JP2022031674A - 炭化珪素基板および炭化珪素エピタキシャル基板 - Google Patents

炭化珪素基板および炭化珪素エピタキシャル基板 Download PDF

Info

Publication number
JP2022031674A
JP2022031674A JP2021179562A JP2021179562A JP2022031674A JP 2022031674 A JP2022031674 A JP 2022031674A JP 2021179562 A JP2021179562 A JP 2021179562A JP 2021179562 A JP2021179562 A JP 2021179562A JP 2022031674 A JP2022031674 A JP 2022031674A
Authority
JP
Japan
Prior art keywords
silicon carbide
main surface
less
substrate
carbide substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021179562A
Other languages
English (en)
Other versions
JP7120427B2 (ja
Inventor
翼 本家
Tsubasa Honke
恭子 沖田
Kyoko Okita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JP2022031674A publication Critical patent/JP2022031674A/ja
Application granted granted Critical
Publication of JP7120427B2 publication Critical patent/JP7120427B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】炭化珪素基板、および炭化珪素基板上に形成される炭化珪素エピタキシャル層の表面欠陥が抑制された炭化珪素エピタキシャル基板を提供する。【解決手段】炭化珪素基板は、第1主面と、第2主面とを有し、かつポリタイプ4Hの炭化珪素により構成されている。第1主面の最大径は、150mm以上である。第1主面は、{0001}面に対して0°より大きく4°以下<11-20>方向に傾斜した面である。炭化珪素基板のTTVは、3μm以下である。第1主面は、一辺が90mmの正方形に囲まれた第1中央領域を含む。第1中央領域の対角線の交点は、第1主面の中心と一致する。第1中央領域は、一辺が30mmの9個の正方領域からなる。9個の正方領域の中で最大のLTVは、1μm以下である。【選択図】なし

Description

本開示は、炭化珪素基板および炭化珪素エピタキシャル基板に関する。本出願は、2017年5月19日に出願した日本特許出願である特願2017-099853号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
特開2016-210680号(特許文献1)には、フォトリソグラフィ工程におけるマスクパターンの位置ずれを抑制可能な炭化珪素単結晶基板が記載されている。
特開2016-210680号公報
本開示に係る炭化珪素基板は、第1主面と、第1主面と反対側の第2主面とを備え、かつポリタイプ4Hの炭化珪素により構成されている。第1主面の最大径は、150mm以上である。第1主面は、{0001}面に対して0°より大きく4°以下<11-20>方向に傾斜した面である。炭化珪素基板のTTVは、3μm以下である。第1主面は、一辺が90mmの正方形に囲まれた第1中央領域を含む。第1中央領域の対角線の交点は、第1主面の中心と一致する。第1中央領域は、一辺が30mmの9個の正方領域からなる。9個の正方領域の中で最大のLTVは、1μm以下である。交点を中心とする一辺が250μmの正方形に囲まれた第2中央領域における算術平均粗さSaは、0.1nm以下である。
本開示に係る炭化珪素エピタキシャル基板は、炭化珪素基板と、炭化珪素エピタキシャル層とを備えている。炭化珪素基板は、第1主面と、第1主面と反対側の第2主面とを含み、かつポリタイプ4Hの炭化珪素により構成されている。炭化珪素エピタキシャル層は、第1主面に接する。炭化珪素エピタキシャル層の厚みは、10μm以上である。炭化珪素エピタキシャル層は、第1主面と接する第3主面と、第3主面と反対側の第4主面を含む。第4主面の最大径は、150mm以上である。第4主面は、{0001}面に対して0°より大きく4°以下のオフ角度で<11-20>方向に傾斜した面である。炭化珪素エピタキシャル基板のTTVは、3μm以下である。第4主面は、一辺が90mmの正方形に囲まれた第1中央領域を含む。第1中央領域の対角線の交点は、第4主面の中心と一致する。第1中央領域は、一辺が30mmの9個の正方領域からなる。9個の正方領域の中で最大のLTVは、1μm以下である。交点を中心とする一辺が250μmの正方形に囲まれた第2中央領域における算術平均粗さSaは、0.12nm以下である。第4主面においては、フォトルミネッセンス光で観察した場合に、<1-100>方向の長さが26μm以上である発光領域がない。
図1は、第1実施形態に係る炭化珪素基板の構造を示す平面模式図である。 図2は、図1のII-II線に沿った矢視断面模式図である。 図3は、TTVの測定方法を示すための基板の断面模式図である。 図4は、LTVの測定方法を示すための基板の断面模式図である。 図5は、第1実施形態に係る炭化珪素基板の製造方法を示す平面模式図である。 図6は、第1実施形態に係る炭化珪素基板の製造方法に使用される研磨布の構成を示す断面模式図である。 図7は、第1実施形態に係る炭化珪素基板の製造方法を示す断面模式図である。 図8は、第2実施形態に係る炭化珪素エピタキシャル基板の構造を示す平面模式図である。 図9は、図8のIX-IX線に沿った矢視断面模式図である。 図10は、研磨レートと接触角との関係を示す図である。 図11は、TTVと接触角との関係を示す図である。 図12は、LTV(最大)と接触角との関係を示す図である。 図13は、欠陥領域率と接触角との関係を示す図である。 図14は、算術表面粗さSaと接触角との関係を示す図である。
[本開示の実施形態の説明]
(1)本開示に係る炭化珪素基板は、第1主面と、第1主面と反対側の第2主面とを備え、かつポリタイプ4Hの炭化珪素により構成されている。第1主面の最大径は、150mm以上である。第1主面は、{0001}面に対して0°より大きく4°以下<11-20>方向に傾斜した面である。炭化珪素基板のTTVは、3μm以下である。第1主面は、一辺が90mmの正方形に囲まれた第1中央領域を含む。第1中央領域の対角線の交点は、第1主面の中心と一致する。第1中央領域は、一辺が30mmの9個の正方領域からなる。9個の正方領域の中で最大のLTVは、1μm以下である。交点を中心とする一辺が250μmの正方形に囲まれた第2中央領域における算術平均粗さSaは、0.1nm以下である。
(2)上記(1)に係る炭化珪素基板は、TTVは、2μm以下であってもよい。
(3)本開示に係る炭化珪素エピタキシャル基板は、炭化珪素基板と、炭化珪素エピタキシャル層とを備えている。炭化珪素基板は、第1主面と、第1主面と反対側の第2主面とを含み、かつポリタイプ4Hの炭化珪素により構成されている。炭化珪素エピタキシャル層は、第1主面に接する。炭化珪素エピタキシャル層の厚みは、10μm以上である。炭化珪素エピタキシャル層は、第1主面と接する第3主面と、第3主面と反対側の第4主面を含む。第4主面の最大径は、150mm以上である。第4主面は、{0001}面に対して0°より大きく4°以下のオフ角度で<11-20>方向に傾斜した面である。炭化珪素エピタキシャル基板のTTVは、3μm以下である。第4主面は、一辺が90mmの正方形に囲まれた第1中央領域を含む。第1中央領域の対角線の交点は、第4主面の中心と一致する。第1中央領域は、一辺が30mmの9個の正方領域からなる。9個の正方領域の中で最大のLTVは、1μm以下である。交点を中心とする一辺が250μmの正方形に囲まれた第2中央領域における算術平均粗さSaは、0.12nm以下である。第4主面においては、フォトルミネッセンス光で観察した場合に、<1-100>方向の長さが26μm以上である発光領域がない。
(4)上記(3)に係る炭化珪素エピタキシャル基板において、炭化珪素エピタキシャル層の厚みは、30μm以下である。
[本開示の実施形態の詳細]
以下、図面に基づいて本開示の実施形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
(第1実施形態)
まず、第1実施形態に係る炭化珪素基板の構成について説明する。
図1および図2に示されるように、第1実施形態に係る炭化珪素基板10は、第1主面11と、第2主面12とを有している。第2主面12は、第1主面11と反対側にある。炭化珪素基板10は、たとえばポリタイプ4Hの炭化珪素から構成されている。第1主面11は、{0001}面に対して0°より大きく4°以下<11-20>方向に傾斜した面である。つまり、第1主面11のオフ角度θは、0°より大きく4°以下である。第1主面11のオフ方向105は、<11-20>方向である。第1主面11および第2主面12は、それぞれ(0001)面から4°以下程度オフした面および(000-1)面から4°以下オフした面であってもよい。代替的に、第1主面11および第2主面12は、それぞれ(000-1)面から4°以下程度オフした面および(0001)面から4°以下オフした面であってもよい。第4方向104は、{0001}面に垂直な方向である。
図1に示されるように、第1主面11は、たとえば略円形を有している。第1主面11は、第1中央領域1を含んでいる。第1中央領域1は、一辺が90mmの正方形に囲まれている。第1中央領域1の対角線の交点は、第1主面11の中心3と一致している。第1中央領域1は、たとえば厚み方向103から第1主面11を見た場合に、中心3を回転対称中心とする正方形に囲まれた領域である。第1主面11の外縁が円の場合は、第1主面11の中心3は、当該円の中心である。第1主面11の外縁が円弧状部と直線状のオリフラ部とを有する場合は、第1主面11の中心3は、円弧状部に沿って形成される円の中心である。第1中央領域1の第1辺は、第1方向101に平行である。第1方向101は、オフ方向105を第1主面11に投影した方向である。第1中央領域1の第1辺に連なる第2辺は、第2方向102に平行である。第2辺は、<1-100>方向である。
図1に示されるように、第1中央領域1は、一辺が30mmの9個の正方領域25からなる。正方領域25は、第1方向101に沿って3個配置され、第2方向102に沿って3個配置される。言い換えれば、第1方向101を行とし、第2方向102を列とすれば、正方領域25は、3行3列で配置されている。
厚み方向103とは、第2主面12から第1主面11に向かう方向である。第1主面11が平面である場合、厚み方向103は、第1主面11に対して垂直な方向である。第1主面11が曲面である場合、厚み方向103は、たとえば第1主面11の最小二乗平面に対して垂直な方向であってもよい。なお最小二乗平面とは、観測された物体の表面上の位置を表す座標(xi,yi,zi)と、ある平面(ax+by+cz+d=0)との最短距離の二乗の和が最小になるようにa、b、cおよびdが決定された平面のことである。
厚み方向103から見た場合、第1主面11の最大径120は、150mm以上である。最大径120は、たとえば200mm以上であってもよいし、250mm以上であってもよい。最大径120の上限は、特に限定されないが、たとえば300mmである。最大径120は、第1主面11の周縁上の異なる2点間の最長直線距離である。
(TTV:Total Thickness Variation)
TTV=|T1-T2| ・・・(数1)
TTVは、たとえば以下の手順で測定される。まず、平坦な吸着面に炭化珪素基板10の第2主面12が全面吸着される。次に、第1主面11全体の画像が光学的に取得される。図3および数1に示されるように、TTVとは、平坦な吸着面に第2主面12を全面吸着させた状態で、第2主面12から第1主面11の最高点21までの高さT1から、第2主面12から第1主面11の最低点22までの高さT2を差し引いた値である。言い換えれば、TTVは、第2主面12に対して垂直な方向において、第2主面12と第1主面11との最長距離から、第2主面12と第1主面11との最短距離を差し引いた値である。つまり、TTVは、最高点21を通りかつ第2主面12と平行な平面113と、最低点22を通りかつ第2主面12と平行な平面114との距離である。本実施形態に係る炭化珪素基板10のTTVは、3μm以下である。TTVは、2.5μm以下であってもよいし、2μm以下であってもよいし、1.8μm以下であってもよい。
(LTV:Local Thickness Variation)
LTV=|T4-T3| ・・・(数2)
LTVは、たとえば以下の手順で測定される。まず、平坦な吸着面に炭化珪素基板10の第2主面12が全面吸着される。次に、ある局所的な領域(たとえば9個の正方領域25の各々の画像が光学的に取得される。図4および数2に示されるように、LTVとは、平坦な吸着面に第2主面12を全面吸着させた状態で、第2主面12から第1主面11の最高点24までの高さT4から、第2主面12から第1主面11の最低点23までの高さT3を差し引いた値である。言い換えれば、LTVは、第2主面12に対して垂直な方向において、第2主面12と第1主面11との最長距離から、第2主面12と第1主面11との最短距離を差し引いた値である。つまり、LTVは、最高点24を通りかつ第2主面12と平行な平面116と、最低点23を通りかつ第2主面12と平行な平面117との距離である。上述の通り、第1中央領域1は、一辺が30mmの9個の正方領域25からなる(図1参照)。9個の正方領域25の各々のLTVが測定され、その中の最大のLTVが求められる。本実施形態に係る炭化珪素基板10において、9個の正方領域25の中で最大のLTVは、1μm以下である。9個の正方領域25の中で最大のLTVは、0.9μm以下であってもよい。
TTVおよびLTVは、炭化珪素基板10の第1主面11の平坦度を定量的に示す指標である。上記指標は、たとえばCorning Tropel社製の「Tropel FlatMaster(登録商標)」を用いることにより測定可能である。
(算術平均粗さSa)
算術平均粗さSaは、二次元の算術平均粗さRaを三次元に拡張したパラメータである。算術平均粗さSaは、国際規格ISO25178に規定されている三次元表面性状パラメータである。算術平均粗さSaは、たとえば白色干渉顕微鏡により測定することができる。白色干渉顕微鏡として、たとえばニコン社製のBW-D507を用いることができる。対物レンズの倍率は、たとえば20倍である。
図1に示されるように、第2中央領域2は、交点3を中心とする一辺が250μmの正方形に囲まれた領域である。第2中央領域2は、第1中央領域1の相似形である。第2中央領域2の第1辺は、たとえば第1中央領域1の第1辺と平行である。同様に、第2中央領域2の第2辺は、たとえば第1中央領域1の第2辺と平行である。第2中央領域2における算術平均粗さSaは、0.1nm以下である。第2中央領域2における算術平均粗さSaは、0.09nm以下であってもよい。
次に、第1実施形態に係る炭化珪素基板の製造方法について説明する。
たとえば昇華法により製造された炭化珪素単結晶からなるインゴットがワイヤーソーによりスライスされることにより、炭化珪素基板10が準備される。炭化珪素基板10は、たとえばポリタイプ4Hの炭化珪素から構成されている。炭化珪素基板10は、第1主面11と、第1主面11の反対側の第2主面12とを有する。第1主面11は、たとえば{0001}面に対して<11-20>方向に4°以下オフした面である。第1主面11および第2主面12が研削された後、第1主面11および第2主面12に対して機械研磨およびCMP(Chemical Mechanical Polishing)が行われる。
次に、研磨装置の構成について説明する。研磨装置30は、たとえばCMP装置である。図5に示されるように、研磨装置30は、研磨ヘッド31と液体供給部32と、研磨布34とを主に有している。研磨布34は、定盤(図示せず)に固定されている。研磨布34として、たとえばフジボウ愛媛社製スエード研磨布「G804W」を使用することができる。
図6に示されるように、研磨布34の表面35には、複数の孔36が設けられている。断面視において、複数の孔36の各々の幅121の平均値は、たとえば100nmである。複数の孔36の各々の深さ122の平均値は、たとえば600μmである。研磨布34の厚み123は、たとえば1mmである。複数の孔36の各々の幅は、それぞれ異なっていてもよい。同様に、複数の孔36の各々の深さは、それぞれ異なっていてもよい。
次に、慣らし加工が実施される。具体的には、図5に示されるように、研磨布34上に純水が供給されかつダミーの炭化珪素基板(次の研磨加工で研磨される炭化珪素基板とは異なる基板)が研磨布34の表面35に押し付けられた状態で、研磨ヘッド31および研磨布34が回転する。ダミー炭化珪素基板が研磨布34に押し付けられる圧力は、たとえば200g/cmである。研磨布34が固定されている定盤は、第1回転軸37の周りを第1回転方向106に回転する。定盤の回転数は、たとえば50rpmである。第1回転方向106は、研磨布34の上方から見て、たとえば反時計回りである。
研磨ヘッド31は、第2回転軸38の周りを第2回転方向107に回転する。研磨ヘッド31の回転数は、たとえば100rpmである。第2回転方向107は、研磨布34の上方から見て、たとえば反時計回りである。液体供給部32から研磨布34上に液体33が供給される。液体33は、たとえば純水である。純水には、砥粒が含まれていない。純水の流量は、たとえば1000ml/分である。これにより、研磨布34の表面35の状態が変化し、表面35の親水性が向上する。親水性が向上した表面35に純水を滴下した場合、純水の接触角は、たとえば1°以下(ほぼ0°)となる。
次に、研磨加工が実施される。具体的には、図5に示されるように、研磨布34上に研磨液が供給されかつ被加工物としての炭化珪素基板10が研磨布34の表面35に押し付けられた状態で、研磨ヘッド31および研磨布34が回転する。炭化珪素基板10が研磨布34に押し付けられる圧力は、たとえば500g/cmである。研磨布34が固定されている定盤は、第1回転軸37の周りを第1回転方向106に回転する。定盤の回転数は、たとえば50rpmである。第1回転方向106は、研磨布34の上方から見て、たとえば反時計回りである。
研磨ヘッド31は、第2回転軸38の周りを第2回転方向107に回転する。研磨ヘッド31の回転数は、たとえば100rpmである。第2回転方向107は、研磨布34の上方から見て、たとえば反時計回りである。液体供給部32から研磨布34上に液体33が供給される。液体33は、たとえば研磨液である。研磨液には、たとえばコロイダルシリカなどの砥粒が含まれている。研磨液として、たとえばフジミインコーポレーテッド社製「DSC-0902」を使用することができる。研磨液の流量は、たとえば1000ml/分である。
図7に示されるように、研磨加工において炭化珪素基板10が研磨布34の方向108に加圧されている。そのため、研磨布34の一部が凹んだ状態で炭化珪素基板10が研磨される。慣らし加工により研磨布34の表面35の親水性が向上しているため、炭化珪素基板10に対してたとえば500g/cm以上の高い圧力をかけた場合であっても、液体33(研磨液)が炭化珪素基板10と研磨布34の凹んだ部分との間に行き渡る。つまり、研磨工程においては、研磨布34の表面35における接触角が1°以下(ほぼ0°)の状態で、炭化珪素基板10の研磨が行われる。これにより、高い研磨速度で、平坦性が高く、傷が少なく、かつ表面粗さの小さい炭化珪素基板を得ることができる。
(第2実施形態)
次に、第2実施形態に係る炭化珪素エピタキシャル基板の構成について説明する。
図8および図9に示されるように、第2実施形態に係る炭化珪素エピタキシャル基板100は、炭化珪素基板10と、炭化珪素エピタキシャル層20とを有している。炭化珪素基板10は、たとえば第1実施形態に係る炭化珪素基板であるが、第1実施形態に係る炭化珪素基板に限定されない。炭化珪素基板10は、第1主面11と、第2主面12とを有している。第2主面12は、第1主面11と反対側にある。炭化珪素基板10は、たとえばポリタイプ4Hの炭化珪素から構成されている。
図9に示されるように、炭化珪素エピタキシャル層20は、第1主面11に接している。炭化珪素エピタキシャル層20は、第3主面13と、第4主面14とを有している。第3主面13は、第1主面11と接している。第4主面14は、第3主面13と反対側にある。第4主面14は、{0001}面に対して0°より大きく4°以下のオフ角度で<11-20>方向に傾斜した面である。つまり、第4主面14のオフ角度θは、0°より大きく4°以下である。第4主面14のオフ方向は、<11-20>方向である。第4主面14および第3主面13は、それぞれ(0001)面から4°以下程度オフした面および(000-1)面から4°以下オフした面であってもよい。代替的に、第4主面14および第3主面13は、それぞれ(000-1)面から4°以下程度オフした面および(0001)面から4°以下オフした面であってもよい。
炭化珪素エピタキシャル層20の厚みは、10μm以上である。炭化珪素エピタキシャル層20の厚みは、特に限定されないが、たとえば15μm以上であってもよいし、20μm以上であってもよい。炭化珪素エピタキシャル層20の厚みは、特に限定されないが、たとえば30μm以下であってもよいし、25μm以下であってもよい。
図8に示されるように、第4主面14は、たとえば略円形を有している。第4主面14は、第1中央領域6を含んでいる。第1中央領域6は、一辺が90mmの正方形に囲まれている。第1中央領域6の対角線の交点は、第4主面14の中心8と一致している。第4主面14の外縁が円の場合は、第4主面14の中心8は、当該円の中心である。第4主面14の外縁が円弧状部と直線状のオリフラ部とを有する場合は、第4主面14の中心8は、円弧状部に沿って形成される円の中心である。第1中央領域6は、たとえば厚み方向103から第4主面14を見た場合に、中心8を回転対称中心とする正方形に囲まれた領域である。第1中央領域6の第1辺は、第1方向101に平行である。第1方向101は、<11-20>方向を第1主面11に投影した方向である。第1中央領域6の第1辺に連なる第2辺は、第2方向102に平行である。第2辺は、<1-100>方向である。
図8に示されるように、第1中央領域6は、一辺が30mmの9個の正方領域25からなる。正方領域25は、第1方向101に沿って3個配置され、第2方向102に沿って3個配置される。言い換えれば、第1方向101を行とし、第2方向102を列とすれば、正方領域25は、3行3列で配置されている。
厚み方向103とは、第2主面12から第4主面14に向かう方向である。第4主面14が平面である場合、厚み方向103は、第4主面14に対して垂直な方向である。第4主面14が曲面である場合、厚み方向103は、たとえば第4主面14の最小二乗平面に対して垂直な方向であってもよい。なお最小二乗平面とは、観測された物体の表面上の位置を表す座標(xi,yi,zi)と、ある平面(ax+by+cz+d=0)との最短距離の二乗の和が最小になるようにa、b、cおよびdが決定された平面のことである。
厚み方向103から見た場合、第4主面14の最大径120は、150mm以上である。最大径120は、たとえば200mm以上であってもよいし、250mm以上であってもよい。最大径120の上限は、特に限定されないが、たとえば300mmである。最大径120は、第4主面14の周縁上の異なる2点間の最長直線距離である。
本実施形態に係る炭化珪素エピタキシャル基板100のTTVは、3μm以下である。TTVは、2.5μm以下であってもよいし、2μm以下であってもよいし、1.8μm以下であってもよい。TTVの定義および測定方法は上述の通りである。図3において、第1主面11は、第4主面14に置き換えられる。
本実施形態に係る炭化珪素エピタキシャル基板100において、9個の正方領域26の中で最大のLTVは、1μm以下である。9個の正方領域26の中で最大のLTVは、0.9μm以下であってもよい。LTVの定義および測定方法は上述の通りである。図4において、第1主面11は、第4主面14に置き換えられる。
図8に示されるように、第2中央領域7は、交点3を中心とする一辺が250μmの正方形に囲まれた領域である。第2中央領域7における算術平均粗さSaは、0.12nm以下である。第2中央領域7における算術平均粗さSaは、0.11nm以下であってもよい。算術平均粗さSaの定義および測定方法は上述の通りである。
(フォトルミネッセンス測定方法)
第4主面14においては、フォトルミネッセンス光で観察した場合に、<1-100>方向の長さが26μm以上である発光領域がない。フォトルミネッセンス光の測定は、たとえばフォトデザイン社製のPLイメージング装置(PLIS-100)を用いて行うことができる。入射光の波長は、たとえば313nmである。受光フィルターは、たとえば750nmのローパスフィルタである。露光時間は、たとえば5秒である。第4主面14に存在する特定の欠陥領域は、フォトルミネッセンス光で観測した場合、白色の発光領域として識別され得る。第4主面14においては、フォトルミネッセンス光で観察した場合に、<1-100>方向の長さが30μm以上である発光領域がなくてもよいし、34μm以上である発光領域がなくてもよい。発光領域は、第4主面14の外周に連なる領域であってもよい。
次に、欠陥領域率の算出方法について説明する。上述のフォトデザイン社製のPLイメージング装置(PLIS-100)を用いて、第4主面14の全体の画像が取得される。当該画像に基づいて、発光領域の全体の面積が算出される。第4主面の全体の面積に対する発光領域の全体の面積が、欠陥領域率として求められる。第4主面14の欠陥領域率は、たとえば5%以下である。第4主面14の欠陥領域率は、3%以下であってもよいし、1%以下であってもよい。
次に、第2実施形態に係る炭化珪素エピタキシャル基板の製造方法について説明する。
たとえば第1実施形態に係る炭化珪素基板の製造方法を用いて、炭化珪素基板10が準備される。次に、炭化珪素基板10上に炭化珪素エピタキシャル層20が形成される。具体的には、たとえばCVD(Chemical Vapor Deposition)法により、炭化珪素エピタキシャル層20が炭化珪素基板10の第1主面11上にエピタキシャル成長する。エピタキシャル成長においては、原料ガスとしてたとえばシラン(SiH4)およびプロパン(C38)が用いられ、キャリアガスとしてたとえば水素(H2)が用いられ、ドーパントガスとしてたとえば窒素(N2)が用いられる。エピタキシャル成長中における炭化珪素基板10の温度は、たとえば1400℃以上1700℃以下程度である。これにより、炭化珪素エピタキシャル基板100が製造される。
次に、本実施形態の作用効果について説明する。
炭化珪素基板の研磨レートを向上させるためには、炭化珪素基板に加える圧力を高くすることと、回転数を高くすることが有効である。しかしながら、高加圧および高回転数で研磨を行うと、炭化珪素基板の表面の中央部と研磨布との間に研磨液が入り込みづらくなる。そのため、炭化珪素基板の中央部よりも外周部が研磨されやすくなる。結果として、炭化珪素基板の中央部が凸形状となり、平坦性が悪化する。また炭化珪素基板の表面と研磨布との間に十分な研磨液が行き渡らないため、表面の傷が多くなり、表面粗さが悪化する。
本実施形態においては、研磨布の表面に対して慣らし加工が行われる。これにより、研磨布の表面の親水性を高めることができる。そのため、高加圧および高回転数で炭化珪素基板を研磨した場合においても、研磨液を炭化珪素基板の表面と研磨布との間に行き渡らせることができる。よって、炭化珪素基板の平坦性を向上し、表面の傷を低減し、かつ表面粗さを低減することができる。結果として、炭化珪素基板上に形成される炭化珪素エピタキシャル層の表面欠陥の発生を抑制することができる。
サンプル1~3に係る炭化珪素基板10を以下の条件で研磨した。サンプル1および2の研磨においては、スエード製の研磨布を使用した。サンプル1の研磨で使用した研磨布をフジボウ愛媛社製スエード研磨布「G804W」(スエード1)とした。サンプル2の研磨で使用した研磨布をニッタハース社製スエード研磨布「supreme」(スエード2)とした。サンプル3の研磨で使用した研磨布をニッタハース社製不織布「SUBA800」とした。
サンプル1の研磨前には、研磨布に対して慣らし加工が行われた。一方、サンプル2および3の研磨前には、研磨布に対して慣らし加工が行われなかった。定盤の直径を600mmとした。サンプル1の慣らし加工においては、研磨布34上に純水が供給されかつダミーの炭化珪素基板が研磨布34の表面35に押し付けられた状態で、研磨ヘッド31および研磨布34を回転させた(図5参照)。第1主面11の圧力を200g/cmとした。研磨布34が固定されている定盤の回転数を50rpmとした。研磨ヘッド31の回転数を100rpmとした。純水には、砥粒が含まれていない。純水の流量を1000ml/分とした。慣らし加工の時間を4時間とした。
次に、サンプル1~3の研磨に使用する研磨布の表面の接触角を測定した。接触角の測定を液滴法により行った。具体的には、研磨布の表面に純水を滴下し、純水の表面と研磨布の表面との間の角度を測定した。サンプル1~3の研磨に使用する研磨布の接触角は、それぞれ0°、85°および130°であった。サンプル1~3の研磨に使用する研磨布においては、慣らし加工を行うことで親水性が向上したため、接触角が小さくなったと考えられる。
次に、サンプル1~3に係る炭化珪素基板10に対して研磨加工を実施した。研磨布34上に研磨液が供給されかつ被加工物としての炭化珪素基板10が研磨布34の表面35に押し付けられた状態で、研磨ヘッド31および研磨布34を回転させた。第1主面11の圧力を500g/cmとした。研磨布34が固定されている定盤の回転数を50rpmとした。研磨ヘッド31の回転数を100rpmとした。研磨液として、フジミインコーポレーテッド社製「DSC-0902」を使用した。研磨液の流量を1000ml/分とした。サンプル1~3の研磨レートは、それぞれ190nm/時間、125nm/時間および70nm/時間であった。
次に、サンプル1~3に係る炭化珪素基板10のTTVと、LTV(最大)と、エピタキシャル成長前の算術表面粗さSaとを測定した。TTVは、上述の方法により測定した。LTV(最大)は、第1主面の第1中央領域1が含む一辺が30mmの9個の正方領域25における最大のLTVである。LVTは、上述の方法により測定した。エピタキシャル成長前の算術表面粗さSaは、第1主面の第2中央領域2(図2参照)において測定した。第2中央領域2は、一辺が250μmの正方形に囲まれた領域である。算術表面粗さSaは、上述の方法により測定した。
Figure 2022031674000001
表1に示されるように、サンプル1~3に係る炭化珪素基板10のTTVは、それぞれ1.665μm、3.181μmおよび4.074μmであった。サンプル1~3に係る炭化珪素基板10のLTV(最大)は、それぞれ0.8321μm、1.2591μmおよび1.7192μmであった。サンプル1~3に係る炭化珪素基板10のエピタキシャル成長前の算術表面粗さSaは、それぞれ0.086nm、0.142nmおよび0.166nmであった。
次に、サンプル1~3に係る炭化珪素基板10上に炭化珪素エピタキシャル層20を形成した。その後、エピタキシャル成長後の算術表面粗さSaおよび欠陥領域率を測定した。エピタキシャル成長後の算術表面粗さSaは、第4主面の第2中央領域7(図8参照)において測定した。第2中央領域7は、一辺が250μmの正方形に囲まれた領域である。算術表面粗さSaおよび欠陥領域率は、上述の方法により測定した。
表1に示されるように、サンプル1~3のエピタキシャル成長後の算術表面粗さSaは、それぞれ0.107nm、0.189nmおよび0.225nmであった。サンプル1~3の欠陥領域率は、それぞれ0%、6.1%および10.4%であった。
図10は、研磨レートと接触角との関係を示す図である。図10に示されるように、接触角が小さくなるにつれて、研磨レートが高くなる。図11は、TTVと接触角との関係を示す図である。図11に示されるように、接触角が小さくなるにつれて、TTVが小さくなる。図12は、LTV(最大)と接触角との関係を示す図である。図12に示されるように、接触角が小さくなるにつれて、LTV(最大)が小さくなる。
図13は、欠陥領域率と接触角との関係を示す図である。図13に示されるように、接触角が小さくなるにつれて、欠陥領域率が小さくなる。図14は、算術表面粗さSaと接触角との関係を示す図である。図14に示されるように、接触角が小さくなるにつれて、エピタキシャル成長前およびエピタキシャル成長後における算術表面粗さSaが小さくなる。
以上の結果より、研磨布の表面に対して慣らし加工を行うことで接触角を低減可能であることが確認された。また低い接触角を有する研磨布で炭化珪素基板を研磨することにより、炭化珪素基板の研磨レートが向上することが確かめられた。さらに低い接触角を有する研磨布で炭化珪素基板を研磨することにより、炭化珪素基板の平坦性を向上させつつ表面粗さを低減可能であることが確認された。結果として、炭化珪素基板上に形成される炭化珪素エピタキシャル層の表面欠陥を抑制可能であることが確認された。
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1,6 第1中央領域、2,7 第2中央領域、3,8 交点、10 炭化珪素基板、11 第1主面、12 第2主面、13 第3主面、14 第4主面、20 炭化珪素エピタキシャル層、21,24 最高点、22,23 最低点、25,26 正方領域、30 研磨装置、31 研磨ヘッド、32 液体供給部、33 液体、34 研磨布、35 表面、36 孔、37 第1回転軸、38 第2回転軸、100 炭化珪素エピタキシャル基板、101 第1方向、102 第2方向、103 厚み方向、104 第4方向、105 オフ方向、106 第1回転方向、107 第2回転方向、108 方向、110 直線、113,114,116,117 平面、120 最大径、121 幅、122 深さ、123 厚み。

Claims (4)

  1. 第1主面と、前記第1主面と反対側の第2主面とを備え、かつポリタイプ4Hの炭化珪素により構成された炭化珪素基板であって、
    前記第1主面の最大径は、150mm以上であり、
    前記第1主面は、{0001}面に対して0°より大きく4°以下<11-20>方向に傾斜した面であり、
    前記炭化珪素基板のTTVは、3μm以下であり、
    前記第1主面は、一辺が90mmの正方形に囲まれた第1中央領域を含み、前記第1中央領域の対角線の交点は、前記第1主面の中心と一致し、
    前記第1中央領域は、一辺が30mmの9個の正方領域からなり、
    前記9個の正方領域の中で最大のLTVは、1μm以下である、炭化珪素基板。
  2. 前記TTVは、2μm以下である、請求項1に記載の炭化珪素基板。
  3. 第1主面と、前記第1主面と反対側の第2主面とを含み、かつポリタイプ4Hの炭化珪素により構成された炭化珪素基板と、
    前記第1主面に接する炭化珪素エピタキシャル層とを備えた炭化珪素エピタキシャル基板であって、
    前記炭化珪素エピタキシャル層の厚みは、10μm以上であり、
    前記炭化珪素エピタキシャル層は、前記第1主面と接する第3主面と、前記第3主面と反対側の第4主面を含み、
    前記第4主面の最大径は、150mm以上であり、
    前記第4主面は、{0001}面に対して0°より大きく4°以下のオフ角度で<11-20>方向に傾斜した面であり、
    前記炭化珪素エピタキシャル基板のTTVは、3μm以下であり、
    前記第4主面は、一辺が90mmの正方形に囲まれた第1中央領域を含み、前記第1中央領域の対角線の交点は、前記第1主面の中心と一致し、
    前記第1中央領域は、一辺が30mmの9個の正方領域からなり、
    前記9個の正方領域の中で最大のLTVは、1μm以下であり、
    前記第4主面においては、フォトルミネッセンス光で観察した場合に、<1-100>方向の長さが26μm以上である発光領域がない、炭化珪素エピタキシャル基板。
  4. 前記炭化珪素エピタキシャル層の厚みは、30μm以下である、請求項3に記載の炭化珪素エピタキシャル基板。
JP2021179562A 2017-05-19 2021-11-02 炭化珪素基板および炭化珪素エピタキシャル基板 Active JP7120427B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017099853 2017-05-19
JP2017099853 2017-05-19
PCT/JP2018/014232 WO2018211842A1 (ja) 2017-05-19 2018-04-03 炭化珪素基板および炭化珪素エピタキシャル基板
JP2019519103A JP6981469B2 (ja) 2017-05-19 2018-04-03 炭化珪素基板および炭化珪素エピタキシャル基板

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019519103A Division JP6981469B2 (ja) 2017-05-19 2018-04-03 炭化珪素基板および炭化珪素エピタキシャル基板

Publications (2)

Publication Number Publication Date
JP2022031674A true JP2022031674A (ja) 2022-02-22
JP7120427B2 JP7120427B2 (ja) 2022-08-17

Family

ID=64273681

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019519103A Active JP6981469B2 (ja) 2017-05-19 2018-04-03 炭化珪素基板および炭化珪素エピタキシャル基板
JP2021179562A Active JP7120427B2 (ja) 2017-05-19 2021-11-02 炭化珪素基板および炭化珪素エピタキシャル基板

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019519103A Active JP6981469B2 (ja) 2017-05-19 2018-04-03 炭化珪素基板および炭化珪素エピタキシャル基板

Country Status (4)

Country Link
US (1) US11322349B2 (ja)
JP (2) JP6981469B2 (ja)
CN (1) CN110651072A (ja)
WO (1) WO2018211842A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111835A1 (ja) * 2019-12-02 2021-06-10 住友電気工業株式会社 炭化珪素基板および炭化珪素基板の製造方法
KR102192525B1 (ko) * 2020-02-28 2020-12-17 에스케이씨 주식회사 웨이퍼, 에피택셜 웨이퍼 및 이의 제조방법
CN113658850A (zh) * 2021-07-06 2021-11-16 华为技术有限公司 复合衬底及其制备方法、半导体器件、电子设备
JP7217828B1 (ja) * 2022-06-02 2023-02-03 昭和電工株式会社 SiC単結晶基板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327931A (ja) * 2005-05-25 2006-12-07 Siltronic Ag 半導体層構造並びに半導体層構造の製造方法
JP2008103650A (ja) * 2006-09-21 2008-05-01 Nippon Steel Corp SiC単結晶基板の製造方法、及びSiC単結晶基板
JP2015189633A (ja) * 2014-03-28 2015-11-02 住友電気工業株式会社 炭化珪素単結晶基板、炭化珪素エピタキシャル基板およびこれらの製造方法
JP2015205819A (ja) * 2011-08-05 2015-11-19 住友電気工業株式会社 基板、半導体装置およびこれらの製造方法
JP2016501809A (ja) * 2012-10-26 2016-01-21 ダウ コーニング コーポレーションDow Corning Corporation 平坦なSiC半導体基板
WO2016018983A1 (en) * 2014-07-29 2016-02-04 Dow Corning Corporation Method of manufacturing large diameter silicon carbide crystal by sublimation and related semiconductor sic wafer
WO2016181667A1 (ja) * 2015-05-11 2016-11-17 住友電気工業株式会社 炭化珪素単結晶基板、炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531431B2 (en) * 2006-05-19 2009-05-12 Cree, Inc. Methods for reducing contamination of semiconductor devices and materials during wafer processing
CN101905439B (zh) * 2009-06-04 2012-07-04 宋健民 一种于内部原位生成空隙的抛光垫及其方法
JP5365454B2 (ja) 2009-09-30 2013-12-11 住友電気工業株式会社 Iii族窒化物半導体基板、エピタキシャル基板及び半導体デバイス
JP4513927B1 (ja) 2009-09-30 2010-07-28 住友電気工業株式会社 Iii族窒化物半導体基板、エピタキシャル基板及び半導体デバイス
CN102528646A (zh) 2010-12-31 2012-07-04 中芯国际集成电路制造(上海)有限公司 一种半导体研磨方法
CN103608498B (zh) 2011-07-20 2018-04-10 住友电气工业株式会社 碳化硅衬底、半导体装置及它们的制造方法
KR101947926B1 (ko) 2014-07-16 2019-02-13 쇼와 덴코 가부시키가이샤 에피택셜 탄화규소 웨이퍼의 제조 방법
JP6468291B2 (ja) * 2015-09-11 2019-02-13 住友電気工業株式会社 炭化珪素エピタキシャル基板、炭化珪素エピタキシャル基板の製造方法および炭化珪素半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327931A (ja) * 2005-05-25 2006-12-07 Siltronic Ag 半導体層構造並びに半導体層構造の製造方法
JP2008103650A (ja) * 2006-09-21 2008-05-01 Nippon Steel Corp SiC単結晶基板の製造方法、及びSiC単結晶基板
JP2015205819A (ja) * 2011-08-05 2015-11-19 住友電気工業株式会社 基板、半導体装置およびこれらの製造方法
JP2016501809A (ja) * 2012-10-26 2016-01-21 ダウ コーニング コーポレーションDow Corning Corporation 平坦なSiC半導体基板
JP2015189633A (ja) * 2014-03-28 2015-11-02 住友電気工業株式会社 炭化珪素単結晶基板、炭化珪素エピタキシャル基板およびこれらの製造方法
WO2016018983A1 (en) * 2014-07-29 2016-02-04 Dow Corning Corporation Method of manufacturing large diameter silicon carbide crystal by sublimation and related semiconductor sic wafer
WO2016181667A1 (ja) * 2015-05-11 2016-11-17 住友電気工業株式会社 炭化珪素単結晶基板、炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Also Published As

Publication number Publication date
US20200083039A1 (en) 2020-03-12
JPWO2018211842A1 (ja) 2020-03-26
US11322349B2 (en) 2022-05-03
CN110651072A (zh) 2020-01-03
JP7120427B2 (ja) 2022-08-17
WO2018211842A1 (ja) 2018-11-22
JP6981469B2 (ja) 2021-12-15

Similar Documents

Publication Publication Date Title
JP7120427B2 (ja) 炭化珪素基板および炭化珪素エピタキシャル基板
JP5644401B2 (ja) エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
JP5839069B2 (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャル基板およびこれらの製造方法
CN107532327B (zh) 碳化硅单晶衬底、碳化硅半导体器件以及制造碳化硅半导体器件的方法
JP2016139751A (ja) サファイア基板の研磨方法及び得られるサファイア基板
JP5375768B2 (ja) シリコンエピタキシャルウェーハの製造方法
US20220028700A1 (en) Gallium oxide substrate and method of manufacturing gallium oxide substrate
US10395933B2 (en) Method for manufacturing semiconductor wafer
WO2021132491A1 (ja) Iii族窒化物単結晶基板およびその製造方法
JP6260603B2 (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャル基板およびこれらの製造方法
WO2010128671A1 (ja) シリコンエピタキシャルウェーハの製造方法
JP6465193B2 (ja) 炭化珪素単結晶基板および炭化珪素エピタキシャル基板
JP6747376B2 (ja) シリコンウエーハの研磨方法
JP2013125969A (ja) 半導体基板の研磨方法及び半導体基板の研磨装置
WO2023181586A1 (ja) 窒化アルミニウム単結晶基板、及び窒化アルミニウム単結晶基板の製造方法
WO2023149166A1 (ja) 炭化珪素エピタキシャル基板
JP2023114215A (ja) SiCエピタキシャル基板およびその製造方法
JP2017075072A (ja) 炭化珪素エピタキシャル基板
Zabasajja et al. Advanced CMP conditioning for front end applications
JPWO2016181667A1 (ja) 炭化珪素単結晶基板、炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R150 Certificate of patent or registration of utility model

Ref document number: 7120427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150