術である。
 この3次元距離画像技術では、対象物体(被写体)上の1箇所のみから反射した反射波を受信していることを前提として距離が測定されていた。そのため、例えば壁から離れて立つ人の輪郭部分のように、手前の部分(この場合は人の部分)と奥の部分(この場合は壁の部分)との距離が急激に変化する箇所の距離を測定しようとすると、1個の送信波がこれら前記手前の部分および前記奥の部分それぞれで反射してしまう場合があるため、距離測定の精度が低下してしまう。このような不都合を回避するための技術が例えば特許文献1に開示されている。
 この特許文献1に開示された画像処理装置は、輝度画像に基づいて、距離画像からゴースト部分を除去する前処理部と、前記ゴースト部分を除去した前記距離画像からエッジを抽出するエッジ抽出部と、前記ゴースト部分を除去した前記距離画像において、前記エッジ抽出部によって抽出されたエッジ部分の画素の距離の値を除去する除去部と、を備える。ここで、輝度とは、反射波の強度を表すものであると定義する。
 ところで、前記特許文献1に開示された画像処理装置は、輝度画像に基づいて、距離画像からゴースト部分を除去するので、距離画像の他に、輝度画像を求める画像処理が必要である。また、前記特許文献1に開示された画像処理装置は、輝度画像に基づいて、距離画像からゴースト部分を除去するので、1個の表面に反射率の低い部分が存在する場合でもゴースト部分として除去されてしまう虞がある。
特許第5624998号公報
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、複数の物体が送信波の進行方向に沿って前後に配置されている場合でも、より高精度な距離画像を取得できる距離画像処理装置、距離画像処理方法および距離画像処理プログラムを提供することである。本発明は、この距離画像処理プログラムを記録した記録媒体を提供することである。
 本発明にかかる距離画像処理装置、距離画像処理方法および距離画像処理プログラムは、複数の送信波および複数の反射波に基づいて、互いに異なる複数の方向それぞれに対応した複数の画素を持つ距離画像を取得し、前記距離画像における所定の領域を注目領域とした場合に、前記注目領域と前記注目領域に対する周辺領域との間における距離値の傾きが所定の範囲内であって、かつ、前記注目領域に関する前記反射波のパルス幅が前記周辺領域に関する前記反射波のパルス幅より大きい場合に、前記注目領域をノイズと判定する。そして、記録媒体は、このような距離画像処理プログラムを記録する。したがって、本発明にかかる距離画像処理装置、距離画像処理方法および距離画像処理プログラムは、複数の物体が送信波の進行方向に沿って前後に配置されている場合でも、より高精度な距離画像を取得できる。本発明によれば、この距離画像処理プログラムを記録した記録媒体が提供できる。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
実施形態の距離画像処理装置を用いたレーダの構成を示すブロック図である。 前記レーダの外観構成を示す斜視図である。 前記レーダにおける距離画像を生成する基本的な仕組みを説明するための図である。 前記基本的な仕組みで生成される距離画像(ノイズ除去処理前の距離画像)の一例を示す図である。 図4に示す距離画像を3次元の点群で表示した図である。 パルスレーザ光の送信方向に沿って前後に位置する手前の物体および奥の物体によってノイズが発生しない場合を説明するための図である。 パルスレーザ光の送信方向に沿って前後に位置する手前の物体および奥の物体によってノイズが発生する場合を説明するための図である。 前記レーダの動作を示すフローチャートである。 図8に示すフローチャートに示した処理によって判断されたノイズ領域を白として、ノイズではないと判断された領域を黒として示した図である。 図9において、白で表した領域を除外した図4の距離画像を3次元の点群で表示した図である。
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
 実施形態における距離画像処理装置は、互いに異なる複数の方向へパルス状の所定の送信波をそれぞれ送信し、前記複数の送信波それぞれに基づく複数の反射波を受信し、前記複数の送信波および前記複数の反射波に基づいて、前記複数の方向それぞれに対応した複数の画素を持つ距離画像を取得する距離画像取得部と、前記距離画像における所定の領域を注目領域とした場合に、前記注目領域と前記注目領域に対する所定の周辺に位置する周辺領域との間における距離値の傾きが所定の範囲内であって、かつ、前記注目領域に関する前記反射波のパルス幅が前記周辺領域に関する前記反射波のパルス幅より大きい場合に、前記注目領域をノイズと判定するノイズ判定部とを備えるものである。このような距離画像処理装置は、適宜な用途の装置に組み込まれて良く、また、単独の装置、例えば前記距離画像取得部を持つコンピュータで構成されて良い。ここでは、一例として、レーダに組み込まれた距離画像処理装置について説明する。
 図1は、実施形態の距離画像処理装置を用いたレーダの構成を示すブロック図である。図2は、前記レーダの外観構成を示す斜視図である。図3は、前記レーダにおける距離画像を生成する基本的な仕組みを説明するための図である。図3Aは、走査の様子を示し、図3Bは、送受信時間を説明するための図である。図4は、前記基本的な仕組みで生成される距離画像(ノイズ除去処理前の距離画像)の一例を示す図である。
 実施形態の距離画像処理装置を用いたレーダSは、図1に示すように、送受信部1と、制御処理部2と、記憶部3と、ハウジングHG(図2参照)とを備える。
 ハウジングHGは、図2に示すように、有底半円筒状の下部部材HG1と、下部部材HG1の上部に連結され有蓋中空半円錐台状の上部部材HG2とを備え、これら下部部材HG1および上部部材HG2で形成される内部空間に、少なくとも送受信部1を収容し、上部部材HG2における斜曲面状の側面に開口された開口部WDに保護部材HG3が嵌め込まれて固定されている。なお、レーダSにおける制御処理部2および記憶部3は、ハウジングHGに収容されて良く、また、ハウジングHGの外部に設けられても良い。保護部材HG3は、後述の送信波および反射波を透過する材料で形成され、送受信部1を保護するための部材であるので、ある程度の強度が要求される。また、本実施形態では、送信波がレーザ光であり、反射波がこのレーザ光の反射光であるので、保護部材HG3は、レーザ光の波長を中心波長として所定の波長範囲を透過する透光性を有する、例えばポリカーボネートやガラス等の材料で形成される。
 送受信部1は、制御処理部2に接続され、制御処理部2の制御に従って、互いに異なる複数の方向へパルス状の所定の送信波をそれぞれ送信し、前記複数の送信波それぞれに基づく複数の反射波を受信する装置である。より具体的には、送受信部1は、互いに異なる複数の方向へパルス状の所定の送信波をそれぞれ送信する送信部11と、前記複数の送信波それぞれに基づく複数の反射波を受信する受信部12とを備える。受信部12は、前記受信した反射波の強度に応じたデジタル信号を制御処理部2へ出力する。前記送信波は、例えば光やミリ波等の電磁波や超音波等の音波等である。本実施形態では、前記送信波は、パルス状のレーザ光である。このため、本実施形態では、送信部11は、例えば、半導体レーザ等のレーザ光をパルス状に射出するレーザ光源と、前記レーザ光源から射出されたレーザ光を互いに異なる複数の方向へ順次に照射する走査光学系とを備える。前記走査光学系は、例えばモータ等のアクチュエータとミラー(反射鏡)とを備え、前記アクチュエータで前記ミラーを所定の軸回りに回転することで、前記レーザ光源から射出されたレーザ光の入射角を順次に変える。これによって前記走査光学系は、前記レーザ光源から射出されたパルス状のレーザ光を、例えば図3Aに示す所定の照射範囲AR内における互いに異なる複数の方向へ順次に照射する。図3Aに示すように、レーダSの前方方向をX方向とし、これに直交するレーダSの高さ方向をZ方向とし、これらX方向およびZ方向それぞれに直交する方向をY方向とするXYZ直交座標系を設定し、このXYZ直交座標系に対し、動径rおよび2個の偏角θ、φを持つ球座標系を設定した場合に、照射範囲ARは、図3Aに示す例では、偏角θが90°±α(αは例えば5°や7°や10°や15°等)であり、偏角φが±90°である範囲である。なお、偏角θは、動径rのXY平面上の射影とX軸とのなす角度であり、偏角φは、動径rとZ軸とのなす角度である。また、図3Aに示す照射範囲ARは、一例に過ぎず、照射範囲ARは、任意であって、図3Aに示す例に限定されるものではない。
 記憶部3は、制御処理部2に接続され、制御処理部2の制御に従って、各種の所定のプログラムおよび各種の所定のデータを記憶する回路である。前記各種の所定のプログラムには、例えば、互いに異なる複数の方向へ前記送信波をそれぞれ送信し前記複数の送信波それぞれに基づく複数の反射波を受信するための送受信プログラムや、前記複数の送信波および前記複数の反射波に基づいて前記複数の方向それぞれに対応した複数の画素を持つ距離画像を生成する距離画像生成プログラム等の制御処理プログラムが含まれる。前記距離画像生成プログラムには、前記複数の画素(前記複数の方向)それぞれについて、当該画素(当該方向)に対応する送信波およびその反射波に基づいて被写体(物体)までの距離を求めることで、ノイズ除去前の距離画像を生成する距離画像前処理プログラムや、前記距離画像前処理プログラムで生成した前記距離画像における所定の領域を注目領域とした場合に、前記注目領域と前記注目領域に対する所定の周辺に位置する周辺領域との間における距離値の傾きが所定の範囲内であって、かつ、前記注目領域に関する前記反射波のパルス幅が前記周辺領域に関する前記反射波のパルス幅より大きい場合に、前記注目領域をノイズと判定するノイズ判定プログラムや、前記ノイズ判定プログラムでノイズと判定された注目領域の画素値を、ノイズを表す所定のノイズ画素値に設定するノイズ除去プログラム等が含まれる。前記各種の所定のデータには、各種プログラムの実行に必要なデータや各種プログラムの実行によって得られたデータ等の各種のデータが含まれる。記憶部3は、例えば不揮発性の記憶素子であるROM(Read Only Memory)や書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)等を備える。そして、記憶部3は、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる制御処理部2のワーキングメモリとなるRAM(Random Access Memory)等を含む。
 制御処理部2は、上述したように、送受信部1および記憶部3に接続され、レーダSの各部を当該各部の機能に応じてそれぞれ制御し、前記送信波および前記反射波を送受信して距離画像を生成するための回路である。制御処理部2は、例えば、CPU(Central Processing Unit)およびその周辺回路を備えて構成される。制御処理部2は、前記制御処理プログラムの実行によって、制御部21および距離画像生成部22を機能的に備える。
 制御部21は、レーダSの各部を当該各部の機能に応じてそれぞれ制御するものである。
 距離画像生成部22は、前記複数の送信波および前記複数の反射波に基づいて前記複数の方向それぞれに対応した複数の画素を持つ距離画像を生成するものである。本実施形態では、距離画像生成部22は、距離画像前処理部221、ノイズ判定部222およびノイズ除去部223を機能的に備える。
 距離画像前処理部221は、前記複数の画素(前記複数の方向)それぞれについて、当該画素(当該方向)に対応する送信波およびその反射波に基づいて被写体(物体)までの距離を求めるものである。これによって距離画像前処理部221は、ノイズ除去前の距離画像を生成する。より具体的には、距離画像前処理部221は、前記複数の画素(前記複数の方向)それぞれについて、図3Bに示すように、当該画素(当該方向)に対応する当該送信波の送信時刻から当該送信波に基づく当該反射波の受信時刻までの当該送受信時間τを求め、この求めた当該送受信時間τの半分を送信波の伝播速度に乗算することで当該送信波を反射した物体までの距離を求め(TOF(Time Of Fright)方式)、前記ノイズ除去前の距離画像を生成する。前記送信時刻や前記受信時刻は、それぞれ、例えばパルスのピーク時刻やパルスの立ち上がり時刻等である。なお、この場合に、例えば、特開昭62-134584号公報に開示されているように、パルスの立ち上がり時刻と立ち下がり時刻との中間時刻がピーク時刻とされても良い。この距離画像前処理部221で生成される前記ノイズ除去前の距離画像の一例が例えば図4に示されている。この図4に示す距離画像は、白壁の前に人が立っている風景を被写体として得られたものである。図4に示す距離画像では、被写体がレーダSに近いほど黒に近づき、前記被写体がレーダSから離れるほど白に近づくように、画素値が設定されている。
 ノイズ判定部222は、距離画像前処理部221で生成した前記ノイズ除去前の距離画像における所定の領域を注目領域とした場合に、前記注目領域と前記注目領域に対する所定の周辺に位置する周辺領域との間における距離値の傾きGrが所定の範囲thg1~thg2内であって(thg1≦Gr≦thg2)、かつ、前記注目領域に関する前記反射波のパルス幅PW1が前記周辺領域に関する前記反射波のパルス幅PW2より大きい場合(PW1>PW2)に、前記注目領域をノイズと判定する。前記注目領域と前記周辺領域との距離値の傾きGrは、前記注目領域の中央位置における画素値(X方向の距離、前後方向の距離)と前記周辺領域の中央位置における画素値(X方向の距離、前後方向の距離)との差を、前記X方向に直交する垂直面内における前記注目領域の中央位置と前記周辺領域の中央位置との差で、除算したものである。前記注目領域に関する前記反射波のパルス幅PW1は、前記注目領域に属する画素に関する反射波のパルス幅の平均値である。前記周辺領域に関する前記反射波のパルス幅PW2は、前記周辺領域に属する画素に関する反射波のパルス幅の平均値である。例えば、ノイズ判定部222は、前記ノイズ除去前の距離画像を複数の領域に分け、前記複数の領域それぞれについて、当該領域と当該領域に対する所定の周辺に位置する周辺領域との間における距離値の傾きGrが所定の範囲thg1~thg2内であって(thg1≦Gr≦thg2)、かつ、当該領域に関する前記反射波のパルス幅PW1が前記周辺領域に関する前記反射波のパルス幅PW2より大きい場合(PW1>PW2)に、当該領域をノイズと判定して良いが、本実施形態では、例えば、ノイズ判定部22は、前記複数の画素(複数の方向)それぞれについて、当該画素(注目画素)と当該画素に対する所定の周辺に位置する周辺画素との間における距離値の傾きGrが所定の範囲thg1~thg2内であって(thg1≦Gr≦thg2)、かつ、当該画素に関する前記反射波のパルス幅PW1が前記周辺画素に関する前記反射波のパルス幅PW2より大きい場合(PW1>PW2)に、当該画素をノイズと判定する。この場合では、当該画素とその周辺画素との距離値の傾きGrは、当該画素の画素値(X方向の距離、前後方向の距離)と前記周辺画素の画素値(X方向の距離、前後方向の距離)との差を、前記X方向に直交する垂直面内における当該画素の位置と前記周辺画素の位置との差で、除算したものである。より具体的には、ノイズ判定部222は、傾き処理部2221、パルス幅処理部2222および判定部2223を機能的に備える。
 傾き処理部2221は、前記複数の画素(複数の方向)それぞれについて、当該画素と当該画素に対する所定の周辺に位置する周辺画素との間における距離値の傾きGrを求め、この求めた距離値の傾きGrが所定の範囲thg1~thg2内であるか否かを判定し、この判定結果(傾き判定結果)を判定部2223へ通知するものである。
 パルス幅処理部2222は、前記複数の画素(複数の方向)それぞれについて、当該画素に関する前記反射波のパルス幅PW1が前記周辺画素に関する前記反射波のパルス幅PW2より大きいか否かを判定し、この判定結果(パルス幅判定結果)を判定部2223へ通知するものである。
 判定部2223は、前記複数の画素(複数の方向)それぞれについて、傾き処理部2221の傾き判定結果およびパルス幅処理部2222のパルス幅判定結果に基づいて、当該画素がノイズであるか否かを判定するものである。
 ノイズ除去部223は、ノイズ判定部222でノイズと判定された注目領域の画素値を、ノイズを表す所定のノイズ画素値に設定するものである。これによってノイズ除去後の距離画像が生成される。本実施形態では、ノイズ除去部223は、ノイズ判定部222の判定部2223でノイズと判定された画素の画素値を、前記ノイズ画素値に設定するものである。前記ノイズ画素値は、ノイズを表す画素値として予め設定された所定の画素値であり、例えば、距離無限大を表現する値である。
 次に、実施形態の距離画像処理装置を用いたレーダの動作について説明するが、その前に、発明者の考察によるノイズ発生のメカニズムについて説明する。
 まず、発明者の考察によるノイズ発生のメカニズムについて説明する。図5は、図4に示す距離画像を3次元の点群で表示した図である。図6は、パルスレーザ光の送信方向に沿って前後に位置する手前の物体および奥の物体によってノイズが発生しない場合を説明するための図である。図7は、パルスレーザ光の送信方向に沿って前後に位置する手前の物体および奥の物体によってノイズが発生する場合を説明するための図である。図6Aおよび図7Aは、パルスレーザ光の送信方向(X方向)に沿って前後に位置する手前の物体Obfおよび奥の物体Obrに照射されるビーム状の送信波(本実施形態ではパルスレーザ光)を説明するための図である。図6Bおよび図7Bは、前記送信方向に直交する横方向(Y方向)での手前の物体Obfの端からビーム径より内側において手前の物体Obfで反射した反射波の信号波形を示す。図6Cおよび図7Cは、前記横方向(Y方向)での奥の物体Obr側の手前の物体Obf端付近で反射した反射波の信号波形を示す。図6Dおよび図7Dは、前記横方向(Y方向)での奥の物体Obrの端からビーム径より内側において奥の物体Obrで反射した反射波の信号波形を示す。
 上述で、一例として示した図4に示す、距離画像前処理部221で生成されるノイズ除去前の距離画像を、3次元の点群で表示した場合、前記ノイズ除去前の距離画像は、図5に示す点群となる。図5に示す3次元の点群は、図4に示す距離画像の画素値(距離)、偏角θ(上下方向角度)および偏角φ(左右方向角度)から公知の手法によって求められる。この図5から分かるように、複数の物体Obk(図4および図5に示す例では人Ob1と白壁Ob2)が送信波の進行方向に沿って前後に配置されている場合、手前の物体Obf(図4および図5に示す例では人Ob1)を表す点群PGf(図5に示す例では人Ob1に対応する点群PG1)と、奥の物体Obr(図4および図5に示す例では白壁Ob2)を表す点群PGr(図5に示す例では白壁Ob2に対応する点群PG2)との間にも、点群PGnが生じている。これら点群PGf、PGrの間に存在する前記点群PGnは、手前の物体Obfと奥の物体Obrとの間に物体が存在していないので、本来、生成されるべき点群ではなく、ノイズである。
 例えば、図6Aに示すように、ビーム状の送信波(本実施形態ではパルス状のレーザ光)の進行方向における手前の物体Obfと奥の物体Obrとの間の距離が比較的離れている場合、手前の物体Obfにおける端からビーム径より内側では、前記送信波は、図6Aに示すように、手前の物体Obfでのみ反射し、その反射波の信号波形は、図6Bに示すように、1個のピークを持つ単峰のパルス波形となり、同様に、奥の物体Obrにおける端からビーム径より内側では、前記送信波は、図6Aに示すように、奥の物体Obrでのみ反射し、その反射波の信号波形は、図6Dに示すように、1個のピークを持つ単峰のパルス波形となる。一方、奥の物体Obr側での手前の物体Obr端付近では、前記送信波は、図6Aに示すように、その一部が手前の物体Obfで反射し、その他部(残部)が奥の物体Obrで反射する。ここで、手前の物体Obfと奥の物体Obrとの間の前記距離が比較的離れているので、前記送信波にかかる反射波の信号波形は、図6Cに示すように、2個のピークを持つ双峰のパルス波形となる。このため、手前の物体Obfと奥の物体Obrとの間の前記距離が比較的離れている場合では、このような双峰のパルス波形から、手前の物体Obfと奥の物体Obrとは、区別可能であり、ノイズは、生じ難い。
 一方、図6Aに示す態様から、手前の物体Obfと奥の物体Obrとの間の前記距離が小さくなって行くと(手前の物体Obfと奥の物体Obrとが互いに近づいて行くと)、図6Cに示す双峰のパルス波形における各ピークは、互いに近づいて行き、図7Aに示すように、手前の物体Obfと奥の物体Obrとの間の距離が比較的近づいている場合、図7Cに示すように、反射波の信号波形は、単峰のパルス波形となり、この単峰のパルス波形は、送信波の一部が手前の物体Obfで反射することで生じた反射波と前記送信波の残部が奥の物体Obrで反射することで生じた反射波とを重畳した反射波の信号波形であるので、送信波が手前の物体Obfのみや奥の物体Obrのみで反射した場合における反射波の信号波形における単峰のパルス波形より、パルス幅は、広い。この結果、この図7Cに示すような単峰のパルス波形から、前記閾値判定では、手前の物体Obfと奥の物体Obrとは、区別できず、しかも、この図7Cに示すような単峰のパルス波形のピーク時刻は、前記送信波が図7Aに示すように手前の物体Obfでのみ反射した場合における反射波の信号波形(図7Cに破線で示す)にかかるピーク時刻と前記送信波が図7Aに示すように奥の物体Obrでのみ反射した場合における反射波の信号波形(図7Cに破線で示す)にかかるピーク時刻との間となるため、図5に点群PGnで示すようなノイズが生じてしまう。
 なお、手前の物体Obfと奥の物体Obrとの間の距離が比較的近づいている場合でも、手前の物体Obfにおける端からビーム径より内側で送信波が反射した場合における反射波の信号波形(図7B)、および、奥の物体Obrにおける端からビーム径より内側で送信波が反射した場合における反射波の信号波形(図7D)は、それぞれ、図6Bおよび図6Dに示す場合と同様である。
 反射波の信号波形が双峰のパルス波形から単峰のパルス波形になるか否かは、手前の物体Obfと奥の物体Obrとの間の距離に関係し、前記注目領域と前記注目領域に対する所定の周辺に位置する周辺領域との間における傾きGr(本実施形態では当該画素と当該画素に対する所定の周辺に位置する周辺画素との間における距離値の傾きGr)に基づいて判定できる。単峰のパルス波形が奥の物体Obr側での手前の物体Obr端付近で反射した反射波であるか否かは、パルス幅に関係し、前記注目領域に関する前記反射波のパルス幅PW1および前記周辺領域に関する前記反射波のパルス幅PW2(本実施形態では当該画素に関する前記反射波のパルス幅PW1および前記周辺画素に関する前記反射波のパルス幅PW2)に基づいて判定できる。そして、これら各判定結果(傾き判定結果およびパルス幅判定結果)から、距離画像における画素の画素値がノイズであるか否かが判定できる。
 発明者は、ノイズ発生のメカニズムを上述のように考察しており、この考察から、本実施形態の距離画像処理装置を用いたレーダは、上述したようにノイズ判定部222を備え、次のように動作している。
 図8は、前記レーダの動作を示すフローチャートである。図9は、図8に示すフローチャートに示した処理によって判断されたノイズ領域を白として、ノイズではないと判断された領域を黒として示した図である。図10は、図9において、白で表した領域を除外した図4の距離画像を3次元の点群で表示した図である。
 レーダSは、起動すると、必要な各部の初期化を実行し、その稼働を始める。また、制御処理プログラムの実行によって、制御処理部2には、制御部21および距離画像生成部22が機能的に構成され、距離画像生成部22には、距離画像前処理部221、ノイズ判定部222およびノイズ除去部223が機能的に構成され、そして、ノイズ判定部222には、傾き処理部2221、パルス幅処理部2222および判定部2223が機能的に構成される。
 ノイズ除去前の距離画像を生成するために、まず、制御処理部2は、前記複数の方向それぞれについて、前記送受信時間を測定する。より具体的には、制御処理部2は、制御部21によって、前記複数の方向における第1番目に測定すべき方向に、送信部11に送信波を送信させ、この送信波の送信タイミング(送信時刻)を距離画像前処理部221へ通知する。受信部12は、前記送信波に対する反射波を受信すると、前記反射波の強度に応じたデジタル信号を制御処理部2へ出力する。制御処理部2の距離画像前処理部221は、第1番目の方向に関する送信波の前記送信タイミング(送信時刻)から、受信部12から前記デジタル信号を受信した受信タイミング(すなわち、前記第1番目の方向に関する前記送信波に基づく反射波の受信時刻)までの送受信時間τ1を求める。距離画像前処理部221は、この求めた送受信時間τ1の半分を前記送信波の伝播速度に乗算することで、前記複数の方向における第1番目の方向における距離を求める。また、前記反射波が予め設定された所定の閾値以上である時間が、計時され、この計時された時間がパルス幅とされる。これによって前記第1番目に対応する画素の画素値が求められる。次に、第2番目の測定点の測定を実行するために、制御処理部2は、制御部21によって、前記複数の方向における第2番目に測定すべき方向に、送信部11に送信波を送信させ、この送信波の送信タイミング(送信時刻)を距離画像前処理部221へ通知する。受信部12は、前記送信波に対する反射波を受信すると、前記反射波の強度に応じたデジタル信号を制御処理部2へ出力する。制御処理部2の距離画像前処理部221は、第2番目の方向に関する送信波の前記送信タイミング(送信時刻)から、受信部12から前記デジタル信号を受信した受信タイミング(すなわち、前記第2番目の方向に関する前記送信波に基づく反射波の受信時刻)までの送受信時間τ2を求める。距離画像前処理部221は、この求めた送受信時間τ2の半分を前記送信波の伝播速度に乗算することで、前記複数の方向における第2番目の方向における距離を求める。また、前記反射波が前記所定の閾値以上である時間が、計時され、この計時された時間がパルス幅とされる。これによって前記第2番目に対応する画素の画素値が求められる。以下、制御処理部2は、前記複数の方向(前記複数の測定点)における最後の順番まで、同様に測定を実行し、同様に距離画像前処理部221によって距離を求め、全ての方向(全ての測定点)それぞれについて、前記送受信時間τの測定およびその距離の算出を実行する。これによって例えばφ=-90°であってθ=90°-αの第1番目の方向(第1番目の画素)からφ=90°であってθ=90°+αの最後の方向(最後の画素)まで照射範囲ARが2次元的に走査される。
 このような動作で距離画像前処理部221によってノイズ除去前の距離画像が生成されると、図8において、ノイズ判定部222は、まず、距離画像前処理部221で生成されたノイズ除去前の距離画像から所定の注目画素を選択して抽出する。例えば、前記第1番目の方向に対応する画素が注目画素として選択され抽出される(S1)。
 次に、ノイズ判定部222は、処理S1で抽出した注目画素に対する所定の周辺に位置する周辺画素を選択して抽出する(S2)。例えば、ノイズ判定部222は、処理S1で抽出した注目画素から左右方向(-Y方向および+Y方向)それぞれに沿って位置する1または複数の画素を周辺画素として抽出する。また例えば、ノイズ判定部222は、処理S1で抽出した注目画素から上下方向(+Z方向および-Z方向)それぞれに沿って位置する1または複数の画素を周辺画素として抽出する。また例えば、ノイズ判定部222は、処理S1で抽出した注目画素から左右方向それぞれに沿って位置する1または複数の画素、および、前記注目画素から上下方向それぞれに沿って位置する1または複数の画素を周辺画素として抽出する。また例えば、ノイズ判定部222は、処理S1で抽出した注目画素の全周に亘って位置する複数の画素を周辺画素として抽出する。本実施形態では、ノイズ判定部222は、処理S1で抽出した注目画素から左方向(-Y方向)に沿って位置する1画素、および、前記注目画素から右方向(+Y方向)に沿って位置する1画素を周辺画素として抽出する。
 次に、ノイズ判定部222は、傾き処理部2221によって、距離による判別処理を実行し(S3-1)、パルス幅処理部2222によって、パルス幅による判別処理を実行する(S3-2)。これら距離による判別処理S3-1およびパルス幅による判別処理S3-2は、並列に実行されて良く、時分割で実行されて良い。時分割で実行する場合、いずれの判別処理S3-1、S3-2が先でも良い。
 この距離による判別処理S3-1では、より具体的には、次の各処理が実行される。まず、傾き処理部2221は、処理S1で抽出した注目画素と処理S2で抽出した周辺画素との間における距離値の傾きGrを求める(S11)。本実施形態では、周辺画素は、-Y方向の1画素と+Y方向の1画素であるので、この-Y方向の1画素と注目画素との間における距離値の傾きGr1および前記+Y方向の1画素と注目画素との間における距離値の傾きGr2が求められる。
 なお、上述の処理S2において、ノイズ判定部222が前記注目画素から左方向(-Y方向)に沿って位置する2個の画素、および、前記注目画素から右方向(+Y方向)に沿って位置する2個の画素を周辺画素として抽出した場合には、この処理S11では、これら-Y方向の2個の画素それぞれと注目画素との間における各距離値の傾きGr1-1、Gr1-2および前記+Y方向の2個の画素それぞれと注目画素との間における各距離値の傾きGr2-1、Gr2-2が求められる。この場合では、さらに、これら4個の距離値の傾きGr1-1、Gr1-2、Gr2-1、Gr2-2のうちの最大の傾きおよび最小の傾きが周辺画素の距離値の傾きとされてもよい。
 次に、傾き処理部2221は、この処理S11で求めた距離値の傾きGrが所定の範囲thg1~thg2内であるか否かを判定する(S12)。前記所定の範囲thg1~thg2は、上述のノイズ発生のメカニズムに基づき適宜に設定され、例えば、複数のサンプルを用いた結果から設定される。この判定の結果、前記距離値の傾きGrが所定の範囲内である場合(Yes、thg1≦Gr≦thg2)には、傾き処理部2221は、前記注目画素に対応付けられた、傾き判定結果を表す距離ノイズフラグに「1」を設定し(S13)、この距離による判別処理を終了し、一方、前記判定の結果、前記距離値の傾きGrが所定の範囲内ではない場合(No、Gr<thg1またはthg2<Gr)には、傾き処理部2221は、この距離による判別処理を終了する。距離ノイズフラグ「1」は、前記距離値の傾きGrが所定の範囲内であることを表し、距離ノイズフラグ「0」は、前記距離値の傾きGrが所定の範囲内ではないことを表す。なお、距離ノイズフラグは、距離画像における各画素ごとに設けられ、上述の初期化において、デフォルトの「0」に設定される。
 本実施形態では、傾き処理部2221は、前記-Y方向の1個の画素と注目画素との間における距離値の傾きGr1および前記+Y方向の1個の画素と注目画素との間における距離値の傾きGr2それぞれが前記所定の範囲thg1~thg2内であるか否かを判定し、これら傾きGr1、Gr2が共に前記所定の範囲thg1~thg2内である場合(Yes、thg1≦Gr1、Gr2≦thg2)には、処理S13を実行して前記距離による判別処理を終了し、これら距離値の傾きGr1、Gr2のうちの少なくとも一方が前記所定の範囲thg1~thg2内ではない場合(No、Gr1<thg1、thg2<Gr1、Gr2<thg1およびthg2<Gr2のうちの少なくとも1つを満たす場合)には、前記距離による判別処理を終了する。
 前記パルス幅による判別処理S3-2では、より具体的には、次の各処理が実行される。まず、パルス幅処理部2222は、処理S1で抽出した注目画素に関する反射波の信号波形におけるパルス幅PW1と処理S2で抽出した周辺画素に関する反射波の信号波形におけるパルス幅PW2を求める(S21)。本実施形態では、周辺画素は、-Y方向の1画素と+Y方向の1画素であるので、パルス幅処理部2222は、この-Y方向の1画素に関する反射波の信号波形におけるパルス幅PW21および前記+Y方向の1画素に関する反射波の信号波形におけるパルス幅PW22を求め、これら求めたパルス幅PW21、PW22の平均値を前記パルス幅PW2として求める。
 次に、パルス幅処理部2222は、注目画素に関する反射波のパルス幅PW1が周辺画素に関する反射波のパルス幅PW2より大きいか否かを判定する。より具体的には、パルス幅処理部2222は、処理S21で求めた、注目画素にかかるパルス幅PW1と周辺画素にかかるパルス幅PW2(本実施形態ではパルス幅PW21およびパルス幅PW22の平均値)との差PWsを求め(S22)、パルス幅処理部2222は、この処理S22で求めた前記差PWsが所定の閾値thp以上であるか否かを判定する(S23)。前記所定の閾値thpは、上述のノイズ発生のメカニズムに基づき適宜に設定され、例えば、複数のサンプルを用いた結果から設定される。この判定の結果、前記差PWsが前記所定の閾値thp以上である場合(Yes、thp≦PWs)には、パルス幅処理部2222は、前記注目画素に対応付けられた、パルス幅判定結果を表すパルス幅ノイズフラグに「1」を設定し(S23)、このパルス幅による判別処理を終了し、一方、前記判定の結果、前記差PWsが所定の閾値thp以上ではない場合(No、PWs<thp)には、パルス幅処理部2222は、このパルス幅による判別処理を終了する。パルス幅ノイズフラグ「1」は、前記差PWsが前記閾値thp以上であること、すなわち、注目画素に関する反射波のパルス幅PW1が周辺画素に関する反射波のパルス幅PW2より大きいことを表し、パルス幅ノイズフラグ「0」は、前記差PWsが前記閾値thp以上ではないこと、すなわち、注目画素に関する反射波のパルス幅PW1が周辺画素に関する反射波のパルス幅PW2より大きくないことを表す。なお、パルス幅ノイズフラグは、距離画像における各画素ごとに設けられ、上述の初期化において、デフォルトの「0」に設定される。
 これら距離による判別処理S3-1およびパルス幅による判別処理S3-2の実行後に、ノイズ判定部222は、判定部2223によって、傾き処理部2221の傾き判定結果およびパルス幅処理部2222のパルス幅判定結果に基づいて、当該画素がノイズであるか否かを判定する。より具体的には、判定部2223は、注目画素における、距離ノイズフラグとパルス幅ノイズフラグとのand演算を行い(S4)、この処理S4のand演算結果が1であるか否かを判定する(S5)。前記and演算では、1and1=1、1and0=0、および、0and1=0となる。処理S5の判定の結果、and演算結果が1である場合(Yes)には、判定部2223は、注目画素における、ノイズであるか否かを表すノイズピクセルフラグに「1」を設定し(S6)、次の処理S7を実行し、一方、前記処理S5の判定の結果、and演算結果が1ではない場合(No)には、判定部2223は、次の処理S7を実行する。ノイズピクセルフラグ「1」は、ノイズであることを表し、ノイズピクセルフラグ「0」は、ノイズではないことを表す。なお、ノイズピクセルフラグは、距離画像における各画素ごとに設けられ、上述の初期化において、デフォルトの「0」に設定される。
 そして、処理S7では、ノイズ判定部222は、ノイズ除去前の距離画像における全ての画素について、上述の処理を実行したか否かを判定する。この判定の結果、全ての画素について上述の処理を実行していない場合(No)には、次の注目画素、例えば第2番目の方向に対応する画素を注目画素として処理するために、ノイズ判定部222は、処理を処理S1に戻し、一方、前記判定の結果、全ての画素について上述の処理を実行している場合(Yes)には、ノイズ判定部222は、上述の処理を終了する。
 このようにノイズ除去前の距離画像における各画素について、ノイズであるか否かの判定処理が終了すると、ノイズ除去部223は、ノイズ判定部222でノイズと判定された注目領域の画素値を、ノイズを表す所定のノイズ画素値に設定する。より具体的には、ノイズ除去部223は、ノイズピクセルフラグが「1」である画素の画素値を、前記ノイズ画素値に設定する。これによってノイズ除去後の距離画像が生成される。
 一例では、図4に示す距離画像が上述のように処理されると、図9に示すノイズピクセルフラグを画素値とした2値画像が得られる。図9では、ノイズピクセルフラグ「1」が白の画素値とされ、ノイズピクセルフラグ「0」が黒の画素値とされている。図9から分かるように、手前の物体Obf、この例では、人Ob1の輪郭部分がノイズであると判定されており、上述の処理によってノイズが抽出されていることが分かる。また、図4に示す距離画像は、ノイズピクセルフラグが「1」である画素を除去して3次元の点群で表示すると、図10に示す点群となる。この図10と前記図5とを比較すると分かるように、ノイズの点群PGnが除去されており、上述の処理によってノイズが抽出されていることが分かる。
 以上説明したように、レーダSに組み込まれた距離画像処理装置、これに実装された距離画像処理方法および距離画像処理プログラムは、前記傾きGrおよび前記パルス幅PW1、PW2に基づいてノイズを判定するので、輝度画像を求める必要が無く、また、1個の表面に反射率の低い部分が存在する場合にノイズと誤判定することを低減できる。したがって、上記レーダSに組み込まれた距離画像処理装置、距離画像処理方法および距離画像処理プログラムは、複数の物体Obkが送信波の進行方向に沿って前後に配置されている場合でも、より高精度な距離画像を取得できる。
 上記レーダSに組み込まれた距離画像処理装置、距離画像処理方法および距離画像処理プログラムは、ノイズ除去部223をさらに備えるので、ノイズ判定部222でノイズと判定された注目領域(注目画素)のノイズを除去したノイズ除去後の距離画像を取得できる。
 なお、上述の実施形態において、前記距離画像生成プログラムを含む前記制御処理プログラムは、前記制御処理プログラムを記憶した記録媒体によって提供されても良い。この場合、例えば、レーダSは、前記記録媒体のデータを入力するためのインターフェースをさらに備え、前記制御処理プログラムは、前記記録媒体から前記インターフェースを介して記憶部3にインストールされる。
 また、上述の実施形態において、レーダSに組み込まれた距離画像処理装置は、ノイズ除去部223に代え、図1に破線で示すノイズ補正部224を備えても良い。このノイズ補正部224は、距離画像生成部22に機能的に構成され、ノイズ判定部222でノイズと判定された注目領域(注目画素)の画素値を、前記注目領域(注目画素)に対する所定の周辺に位置する第2周辺領域(第2周辺画素)のうちのノイズと判定されなかった領域(画素)の画素値に基づいて求めたノイズ補正値に設定するものである。前記ノイズ画素値は、例えば、前記第2周辺領域(第2周辺画素)のうちのノイズと判定されなかった領域(画素)の画素値の最小値である。これによれば、ノイズ補正部224を備えるので、ノイズ判定部222でノイズと判定された注目領域(注目画素)の画素値を、前記第2周辺領域(第2周辺画素)のうちのノイズと判定されなかった領域(画素)の画素値に基づいて求めたノイズ補正値で補正した補正後の距離画像が取得できる。
 また、これら上述の実施形態において、レーダSに組み込まれた距離画像処理装置は、図1に破線で示すエッジ領域抽出部225をさらに備えても良い。このエッジ領域抽出部225は、距離画像生成部22に機能的に構成され、ノイズ判定部222でノイズと判定された注目領域(注目画素)の画素値を、エッジを表すエッジ領域とするものである。これによれば、エッジ領域抽出部225を備えるので、ノイズ判定部222でノイズと判定された注目領域(注目画素)をエッジ領域として、さらに、エッジ領域が抽出できる。
 なお、上述の実施形態では、前記所定の範囲thg1~thg2は、予め設定され固定的に用いられたが、所定の条件に対応付けられて予め複数の前記範囲thg1~thg2が用意され、前記複数の範囲thg1~thg2の中から現状の条件に合う範囲thg1~thg2が選択され、用いられても良い。同様に、前記閾値thpは、予め設定され固定的に用いられたが、所定の条件に対応付けられて予め複数の前記閾値thpが用意され、前記複数の閾値thpの中から現状の条件に合う閾値thpが選択され、用いられても良い。
 また、前記所定の範囲thg1~thg2は、注目画素の画素値(距離値)に応じて変更されても良い。同様に、前記閾値thpは、注目画素の画素値(距離値)に応じて変更されても良い。一例では、注目画素がレーダS近くから遠方の位置に向かうに従って、前記所定の範囲thg1~thg2は、thg1とthg2との差が大きくなるように変化させ、前記閾値thpは、大きくなるように変化させる。これは、レーダSに対する距離が遠くなるに従って、送信したレーザーのスポットサイズが大きくなることに対応している。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 一態様にかかる距離画像処理装置は、互いに異なる複数の方向へパルス状の所定の送信波をそれぞれ送信し、前記複数の送信波それぞれに基づく複数の反射波を受信し、前記複数の送信波および前記複数の反射波に基づいて、前記複数の方向それぞれに対応した複数の画素を持つ距離画像を取得する距離画像取得部と、前記距離画像における所定の領域を注目領域とした場合に、前記注目領域と前記注目領域に対する所定の周辺に位置する周辺領域との間における距離値の傾きが所定の範囲内であって、かつ、前記注目領域に関する前記反射波のパルス幅が前記周辺領域に関する前記反射波のパルス幅より大きい場合に、前記注目領域をノイズと判定するノイズ判定部とを備える。好ましくは、上述の距離画像処理装置において、前記ノイズ判定部は、前記距離画像を複数の領域に分け、前記複数の領域それぞれについて、当該領域と当該領域に対する所定の周辺に位置する周辺領域との間における距離値の傾きが所定の範囲内であって、かつ、当該領域に関する前記反射波のパルス幅が前記周辺領域に関する前記反射波のパルス幅より大きい場合に、当該領域をノイズと判定する。また好ましくは、上述の距離画像処理装置において、前記ノイズ判定部は、前記複数の画素それぞれについて、当該画素と当該画素に対する所定の周辺に位置する周辺画素との間における距離値の傾きが所定の範囲内であって、かつ、当該画素に関する前記反射波のパルス幅が前記周辺画素に関する前記反射波のパルス幅より大きい場合に、当該画素をノイズと判定する。
 このような距離画像処理装置は、前記距離値の傾きおよび前記パルス幅に基づいてノイズを判定するので、輝度画像を求める必要が無く、また、1個の表面に反射率の低い部分が存在する場合にノイズと誤判定することを低減できる。したがって、上記距離画像処理装置は、複数の物体が送信波の進行方向に沿って前後に配置されている場合でも、より高精度な距離画像を取得できる。
 他の一態様では、上述の距離画像処理装置において、前記ノイズ判定部でノイズと判定された注目領域の画素値を、ノイズを表す所定のノイズ画素値に設定するノイズ除去部をさらに備える。好ましくは、上述の距離画像処理装置において、前記ノイズ画素値は、距離無限大を表す画素値である。
 このような距離画像処理装置は、前記ノイズ除去部をさらに備えるので、前記ノイズ判定部でノイズと判定された注目領域のノイズを除去したノイズ除去後の距離画像を取得できる。
 他の一態様では、上述の距離画像処理装置において、前記ノイズ判定部でノイズと判定された注目領域の画素値を、前記注目領域に対する所定の周辺に位置する第2周辺領域のうちのノイズと判定されなかった領域の画素値に基づいて求めたノイズ補正値に設定するノイズ補正部をさらに備える。好ましくは、上述の距離画像処理装置において、前記ノイズ画素値は、前記第2周辺領域のうちのノイズと判定されなかった領域の画素値の最小値である。
 このような距離画像処理装置は、前記ノイズ補正部をさらに備えるので、前記ノイズ判定部でノイズと判定された注目領域の画素値を、前記第2周辺領域のうちのノイズと判定されなかった領域の画素値に基づいて求めたノイズ補正値で補正した補正後の距離画像を取得できる。
 他の一態様では、上述の距離画像処理装置において、前記ノイズ判定部でノイズと判定された注目領域を、エッジを表すエッジ領域とするエッジ領域抽出部をさらに備える。
 このような距離画像処理装置は、前記ノイズ判定部で判定された注目領域をエッジ領域として、さらに、エッジ領域を抽出できる。
 他の一態様にかかる距離画像処理方法は、互いに異なる複数の方向へパルス状の所定の送信波をそれぞれ送信し、前記複数の送信波それぞれに基づく複数の反射波を受信し、前記複数の送信波および前記複数の反射波に基づいて、前記複数の方向それぞれに対応した複数の画素を持つ距離画像を取得する距離画像取得工程と、前記距離画像における所定の領域を注目領域とした場合に、前記注目領域と前記注目領域に対する所定の周辺に位置する周辺領域との間における距離値の傾きが所定の範囲内であって、かつ、前記注目領域に関する前記反射波のパルス幅が前記周辺領域に関する前記反射波のパルス幅より大きい場合に、前記注目領域をノイズと判定するノイズ判定工程とを備える。
 他の一態様にかかる距離画像処理プログラムは、互いに異なる複数の方向へパルス状の所定の送信波をそれぞれ送信し、前記複数の送信波それぞれに基づく複数の反射波を受信し、前記複数の送信波および前記複数の反射波に基づいて、前記複数の方向それぞれに対応した複数の画素を持つ距離画像を取得する距離画像取得部を持つコンピュータを、前記距離画像における所定の領域を注目領域とした場合に、前記注目領域と前記注目領域に対する所定の周辺に位置する周辺領域との間における距離値の傾きが所定の範囲内であって、かつ、前記注目領域に関する前記反射波のパルス幅が前記周辺領域に関する前記反射波のパルス幅より大きい場合に、前記注目領域をノイズと判定するノイズ判定部として機能させるための距離画像処理プログラムである。
 そして、他の一態様にかかる距離画像処理プログラムを記録した記録媒体は、互いに異なる複数の方向へパルス状の所定の送信波をそれぞれ送信し、前記複数の送信波それぞれに基づく複数の反射波を受信し、前記複数の送信波および前記複数の反射波に基づいて、前記複数の方向それぞれに対応した複数の画素を持つ距離画像を取得する距離画像取得部を持つコンピュータを、前記距離画像における所定の領域を注目領域とした場合に、前記注目領域と前記注目領域に対する所定の周辺に位置する周辺領域との間における距離値の傾きが所定の範囲内であって、かつ、前記注目領域に関する前記反射波のパルス幅が前記周辺領域に関する前記反射波のパルス幅より大きい場合に、前記注目領域をノイズと判定するノイズ判定部として機能させるための距離画像処理プログラムを記録した記録媒体である。
 このような距離画像処理方法および距離画像処理プログラムは、前記距離値の傾きおよび前記パルス幅に基づいてノイズを判定するので、輝度画像を求める必要が無く、また、1個の表面に反射率の低い部分が存在する場合にノイズと誤判定することを低減できる。したがって、上記距離画像処理方法および距離画像処理プログラムは、複数の物体が送信波の進行方向に沿って前後に配置されている場合でも、より高精度な距離画像を取得できる。そして、上記記録媒体は、このような距離画像処理プログラムを提供できる。
 この出願は、2015年6月24日に出願された日本国特許出願特願2015-126567を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、距離画像処理装置、距離画像処理方法、距離画像処理プログラムおよび記録媒体が提供できる。
 

Claims (7)

  1.  互いに異なる複数の方向へパルス状の所定の送信波をそれぞれ送信し、前記複数の送信波それぞれに基づく複数の反射波を受信し、前記複数の送信波および前記複数の反射波に基づいて、前記複数の方向それぞれに対応した複数の画素を持つ距離画像を取得する距離画像取得部と、
     前記距離画像における所定の領域を注目領域とした場合に、前記注目領域と前記注目領域に対する所定の周辺に位置する周辺領域との間における距離値の傾きが所定の範囲内であって、かつ、前記注目領域に関する前記反射波のパルス幅が前記周辺領域に関する前記反射波のパルス幅より大きい場合に、前記注目領域をノイズと判定するノイズ判定部とを備える、
     距離画像処理装置。
  2.  前記ノイズ判定部でノイズと判定された注目領域の画素値を、ノイズを表す所定のノイズ画素値に設定するノイズ除去部をさらに備える、
     請求項1に記載の距離画像処理装置。
  3.  前記ノイズ判定部でノイズと判定された注目領域の画素値を、前記注目領域に対する所定の周辺に位置する第2周辺領域のうちのノイズと判定されなかった領域の画素値に基づいて求めたノイズ補正値に設定するノイズ補正部をさらに備える、
     請求項1に記載の距離画像処理装置。
  4.  前記ノイズ判定部でノイズと判定された注目領域を、エッジを表すエッジ領域とするエッジ領域抽出部をさらに備える、
     請求項1ないし請求項3のいずれか1項に記載の距離画像処理装置。
  5.  互いに異なる複数の方向へパルス状の所定の送信波をそれぞれ送信し、前記複数の送信波それぞれに基づく複数の反射波を受信し、前記複数の送信波および前記複数の反射波に基づいて、前記複数の方向それぞれに対応した複数の画素を持つ距離画像を取得する距離画像取得工程と、
     前記距離画像における所定の領域を注目領域とした場合に、前記注目領域と前記注目領域に対する所定の周辺に位置する周辺領域との間における距離値の傾きが所定の範囲内であって、かつ、前記注目領域に関する前記反射波のパルス幅が前記周辺領域に関する前記反射波のパルス幅より大きい場合に、前記注目領域をノイズと判定するノイズ判定工程とを備える、
     距離画像処理方法。
  6.  互いに異なる複数の方向へパルス状の所定の送信波をそれぞれ送信し、前記複数の送信波それぞれに基づく複数の反射波を受信し、前記複数の送信波および前記複数の反射波に基づいて、前記複数の方向それぞれに対応した複数の画素を持つ距離画像を取得する距離画像取得部を持つコンピュータを、
     前記距離画像における所定の領域を注目領域とした場合に、前記注目領域と前記注目領域に対する所定の周辺に位置する周辺領域との間における距離値の傾きが所定の範囲内であって、かつ、前記注目領域に関する前記反射波のパルス幅が前記周辺領域に関する前記反射波のパルス幅より大きい場合に、前記注目領域をノイズと判定するノイズ判定部として機能させるための距離画像処理プログラム
  7.  互いに異なる複数の方向へパルス状の所定の送信波をそれぞれ送信し、前記複数の送信波それぞれに基づく複数の反射波を受信し、前記複数の送信波および前記複数の反射波に基づいて、前記複数の方向それぞれに対応した複数の画素を持つ距離画像を取得する距離画像取得部を持つコンピュータを、
     前記距離画像における所定の領域を注目領域とした場合に、前記注目領域と前記注目領域に対する所定の周辺に位置する周辺領域との間における距離値の傾きが所定の範囲内であって、かつ、前記注目領域に関する前記反射波のパルス幅が前記周辺領域に関する前記反射波のパルス幅より大きい場合に、前記注目領域をノイズと判定するノイズ判定部として機能させるための距離画像処理プログラムを記録した記録媒体。
     
PCT/JP2016/065405 2015-06-24 2016-05-25 距離画像処理装置、距離画像処理方法、距離画像処理プログラムおよび記録媒体 WO2016208318A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16814089.5A EP3315999A4 (en) 2015-06-24 2016-05-25 Distance image processing device, distance image processing method, distance image processing program, and recording medium
US15/737,032 US20180172830A1 (en) 2015-06-24 2016-05-25 Distance image processing device, distance image processing method, distance image processing program, and recording medium
JP2017524765A JPWO2016208318A1 (ja) 2015-06-24 2016-05-25 距離画像処理装置、距離画像処理方法、距離画像処理プログラムおよび記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015126567 2015-06-24
JP2015-126567 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016208318A1 true WO2016208318A1 (ja) 2016-12-29

Family

ID=57586190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065405 WO2016208318A1 (ja) 2015-06-24 2016-05-25 距離画像処理装置、距離画像処理方法、距離画像処理プログラムおよび記録媒体

Country Status (4)

Country Link
US (1) US20180172830A1 (ja)
EP (1) EP3315999A4 (ja)
JP (1) JPWO2016208318A1 (ja)
WO (1) WO2016208318A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063221A (ja) * 2016-10-14 2018-04-19 富士通株式会社 距離測定装置、距離測定方法及びプログラム
JP2018151315A (ja) * 2017-03-14 2018-09-27 本田技研工業株式会社 レーザ式測距装置のノイズデータの特定方法
JP2019028039A (ja) * 2017-08-03 2019-02-21 株式会社リコー 距離測定装置及び距離測定方法
JP2019035690A (ja) * 2017-08-18 2019-03-07 株式会社リコー 物体検出装置、センシング装置、移動体装置及び物体検出方法
JP2021135061A (ja) * 2020-02-21 2021-09-13 Jrcモビリティ株式会社 3次元情報推定システム、3次元情報推定方法、及びコンピュータが実行可能なプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158120B1 (en) * 2020-11-18 2021-10-26 Motional Ad Llc Ghost point filtering
CN113687429B (zh) * 2021-08-30 2023-07-04 四川启睿克科技有限公司 一种确定毫米波雷达监测区域边界的装置及方法
CN116203574B (zh) * 2023-05-04 2023-07-28 天津宜科自动化股份有限公司 一种检测物体距离的数据处理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109842A (ja) * 1992-09-24 1994-04-22 Mazda Motor Corp 距離検出装置
JP2002311138A (ja) * 2001-04-06 2002-10-23 Mitsubishi Electric Corp 車両用測距装置
US20090135405A1 (en) * 2005-09-30 2009-05-28 Marc Fischer Device and Method for Recording Distance-Measuring Images
WO2011078264A1 (ja) * 2009-12-25 2011-06-30 本田技研工業株式会社 画像処理装置、画像処理方法、コンピュータプログラム及び移動体
JP2012068349A (ja) * 2010-09-22 2012-04-05 Nippon Signal Co Ltd:The 光走査装置及びこれを用いた光測距装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561022A (en) * 1983-08-11 1985-12-24 Eastman Kodak Company Image processing method based on processing of interrelated image gradients
JP3522317B2 (ja) * 1993-12-27 2004-04-26 富士重工業株式会社 車輌用走行案内装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109842A (ja) * 1992-09-24 1994-04-22 Mazda Motor Corp 距離検出装置
JP2002311138A (ja) * 2001-04-06 2002-10-23 Mitsubishi Electric Corp 車両用測距装置
US20090135405A1 (en) * 2005-09-30 2009-05-28 Marc Fischer Device and Method for Recording Distance-Measuring Images
WO2011078264A1 (ja) * 2009-12-25 2011-06-30 本田技研工業株式会社 画像処理装置、画像処理方法、コンピュータプログラム及び移動体
JP2012068349A (ja) * 2010-09-22 2012-04-05 Nippon Signal Co Ltd:The 光走査装置及びこれを用いた光測距装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3315999A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063221A (ja) * 2016-10-14 2018-04-19 富士通株式会社 距離測定装置、距離測定方法及びプログラム
JP2018151315A (ja) * 2017-03-14 2018-09-27 本田技研工業株式会社 レーザ式測距装置のノイズデータの特定方法
JP2019028039A (ja) * 2017-08-03 2019-02-21 株式会社リコー 距離測定装置及び距離測定方法
JP7005994B2 (ja) 2017-08-03 2022-01-24 株式会社リコー 距離測定装置及び距離測定方法
JP2019035690A (ja) * 2017-08-18 2019-03-07 株式会社リコー 物体検出装置、センシング装置、移動体装置及び物体検出方法
US11150345B2 (en) 2017-08-18 2021-10-19 Ricoh Company, Ltd. Object detector, sensing device, and mobile object apparatus
JP2021135061A (ja) * 2020-02-21 2021-09-13 Jrcモビリティ株式会社 3次元情報推定システム、3次元情報推定方法、及びコンピュータが実行可能なプログラム
JP7461160B2 (ja) 2020-02-21 2024-04-03 Jrcモビリティ株式会社 3次元情報推定システム、3次元情報推定方法、及びコンピュータが実行可能なプログラム

Also Published As

Publication number Publication date
JPWO2016208318A1 (ja) 2018-04-19
EP3315999A4 (en) 2018-06-20
EP3315999A1 (en) 2018-05-02
US20180172830A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2016208318A1 (ja) 距離画像処理装置、距離画像処理方法、距離画像処理プログラムおよび記録媒体
JP6969425B2 (ja) 光測距装置
JP6292534B2 (ja) 物体検出装置及びセンシング装置
US20180284270A1 (en) Object detecting apparatus
JP6340851B2 (ja) 物体検出装置及びセンシング装置
KR102020037B1 (ko) 하이브리드 라이다 스캐너
EP2706377A1 (en) Object detection apparatus and method
EP3309583B1 (en) Distance measuring apparatus, distance measuring method, and distance measuring program
JP5316471B2 (ja) 物体認識装置、及びプログラム
KR101917773B1 (ko) 다각형을 사용하여 광 패턴을 생성하는 방법 및 시스템
WO2010070701A1 (ja) 対象物測定装置、及び当該装置で用いられる方法
EP3929626A1 (en) Optical scanning probe and apparatus for generating three-dimensional data using the same
WO2020196513A1 (ja) 物体検出装置
CN111263899A (zh) 照明装置、飞行时间系统和方法
US20210256740A1 (en) Method for increasing point cloud sampling density, point cloud processing system, and readable storage medium
JP6772639B2 (ja) 視差演算システム、移動体及びプログラム
JP2021043838A (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
JP5741833B2 (ja) レーザレーダ装置及びレーザレーダ法
JP7379455B2 (ja) 計測装置、設定装置、設定方法、修正方法、及びプログラム
JP6838705B2 (ja) レーザレーダ装置及びそれに用いる強度画像取得方法
WO2018074357A1 (ja) 位置認識装置
JP2020148633A (ja) 対象物検出装置
CN110308460B (zh) 传感器的参数确定方法及系统
JP2019138666A (ja) 測距装置
KR101690269B1 (ko) 전자보드용 객체 위치 검출 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524765

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15737032

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016814089

Country of ref document: EP