WO2023149166A1 - 炭化珪素エピタキシャル基板 - Google Patents

炭化珪素エピタキシャル基板 Download PDF

Info

Publication number
WO2023149166A1
WO2023149166A1 PCT/JP2023/000648 JP2023000648W WO2023149166A1 WO 2023149166 A1 WO2023149166 A1 WO 2023149166A1 JP 2023000648 W JP2023000648 W JP 2023000648W WO 2023149166 A1 WO2023149166 A1 WO 2023149166A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
main surface
carbide epitaxial
less
density
Prior art date
Application number
PCT/JP2023/000648
Other languages
English (en)
French (fr)
Inventor
恭子 沖田
直樹 梶
翼 本家
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2023578432A priority Critical patent/JPWO2023149166A1/ja
Publication of WO2023149166A1 publication Critical patent/WO2023149166A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Definitions

  • the present disclosure relates to silicon carbide epitaxial substrates.
  • This application claims priority from Japanese Patent Application No. 2022-014815 filed on February 2, 2022. All the contents described in the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 discloses a silicon carbide epitaxial substrate having a low threading dislocation density in the silicon carbide substrate.
  • a silicon carbide epitaxial substrate includes a silicon carbide substrate and a silicon carbide epitaxial layer.
  • the silicon carbide substrate includes a first main surface.
  • the silicon carbide epitaxial layer is provided on the first main surface.
  • a silicon carbide substrate has threading screw dislocations.
  • a silicon carbide substrate has threading edge dislocations.
  • the silicon carbide epitaxial layer has blue-emitting defects.
  • the silicon carbide epitaxial layer includes a second main surface. The second main surface is on the opposite side of the interface between the silicon carbide substrate and the silicon carbide epitaxial layer. A blue-emitting defect is exposed on the second main surface.
  • H is 180° or more and 230° or less
  • S is 60 or more and 170 or less
  • V is 190 or more and 255 or less.
  • the plurality of square regions includes a plurality of first outer peripheral regions located on the outermost periphery of the plurality of square regions, and a plurality of first outer regions. and a plurality of second perimeter regions that are in contact with one perimeter region.
  • the average LTIR of the silicon carbide substrate in the plurality of first outer regions and the plurality of second outer regions is 0.6 ⁇ m or less.
  • the surface density of threading screw dislocations on the first principal surface is defined as the first surface density
  • the surface density of threading edge dislocations on the first surface is defined as the second surface density
  • the surface density of blue light-emitting defects on the second surface is defined as the second surface density.
  • the ratio of the third areal density to the sum of the first and second areal densities is 0.03% or less.
  • FIG. 1 is a schematic plan view showing the configuration of a silicon carbide epitaxial substrate according to this embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II of FIG.
  • FIG. 3 is an enlarged schematic cross-sectional view showing region III in FIG.
  • FIG. 4 is a schematic diagram showing the configuration of a color photoluminescence imaging apparatus.
  • FIG. 5 is a schematic plan view showing the LTIR measurement area.
  • FIG. 6 is a schematic diagram explaining the definition of LTIR.
  • FIG. 7 is a schematic cross-sectional view taken along line VII-VII of FIG.
  • FIG. 8 is a schematic cross-sectional view showing the definition of overall thickness variation.
  • FIG. 1 is a schematic plan view showing the configuration of a silicon carbide epitaxial substrate according to this embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II of FIG.
  • FIG. 3 is an enlarged schematic cross-sectional view showing region III in FIG.
  • FIG. 9 is a flow chart schematically showing a method for manufacturing a silicon carbide epitaxial substrate according to this embodiment.
  • FIG. 10 is a schematic cross-sectional view showing the structure of a silicon carbide wafer.
  • FIG. 11 is an enlarged schematic diagram showing region XI in FIG.
  • FIG. 12 is a schematic plan view showing the configuration of the polishing apparatus.
  • FIG. 13 is a schematic front view showing the configuration of the polishing apparatus.
  • FIG. 14 is an enlarged schematic cross-sectional view showing the configuration of the dummy wafer in the process of determining the required polishing amount.
  • FIG. 15 is an enlarged schematic plan view showing the configuration of the dummy wafer in the process of determining the required polishing amount.
  • FIG. 10 is a schematic cross-sectional view showing the structure of a silicon carbide wafer.
  • FIG. 11 is an enlarged schematic diagram showing region XI in FIG.
  • FIG. 12 is a schematic plan view showing the configuration of the polishing apparatus.
  • FIG. 16 is an enlarged schematic diagram showing the configuration of the dummy wafer after the required polishing amount determination step.
  • FIG. 17 is an enlarged schematic diagram showing the configuration of the silicon carbide substrate in the polishing step.
  • FIG. 18 is an enlarged schematic cross-sectional view showing a state in which a silicon carbide epitaxial layer is formed after polishing the first main surface of the silicon carbide substrate to sufficiently reduce the surface roughness.
  • FIG. 19 is a schematic cross-sectional view showing a state in which the amount of mechanical polishing in the polishing step is excessively large.
  • An object of the present disclosure is to provide a silicon carbide epitaxial substrate that can improve the yield of silicon carbide semiconductor devices.
  • Silicon carbide epitaxial substrate 100 has silicon carbide substrate 10 and silicon carbide epitaxial layer 20 .
  • Silicon carbide substrate 10 has a first main surface 1 .
  • Silicon carbide epitaxial layer 20 is provided on first main surface 1 .
  • Silicon carbide substrate 10 has threading screw dislocations 81 .
  • Silicon carbide substrate 10 has threading edge dislocations 82 .
  • Silicon carbide epitaxial layer 20 has blue-emitting defects 83 .
  • Silicon carbide epitaxial layer 20 has a second main surface 2 . Second main surface 2 is on the opposite side of interface 6 between silicon carbide substrate 10 and silicon carbide epitaxial layer 20 . Blue light-emitting defect 83 is exposed on second main surface 2 .
  • H is 180° or more and 230° or less
  • S is 60 or more and 170 or less
  • V is 190 or more and 255 or less.
  • the plurality of square regions 50 are formed by a plurality of first outer peripheral regions 61 located on the outermost periphery of the plurality of square regions 50. and a plurality of second outer peripheral regions 62 in contact with the plurality of first outer peripheral regions 61 .
  • the average value of LTIR of silicon carbide substrate 10 in multiple first outer peripheral regions 61 and multiple second outer peripheral regions 62 is 0.6 ⁇ m or less.
  • the areal density of the threading screw dislocations 81 on the first main surface 1 is defined as the first surface density
  • the surface density of the threading edge dislocations 82 on the first main surface 1 is defined as the second surface density
  • blue-emitting defects on the second main surface 2 Assuming that the areal density of 83 is the third areal density, the ratio of the third areal density to the total value of the first areal density and the second areal density is 0.03% or less.
  • the variation in the overall thickness of silicon carbide substrate 10 may be 6 ⁇ m or less.
  • the ratio of the third surface density to the sum of the first surface density and the second surface density is 0.02% or less.
  • the ratio of the third surface density to the first surface density may be 0.2% or less.
  • the first surface density may be 1500/cm 2 or less.
  • the first surface density may be 500/cm 2 or less.
  • the first surface density may be 100/cm 2 or less.
  • the second surface density may be 10000/cm 2 or less.
  • the second surface density may be 5000/cm 2 or less.
  • the second surface density may be 2000/cm 2 or less.
  • diameter D of second main surface 2 may be 150 mm or more.
  • silicon carbide substrate 10 may have an electrical resistivity of 10 m ⁇ cm or more.
  • FIG. 1 is a schematic plan view showing the configuration of a silicon carbide epitaxial substrate according to this embodiment.
  • silicon carbide epitaxial substrate 100 has second main surface 2 and outer peripheral side surface 9 .
  • the second major surface 2 extends along each of the first direction 101 and the second direction 102 .
  • the first direction 101 is, but not limited to, the ⁇ 11-20> direction, for example.
  • the second direction 102 is, but not limited to, the ⁇ 1-100> direction, for example.
  • the outer peripheral side surface 9 continues to the second main surface 2 .
  • Silicon carbide epitaxial substrate 100 is made of, for example, hexagonal silicon carbide.
  • a polytype of hexagonal silicon carbide is, for example, 4H.
  • the second main surface 2 is a plane inclined with respect to the ⁇ 0001 ⁇ plane.
  • the off angle of second main surface 2 with respect to the ⁇ 0001 ⁇ plane may be, for example, 8° or less.
  • the second main surface 2 may be a surface inclined by an off angle of 8° or less with respect to the (0001) plane.
  • the second main surface 2 may be a surface inclined by an off angle of 8° or less with respect to the (000-1) plane.
  • the inclination direction (off direction) of second main surface 2 with respect to the ⁇ 0001 ⁇ plane is, for example, the ⁇ 11-20> direction.
  • the off angle of second main surface 2 with respect to the ⁇ 0001 ⁇ plane is not particularly limited, but may be, for example, 7° or less, or 6° or less.
  • the off-angle of second main surface 2 with respect to the ⁇ 0001 ⁇ plane is not particularly limited, but may be, for example, 1° or more, or 2° or more.
  • the outer peripheral side surface 9 has an orientation flat portion 7 and an arcuate portion 8 .
  • the arcuate portion 8 continues to the orientation flat portion 7 .
  • the orientation flat portion 7 may extend along the first direction 101 when viewed from a direction perpendicular to the second main surface 2 .
  • the diameter D of the second main surface 2 is, for example, 150 mm or more. Although the diameter D is not particularly limited, it may be, for example, 200 mm or more, or 250 mm or more. Although the diameter D is not particularly limited, it may be, for example, 300 mm or less. The diameter D is the longest linear distance between two different points on the outer peripheral side surface 9 when viewed in a direction perpendicular to the second main surface 2 .
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. The cross section shown in FIG. 2 is perpendicular to the second major surface 2 and parallel to the first direction 101 .
  • silicon carbide epitaxial substrate 100 according to the present embodiment has silicon carbide substrate 10 and silicon carbide epitaxial layer 20 .
  • Silicon carbide epitaxial layer 20 is provided on silicon carbide substrate 10 .
  • Silicon carbide epitaxial layer 20 is in contact with silicon carbide substrate 10 .
  • the polytype of silicon carbide substrate 10 is, for example, 4H.
  • silicon carbide epitaxial layer 20 has a polytype of 4H, for example.
  • Silicon carbide epitaxial layer 20 forms second main surface 2 of silicon carbide epitaxial substrate 100 .
  • the second major surface 2 is opposite the interface 6 .
  • Interface 6 is at the boundary between silicon carbide substrate 10 and silicon carbide epitaxial layer 20 .
  • Silicon carbide substrate 10 has a first main surface 1 and a third main surface 3 .
  • silicon carbide substrate 10 is in contact with silicon carbide epitaxial layer 20 .
  • silicon carbide epitaxial layer 20 is provided on first main surface 1 .
  • the third major surface 3 is opposite the first major surface 1 .
  • Second main surface 2 is the surface of silicon carbide epitaxial substrate 100 .
  • Third main surface 3 is the back surface of silicon carbide epitaxial substrate 100 .
  • the first main surface 1 may have polishing marks.
  • the polishing marks When viewed from the direction perpendicular to the first main surface 1, the polishing marks have an elongated shape.
  • the length of the polishing mark in the longitudinal direction is, for example, ten times or more the length of the polishing mark in the lateral direction.
  • Polishing marks may be linear or curved.
  • the length of the polishing marks When viewed from the direction perpendicular to first main surface 1, the length of the polishing marks is, for example, 0.5 mm or more.
  • the depth of polishing marks in the direction perpendicular to first main surface 1 is, for example, 0.5 ⁇ m or more.
  • the surface density of polishing marks on first main surface 1 is, for example, 1 piece/cm 2 or less.
  • Polishing marks on the first principal surface 1 can be identified by using a laser microscope, a white light interference microscope, or a WASAVI series "SICA 6X” defect inspection apparatus manufactured by Lasertec Co., Ltd., or the like. Specifically, when second main surface 2 of silicon carbide epitaxial layer 20 is observed from above, grooves intersecting linear streaks extending in the ⁇ 1-100> direction are identified as polishing marks.
  • silicon carbide substrate 10 has a plurality of threading dislocations 80 .
  • the multiple threading dislocations 80 are composed of multiple threading screw dislocations 81 and multiple threading edge dislocations 82 .
  • Each of the plurality of threading dislocations 80 continuously extends from the third principal surface 3 to the first principal surface 1 .
  • the direction in which each of the plurality of threading dislocations 80 extends is the fourth direction 104 .
  • the fourth direction 104 is, for example, the ⁇ 0001> direction.
  • a third direction 103 is a direction perpendicular to the second main surface 2 . From another point of view, the third direction 103 is a direction perpendicular to each of the first direction 101 and the second direction 102 . of the fourth direction 104 with respect to the third direction 103 corresponds to the off angle of the second main surface 2 .
  • Each of the plurality of threading dislocations 80 is exposed on the third main surface 3 .
  • silicon carbide epitaxial layer 20 has a plurality of blue light emitting defects 83 .
  • Each of the plurality of blue light-emitting defects 83 is formed due to threading dislocations 80 .
  • each of blue light-emitting defects 83 is connected to threading dislocation 80 .
  • Each of the plurality of blue light-emitting defects 83 may be connected to the threading screw dislocation 81 or may be connected to the threading edge dislocation 82 .
  • Each of the plurality of blue light-emitting defects 83 continuously extends from interface 6 to second main surface 2 .
  • the width of each of the plurality of blue light emitting defects 83 in the first direction 101 increases with increasing distance from the interface 6 .
  • each of the plurality of blue light emitting defects 83 When viewed from a direction perpendicular to each of the first direction 101 and the third direction 103, each of the plurality of blue light emitting defects 83 is triangular, for example. Each of the plurality of blue light-emitting defects 83 is exposed on the second main surface 2 .
  • FIG. 3 is an enlarged schematic cross-sectional view showing region III in FIG.
  • silicon carbide substrate 10 includes normal portion 11 and work-affected portion 12 .
  • the normal portion 11 is a portion composed of a normal crystal lattice that is not damaged by slicing.
  • Process-affected portion 12 is a portion in which the arrangement of the crystal lattice of silicon carbide substrate 10 is disturbed due to processing damage caused by slicing.
  • the work-affected portion 12 continues to the normal portion 11 .
  • Work-affected portion 12 forms a portion of first main surface 1 of silicon carbide substrate 10 . From another point of view, work-affected portion 12 is in contact with silicon carbide epitaxial layer 20 .
  • the work-affected portion 12 is provided near the threading dislocation 80 .
  • Each of the plurality of blue light-emitting defects 83 is formed due to the work-affected portion 12 . From another point of view, each of the plurality of blue light-emitting defects 83 continues to the work-affected portion 12 .
  • Each of the plurality of blue light emitting defects 83 is, for example, a triangular defect.
  • Each of the plurality of blue light emitting defects 83 may include stacking faults. When viewed in a direction perpendicular to the second main surface 2, the shape of the blue-emitting defect 83 is, for example, triangular.
  • the areal density of the threading screw dislocations 81 on the first main surface 1 is referred to as the first areal density.
  • the first areal density is, for example, 1500/cm 2 or less.
  • the first areal density is not particularly limited, it may be, for example, 1000/cm 2 or less, 500/cm 2 or less, or 100/cm 2 or less.
  • the first areal density is not particularly limited, it may be, for example, 10/cm 2 or more, or 50/cm 2 or more.
  • the areal density of the threading edge dislocations 82 on the first main surface 1 is referred to as a second areal density.
  • the second areal density is, for example, 10000/cm 2 or less.
  • the second areal density is not particularly limited, it may be, for example, 5000/cm 2 or less, or 2000/cm 2 or less.
  • the second areal density is not particularly limited, it may be, for example, 100/cm 2 or more, or 500/cm 2 or more.
  • the areal density of each of the threading screw dislocations 81 and the threading edge dislocations 82 is determined using molten potassium hydroxide (KOH), for example.
  • KOH molten potassium hydroxide
  • silicon carbide epitaxial layer 20 is removed using mechanical polishing or the like. Thereby, first main surface 1 of silicon carbide substrate 10 is exposed.
  • the first main surface 1 is etched with molten KOH.
  • silicon carbide regions in the vicinity of each of threading screw dislocation 81 and threading edge dislocation 82 exposed on first main surface 1 are etched, thereby forming etch pits on first main surface 1 .
  • the value obtained by dividing the number of etch pits formed on the first main surface 1 by the measured area of the first main surface 1 is the area density of each of the threading screw dislocations 81 and the threading edge dislocations 82 on the first main surface 1. corresponds to
  • the temperature of the KOH melt is, for example, about 500° C. or higher and 550° C. or lower.
  • the etching time is about 5 minutes or more and 10 minutes or less. After etching, the first main surface 1 is observed using a normalski differential interference microscope.
  • Etch pits caused by threading screw dislocations 81, etch pits caused by threading edge dislocations 82, and etch pits caused by basal plane dislocations are distinguished by the following method.
  • Etch pits caused by basal plane dislocations have an elliptical planar shape.
  • Etch pits caused by threading screw dislocations 81 have a circular or hexagonal planar shape and a large pit size.
  • Etch pits caused by threading edge dislocations 82 have a round or hexagonal planar shape and a small pit size.
  • the areal density of the blue light-emitting defects 83 on the second main surface 2 is referred to as a third areal density.
  • the third areal density is, for example, 2 particles/cm 2 or less.
  • the third areal density is not particularly limited, it may be, for example, 1 piece/cm 2 or less, or 0.5 piece/cm 2 or less.
  • the third areal density is not particularly limited, it may be, for example, 0.05/cm 2 or more, or 0.07/cm 2 or more.
  • the ratio of the third areal density to the total value of the first areal density and the second areal density is, for example, 0.03% or less.
  • the ratio of the third areal density to the total value of the first areal density and the second areal density is not particularly limited, it may be, for example, 0.02% or less, or may be 0.01% or less.
  • the ratio of the third areal density to the total value of the first areal density and the second areal density is not particularly limited, it may be, for example, 0.001% or more, or may be 0.005% or more. .
  • the ratio of the third areal density to the first areal density is, for example, 0.2% or less.
  • the ratio of the third areal density to the first areal density may be 0.15% or less, or may be 0.1% or less.
  • the ratio of the third areal density to the first areal density is not particularly limited, but may be, for example, 0.01% or more, or 0.05% or more.
  • the blue light emission defect 83 can be identified by a photoluminescence imaging device.
  • FIG. 4 is a schematic diagram showing the configuration of a color photoluminescence imaging apparatus.
  • a color photoluminescence imaging device for example, a PL imaging device (SemiScope (trademark) PLI-200) manufactured by Photon Design can be used.
  • the color photoluminescence imaging device 200 mainly has an excitation light generation unit 220 and an imaging unit 230 .
  • the excitation light generation unit 220 has a light source section 221 , a light guide section 222 and a filter section 223 .
  • the light source unit 221 can generate excitation light LE having energy higher than the bandgap of hexagonal silicon carbide.
  • Light source unit 221 is, for example, a mercury xenon lamp.
  • Light guide portion 222 can guide the light emitted from light source portion 221 so that second main surface 2 (see FIG. 2 ) of silicon carbide epitaxial substrate 100 is irradiated with the light.
  • Light guide section 222 has, for example, an optical fiber.
  • the excitation light generation units 220 may be arranged on both sides of the near-infrared objective lens 233 .
  • the filter section 223 selectively transmits light having a specific wavelength corresponding to energy higher than the bandgap of hexagonal silicon carbide.
  • the wavelength corresponding to the bandgap of hexagonal silicon carbide is typically about 390 nm. Therefore, a band-pass filter that specifically transmits light having a wavelength of approximately 313 nm, for example, is used as filter section 223 .
  • the transmission wavelength range of filter section 223 may be, for example, 290 nm or more and 370 nm or less, 300 nm or more and 330 nm or less, or 300 nm or more and 320 nm or less.
  • the imaging unit 230 mainly has a controller 231 , a stage 232 , a near-infrared objective lens 233 and a color image sensor 235 .
  • the control unit 231 controls the displacement operation of the stage 232 and the photographing operation of the color image sensor 235, and is, for example, a personal computer.
  • Stage 232 supports silicon carbide epitaxial substrate 100 such that second main surface 2 is exposed.
  • Stage 232 is, for example, an XY stage that displaces the position of second main surface 2 .
  • the near-infrared objective lens 233 is arranged above the second main surface 2 .
  • the magnification of the near-infrared objective lens 233 is, for example, 4.5 times.
  • Color image sensor 235 receives photoluminescence light emitted from silicon carbide epitaxial substrate 100 .
  • excitation light generation unit 220 is used to irradiate second main surface 2 of silicon carbide epitaxial substrate 100 with excitation light LE.
  • silicon carbide epitaxial substrate 100 generates photoluminescence light LL.
  • the wavelength of the excitation light LE is, for example, 313 nm.
  • the intensity of the excitation light LE is, for example, 1 mW/cm 2 or more and 2 W/cm 2 or less.
  • the exposure time of the irradiation light is, for example, 0.5 seconds or more and 120 seconds or less.
  • the measurement temperature is, for example, room temperature (27° C.).
  • the color image sensor 235 is, for example, a CCD (Charge Coupled Device) image sensor.
  • the type of CCD element is, for example, a back-illuminated deep depletion type.
  • the CCD image sensor is eXcelon (trademark) manufactured by Teledyne, for example.
  • the imaging wavelength range is, for example, 310 nm or more and 1024 nm or less.
  • the element format is, for example, 1024ch ⁇ 1024ch.
  • the image area is, for example, 13.3 mm x 13.3 mm.
  • the element size is, for example, 13 ⁇ m ⁇ 13 ⁇ m.
  • the number of pixels is, for example, 480 pixels ⁇ 640 pixels.
  • the image size is, for example, 1.9 mm ⁇ 2.6 mm.
  • the optical characteristics of the blue light emitting defect 83 are specified.
  • the color of the image of the blue-emitting defect 83 obtained from the color image sensor is blue, for example.
  • H is 180° or more and 230° or less
  • S is 60 or more and 170 or less
  • V is 190 or more and 255 or less.
  • HSV color space is one of color expression methods that express colors using Hue, Saturation, and Value.
  • H ranges from 0° to 360°
  • S ranges from 0 to 255
  • V ranges from 0 to 255.
  • S and V are represented in decimal numbers, for example.
  • the degree of sagging of silicon carbide substrate 10 can be quantified using an index called LTIR (Local Total Indicated Reading) or TTV (Total Thickness Variation).
  • LTIR Local Total Indicated Reading
  • TTV Total Thickness Variation
  • FIG. 5 is a schematic plan view showing the LTIR measurement area.
  • first main surface 1 of silicon carbide substrate 10 is divided into a plurality of square regions 50 .
  • the length of one side (first length W1) of each of the square regions 50 is 10 mm.
  • Diameter D of first main surface 1 is, for example, 150 mm.
  • a square of 150 mm ⁇ 150 mm circumscribing the outer peripheral side surface 9 is assumed.
  • the number of square regions 50 surrounded by the outer peripheral side surface 9 when viewed in a direction perpendicular to the first main surface 1 is 145.
  • a square area that intersects the outer peripheral side surface 9 when viewed in a direction perpendicular to the first main surface 1 is partially missing and does not form a complete square area. Therefore, the square area that intersects with the outer peripheral side surface 9 is not regarded as the square area 50 forming the first main surface 1 .
  • One side of each of the plurality of square regions 50 is parallel to the extending direction of the orientation flat portion 7 when viewed in the direction perpendicular to the first main surface 1 .
  • the multiple square areas 50 are composed of multiple peripheral areas 60 and multiple central areas 70 .
  • the plurality of outer peripheral regions 60 are composed of a plurality of first outer peripheral regions 61 and a plurality of second outer peripheral regions 62 .
  • the plurality of first outer peripheral regions 61 are positioned at the outermost periphery of the plurality of square regions 50 . From another point of view, each of the plurality of first outer peripheral regions 61 is a square region 50 in contact with a square region intersecting the outer peripheral side surface 9 .
  • Each of the plurality of second outer peripheral regions 62 is a square region 50 in contact with the plurality of first outer peripheral regions 61 .
  • Each of the plurality of second outer peripheral regions 62 is located inside the plurality of first outer peripheral regions 61 .
  • Each of the plurality of second outer peripheral regions 62 is separated from the square region intersecting the outer peripheral side surface 9 .
  • hatched areas are the plurality of outer peripheral areas 60 .
  • a plurality of central regions 70 are surrounded by a plurality of peripheral regions 60 .
  • Each of the plurality of central regions 70 is separated from the square region intersecting the outer peripheral side surface 9 .
  • the first main surface 1 has 145 square regions 50 each having a side length (first length W1) of 10 mm. classified into LTIR is measured in each of the 145 square regions 50 .
  • the number of the outer peripheral regions 60 is 68 and the number of the central regions 70 is 77.
  • the number of first outer peripheral regions 61 is 36, and the number of second outer peripheral regions 62 is 32. As shown in FIG.
  • FIG. 6 is a schematic diagram explaining the definition of LTIR.
  • LTIR
  • LTIR is measured from the least-squares plane L0 to the highest point of the first main surface 1 (first highest point P1) (first highest point height T1) and the height from the least squares plane L0 to the lowest point (first lowest point P2) of the first main surface 1 (first lowest point height T2) is the sum of
  • the first highest point P1 refers to a region of the first main surface 1 located on the opposite side of the least squares plane L0 to the third main surface 3 side, and along a direction perpendicular to the least squares plane L0 This is the position where the distance between the least-squares plane L0 and the first main surface 1 is maximum.
  • the first lowest point P2 is the least squares plane L0 along the direction perpendicular to the least squares plane L0 in the region of the first main surface 1 located on the third main surface 3 side with respect to the least squares plane L0. and the first main surface 1 is the maximum. That is, LTIR consists of a plane (first highest point plane L1) that passes through the first highest point P1 and is parallel to the least squares plane L0, and a plane that passes through the first lowest point P2 and is parallel to the least squares plane L0 (first It is the distance from the lowest point plane L2).
  • the LTIR of silicon carbide substrate 10 and the LTIR of silicon carbide epitaxial substrate 100 are substantially the same.
  • the LTIR of silicon carbide epitaxial substrate 100 may be measured instead of the LTIR of silicon carbide substrate 10 .
  • the above procedure is performed on second main surface 2 after the entire surface of third main surface 3 is adsorbed.
  • FIG. 7 is a schematic cross-sectional view taken along line VII-VII in FIG.
  • the cross-section shown in FIG. 7 is perpendicular to the first major surface 1 and parallel to the first direction 101 .
  • the first main surface 1 approaches the third main surface 3 as it approaches the outer peripheral side surface 9 .
  • the first outer peripheral region 61 is between the third main surface 3 and the second outer peripheral region 62 in the third direction 103 .
  • the central region 70 may be linear.
  • outer peripheral region 60 is curved, for example. From another point of view, the average LTIR of silicon carbide substrate 10 in the plurality of outer regions 60 is greater than the average LTIR of silicon carbide substrate 10 in the plurality of central regions 70 .
  • the second outer peripheral region 62 is curved, for example.
  • the first outer peripheral region 61 is curved, for example.
  • the curvature of the first outer peripheral region 61 is larger than the curvature of the second outer peripheral region 62 .
  • the average LTIR value of silicon carbide substrate 10 in the plurality of first outer peripheral regions 61 is greater than the average LTIR value of silicon carbide substrate 10 in the plurality of second outer peripheral regions 62 .
  • the average value of LTIR of silicon carbide substrate 10 in a plurality of outer peripheral regions 60 is, for example, 0.6 ⁇ m or less.
  • LTIR of silicon carbide substrate 10 in plurality of outer peripheral regions 60 is not particularly limited, but may be, for example, 0.4 ⁇ m or less, or may be 0.25 ⁇ m or less.
  • LTIR of silicon carbide substrate 10 in plurality of outer peripheral regions 60 is not particularly limited, but may be, for example, 0.01 ⁇ m or more, 0.03 ⁇ m or more, or 0.05 ⁇ m or more. .
  • FIG. 8 is a schematic cross-sectional view showing the definition of overall thickness variation.
  • TTV
  • TTV is measured, for example, by the following procedure. First, silicon carbide substrate 10 is prepared before silicon carbide epitaxial layer 20 is formed. Third main surface 3 of silicon carbide substrate 10 is entirely attracted to the flat attraction surface. Next, an overall image of the first main surface 1 is optically acquired. As shown in FIG. 8 and Equation 2, TTV is the highest point (second From the height (second highest point height T3) to the highest point P3), the height from the third main surface 3 to the lowest point (second lowest point P4) of the first main surface 1 (second lowest point height (T4) is subtracted.
  • TTV is the distance between the longest distance between the first main surface 1 and the third main surface 3 and the shortest distance between the first main surface 1 and the third main surface 3 in the direction perpendicular to the third main surface 3 . It is the value after subtracting the distance. That is, TTV is a plane (second highest point plane L3) that passes through the second highest point P3 and is parallel to the third main surface 3, and a plane that passes through the second lowest point P4 and is parallel to the third main surface 3 ( It is the distance from the second lowest point plane L4).
  • the TTV of silicon carbide substrate 10 and the TTV of silicon carbide epitaxial substrate 100 are substantially the same.
  • the TTV of silicon carbide epitaxial substrate 100 may be measured instead of the TTV of silicon carbide substrate 10 .
  • the above procedure is performed on second main surface 2 after the entire surface of third main surface 3 is adsorbed.
  • the TTV of silicon carbide substrate 10 according to the present embodiment is, for example, 6 ⁇ m or less. Although TTV is not particularly limited, it may be, for example, 4 ⁇ m or less, or 2 ⁇ m or less. Although TTV is not particularly limited, it may be, for example, 0.1 ⁇ m or more, or 0.5 ⁇ m or more.
  • second lowest point P4 is located, for example, on the ridgeline between first main surface 1 and outer peripheral side surface 9 .
  • the second highest point P3 is located in the central region 70, for example.
  • Silicon carbide substrate 10 has an electrical resistivity of, for example, 10 m ⁇ cm or more.
  • the electrical resistivity of silicon carbide substrate 10 is not particularly limited, but may be, for example, 15 m ⁇ cm or more, or may be 18 m ⁇ cm or more.
  • the electrical resistivity of silicon carbide substrate 10 is not particularly limited, but is, for example, 25 m ⁇ cm or less.
  • the electrical resistivity of silicon carbide substrate 10 can be measured, for example, using an electrical resistivity measuring device "EC-80" manufactured by Napson. Specifically, the electrical resistivity of silicon carbide substrate 10 is measured after silicon carbide epitaxial layer 20 is removed.
  • FIG. 9 is a flow chart schematically showing a method for manufacturing a silicon carbide epitaxial substrate according to this embodiment.
  • the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment includes a silicon carbide wafer preparation step (S10), a necessary polishing amount determination step (S20), a polishing step (S30), and epitaxial growth. It mainly has a step (S40).
  • a silicon carbide wafer preparation step (S10) is performed.
  • a silicon carbide crystal of polytype 4H is produced by a sublimation method.
  • a plurality of silicon carbide wafers 90 are produced by slicing the silicon carbide crystal using, for example, a wire saw. Each configuration of a plurality of silicon carbide wafers 90 is substantially the same.
  • FIG. 10 is a schematic cross-sectional view showing the configuration of the silicon carbide wafer 90.
  • silicon carbide wafer 90 has fourth main surface 4 and fifth main surface 5 .
  • the fifth major surface 5 is opposite the fourth major surface 4 .
  • Silicon carbide wafer 90 has a plurality of threading dislocations 80 . Threading dislocations 80 continuously extend from the fourth main surface 4 to the fifth main surface 5 . Threading dislocations 80 are exposed on the fourth main surface 4 . Threading dislocations 80 are exposed on the fifth main surface 5 .
  • the cross section shown in FIG. 10 is parallel to each of the first direction 101 and the third direction 103 and passes through the fourth main surface 4 .
  • FIG. 11 is an enlarged schematic diagram showing region XI in FIG.
  • silicon carbide wafer 90 includes normal portion 11 and work-affected portion 12 .
  • the work-affected portion 12 covers the normal portion 11 .
  • the work-affected portion 12 forms the fourth main surface 4 .
  • the fourth main surface 4 is a surface formed by slicing with a wire saw and not polished thereafter.
  • the fifth main surface 5 may be a surface smoothed by polishing.
  • the thickness of silicon carbide wafer 90 is set to first thickness H1. As described above, silicon carbide wafer 90 is prepared.
  • FIG. 12 is a schematic plan view showing the configuration of the polishing apparatus.
  • FIG. 13 is a schematic front view showing the configuration of the polishing apparatus.
  • Polishing device 30 is, for example, a mechanical polishing device.
  • the polishing device 30 mainly has a polishing head 31, a polishing agent supply section 32, a polishing cloth 34, and a surface plate 35.
  • the polishing head 31 has a support plate 37 , a weight 38 and a column 39 .
  • Weight 38 is positioned on support plate 37 .
  • the strut 39 is positioned on the weight 38 .
  • a polishing cloth 34 is fixed to a surface plate 35 .
  • As the polishing cloth 34 for example, polishing cloth "KV" series manufactured by Poval Kogyo Co., Ltd. can be used.
  • the polishing cloth 34 may be, for example, a non-woven fabric.
  • the polishing cloth 34 may have a laminated structure.
  • the lamination direction of the polishing cloths 34 is, for example, a direction perpendicular to the vertical direction.
  • the vertical direction is the direction from the polishing cloth 34 toward the polishing head 31 .
  • the required polishing amount determination step (S20) is performed.
  • One silicon carbide wafer 90 out of a plurality of silicon carbide wafers 90 is prepared as a dummy wafer 99 .
  • Dummy wafer 99 is a wafer different from silicon carbide wafer 90 to be polished in the next polishing step (S30).
  • a dummy wafer 99 is attached to the support plate 37 of the polishing head 31, as shown in FIGS.
  • a polishing agent 33 is supplied onto the polishing cloth 34 .
  • Polycrystalline diamond for example, is used as abrasive grains in the abrasive 33 .
  • the particle diameter (D 90 ) of abrasive grains of the abrasive 33 is, for example, 0.2 ⁇ m or more and 1.5 ⁇ m or less.
  • the particle size (D 90 ) means the particle size at which the integrated value of the particle size distribution of the abrasive grains corresponds to 90%.
  • oily oil for example, is used as a lubricant.
  • the supply amount of abrasive 33 is, for example, 5 cm 3 /min or more and 50 cm 3 /min or less.
  • the polishing head 31 and the polishing cloth 34 rotate while the fourth main surface 4 of the dummy wafer 99 is pressed against the polishing cloth 34 by the polishing head 31 .
  • Dummy wafer 99 is pressed using a deadweight method.
  • the polishing head 31 uses the mass of the weight 38 to press the dummy wafer 99 against the polishing cloth 34 .
  • the pillars 39 do not serve to actively press the dummy wafer 99 . Therefore, compared to the case where the dummy wafer 99 is pressurized by an air cylinder or the like, the dummy wafer 99 can vibrate in the vertical direction during polishing. As a result, the frictional resistance applied to the fourth main surface 4 of the dummy wafer 99 locally changes.
  • the pressure with which the dummy wafer 99 is pressed against the polishing cloth 34 is, for example, 250 g/cm 2 .
  • the surface plate 35 to which the polishing cloth 34 is fixed rotates. Specifically, the surface plate 35 to which the polishing cloth 34 is fixed rotates in the first rotation direction 111 around the first rotating shaft 41 .
  • the first rotating shaft 41 passes through the center of the polishing cloth 34, for example.
  • the rotation speed of the surface plate 35 is, for example, 40 rpm or more and 100 rpm or less.
  • the first rotation direction 111 is, for example, counterclockwise when viewed from above the polishing cloth 34 .
  • the polishing head 31 rotates. Specifically, the polishing head 31 rotates in the second rotation direction 112 around the second rotation shaft 42 .
  • the second rotating shaft 42 passes through the center of the polishing head 31, for example.
  • the rotation speed of the polishing head 31 is, for example, 80 rpm or more and 120 rpm or less.
  • the second rotation direction 112 is, for example, counterclockwise when viewed from above the polishing cloth 34 .
  • the polishing head 31 swings in the swinging direction 113 while rotating.
  • the swinging direction 113 is, for example, the direction from the first rotating shaft 41 to the second rotating shaft 42 when viewed from above the polishing pad 34 .
  • the swing direction 113 is, for example, the radial direction of the polishing cloth 34 .
  • the polishing head 31 swings inside the polishing cloth 34 when viewed from above the polishing cloth 34 .
  • the oscillation width of the polishing head 31 is, for example, 0.5 to 0.8 times the diameter of the dummy wafer 99 .
  • the swing speed of the polishing head 31 is, for example, 10 mm/sec or more and 30 mm/sec or less.
  • the point closest to the first rotating shaft 41 among the points on the outer circumference of the dummy wafer 99 is the center swing end 43 . It is said that The peripheral speed of the surface plate 35 at the center-side swinging end 43 is at least twice the peripheral speed of the dummy wafer 99 at the center-side swinging end 43 . Note that the peripheral speed of the dummy wafer 99 at the central swing end 43 is equal to the peripheral speed of the dummy wafer 99 at the outer periphery of the dummy wafer 99 .
  • FIG. 14 is an enlarged schematic cross-sectional view showing the configuration of the dummy wafer 99 in the required polishing amount determination step (S20).
  • the enlarged schematic diagram shown in FIG. 14 corresponds to the enlarged schematic diagram shown in FIG.
  • polishing is performed so that the frictional force applied to the fourth main surface 4 of the dummy wafer 99 changes locally. For this reason, the portion of the fourth main surface 4 that is easily abraded can be abraded more like a spike than other portions of the fourth main surface 4 .
  • a portion that is near the threading dislocation 80 and that is the work-affected portion 12 is compared with other portions on the fourth main surface 4 . and can be scraped off in a spike shape. Voids 84 are thereby formed in the fourth main surface 4 .
  • voids 84 are provided in the vicinity of threading dislocations 80 and voids 84 are provided in work-affected portion 12 in the course of the required polishing amount determination step (S20).
  • the depth of void 84 in third direction 103 is, for example, 10 ⁇ m or more and 200 ⁇ m or less.
  • the fourth main surface 4 excluding voids 84 is polished smooth.
  • FIG. 15 is an enlarged schematic plan view showing the configuration of the dummy wafer 99 in the process of determining the required polishing amount.
  • the voids 84 may be hexagonal when viewed in a direction perpendicular to the fourth major surface 4 .
  • the void 84 may be circular when viewed in a direction perpendicular to the fourth major surface 4 .
  • the length of the void 84 (second length W2) when viewed from the direction perpendicular to the fourth main surface 4 is is the length of the void 84 in the direction.
  • the second length W2 of the void 84 is the diameter of the void 84 when the void 84 is circular when viewed from the direction perpendicular to the fourth main surface 4 .
  • the second length W2 is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the required polishing amount determination step (S20) after the dummy wafer 99 is polished by a predetermined polishing amount, the surface density of the voids 84 on the fourth main surface 4 of the dummy wafer 99 is measured.
  • the voids 84 can be identified by, for example, an optical microscope, a laser microscope, or the WASAVI series "SICA 6X" defect inspection device manufactured by Lasertec Corporation. Specifically, for example, the fourth main surface 4 is observed using an optical microscope. The magnification of the objective lens is, for example, 5 times. The field of view of the optical microscope is, for example, 3 mm square. Among the holes detected by observation, the holes whose length in the longitudinal direction is 10 ⁇ m or more and 100 ⁇ m or less are identified as voids 84 . By dividing the number of voids 84 on the fourth main surface 4 by the area of the fourth main surface 4 , the areal density of the voids 84 on the fourth main surface 4 is measured.
  • the polishing and the measurement of the surface density of the voids 84 are repeated.
  • a threshold for the areal density of the voids 84 (hereinafter also referred to as the areal density threshold) is set. If the measured surface density of the voids 84 is less than the surface density threshold value, the amount of polishing that has been polished is measured in the necessary amount of polishing determining step (S20).
  • the areal density threshold is, for example, 0.3/cm 2 .
  • the areal density threshold may be, for example, 0.3/cm 2 or less.
  • FIG. 16 is an enlarged schematic diagram showing the configuration of the dummy wafer after the required polishing amount determination step.
  • the enlarged schematic diagram shown in FIG. 16 corresponds to the enlarged schematic diagram shown in FIG. A value obtained by subtracting the thickness (second thickness H2) of the dummy wafer 99 after the required polishing amount determining step (S20) from the first thickness H1 of the silicon carbide wafer 90 in the silicon carbide wafer preparing step (S10) determines the required polishing amount. It is measured as a polishing amount polished in the step (S20). The measured polishing amount is determined as the required polishing amount.
  • the normal portion 11 is exposed after the required polishing amount determination step (S20).
  • the processed deteriorated portion 12 of the dummy wafer 99 is removed.
  • silicon carbide wafer 90 is prepared.
  • the configuration of silicon carbide wafer 90 is similar to that of dummy wafer 99 .
  • Silicon carbide wafer 90 is polished using mechanical polishing.
  • the polishing amount of silicon carbide wafer 90 by mechanical polishing is, for example, the necessary polishing amount determined in the necessary polishing amount determining step (S20).
  • the polishing amount of silicon carbide wafer 90 by mechanical polishing may be equal to or greater than the necessary polishing amount. However, if the amount of silicon carbide wafer 90 polished by mechanical polishing is excessively large, the time required for mechanical polishing increases and the surface density of polishing marks on fourth main surface 4 of silicon carbide wafer 90 increases. Therefore, the polishing amount of silicon carbide wafer 90 by mechanical polishing is preferably the required polishing amount.
  • the configuration of a mechanical polishing apparatus used for mechanical polishing is different from the configuration of polishing apparatus 30 in that support pillar 39 has a role of actively pressing silicon carbide wafer 90. Other configurations are similar to polishing.
  • the configuration is the same as that of the device 30 .
  • the post 39 of the mechanical polishing device has, for example, an air cylinder.
  • the polishing conditions for the mechanical polishing are the same as the polishing conditions for the required polishing amount determination step (S20).
  • FIG. 17 is an enlarged schematic diagram showing the configuration of silicon carbide substrate 10 in the polishing step (S30).
  • the enlarged schematic diagram shown in FIG. 17 corresponds to the enlarged schematic diagram shown in FIG.
  • first main surface 1 of silicon carbide substrate 10 is smooth.
  • the position of work-affected portion 12 in silicon carbide substrate 10 corresponds to the position of void 84 (see FIG. 16) of dummy wafer 99 after the necessary polishing amount determining step (S20).
  • Silicon carbide substrate 10 has a thickness of second thickness H2.
  • the polishing amount by CMP is, for example, 3 ⁇ m.
  • the configuration of the CMP apparatus used for CMP differs from the configuration of the polishing apparatus 30 in that the support 39 has a role of actively pressing the silicon carbide wafer 90.
  • the other configuration is the same as that of the polishing apparatus 30.
  • the pillar 39 of the CMP device has an air cylinder, for example.
  • an oxidizing agent for example, sodium dichloroisocyanurate is used.
  • Sucrose for example, is used as an additive.
  • 4000 cm 3 of water, 1000 cm 3 of colloidal silica, 50 g of oxidizing agent, and 40 g of additive are blended in the abrasive used for CMP.
  • the amounts may be varied while maintaining the ratio of the amounts to each other.
  • the hydrogen ion exponent (pH) of the polishing agent used for CMP is, for example, 2.5 or more and 3.5 or less.
  • a polyurethane suede polishing cloth "Supreme (trademark)" manufactured by Nitta DuPont is used as the polishing cloth.
  • the surface plate has a diameter of, for example, 640 mm.
  • the rotating speed of the surface plate is, for example, 60 rpm.
  • the rotational speed of the polishing head is, for example, 80 rpm.
  • the swing speed of the polishing head is, for example, 20 mm/sec.
  • the abrasive flow rate is, for example, 200 cm 3 /min.
  • silicon carbide substrate 10 is manufactured.
  • Silicon carbide epitaxial layer 20 is formed on first main surface 1 of silicon carbide substrate 10 .
  • Blue light emitting defects 83 are formed by converting threading dislocations 80 in work-affected portion 12 of silicon carbide substrate 10 among a plurality of threading dislocations 80 .
  • silicon carbide epitaxial substrate 100 (see FIG. 3) is manufactured.
  • a silicon carbide epitaxial substrate 100 is used as a substrate of a silicon carbide semiconductor device such as a metal oxide semiconductor field effect transistor (MOSFET: Metal Oxide Semiconductor Field Effect Transistor).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • defects exposed on second main surface 2 of silicon carbide epitaxial substrate 100 degrade electrical characteristics of the silicon carbide semiconductor device. This lowers the yield of silicon carbide semiconductor devices.
  • the inventors have investigated the cause of the above phenomenon in detail, and found that the blue light-emitting defect 83 exposed on the second main surface 2 particularly affects the deterioration of the electrical characteristics of the silicon carbide semiconductor device. I found
  • blue light-emitting defect 83 is formed due to threading dislocation 80 in work-affected portion 12 of silicon carbide substrate 10 .
  • the rate of conversion from threading dislocations 80 to blue light-emitting defects 83 varies depending on the residual amount of work-affected portion 12 in silicon carbide substrate 10 .
  • FIG. 18 is an enlarged schematic cross-sectional view showing a state in which silicon carbide epitaxial layer 20 is formed after polishing so that the surface roughness of first main surface 1 of silicon carbide substrate 10 is sufficiently reduced.
  • the enlarged schematic cross-sectional view shown in FIG. 18 corresponds to the enlarged schematic cross-sectional view shown in FIG.
  • the work-affected portion 12 is locally formed deep in the silicon carbide wafer 90 (see FIG. 11). Therefore, as shown in FIG. 18, when the surface roughness of first main surface 1 of silicon carbide substrate 10 is sufficiently reduced by polishing, only the surface layer of process-affected portion 12 is removed, and the silicon carbide wafer The work-affected portion 12 formed deep in 90 is not removed. From another point of view, if the surface roughness of the first main surface 1 is sufficiently reduced, the amount of polishing becomes excessively small. Therefore, the residual amount of the work-affected portion 12 increases. In this case, the number of threading dislocations 80 in the work-affected portion 12 increases. As a result, the rate of conversion from threading dislocations 80 to blue-emitting defects 83 increases.
  • process-affected portion 12 formed deep in silicon carbide wafer 90 does not affect warping of silicon carbide wafer 90 . Therefore, even when silicon carbide substrate 10 is polished such that warpage is sufficiently reduced, damaged portion 12 formed deep in silicon carbide wafer 90 is not removed. Therefore, similarly to the case where silicon carbide substrate 10 is polished such that the surface roughness is sufficiently reduced, the amount of polishing is excessively small.
  • polishing amount of mechanical polishing is excessively increased, polishing marks formed on first main surface 1 of silicon carbide substrate 10 after mechanical polishing increase. Therefore, in order to reduce the surface density of polishing marks on the first main surface 1, it is necessary to increase the polishing amount by CMP.
  • FIG. 19 is a schematic cross-sectional view showing a state in which the polishing amount due to mechanical polishing in the polishing process is excessively large.
  • the schematic cross-sectional view shown in FIG. 19 corresponds to the schematic cross-sectional view shown in FIG.
  • the polishing amount of CMP increases, the outer peripheral portion is more likely to come into contact with the polishing liquid than the inner peripheral portion, so that the outer peripheral portion of the first main surface 1 sags more.
  • the curvature of first outer peripheral region 61 and the curvature of second outer peripheral region 62 are each increased.
  • the central region 70 has a curved shape.
  • the LTIR of silicon carbide substrate 10 in a plurality of outer peripheral regions 60 is increased. Therefore, the flatness of silicon carbide epitaxial substrate 100 is deteriorated, and pattern defects of a silicon carbide semiconductor device manufactured using silicon carbide epitaxial substrate 100 increase. This lowers the yield of silicon carbide semiconductor devices manufactured using silicon carbide epitaxial substrate 100 .
  • the polishing amount when the polishing amount is excessively small, the residual amount of the work-affected portion 12 increases, so the rate of conversion from the threading dislocations 80 to the blue-emitting defects 83 increases.
  • the amount of polishing when the amount of polishing is excessively large, the amount of polishing by CMP increases, so the LTIR of silicon carbide substrate 10 in the plurality of outer peripheral regions 60 increases. Therefore, it is necessary to determine the optimum polishing amount in order to reduce the areal density of blue-emitting defects and reduce the LTIR.
  • the inventors have obtained the following knowledge and introduced the required amount of polishing determination step (S20) in the method for manufacturing silicon carbide epitaxial substrate 100 according to the present application. It was to be.
  • the work-affected portion 12 near the threading dislocation 80 is more likely to be scraped than the other work-affected portion 12 and the normal portion 11 . Therefore, in the necessary polishing amount determining step (S20), the work-affected portion 12 in the vicinity of the threading dislocation 80 is deeply removed by polishing so that the frictional resistance changes locally. As a result, the work-affected portion 12 near the threading dislocation 80 is detected as a void 84 .
  • the residual amount of the work-affected portion 12 can be reduced. can be reduced. As a result, the rate of conversion from threading dislocations 80 to blue-emitting defects 83 can be reduced. From another point of view, the thickness of the work-affected portion 12 in the third direction 103 can be reduced compared to when the polishing amount is excessively small (see FIGS. 3 and 18).
  • the surface density of threading screw dislocations 81 in first main surface 1 of silicon carbide substrate 10 is set as the first surface density
  • threading edge dislocations 82 in first main surface 1 are is the second surface density
  • the surface density of the blue light-emitting defects 83 on the second main surface 2 is the third surface density
  • the third surface for the total value of the first surface density and the second surface density The density ratio is 0.03% or less.
  • silicon carbide epitaxial substrate 100 when first main surface 1 of silicon carbide substrate 10 is divided into a plurality of square regions 50 each having a side length of 10 mm, the plurality of square regions 50 are , a plurality of first outer peripheral regions 61 located at the outermost periphery of the plurality of square regions 50, and a plurality of second outer peripheral regions 62 in contact with the plurality of first outer peripheral regions 61.
  • the average value of LTIR of silicon carbide substrate 10 in multiple first outer peripheral regions 61 and multiple second outer peripheral regions 62 is 0.6 ⁇ m or less. Thereby, the flatness of the outer peripheral region 60 of the first main surface 1 is improved. Therefore, the yield of silicon carbide semiconductor devices manufactured using silicon carbide epitaxial substrate 100 can be improved.
  • the variation in the overall thickness of silicon carbide substrate 10 is 6 ⁇ m or less.
  • the flatness of the first main surface 1 is improved. Therefore, the yield of silicon carbide semiconductor devices manufactured using silicon carbide epitaxial substrate 100 can be improved.
  • the ratio of the third surface density to the sum of the first surface density and the second surface density may be 0.02% or less. Therefore, the yield of silicon carbide semiconductor devices manufactured using silicon carbide epitaxial substrate 100 can be further improved.
  • the ratio of the third surface density to the sum of the first surface density and the second surface density may be 0.01% or less. Therefore, the yield of silicon carbide semiconductor devices manufactured using silicon carbide epitaxial substrate 100 can be further improved.
  • the ratio of the third surface density to the first surface density is 0.2% or less. Therefore, the yield of silicon carbide semiconductor devices manufactured using silicon carbide epitaxial substrate 100 can be further improved.
  • the first surface density is 1500/cm 2 or less.
  • the surface density of the threading screw dislocations 81 on the first main surface 1 is reduced. Therefore, the surface density of the blue light-emitting defects 83 on the second main surface 2 can be further reduced.
  • the first surface density is 500/cm 2 or less.
  • the surface density of the threading screw dislocations 81 on the first main surface 1 is reduced. Therefore, the surface density of the blue light-emitting defects 83 on the second main surface 2 can be further reduced.
  • the first surface density is 100/cm 2 or less.
  • the surface density of the threading screw dislocations 81 on the first main surface 1 is reduced. Therefore, the surface density of the blue light-emitting defects 83 on the second main surface 2 can be further reduced.
  • the second surface density is 10000/cm 2 or less.
  • the areal density of the threading edge dislocations 82 on the first main surface 1 is reduced. Therefore, the surface density of the blue light-emitting defects 83 on the second main surface 2 can be further reduced.
  • the second surface density is 5000/cm 2 or less.
  • the areal density of the threading edge dislocations 82 on the first main surface 1 is reduced. Therefore, the surface density of the blue light-emitting defects 83 on the second main surface 2 can be further reduced.
  • the second surface density is 2000/cm 2 or less.
  • the areal density of the threading edge dislocations 82 on the first main surface 1 is reduced. Therefore, the surface density of the blue light-emitting defects 83 on the second main surface 2 can be further reduced.
  • diameter D of second main surface 2 is 150 mm or more.
  • the yield of silicon carbide semiconductor devices manufactured using silicon carbide epitaxial substrate 100 can be improved.
  • Example Silicon carbide epitaxial substrates 100 according to samples 1 to 7 were prepared.
  • Sample 1 and Sample 4 is a comparative example.
  • Samples 2, 3 and 5-7 are examples.
  • Each of silicon carbide epitaxial substrates 100 according to samples 1 to 7 was manufactured using the manufacturing method according to the present embodiment described above.
  • the rotational speed of the surface plate 35 in the required polishing amount determination step (S20) was set to 40 rpm or more and 100 rpm or less.
  • the number of revolutions of the polishing head was 80 rpm or more and 120 rpm or less.
  • the swing speed of the polishing head 31 was set to 10 mm/sec or more and 30 mm/sec or less.
  • the mechanical polishing conditions in the polishing step (S30) were the same as the polishing conditions in the necessary polishing amount determining step (S20).
  • the areal density (first areal density) of threading screw dislocations 81 (TSD) and the areal density of threading edge dislocations 82 (TED) on the first main surface 1 are (Second areal density) were prepared to be approximately the same.
  • the first surface densities of silicon carbide epitaxial substrates 100 according to samples 1 to 4 were 470/cm 2 , 500/cm 2 , 540/cm 2 and 520/cm 2 , respectively. rice field.
  • the second areal densities of silicon carbide epitaxial substrates 100 according to samples 1 to 4 were 3250/cm 2 , 4000/cm 2 , 3500/cm 2 and 4100/cm 2 .
  • Samples 5 to 7 were prepared so that each of the first surface density and the second surface density was different.
  • the first surface densities of silicon carbide epitaxial substrates 100 according to samples 5 to 7 were 1340/cm 2 , 870/cm 2 and 200/cm 2 .
  • the second areal densities of silicon carbide epitaxial substrates 100 according to samples 5 to 7 were 9060/cm 2 , 5620/cm 2 and 1870/cm 2 .
  • the threshold value of the surface density of voids in the required polishing amount determination step (S20) was changed.
  • the surface density of voids changed after the required polishing amount determination step (S20).
  • the surface density of voids varied between 0.05/cm 2 and 0.6/cm 2 .
  • the void areal density threshold was set so that the same void areal density as in Sample 2 was obtained.
  • the surface density of voids varied between 0.03/cm 2 and 0.19/cm 2 .
  • the necessary polishing amount was determined based on the set void surface density threshold value.
  • samples 1 to 4 have the same first areal density and second areal density. The quantity has also changed.
  • samples 5 to 7 since the first areal density and the second areal density are different, the polishing amount obtained is the same even though the threshold value of the void areal density is changed.
  • the CMP polishing amount in the polishing step (S30) was set to 3 ⁇ m.
  • the polishing amount of CMP in the polishing step (S30) was set to 8 ⁇ m.
  • each of the first areal density and the second areal density was measured using the measurement method described above.
  • the first main surface 1 was observed using a normalski differential interference contrast microscope.
  • the field of view for observing etch pits was 0.082 cm ⁇ 0.070 cm.
  • First main surface 1 of silicon carbide substrate 10 is divided into a plurality of square measurement regions. The size of each of the multiple square measurement areas was 5 mm ⁇ 5 mm. The number of etch pits was determined in each of the square measurement areas. A value obtained by dividing the number of etch pits in the square measurement area by the area of the observation field of the etch pits (0.082 cm ⁇ 0.070 cm) was taken as the surface density of threading screw dislocations 81 in the square measurement area.
  • a value obtained by dividing the total surface density of threading screw dislocations 81 in all square measurement regions by the number of square measurement regions is the surface density of threading screw dislocations 81 in first main surface 1 of silicon carbide substrate 10 (first surface density).
  • the surface density (second surface density) of threading edge dislocations 82 in first main surface 1 of silicon carbide substrate 10 was measured.
  • the total thickness variation (TTV) of the silicon carbide substrate was measured for all samples. Specifically, the TTV was measured by the above-described measurement method using a flatness measuring machine "Tropel FlatMaster (trademark)" manufactured by Corning Tropel.
  • LTIR was measured by the above-described measurement method using a flatness measuring machine "Tropel FlatMaster (trademark)" manufactured by Corning Tropel.
  • the third areal density was measured for all samples. Specifically, the third areal density was measured by the above-described measurement method using a PL imaging device "SemiScope (trademark) PLI-200" manufactured by Photon Design. In the measurement of the third areal density, the magnification of the near-infrared objective lens 233 was set to 4.5 times. The measurement temperature was room temperature (27°C).
  • the color image sensor 235 was a CCD image sensor.
  • the type of CCD element was a back-illuminated deep depletion type.
  • the CCD image sensor was "eXcelon (trademark)" manufactured by Teledyne.
  • the imaging wavelength range was set to 310 nm or more and 1024 nm or less.
  • the device format was set to 1024ch ⁇ 1024ch.
  • the image area was 13.3 mm x 13.3 mm.
  • the device size was 13 ⁇ m ⁇ 13 ⁇ m.
  • the polishing amount by mechanical polishing is the necessary polishing amount obtained in the necessary polishing amount determining step (S20). Therefore, it is possible to prevent the amount of polishing by mechanical polishing from becoming excessively large, and it is possible to prevent the amount of polishing by CMP from becoming large. As a result, increases in each of TTV and LTIR can be suppressed.
  • the void surface after the required polishing amount determination step (S20) As shown in Table 1, when comparing the ratio of the third areal density to the total value of the first and second areal densities in samples 1 to 7, the void surface after the required polishing amount determination step (S20) It was confirmed that when the density was 0.3 pieces/cm 2 or less, the ratio of the third areal density to the total value of the first areal density and the second areal density was 0.03% or less. Similarly, when the void surface density after the necessary polishing amount determination step (S20) is 0.2/cm 2 or less, the ratio of the third surface density to the total value of the first surface density and the second surface density was confirmed to be 0.02% or less. Similarly, when the void surface density after the required polishing amount determination step (S20) is 0.05/cm 2 or less, the ratio of the third surface density to the total value of the first surface density and the second surface density was confirmed to be 0.01% or less.
  • the ratio of the third areal density to the first areal density in samples 1 to 7 is 0.3/cm. It was confirmed that the ratio of the third areal density to the first areal density is 0.2% or less when the density is 2 or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

炭化珪素エピタキシャル基板は、炭化珪素基板と、炭化珪素エピタキシャル層とを有している。炭化珪素基板は、第1主面を有している。炭化珪素エピタキシャル層は、第1主面上に設けられている。炭化珪素エピタキシャル層には、青色発光欠陥がある。炭化珪素エピタキシャル層は、第2主面を有している。第2主面は、炭化珪素基板と炭化珪素エピタキシャル層との界面の反対側にある。青色発光欠陥は、第2主面に露出している。第1主面における貫通螺旋転位の面密度を第1面密度とし、第1主面における貫通刃状転位の面密度を第2面密度とし、第2主面における青色発光欠陥の面密度を第3面密度とした場合、第1面密度と第2面密度とを合計した値に対する第3面密度の割合は、0.03%以下である。

Description

炭化珪素エピタキシャル基板
 本開示は、炭化珪素エピタキシャル基板に関する。本出願は、2022年2月2日に出願した日本特許出願である特願2022-014815号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 特開2009-292723号公報(特許文献1)には、炭化珪素基板における貫通転位密度が低い炭化珪素エピタキシャル基板が開示されている。
特開2009-292723号公報
 本開示に係る炭化珪素エピタキシャル基板は、炭化珪素基板と、炭化珪素エピタキシャル層とを備えている。炭化珪素基板は、第1主面を含んでいる。炭化珪素エピタキシャル層は、第1主面上に設けられている。炭化珪素基板には、貫通螺旋転位がある。炭化珪素基板には、貫通刃状転位がある。炭化珪素エピタキシャル層には、青色発光欠陥がある。炭化珪素エピタキシャル層は、第2主面を含んでいる。第2主面は、炭化珪素基板と炭化珪素エピタキシャル層との界面の反対側にある。青色発光欠陥は、第2主面に露出している。青色発光欠陥に対して励起光を照射することによって青色発光欠陥から発生するフォトルミネッセンス光をHSV色空間で表現した場合、Hは180°以上230°以下であり、Sは60以上170以下であり、かつVは190以上255以下である。第1主面を1辺の長さが10mmである複数の正方領域に区分した場合、複数の正方領域は、複数の正方領域の最外周に位置する複数の第1外周領域と、複数の第1外周領域に接している複数の第2外周領域とを含んでいる。複数の第1外周領域および複数の第2外周領域における炭化珪素基板のLTIRの平均値は、0.6μm以下である。第1主面における貫通螺旋転位の面密度を第1面密度とし、第1主面における貫通刃状転位の面密度を第2面密度とし、第2主面における青色発光欠陥の面密度を第3面密度とした場合、第1面密度と第2面密度とを合計した値に対する第3面密度の割合は、0.03%以下である。
図1は、本実施形態に係る炭化珪素エピタキシャル基板の構成を示す平面模式図である。 図2は、図1のII-II線に沿った断面模式図である。 図3は、図2の領域IIIを示す拡大断面模式図である。 図4は、カラーフォトルミネッセンスイメージング装置の構成を示す模式図である。 図5は、LTIRの測定領域を示す平面模式図である。 図6は、LTIRの定義を説明する模式図である。 図7は、図5のVII-VII線に沿う断面模式図である。 図8は、全体厚みばらつきの定義を示す断面模式図である。 図9は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法を概略的に示すフローチャートである。 図10は、炭化珪素ウェハの構成を示す断面模式図である。 図11は、図10の領域XIを示す拡大模式図である。 図12は、研磨装置の構成を示す平面模式図である。 図13は、研磨装置の構成を示す正面模式図である。 図14は、必要研磨量決定工程の過程におけるダミーウェハの構成を示す拡大断面模式図である。 図15は、必要研磨量決定工程の過程におけるダミーウェハの構成を示す拡大平面模式図である。 図16は、必要研磨量決定工程後におけるダミーウェハの構成を示す拡大模式図である。 図17は、研磨工程における炭化珪素基板の構成を示す拡大模式図である。 図18は、炭化珪素基板の第1主面の表面粗さが十分に小さくなるように研磨した後に炭化珪素エピタキシャル層を形成した状態を示す拡大断面模式図である。 図19は、研磨工程における機械研磨による研磨量が過度に大きい状態を示す断面模式図である。
 [本開示が解決しようとする課題]
 本開示の目的は、炭化珪素半導体装置の歩留まりを向上することができる炭化珪素エピタキシャル基板を提供することである。
 [本開示の効果]
 本開示によれば、炭化珪素半導体装置の歩留まりを向上することができる炭化珪素エピタキシャル基板を提供することができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示に係る炭化珪素エピタキシャル基板100は、炭化珪素基板10と、炭化珪素エピタキシャル層20とを有している。炭化珪素基板10は、第1主面1を有している。炭化珪素エピタキシャル層20は、第1主面1上に設けられている。炭化珪素基板10には、貫通螺旋転位81がある。炭化珪素基板10には、貫通刃状転位82がある。炭化珪素エピタキシャル層20には、青色発光欠陥83がある。炭化珪素エピタキシャル層20は、第2主面2を有している。第2主面2は、炭化珪素基板10と炭化珪素エピタキシャル層20との界面6の反対側にある。青色発光欠陥83は、第2主面2に露出している。青色発光欠陥83に対して励起光を照射することによって青色発光欠陥83から発生するフォトルミネッセンス光をHSV色空間で表現した場合、Hは180°以上230°以下であり、Sは60以上170以下であり、かつVは190以上255以下である。第1主面1を1辺の長さが10mmである複数の正方領域50に区分した場合、複数の正方領域50は、複数の正方領域50の最外周に位置する複数の第1外周領域61と、複数の第1外周領域61に接している複数の第2外周領域62とを有している。複数の第1外周領域61および複数の第2外周領域62における炭化珪素基板10のLTIRの平均値は、0.6μm以下である。第1主面1における貫通螺旋転位81の面密度を第1面密度とし、第1主面1における貫通刃状転位82の面密度を第2面密度とし、第2主面2における青色発光欠陥83の面密度を第3面密度とした場合、第1面密度と第2面密度とを合計した値に対する第3面密度の割合は、0.03%以下である。
 (2)上記(1)に係る炭化珪素エピタキシャル基板100によれば、炭化珪素基板10の全体厚みばらつきは、6μm以下であってもよい。
 (3)上記(1)または(2)に係る炭化珪素エピタキシャル基板100によれば、第1面密度と第2面密度とを合計した値に対する第3面密度の割合は、0.02%以下であってもよい。
 (4)上記(3)に係る炭化珪素エピタキシャル基板100によれば、第1面密度と第2面密度とを合計した値に対する第3面密度の割合は、0.01%以下であってもよい。
 (5)上記(1)から(4)のいずれかに係る炭化珪素エピタキシャル基板100によれば、第1面密度に対する第3面密度の割合は、0.2%以下であってもよい。
 (6)上記(1)から(5)のいずれかに係る炭化珪素エピタキシャル基板100によれば、第1面密度は、1500個/cm2以下であってもよい。
 (7)上記(6)に係る炭化珪素エピタキシャル基板100によれば、第1面密度は、500個/cm2以下であってもよい。
 (8)上記(7)に係る炭化珪素エピタキシャル基板100によれば、第1面密度は、100個/cm2以下であってもよい。
 (9)上記(1)から(8)のいずれかに係る炭化珪素エピタキシャル基板100によれば、第2面密度は、10000個/cm2以下であってもよい。
 (10)上記(9)に係る炭化珪素エピタキシャル基板100によれば、第2面密度は、5000個/cm2以下であってもよい。
 (11)上記(10)に係る炭化珪素エピタキシャル基板100によれば、第2面密度は、2000個/cm2以下であってもよい。
 (12)上記(1)から(11)のいずれかに係る炭化珪素エピタキシャル基板100によれば、第2主面2の直径Dは、150mm以上であってもよい。
 (13)上記(1)から(12)のいずれかに係る炭化珪素エピタキシャル基板100によれば、炭化珪素基板10の電気抵抗率は、10mΩ・cm以上であってもよい。
 [本開示の実施形態の詳細]
 以下、図面に基づいて、本開示の実施形態の詳細について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
 まず、本実施形態に係る炭化珪素エピタキシャル基板の構成について説明する。図1は、本実施形態に係る炭化珪素エピタキシャル基板の構成を示す平面模式図である。図1に示されるように、炭化珪素エピタキシャル基板100は、第2主面2と、外周側面9とを有している。第2主面2は、第1方向101および第2方向102の各々に沿って広がっている。第1方向101は、特に限定されないが、たとえば<11-20>方向である。第2方向102は、特に限定されないが、たとえば<1-100>方向である。外周側面9は、第2主面2に連なっている。炭化珪素エピタキシャル基板100は、たとえば六方晶炭化珪素により構成されている。六方晶炭化珪素のポリタイプは、たとえば4Hである。
 第2主面2は、{0001}面に対して傾斜した平面である。{0001}面に対する第2主面2のオフ角度は、たとえば8°以下であってもよい。具体的には、第2主面2は、(0001)面に対して8°以下のオフ角度だけ傾斜した面であってもよい。第2主面2は、(000-1)面に対して8°以下のオフ角度だけ傾斜した面であってもよい。{0001}面に対する第2主面2の傾斜方向(オフ方向)は、たとえば<11-20>方向である。{0001}面に対する第2主面2のオフ角度は、特に限定されないが、たとえば7°以下であってもよいし、6°以下であってもよい。{0001}面に対する第2主面2のオフ角度は、特に限定されないが、たとえば1°以上であってもよいし、2°以上であってもよい。
 図1に示されるように、外周側面9は、オリエンテーションフラット部7と、円弧状部8とを有している。円弧状部8は、オリエンテーションフラット部7に連なっている。図1に示されるように、第2主面2に対して垂直な方向から見て、オリエンテーションフラット部7は、第1方向101に沿って延在していてもよい。
 第2主面2の直径Dは、たとえば150mm以上である。直径Dは特に限定されないが、たとえば200mm以上であってもよいし、250mm以上であってもよい。直径Dは特に限定されないが、たとえば300mm以下であってもよい。第2主面2に対して垂直な方向に見て、直径Dは、外周側面9上の異なる2点間の最長直線距離である。
 図2は、図1のII-II線に沿った断面模式図である。図2に示される断面は、第2主面2に対して垂直であり、かつ第1方向101に平行である。図2に示されるように、本実施形態に係る炭化珪素エピタキシャル基板100は、炭化珪素基板10と、炭化珪素エピタキシャル層20とを有している。炭化珪素エピタキシャル層20は、炭化珪素基板10上に設けられている。炭化珪素エピタキシャル層20は、炭化珪素基板10に接している。炭化珪素基板10のポリタイプは、たとえば4Hである。同様に、炭化珪素エピタキシャル層20のポリタイプは、たとえば4Hである。
 炭化珪素エピタキシャル層20は、炭化珪素エピタキシャル基板100の第2主面2を形成している。第2主面2は、界面6の反対側にある。界面6は、炭化珪素基板10と炭化珪素エピタキシャル層20との境界にある。炭化珪素基板10は、第1主面1と、第3主面3とを有している。第1主面1において、炭化珪素基板10は、炭化珪素エピタキシャル層20に接している。言い換えれば、炭化珪素エピタキシャル層20は、第1主面1上に設けられている。第3主面3は、第1主面1の反対側にある。第2主面2は、炭化珪素エピタキシャル基板100の表面である。第3主面3は、炭化珪素エピタキシャル基板100の裏面である。
 第1主面1には研磨痕があってもよい。第1主面1に垂直な方向から見て、研磨痕は細長い形状である。研磨痕の長手方向の長さは、たとえば研磨痕の短手方向の長さの10倍以上である。研磨痕は、直線状であってもよいし、曲線状であってもよい。第1主面1に垂直な方向から見て、研磨痕の長さは、たとえば0.5mm以上である。第1主面1に垂直な方向における研磨痕の深さは、たとえば0.5μm以上である。第1主面1における研磨痕の面密度は、たとえば1個/cm2以下である。第1主面1における研磨痕は、レーザー顕微鏡、白色干渉顕微鏡またはレーザーテック株式会社製の欠陥検査装置であるWASAVIシリーズ「SICA 6X」等を用いることにより特定することができる。具体的には、炭化珪素エピタキシャル層20の第2主面2の上方から観察した場合に、<1-100>方向へ延びる直線状の筋と交差する溝が、研磨痕として特定される。
 図2に示されるように、炭化珪素基板10には、複数の貫通転位80がある。複数の貫通転位80は、複数の貫通螺旋転位81と複数の貫通刃状転位82とによって構成されている。
 複数の貫通転位80の各々は、第3主面3から第1主面1まで連続的に延在している。複数の貫通転位80の各々が延在する方向は、第4方向104である。第4方向104は、たとえば<0001>方向である。第3方向103は、第2主面2に対して垂直な方向である。別の観点から言えば、第3方向103は、第1方向101および第2方向102の各々に対して垂直な方向である。第3方向103に対する第4方向104の傾斜角θは、第2主面2のオフ角度に対応する。複数の貫通転位80の各々は、第3主面3において露出している。
 図2に示されるように、炭化珪素エピタキシャル層20には、複数の青色発光欠陥83がある。複数の青色発光欠陥83の各々は、貫通転位80に起因して形成されている。第1主面1において、複数の青色発光欠陥83の各々は、貫通転位80に連なっている。複数の青色発光欠陥83の各々は、貫通螺旋転位81に連なっていてもよいし、貫通刃状転位82に連なっていてもよい。複数の青色発光欠陥83の各々は、界面6から第2主面2まで連続的に延在している。界面6から離れるにつれて、第1方向101における複数の青色発光欠陥83の各々の幅は大きくなっている。第1方向101および第3方向103の各々に垂直な方向から見て、複数の青色発光欠陥83の各々は、たとえば三角形である。複数の青色発光欠陥83の各々は、第2主面2に露出している。
 図3は、図2の領域IIIを示す拡大断面模式図である。図3に示されるように、炭化珪素基板10は、正常部11と加工変質部12とによって構成されている。正常部11は、スライスによる加工ダメージを受けていない正常な結晶格子によって構成されている部分である。加工変質部12は、スライスによる加工ダメージによって炭化珪素基板10の結晶格子の配列が乱れた部分である。加工変質部12は、正常部11に連なっている。加工変質部12は、炭化珪素基板10の第1主面1の一部を形成している。別の観点から言えば、加工変質部12は、炭化珪素エピタキシャル層20に接している。加工変質部12は、貫通転位80の近傍に設けられている。
 複数の青色発光欠陥83の各々は、加工変質部12に起因して形成されている。別の観点から言えば、複数の青色発光欠陥83の各々は、加工変質部12に連なっている。複数の青色発光欠陥83の各々は、たとえば三角欠陥である。複数の青色発光欠陥83の各々は、積層欠陥を含んでいてもよい。第2主面2に対して垂直な方向に見て、青色発光欠陥83の形状は、たとえば三角形である。
 (貫通螺旋転位および貫通刃状転位の各々の面密度)
 第1主面1における貫通螺旋転位81の面密度を第1面密度と称する。第1面密度は、たとえば1500個/cm2以下である。第1面密度は特に限定されないが、たとえば1000個/cm2以下であってもよいし、500個/cm2以下であってもよいし、100個/cm2以下であってもよい。第1面密度は特に限定されないが、たとえば10個/cm2以上であってもよいし、50個/cm2以上であってもよい。
 第1主面1における貫通刃状転位82の面密度を第2面密度と称する。第2面密度は、たとえば10000個/cm2以下である。第2面密度は特に限定されないが、たとえば5000個/cm2以下であってもよいし、2000個/cm2以下であってもよい。第2面密度は特に限定されないが、たとえば100個/cm2以上であってもよいし、500個/cm2以上であってもよい。
 次に、貫通螺旋転位81および貫通刃状転位82の各々の面密度の測定方法について説明する。
 貫通螺旋転位81および貫通刃状転位82の各々の面密度は、たとえば溶融水酸化カリウム(KOH)を用いて決定される。具体的には、機械研磨等を用いて炭化珪素エピタキシャル層20が除去される。これによって、炭化珪素基板10の第1主面1が露出される。第1主面1が、溶融KOHによってエッチングされる。これにより、第1主面1に露出した貫通螺旋転位81および貫通刃状転位82の各々の付近にある炭化珪素領域がエッチングされることにより、第1主面1にエッチピットが形成される。第1主面1に形成されたエッチピットの数を、第1主面1の測定面積で除した値が、第1主面1における貫通螺旋転位81および貫通刃状転位82の各々の面密度に対応する。KOH融液の温度は、たとえば500℃以上550℃以下程度とする。エッチング時間は、5分以上10分以下程度とする。エッチング後、第1主面1が、ノルマルスキー微分干渉顕微鏡を用いて観察される。
 炭化珪素基板10が貫通螺旋転位81および貫通刃状転位82以外に基底面転位を含んでいる場合、第1主面1に露出した基底面転位付近にある炭化珪素領域もエッチングされる。貫通螺旋転位81に起因するエッチピットと、貫通刃状転位82に起因するエッチピットと、基底面転位に起因するエッチピットとは、以下の方法により区別される。基底面転位に起因するエッチピットは、平面形状が楕円形状である。貫通螺旋転位81に起因するエッチピットは、平面形状が丸型もしくは六角形状であり、かつピットサイズが大きい。貫通刃状転位82に起因するエッチピットは、平面形状が丸型もしくは六角形状であり、かつピットサイズが小さい。
 (青色発光欠陥の面密度)
 第2主面2における青色発光欠陥83の面密度を第3面密度と称する。第3面密度は、たとえば2個/cm2以下である。第3面密度は特に限定されないが、たとえば1個/cm2以下であってもよいし、0.5個/cm2以下であってもよい。第3面密度は特に限定されないが、たとえば0.05個/cm2以上であってもよいし、0.07個/cm2以上であってもよい。
 第1面密度と第2面密度とを合計した値に対する第3面密度の割合は、たとえば0.03%以下である。第1面密度と第2面密度とを合計した値に対する第3面密度の割合は特に限定されないが、たとえば0.02%以下であってもよいし、0.01%以下であってもよい。第1面密度と第2面密度とを合計した値に対する第3面密度の割合は特に限定されないが、たとえば0.001%以上であってもよいし、0.005%以上であってもよい。
 第1面密度に対する第3面密度の割合は、たとえば0.2%以下である。第1面密度に対する第3面密度の割合は、0.15%以下であってもよいし、0.1%以下であってもよい。第1面密度に対する第3面密度の割合は、特に限定されないが、たとえば0.01%以上であってもよいし、0.05%以上であってもよい。
 青色発光欠陥83は、フォトルミネッセンスイメージング装置により特定することができる。図4は、カラーフォトルミネッセンスイメージング装置の構成を示す模式図である。カラーフォトルミネッセンスイメージング装置として、たとえばフォトンデザイン社製のPLイメージング装置(SemiScope(商標) PLI-200)を使用することができる。図4に示されるように、カラーフォトルミネッセンスイメージング装置200は、励起光生成ユニット220と、イメージングユニット230とを主に有している。
 励起光生成ユニット220は、光源部221と、導光部222と、フィルタ部223とを有する。光源部221は、六方晶炭化珪素のバンドギャップよりも高いエネルギーを有する励起光LEを発生することができる。光源部221は、たとえば水銀キセノンランプである。導光部222は、光源部221から出射した光が、炭化珪素エピタキシャル基板100の第2主面2(図2参照)に照射されるように、光を導くことができる。導光部222は、たとえば光ファイバーを有している。図4に示されるように、励起光生成ユニット220は、近赤外対物レンズ233の両側に配置されていてもよい。
 フィルタ部223は、六方晶炭化珪素のバンドギャップよりも高いエネルギーに対応する特定の波長を有する光を選択的に透過するものである。六方晶炭化珪素のバンドギャップに対応する波長は典型的には390nm程度である。そのため、たとえば約313nmの波長を有する光を特に透過するバンドパスフィルタがフィルタ部223として用いられる。フィルタ部223の透過波長域は、たとえば290nm以上370nm以下であってもよいし、300nm以上330nm以下であってもよいし、300nm以上320nm以下であってもよい。
 イメージングユニット230は、制御部231と、ステージ232と、近赤外対物レンズ233と、カラーイメージセンサ235とを主に有する。制御部231は、ステージ232の変位動作の制御と、カラーイメージセンサ235による撮影動作の制御とを行うものであり、たとえばパーソナルコンピュータである。ステージ232は、第2主面2が露出するように炭化珪素エピタキシャル基板100を支持する。ステージ232は、たとえば第2主面2の位置を変位させるXYステージである。近赤外対物レンズ233は、第2主面2の上方に配置されている。近赤外対物レンズ233の倍率は、たとえば4.5倍である。カラーイメージセンサ235は、炭化珪素エピタキシャル基板100から放射されるフォトルミネッセンス光を受光する。
 次に、青色発光欠陥83の特定方法について説明する。
 まず、励起光生成ユニット220を使用して、炭化珪素エピタキシャル基板100の第2主面2に対して励起光LEを照射する。これにより、炭化珪素エピタキシャル基板100からフォトルミネッセンス光LLが発生する。励起光LEの波長は、たとえば313nmである。励起光LEの強度は、たとえば1mW/cm2以上2W/cm2以下である。照射光の露光時間は、たとえば0.5秒以上120秒以下である。測定温度は、たとえば室温(27℃)である。
 次に、フォトルミネッセンス光がカラーイメージセンサによって検出される。具体的には、炭化珪素エピタキシャル基板100で発生したフォトルミネッセンス光LLがカラーイメージセンサ235によって検出される。カラーイメージセンサ235は、たとえばCCD(電荷結合素子:Charge Coupled Device)イメージセンサである。CCD素子のタイプは、たとえば裏面照射型ディープディプレッション(back-illuminated deep depletion)タイプである。CCDイメージセンサは、たとえばテレダイン社製のeXcelon(商標)である。撮像波長範囲は、たとえば310nm以上1024nm以下である。素子フォーマットは、たとえば1024ch×1024chである。イメージエリアは、たとえば13.3mm×13.3mmである。素子サイズは、たとえば13μm×13μmである。ピクセル数は、たとえば480pixel×640pixelである。画像サイズは、たとえば1.9mm×2.6mmである。
 カラーイメージセンサ235から得られたカラー画像に基づいて、青色発光欠陥83の光学特性が特定される。カラーイメージセンサから得られた青色発光欠陥83の画像の色は、たとえば青色である。具体的には、青色発光欠陥83に対して励起光を照射することによって青色発光欠陥83から発生するフォトルミネッセンス光をHSV色空間で表現した場合、Hは180°以上230°以下であり、Sは60以上170以下であり、かつVは190以上255以下である。
 なお、HSV色空間は、色相(Hue)と、彩度(Saturation)と、明度(Value)とにより色を表現する色の表現法の一つである。HSV色空間において、Hの範囲は0°以上360°以下であり、Sの範囲は0以上255以下であり、かつVの範囲は0以上255以下である。SおよびVは、たとえば10進数で表わされる。
 (炭化珪素基板の垂れ度)
 次に、炭化珪素基板10の外周部の垂れ度について説明する。炭化珪素基板10の垂れ度は、LTIR(Local Total Indicated Reading)または全体厚みばらつき(TTV:Total Thickness Variation)という指標を用いて定量化することができる。LTIRおよびTTVの各々は、たとえばCorning Tropel社製の平面度測定機「Tropel FlatMaster(商標)」を用いて測定可能である。
 (炭化珪素基板のLTIR)
 図5は、LTIRの測定領域を示す平面模式図である。図5に示されるように、炭化珪素基板10の第1主面1が、複数の正方領域50に区分される。複数の正方領域50の各々の1辺の長さ(第1長さW1)は、10mmである。第1主面1の直径Dは、たとえば150mmである。まず、外周側面9に外接する150mm×150mmの正方形が想定される。150mm×150mmの正方形は、10mm×10mmの正方領域(15×15=225個)に区分される。
 第1主面1に対して垂直な方向に見て、外周側面9に囲まれている正方領域50の数は、145個である。第1主面1に対して垂直な方向に見て、外周側面9と交差する正方領域は、一部が欠けており完全な正方領域とはならない。そのため、外周側面9と交差する正方領域は、第1主面1を構成する正方領域50とはみなされない。なお、第1主面1に対して垂直な方向に見て、複数の正方領域50の各々の一辺は、オリエンテーションフラット部7の延在方向に平行である。
 複数の正方領域50は、複数の外周領域60と、複数の中央領域70とにより構成されている。複数の外周領域60は、複数の第1外周領域61と、複数の第2外周領域62とにより構成されている。複数の第1外周領域61は、複数の正方領域50の最外周に位置している。別の観点から言えば、複数の第1外周領域61の各々は、外周側面9と交差している正方領域に接する正方領域50である。複数の第2外周領域62の各々は、複数の第1外周領域61に接する正方領域50である。複数の第2外周領域62の各々は、複数の第1外周領域61の内側に位置している。複数の第2外周領域62の各々は、外周側面9と交差している正方領域から離間している。図13において、ハッチングが付されている領域が、複数の外周領域60である。
 複数の中央領域70は、複数の外周領域60に囲まれている。複数の中央領域70の各々は、外周側面9と交差している正方領域から離間している。
 図5に示されるように、第1主面1の直径Dが150mmの場合、第1主面1は、1辺の長さ(第1長さW1)が10mmである145個の正方領域50に区分される。145個の正方領域50の各々において、LTIRが測定される。第1主面1の直径Dが150mmの場合、外周領域60の数は68個であり、中央領域70の数は77個である。複数の外周領域60の内、第1外周領域61の数は36個であり、第2外周領域62の数は32個である。
 次に、LTIRの定義について説明する。図6は、LTIRの定義を説明する模式図である。
 LTIR=|T1|+|T2|  ・・・(数1)
 LTIRは、たとえば以下の手順で測定される。炭化珪素エピタキシャル層20が形成される前の炭化珪素基板10が準備される。平坦な吸着面に炭化珪素基板10の第3主面3が全面吸着される。次に、ある局所的な領域(たとえば中央領域70および外周領域60など)における第1主面1の画像が光学的に取得される。次に、第1主面1の最小二乗平面L0が計算により求められる。
 数1および図6に示されるように、LTIRは、平坦な吸着面に第3主面3を全面吸着させた状態で、最小二乗平面L0から第1主面1の最高点(第1最高点P1)までの高さ(第1最高点高さT1)と、最小二乗平面L0から第1主面1の最低点(第1最低点P2)までの高さ(第1最低点高さT2)とを合計した値である。第1最高点P1とは、最小二乗平面L0に対して第3主面3側とは反対側に位置する第1主面1の領域において、最小二乗平面L0に対して垂直な方向に沿った最小二乗平面L0と第1主面1との距離が最大となる位置である。第1最低点P2とは、最小二乗平面L0に対して第3主面3側に位置する第1主面1の領域において、最小二乗平面L0に対して垂直な方向に沿った最小二乗平面L0と第1主面1との距離が最大となる位置である。つまり、LTIRは、第1最高点P1を通りかつ最小二乗平面L0と平行な平面(第1最高点平面L1)と、第1最低点P2を通りかつ最小二乗平面L0と平行な平面(第1最低点平面L2)との距離である。
 炭化珪素エピタキシャル層20の厚さは実質的に面内均一であるため、炭化珪素基板10のLTIRと炭化珪素エピタキシャル基板100のLTIRとは、実質的に同じである。言い換えれば、炭化珪素基板10のLTIRの代わりに、炭化珪素エピタキシャル基板100のLTIRが測定されてもよい。炭化珪素エピタキシャル基板100のLTIRが測定される場合、第3主面3が全面吸着された後に、第2主面2に対して上記の手順が実施される。
 図7は、図5のVII-VII線に沿う断面模式図である。図7に示される断面は第1主面1に対して垂直であり、かつ第1方向101に平行である。図7に示されるように、断面視において、第1主面1は、外周側面9に近づくほど、第3主面3に近づいている。別の観点から言えば、第3方向103において、第1外周領域61は、第3主面3と第2外周領域62との間にある。
 断面視において、中央領域70は直線状であってもよい。断面視において、外周領域60はたとえば曲線状である。別の観点から言えば、複数の外周領域60における炭化珪素基板10のLTIRの平均値は、複数の中央領域70における炭化珪素基板10のLTIRの平均値よりも大きい。
 断面視において、第2外周領域62は、たとえば曲線状である。断面視において、第1外周領域61は、たとえば曲線状である。断面視において、第1外周領域61の曲率は、第2外周領域62の曲率よりも大きい。別の観点から言えば、複数の第1外周領域61における炭化珪素基板10のLTIRの平均値は、複数の第2外周領域62における炭化珪素基板10のLTIRの平均値よりも大きい。
 複数の外周領域60における炭化珪素基板10のLTIRの平均値は、たとえば0.6μm以下である。複数の外周領域60における炭化珪素基板10のLTIRは特に限定されないが、たとえば0.4μm以下であってもよいし、0.25μm以下であってもよい。複数の外周領域60における炭化珪素基板10のLTIRは、特に限定されないがたとえば0.01μm以上であってもよいし、0.03μm以上であってもよいし、0.05μm以上であってもよい。
 (炭化珪素基板の全体厚みばらつき)
 次に、全体厚みばらつき(TTV:Total Thickness Variation)について説明する。図8は、全体厚みばらつきの定義を示す断面模式図である。
 TTV=|T3-T4|  ・・・(数2)
 TTVは、たとえば以下の手順で測定される。まず、炭化珪素エピタキシャル層20が形成される前の炭化珪素基板10が準備される。平坦な吸着面に炭化珪素基板10の第3主面3が全面吸着される。次に、第1主面1の全体画像が光学的に取得される。図8および数2に示されるように、TTVとは、平坦な吸着面に第3主面3を全面吸着させた状態で、第3主面3から第1主面1の最高点(第2最高点P3)までの高さ(第2最高点高さT3)から、第3主面3から第1主面1の最低点(第2最低点P4)までの高さ(第2最低点高さT4)を差し引いた値である。言い換えれば、TTVは、第3主面3に対して垂直な方向において、第1主面1と第3主面3との最長距離から、第1主面1と第3主面3との最短距離を差し引いた値である。つまり、TTVは、第2最高点P3を通りかつ第3主面3と平行な平面(第2最高点平面L3)と、第2最低点P4を通りかつ第3主面3と平行な平面(第2最低点平面L4)との距離である。
 炭化珪素エピタキシャル層20の厚さは実質的に面内均一であるため、炭化珪素基板10のTTVと炭化珪素エピタキシャル基板100のTTVとは、実質的に同じである。言い換えれば、炭化珪素基板10のTTVの代わりに、炭化珪素エピタキシャル基板100のTTVが測定されてもよい。炭化珪素エピタキシャル基板100のTTVが測定される場合、第3主面3が全面吸着された後に、第2主面2に対して上記の手順が実施される。
 本実施形態に係る炭化珪素基板10のTTVは、たとえば6μm以下である。TTVは、特に限定されないが、たとえば4μm以下であってもよいし、2μm以下であってもよい。TTVは、特に限定されないが、たとえば0.1μm以上であってもよいし、0.5μm以上であってもよい。
 図7に示されるように、炭化珪素基板10において、第2最低点P4は、たとえば第1主面1と外周側面9との稜線に位置している。第2最高点P3は、たとえば中央領域70に位置している。
 (炭化珪素基板の電気抵抗率)
 炭化珪素基板10の電気抵抗率は、たとえば10mΩ・cm以上である。炭化珪素基板10の電気抵抗率は、特に限定されないが、たとえば15mΩ・cm以上であってもよいし、18mΩ・cm以上であってもよい。炭化珪素基板10の電気抵抗率は、特に限定されないが、たとえば25mΩ・cm以下である。炭化珪素基板10の電気抵抗率は、たとえばナプソン社製の電気抵抗率測定装置である「EC-80」を用いて測定することができる。具体的には、炭化珪素エピタキシャル層20が除去された後に、炭化珪素基板10の電気抵抗率が測定される。
 (炭化珪素エピタキシャル基板の製造方法)
 次に、炭化珪素エピタキシャル基板100の製造方法について説明する。
 図9は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法を概略的に示すフローチャートである。図9に示されるように、本実施形態に係る炭化珪素エピタキシャル基板の製造方法は、炭化珪素ウェハ準備工程(S10)と、必要研磨量決定工程(S20)と、研磨工程(S30)と、エピタキシャル成長工程(S40)とを主に有している。
 まず、炭化珪素ウェハ準備工程(S10)が実施される。たとえば昇華法により、ポリタイプ4Hの炭化珪素結晶が作製される。次に、たとえばワイヤーソーを用いて炭化珪素結晶をスライスすることによって、複数の炭化珪素ウェハ90が作製される。複数の炭化珪素ウェハ90の各々の構成は、実質的に同一である。
 図10は、炭化珪素ウェハ90の構成を示す断面模式図である。図10に示されるように、炭化珪素ウェハ90は、第4主面4と、第5主面5とを有している。第5主面5は、第4主面4の反対側にある。炭化珪素ウェハ90には、複数の貫通転位80がある。貫通転位80は、第4主面4から第5主面5まで連続的に延在している。貫通転位80は、第4主面4に露出している。貫通転位80は、第5主面5に露出している。なお、図10に示される断面は、第1方向101および第3方向103の各々に平行であり、第4主面4を通る断面である。
 図11は、図10の領域XIを示す拡大模式図である。図11に示されるように、炭化珪素ウェハ90は、正常部11と加工変質部12とによって構成されている。加工変質部12は、正常部11を覆っている。加工変質部12は、第4主面4を形成している。図11に示されるように、第4主面4は、ワイヤーソーを用いたスライスによって形成され、かつその後に研磨されていない面である。第5主面5は、研磨によって平滑にされた面であってもよい。炭化珪素ウェハ90の厚みは、第1厚みH1とされる。以上のように、炭化珪素ウェハ90が準備される。
 次に、研磨装置の構成について説明する。図12は、研磨装置の構成を示す平面模式図である。図13は、研磨装置の構成を示す正面模式図である。研磨装置30は、たとえば機械研磨装置である。
 図12および図13に示されるように、研磨装置30は、研磨ヘッド31と、研磨剤供給部32と、研磨布34と、定盤35とを主に有している。研磨ヘッド31は、支持板37と、錘38と、支柱39とを有している。錘38は、支持板37上に位置している。支柱39は、錘38上に位置している。研磨布34は、定盤35に固定されている。研磨布34として、たとえばポバール興業製研磨布「KV」シリーズを使用することができる。研磨布34は、たとえば不織布であってもよい。研磨布34は、積層構造を有していてもよい。研磨布34の積層方向は、たとえば上下方向に対して垂直な方向である。なお、上下方向とは、研磨布34から研磨ヘッド31に向かう方向である。
 次に、必要研磨量決定工程(S20)が実施される。複数の炭化珪素ウェハ90の内、1枚の炭化珪素ウェハ90がダミーウェハ99として準備される。ダミーウェハ99は、次の研磨工程(S30)において研磨される炭化珪素ウェハ90とは異なるウェハである。
 図12および図13に示されるように、ダミーウェハ99が研磨ヘッド31の支持板37に取り付けられる。研磨布34上に研磨剤33が供給される。研磨剤33において、砥粒としてたとえば多結晶ダイヤモンドが用いられる。研磨剤33の砥粒の粒子径(D90)は、たとえば0.2μm以上1.5μm以下である。なお、粒子径(D90)とは、砥粒の粒子径分布の積算値が90%に相当する粒子径を意味している。研磨剤33において、潤滑剤としてたとえば油性オイルが用いられる。研磨剤33の供給量は、たとえば5cm3/分以上50cm3/分以下である。
 研磨ヘッド31によってダミーウェハ99の第4主面4が研磨布34に押しつけられている状態で、研磨ヘッド31および研磨布34が回転する。ダミーウェハ99は、デッドウェイト方式を用いて加圧される。具体的には、研磨ヘッド31は、錘38の質量を用いてダミーウェハ99を研磨布34に押しつける。言い換えれば、支柱39は、ダミーウェハ99を能動的に加圧する役割を有していない。このため、エアシリンダ等によってダミーウェハ99が加圧される場合と比較して、研磨中においてダミーウェハ99は上下方向に振動することができる。これによって、ダミーウェハ99の第4主面4が受ける摩擦抵抗は、局所的に変化する。ダミーウェハ99が研磨布34に押しつけられる圧力は、たとえば250g/cm2である。
 図12に示されるように、研磨布34が固定されている定盤35は自転する。具体的には、研磨布34が固定されている定盤35は、第1回転軸41の周りを第1回転方向111に回転する。第1回転軸41は、たとえば研磨布34の中心を通っている。定盤35の回転数は、たとえば40rpm以上100rpm以下である。第1回転方向111は、研磨布34の上方から見て、たとえば反時計回りである。
 図12に示されるように、研磨ヘッド31は自転する。具体的には、研磨ヘッド31は、第2回転軸42の周りを第2回転方向112に回転する。第2回転軸42は、たとえば研磨ヘッド31の中心を通っている。研磨ヘッド31の回転数は、たとえば80rpm以上120rpm以下である。第2回転方向112は、研磨布34の上方から見て、たとえば反時計回りである。
 図12に示されるように、研磨ヘッド31は、自転しつつ揺動方向113に揺動する。揺動方向113は、研磨布34の上方から見て、たとえば第1回転軸41から第2回転軸42に向かう方向である。言い換えれば、揺動方向113は、たとえば研磨布34の径方向である。研磨ヘッド31は、研磨布34の上方から見て、研磨布34の内部において揺動する。研磨ヘッド31の揺動幅は、たとえばダミーウェハ99の直径の0.5倍以上0.8倍以下である。研磨ヘッド31の揺動速度は、たとえば10mm/秒以上30mm/秒以下である。
 図12に示されるように、ダミーウェハ99が第1回転軸41に最も接近する際において、ダミーウェハ99の外周上の点の内、第1回転軸41に最も近い点は、中心側揺動端43とされる。中心側揺動端43における定盤35の周速は、中心側揺動端43におけるダミーウェハ99の周速の2倍以上である。なお、中心側揺動端43におけるダミーウェハ99の周速は、ダミーウェハ99の外周におけるダミーウェハ99の周速と等しい。
 図14は、必要研磨量決定工程(S20)の過程におけるダミーウェハ99の構成を示す拡大断面模式図である。図14に示される拡大模式図は、図11に示される拡大模式図に対応している。
 必要研磨量決定工程(S20)においては、ダミーウェハ99の第4主面4に加わる摩擦力が局所的に変化するように研磨される。このため、第4主面4における削れやすい部分は、第4主面4における他の部分と比較して、スパイク状に大きく削れる。具体的には、図14に示されるように、第4主面4において、貫通転位80の近傍であり、かつ加工変質部12である部分は、第4主面4における他の部分と比較して、スパイク状に大きく削れる。これによって、第4主面4にボイド84が形成される。別の観点から言えば、必要研磨量決定工程(S20)の過程において、ボイド84は貫通転位80の近傍に設けられており、かつボイド84は加工変質部12に設けられている。第3方向103におけるボイド84の深さは、たとえば10μm以上200μm以下である。ボイド84を除く第4主面4は平滑に研磨される。
 図15は、必要研磨量決定工程の過程におけるダミーウェハ99の構成を示す拡大平面模式図である。図15に示されるように、第4主面4に垂直な方向から見て、ボイド84は六角形であってもよい。第4主面4に垂直な方向から見て、ボイド84は円形であってもよい。第4主面4に垂直な方向から見て、ボイド84が六角形である場合、第4主面4に垂直な方向から見て、ボイド84の長さ(第2長さW2)は、長手方向におけるボイド84の長さとされる。第4主面4に垂直な方向から見て、ボイド84が円形の場合、ボイド84の第2長さW2は、ボイド84の直径とされる。第2長さW2は、たとえば10μm以上100μm以下である。
 必要研磨量決定工程(S20)において、ダミーウェハ99が所定の研磨量だけ研磨された後に、ダミーウェハ99の第4主面4におけるボイド84の面密度が測定される。
 ボイド84は、たとえば光学顕微鏡、レーザー顕微鏡またはレーザーテック株式会社製の欠陥検査装置であるWASAVIシリーズ「SICA 6X」等により特定することができる。具体的には、たとえば光学顕微鏡を用いて第4主面4が観察される。対物レンズの倍率は、たとえば5倍とされる。光学顕微鏡の視野は、たとえば3mm角とされる。観察によって検出された穴の内、長手方向の長さが10μm以上100μm以下である穴が、ボイド84として特定される。第4主面4におけるボイド84の個数が、第4主面4の面積で除されることによって、第4主面4におけるボイド84の面密度が測定される。
 必要研磨量決定工程(S20)において、研磨とボイド84の面密度の測定とが繰り返される。必要研磨量決定工程(S20)において、ボイド84の面密度の閾値(以下、面密度閾値とも称する)が設定される。ボイド84の面密度の測定値が面密度閾値未満である場合、必要研磨量決定工程(S20)において研磨された研磨量が測定される。面密度閾値は、たとえば0.3個/cm2である。面密度閾値は、たとえば0.3個/cm2以下であってもよい。
 図16は、必要研磨量決定工程後におけるダミーウェハの構成を示す拡大模式図である。図16に示される拡大模式図は、図11に示される拡大模式図に対応している。炭化珪素ウェハ準備工程(S10)における炭化珪素ウェハ90の第1厚みH1から、必要研磨量決定工程(S20)後におけるダミーウェハ99の厚み(第2厚みH2)を差し引いた値が、必要研磨量決定工程(S20)において研磨された研磨量として測定される。測定された研磨量は、必要研磨量として決定される。
 図16に示されるように、必要研磨量決定工程(S20)後において、正常部11が露出されている。言い換えれば、必要研磨量決定工程(S20)後において、ダミーウェハ99の加工変質部12が除去されている。
 次に、研磨工程(S30)が実施される。まず、炭化珪素ウェハ90が準備される。炭化珪素ウェハ90の構成は、ダミーウェハ99の構成と同様である。炭化珪素ウェハ90は、機械研磨を用いて研磨される。機械研磨による炭化珪素ウェハ90の研磨量は、たとえば必要研磨量決定工程(S20)において決定された必要研磨量である。機械研磨による炭化珪素ウェハ90の研磨量は、必要研磨量以上であってもよい。しかしながら、機械研磨による炭化珪素ウェハ90の研磨量が過度に大きい場合、機械研磨に要する時間が増大し、かつ炭化珪素ウェハ90の第4主面4における研磨痕の面密度が増大する。このため、機械研磨による炭化珪素ウェハ90の研磨量は、必要研磨量であることが好ましい。
 機械研磨に用いられる機械研磨装置の構成は、支柱39が炭化珪素ウェハ90を能動的に加圧する役割を有している点において、研磨装置30の構成と異なっており、その他の構成は、研磨装置30の構成と同様である。具体的には、機械研磨装置の支柱39は、たとえばエアシリンダを有している。機械研磨における研磨条件は、必要研磨量決定工程(S20)における研磨条件と同様である。
 図17は、研磨工程(S30)における炭化珪素基板10の構成を示す拡大模式図である。図17に示される拡大模式図は、図11に示される拡大模式図に対応している。図17に示されるように、炭化珪素基板10の第1主面1は平滑である。炭化珪素基板10における加工変質部12の位置は、必要研磨量決定工程(S20)後におけるダミーウェハ99のボイド84の位置(図16参照)に対応している。炭化珪素基板10の厚みは、第2厚みH2である。
 次に、炭化珪素ウェハ90に対して、化学機械研磨(CMP:Chemical Mechanical Polishing)が実施される。CMPによる研磨量は、たとえば3μmである。CMPに用いられるCMP装置の構成は、支柱39が炭化珪素ウェハ90を能動的に加圧する役割を有している点において、研磨装置30の構成と異なっており、その他の構成は、研磨装置30の構成と同様である。具体的には、CMP装置の支柱39は、たとえばエアシリンダを有している。
 CMPに用いられる研磨剤において、砥粒として、たとえば扶桑化学工業製のコロイダルシリカ「PL-3H」が用いられる。酸化剤として、たとえばジクロロイソシアヌル酸Naが用いられる。添加剤として、たとえばスクロースが用いられる。CMPに用いられる研磨剤においては、たとえば4000cm3の水に、1000cm3のコロイダルシリカと、50gの酸化剤と、40gの添加剤とが配合される。水、コロイダルシリカ、酸化剤および添加剤の各々において、互いの分量の比率を維持しつつ、分量が変更されてもよい。CMPに用いられる研磨剤の水素イオン指数(pH)は、たとえば2.5以上3.5以下である。
 CMP装置において、研磨布として、たとえばニッタデュポン製のポリウレタン製スエード研磨布「Supreme(商標)」が用いられる。定盤の直径はたとえば640mmである。定盤の回転数はたとえば60rpmである。研磨ヘッドの回転数はたとえば80rpmである。研磨ヘッドの揺動速度はたとえば20mm/秒である。研磨剤の流量はたとえば200cm3/分である。以上のように、炭化珪素基板10が作製される。
 次に、エピタキシャル成長工程(S40)が実施される。炭化珪素基板10の第1主面1上に、炭化珪素エピタキシャル層20が形成される。複数の貫通転位80の内、炭化珪素基板10の加工変質部12中にある貫通転位80が転換されることにより、青色発光欠陥83が形成される。以上のように、炭化珪素エピタキシャル基板100(図3参照)が作製される。
 炭化珪素エピタキシャル基板100は、たとえば金属酸化膜半導体電界効果トランジスタ(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)等の炭化珪素半導体装置の基板として用いられる。
 次に、本実施形態に係る炭化珪素エピタキシャル基板100の作用効果について説明する。
 炭化珪素エピタキシャル基板100を用いて炭化珪素半導体装置を作製する場合、炭化珪素エピタキシャル基板100の第2主面2に露出している欠陥によって、炭化珪素半導体装置の電気特性が劣化する。これによって、炭化珪素半導体装置の歩留まりが低下する。発明者は、上記の現象の原因を詳細に調査する中で、第2主面2に露出している青色発光欠陥83が、炭化珪素半導体装置の電気特性の劣化に対して特に影響を与えることを見出した。
 さらに発明者は、青色発光欠陥83の形成の要因について調査する中で下記の知見を得た。具体的には、青色発光欠陥83は、炭化珪素基板10の加工変質部12中にある貫通転位80に起因して形成される。別の観点から言えば、貫通転位80から青色発光欠陥83に転換される割合は、炭化珪素基板10における加工変質部12の残留量によって変化する。
 炭化珪素基板10の研磨量を決定する際、炭化珪素基板10の表面粗さを指標とすることが考えられる。炭化珪素基板10の研磨と表面粗さの測定とを繰り返し、炭化珪素基板10の表面粗さが所定の値以下となるまで、炭化珪素基板10が研磨される。しかしながら、炭化珪素基板10の第1主面1の表面粗さが十分に小さくなるように研磨した場合、加工変質部12が十分に除去されないことがあった。図18は、炭化珪素基板10の第1主面1の表面粗さが十分に小さくなるように研磨した後に炭化珪素エピタキシャル層20を形成した状態を示す拡大断面模式図である。図18に示される拡大断面模式図は、図3に示す拡大断面模式図に対応している。
 加工変質部12は局所的に炭化珪素ウェハ90の深くまで形成されている(図11参照)。このため、図18に示されるように、炭化珪素基板10の第1主面1の表面粗さが十分に小さくなるように研磨した場合、加工変質部12の表層のみが除去され、炭化珪素ウェハ90の深くに形成されている加工変質部12は除去されない。別の観点から言えば、第1主面1の表面粗さが十分に小さくなるように研磨した場合、研磨量が過度に小さくなる。このため、加工変質部12の残留量が増大する。この場合、加工変質部12中にある貫通転位80の数が多くなる。これによって、貫通転位80から青色発光欠陥83に転換される割合は大きくなる。
 また、常温下において、炭化珪素ウェハ90の深くに形成されている加工変質部12は、炭化珪素ウェハ90の反りに影響を与えない。このため、炭化珪素基板10の反りが十分に小さくなるように研磨した場合であっても、炭化珪素ウェハ90の深くまで形成されている加工変質部12は除去されない。従って、炭化珪素基板10の表面粗さが十分に小さくなるように研磨した場合と同様に、研磨量は過度に小さくなる。
 一方で、機械研磨の研磨量を過度に大きくした場合、機械研磨後における炭化珪素基板10の第1主面1に形成される研磨痕が多くなる。このため、第1主面1における研磨痕の面密度を低減するために、CMPによる研磨量の増大が必要となる。
 図19は、研磨工程における機械研磨による研磨量が過度に大きい状態を示す断面模式図である。図19に示される断面模式図は、図7に示される断面模式図に対応している。図19に示されるように、CMPの研磨量が増大する場合、外周部は内周部と比較して研磨液に接触しやすいため、第1主面1の外周部の垂れが大きくなる。具体的には、断面視において、たとえば第1外周領域61の曲率および第2外周領域62の曲率の各々が大きくなる。断面視において、中央領域70は曲線状になる。別の観点から言えば、複数の外周領域60における炭化珪素基板10のLTIRが増大する。このため、炭化珪素エピタキシャル基板100の平坦度が悪化し、炭化珪素エピタキシャル基板100を用いて作製された炭化珪素半導体装置のパターン不良が増加する。これによって、炭化珪素エピタキシャル基板100を用いて作製された炭化珪素半導体装置の歩留まりが低下する。
 上述の通り、研磨量が過度に小さい場合、加工変質部12の残留量が多くなるため、貫通転位80から青色発光欠陥83に転換される割合は大きくなる。一方、研磨量が過度に大きい場合、CMPによる研磨量が多くなるため、複数の外周領域60における炭化珪素基板10のLTIRが増大する。従って、青色発光欠陥の面密度を低減し、かつLTIRを低減するため、最適な研磨量を決定する必要がある。
 発明者は、研磨量の決定のための方策について鋭意検討を行った結果、以下の知見を得て、本願に係る炭化珪素エピタキシャル基板100の製造方法における必要研磨量決定工程(S20)を導入することにした。貫通転位80近傍の加工変質部12は、他の加工変質部12および正常部11の各々と比較して削れやすい。このため、必要研磨量決定工程(S20)において、摩擦抵抗が局所的に変化するように研磨することによって、貫通転位80近傍の加工変質部12は深くまで削られる。これによって、貫通転位80近傍の加工変質部12は、ボイド84として検出される。
 従って、ボイド84の面密度が所定の個数以下となる必要研磨量を算出し、研磨工程(S30)における研磨量を必要研磨量となるように研磨を行うことにより、加工変質部12の残留量を低減することができる。これによって、貫通転位80から青色発光欠陥83に転換される割合を低減することができる。別の観点から言えば、研磨量が過度に小さい場合と比較して、第3方向103における加工変質部12の厚みを小さくすることができる(図3および図18参照)。また、研磨工程(S30)における機械研磨による研磨量が過度に大きくなることを抑制できるため、CMPによる研磨量を小さくすることができる。これによって、外周領域60における炭化珪素基板10のLTIRが過度に大きくなることを抑制することができる。
 本実施形態に係る炭化珪素エピタキシャル基板100によれば、炭化珪素基板10の第1主面1における貫通螺旋転位81の面密度を第1面密度とし、第1主面1における貫通刃状転位82の面密度を第2面密度とし、第2主面2における青色発光欠陥83の面密度を第3面密度とした場合、第1面密度と第2面密度とを合計した値に対する第3面密度の割合は、0.03%以下である。これにより、炭化珪素エピタキシャル基板100の第2主面2における青色発光欠陥83の面密度が低減されている。このため、炭化珪素エピタキシャル基板100を用いて作製される炭化珪素半導体装置の歩留まりを向上することができる。
 本実施形態に係る炭化珪素エピタキシャル基板100によれば、炭化珪素基板10の第1主面1を1辺の長さが10mmである複数の正方領域50に区分した場合、複数の正方領域50は、複数の正方領域50の最外周に位置する複数の第1外周領域61と、複数の第1外周領域61に接している複数の第2外周領域62とを有している。複数の第1外周領域61および複数の第2外周領域62における炭化珪素基板10のLTIRの平均値は、0.6μm以下である。これにより、第1主面1の外周領域60の平坦度が向上されている。このため、炭化珪素エピタキシャル基板100を用いて作製される炭化珪素半導体装置の歩留まりを向上することができる。
 本実施形態に係る炭化珪素エピタキシャル基板100によれば、炭化珪素基板10の全体厚みばらつきは6μm以下である。これにより、第1主面1の平坦度が向上されている。このため、炭化珪素エピタキシャル基板100を用いて作製される炭化珪素半導体装置の歩留まりを向上することができる。
 本実施形態に係る炭化珪素エピタキシャル基板100によれば、第1面密度と第2面密度とを合計した値に対する第3面密度の割合は、0.02%以下であってもよい。このため、炭化珪素エピタキシャル基板100を用いて作製される炭化珪素半導体装置の歩留まりをさらに向上することができる。
 本実施形態に係る炭化珪素エピタキシャル基板100によれば、第1面密度と第2面密度とを合計した値に対する第3面密度の割合は、0.01%以下であってもよい。このため、炭化珪素エピタキシャル基板100を用いて作製される炭化珪素半導体装置の歩留まりをさらに向上することができる。
 本実施形態に係る炭化珪素エピタキシャル基板100によれば、第1面密度に対する第3面密度の割合は、0.2%以下である。このため、炭化珪素エピタキシャル基板100を用いて作製される炭化珪素半導体装置の歩留まりをさらに向上することができる。
 本実施形態に係る炭化珪素エピタキシャル基板100によれば、第1面密度は、1500個/cm2以下である。これにより、第1主面1における貫通螺旋転位81の面密度が低減されている。このため、第2主面2における青色発光欠陥83の面密度をさらに低減することができる。
 本実施形態に係る炭化珪素エピタキシャル基板100によれば、第1面密度は、500個/cm2以下である。これにより、第1主面1における貫通螺旋転位81の面密度が低減されている。このため、第2主面2における青色発光欠陥83の面密度をさらに低減することができる。
 本実施形態に係る炭化珪素エピタキシャル基板100によれば、第1面密度は、100個/cm2以下である。これにより、第1主面1における貫通螺旋転位81の面密度が低減されている。このため、第2主面2における青色発光欠陥83の面密度をさらに低減することができる。
 本実施形態に係る炭化珪素エピタキシャル基板100によれば、第2面密度は、10000個/cm2以下である。これにより、第1主面1における貫通刃状転位82の面密度が低減されている。このため、第2主面2における青色発光欠陥83の面密度をさらに低減することができる。
 本実施形態に係る炭化珪素エピタキシャル基板100によれば、第2面密度は、5000個/cm2以下である。これにより、第1主面1における貫通刃状転位82の面密度が低減されている。このため、第2主面2における青色発光欠陥83の面密度をさらに低減することができる。
 本実施形態に係る炭化珪素エピタキシャル基板100によれば、第2面密度は、2000個/cm2以下である。これにより、第1主面1における貫通刃状転位82の面密度が低減されている。このため、第2主面2における青色発光欠陥83の面密度をさらに低減することができる。
 本実施形態に係る炭化珪素エピタキシャル基板100によれば、第2主面2の直径Dは150mm以上である。このように、大口径の炭化珪素エピタキシャル基板100であっても、炭化珪素エピタキシャル基板100を用いて作製された炭化珪素半導体装置の歩留まりを向上することができる。
 (実施例)
 (サンプル準備)
 次に、サンプルを用いた試験について説明する。まず、サンプル1からサンプル7に係る炭化珪素エピタキシャル基板100が準備された。サンプル1およびサンプル4の各々は比較例である。サンプル2、サンプル3およびサンプル5からサンプル7の各々は実施例である。
 サンプル1からサンプル7に係る炭化珪素エピタキシャル基板100の各々は、上記の本実施形態に係る製造方法を用いて作製された。必要研磨量決定工程(S20)における定盤35の回転数は、40rpm以上100rpm以下とされた。研磨ヘッドの回転数は、80rpm以上120rpm以下とされた。研磨ヘッド31の揺動速度は、10mm/秒以上30mm/秒以下とされた。研磨工程(S30)における機械研磨の条件は、必要研磨量決定工程(S20)における研磨条件と同様とされた。
 表1に示されるように、サンプル1からサンプル4においては、第1主面1における貫通螺旋転位81(TSD)の面密度(第1面密度)および貫通刃状転位82(TED)の面密度(第2面密度)の各々が同程度となるように準備された。具体的には、サンプル1からサンプル4に係る炭化珪素エピタキシャル基板100の第1面密度は、それぞれ470個/cm2、500個/cm2、540個/cm2、520個/cm2であった。サンプル1からサンプル4に係る炭化珪素エピタキシャル基板100の第2面密度は、3250個/cm2、4000個/cm2、3500個/cm2、4100個/cm2であった。
 サンプル5からサンプル7においては、第1面密度および第2面密度の各々が異なるように準備された。具体的には、サンプル5からサンプル7に係る炭化珪素エピタキシャル基板100の第1面密度は、1340個/cm2、870個/cm2、200個/cm2とされた。サンプル5からサンプル7に係る炭化珪素エピタキシャル基板100の第2面密度は、9060個/cm2、5620個/cm2、1870個/cm2であった。
 サンプル1からサンプル7に係る炭化珪素エピタキシャル基板100の作製においては、必要研磨量決定工程(S20)におけるボイドの面密度の閾値を変化させた。これによって、表1に示されるように、必要研磨量決定工程(S20)後におけるボイドの面密度が変化した。具体的には、サンプル1からサンプル3において、ボイドの面密度は0.05個/cm2以上0.6個/cm2以下の間で変化した。サンプル4においては、サンプル2と同等のボイド面密度となるように、ボイドの面密度閾値が設定された。サンプル5からサンプル7においては、ボイドの面密度は0.03個/cm2以上0.19個/cm2以下の間で変化した。サンプル1からサンプル7の各々において、設定されたボイド面密度の閾値に基づいて、必要研磨量が決定された。
 表1に示されるように、サンプル1からサンプル4においては、第1面密度および第2面密度の各々が同等であるため、ボイドの面密度の閾値を変化させたことによって、求められた研磨量も変化した。サンプル5からサンプル7においては、第1面密度および第2面密度の各々が異なるため、ボイドの面密度の閾値を変化させたにも関わらず、求められた研磨量は等しかった。
 表1に示されるように、サンプル1からサンプル3およびサンプル5からサンプル7においては、研磨工程(S30)におけるCMPの研磨量は3μmとされた。サンプル4においては、研磨工程(S30)におけるCMPの研磨量は8μmとされた。
 (測定方法)
 全てのサンプルにおいて、上述の測定方法を用いて、第1面密度および第2面密度の各々が測定された。第1面密度および第2面密度の各々の測定において、第1主面1が、ノルマルスキー微分干渉顕微鏡を用いて観察された。エッチピットの観察視野は、0.082cm×0.070cmとされた。炭化珪素基板10の第1主面1は、複数の正方測定領域に区分された。複数の正方測定領域の各々のサイズは、5mm×5mmとされた。複数の正方測定領域の各々においてエッチピットの数が求められた。正方測定領域におけるエッチピットの数を、エッチピットの観察視野の面積(0.082cm×0.070cm)で割った値が、当該正方測定領域における貫通螺旋転位81の面密度とされた。
 全ての正方測定領域における貫通螺旋転位81の面密度の合計を、正方測定領域の数で割った値を、炭化珪素基板10の第1主面1における貫通螺旋転位81の面密度(第1面密度)とした。同様にして、炭化珪素基板10の第1主面1における貫通刃状転位82の面密度(第2面密度)が測定された。
 全てのサンプルにおいて、炭化珪素基板の全体厚みばらつき(TTV)が測定された。具体的には、Corning Tropel社製の平面度測定機「Tropel FlatMaster(商標)」を用いて、上述の測定方法によりTTVが測定された。
 全てのサンプルにおいて、外周領域60における炭化珪素基板のLTIRの平均値が測定された。具体的には、Corning Tropel社製の平面度測定機「Tropel FlatMaster(商標)」を用いて、上述の測定方法によりLTIRが測定された。
 全てのサンプルにおいて、第3面密度が測定された。具体的には、フォトンデザイン社製のPLイメージング装置「SemiScope(商標) PLI-200」を用いて、上述の測定方法により、第3面密度が測定された。第3面密度の測定において、近赤外対物レンズ233の倍率は4.5倍とされた。測定温度は室温(27℃)とされた。
 カラーイメージセンサ235は、CCDイメージセンサとされた。CCD素子のタイプは、裏面照射型ディープディプレッション(back-illuminated deep depletion)タイプとされた。CCDイメージセンサは、テレダイン社製の「eXcelon(商標)」とされた。撮像波長範囲は310nm以上1024nm以下とされた。素子フォーマットは1024ch×1024chとされた。イメージエリアは13.3mm×13.3mmとされた。素子サイズは13μm×13μmとされた。
 全てのサンプルにおいて、測定された第1面密度、第2面密度および第3面密度を用いて、第1面密度と第2面密度の合計値に対する第3面密度の割合および第1面密度に対する第3面密度の割合の各々が計算された。
 (測定結果)
Figure JPOXMLDOC01-appb-T000001
 機械研磨による研磨量が過度に大きい場合、炭化珪素基板10の第1主面1における研磨痕が多くなるため、CMPによる研磨量を大きくする必要がある。この場合、外周部は内周部と比較してCMPにおける研磨液に接触しやすいため、第1主面1の外周部の垂れが大きくなる。言い換えれば、TTVおよびLTIRの各々が増大する。一方で、本実施形態の炭化珪素エピタキシャル基板100の製造方法によれば、機械研磨による研磨量は、必要研磨量決定工程(S20)において求められた必要研磨量である。このため、機械研磨による研磨量が過度に大きくなることを抑制し、CMPによる研磨量が大きくなることを抑制できる。結果として、TTVおよびLTIRの各々の増大を抑制することができる。
 表1に示されるように、サンプル1からサンプル7においてTTVを比較すると、CMPによる研磨量が3μm以下である場合において、TTVが6μm以下であった。サンプル1からサンプル7においてLTIRを比較すると、CMPによる研磨量が3μm以下である場合において、外周領域60におけるLTIRの平均値が0.6μm以下であった。以上の結果によれば、CMPによる研磨量を小さくすることにより、TTVおよびLTIRの各々の増大を抑制できることが確認された。
 表1に示されるように、サンプル1からサンプル7において、第1面密度と第2面密度の合計値に対する第3面密度の割合を比較すると、必要研磨量決定工程(S20)後におけるボイド面密度が0.3個/cm2以下である場合において、第1面密度と第2面密度との合計値に対する第3面密度の割合が0.03%以下となることが確認された。同様に、必要研磨量決定工程(S20)後におけるボイド面密度が0.2個/cm2以下である場合において、第1面密度と第2面密度との合計値に対する第3面密度の割合が0.02%以下となることが確認された。同様に、必要研磨量決定工程(S20)後におけるボイド面密度が0.05個/cm2以下である場合において、第1面密度と第2面密度との合計値に対する第3面密度の割合が0.01%以下となることが確認された。
 表1に示されるように、サンプル1からサンプル7において、第1面密度に対する第3面密度の割合を比較すると、必要研磨量決定工程(S20)後におけるボイド面密度が0.3個/cm2以下である場合において、第1面密度に対する第3面密度の割合が0.2%以下となることが確認された。
 以上の結果によれば、本実施形態に係る炭化珪素エピタキシャル基板の製造方法において、必要研磨量決定工程(S20)後におけるボイド面密度が0.3個/cm2以下である場合において、炭化珪素基板10のLTIRが小さく、かつ第2主面2における青色発光欠陥83の面密度が小さい炭化珪素エピタキシャル基板100を得られることが確認された。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 第1主面、2 第2主面、3 第3主面、4 第4主面、5 第5主面、6 界面、7 オリエンテーションフラット部、8 円弧状部、9 外周側面、10 炭化珪素基板、11 正常部、12 加工変質部、20 炭化珪素エピタキシャル層、30 研磨装置、31 研磨ヘッド、32 研磨剤供給部、33 研磨剤、34 研磨布、35 定盤、37 支持板、38 錘、39 支柱、41 第1回転軸、42 第2回転軸、43 中心側揺動端、50 正方領域、60 外周領域、61 第1外周領域、62 第2外周領域、70 中央領域、80 貫通転位、81 貫通螺旋転位、82 貫通刃状転位、83 青色発光欠陥、84 ボイド、90 炭化珪素ウェハ、99 ダミーウェハ、100 炭化珪素エピタキシャル基板、101 第1方向、102 第2方向、103 第3方向、104 第4方向、111 第1回転方向、112 第2回転方向、113 揺動方向、200 カラーフォトルミネッセンスイメージング装置、220 励起光生成ユニット、221 光源部、222 導光部、223 フィルタ部、230 イメージングユニット、231 制御部、232 ステージ、233 近赤外対物レンズ、235 カラーイメージセンサ、D 直径、H1 第1厚み、H2 第2厚み、L0 最小二乗平面、L1 第1最高点平面、L2 第1最低点平面、L3 第2最高点平面、L4 第2最低点平面、LE 励起光、LL フォトルミネッセンス光、P1 第1最高点、P2 第1最低点、P3 第2最高点、P4 第2最低点、T1 第1最高点高さ、T2 第1最低点高さ、T3 第2最高点高さ、T4 第2最低点高さ、W1 第1長さ、W2 第2長さ、θ 傾斜角。

Claims (13)

  1.  第1主面を含む炭化珪素基板と、
     前記第1主面上に設けられている炭化珪素エピタキシャル層とを備える炭化珪素エピタキシャル基板であって、
     前記炭化珪素基板にある貫通螺旋転位と、
     前記炭化珪素基板にある貫通刃状転位と、
     前記炭化珪素エピタキシャル層にある青色発光欠陥とを備え、
     前記炭化珪素エピタキシャル層は、前記炭化珪素基板と前記炭化珪素エピタキシャル層との界面の反対側にある第2主面を含み、
     前記青色発光欠陥は、前記第2主面に露出しており、
     前記青色発光欠陥に対して励起光を照射することによって、前記青色発光欠陥から発生するフォトルミネッセンス光をHSV色空間で表現した場合、Hは180°以上230°以下であり、Sは60以上170以下であり、かつVは190以上255以下であり、
     前記第1主面を1辺の長さが10mmである複数の正方領域に区分した場合、前記複数の正方領域は、前記複数の正方領域の最外周に位置する複数の第1外周領域と、前記複数の第1外周領域に接している複数の第2外周領域とを含み、
     前記複数の第1外周領域および前記複数の第2外周領域における前記炭化珪素基板のLTIRの平均値は、0.6μm以下であり、
     前記第1主面における前記貫通螺旋転位の面密度を第1面密度とし、前記第1主面における前記貫通刃状転位の面密度を第2面密度とし、前記第2主面における前記青色発光欠陥の面密度を第3面密度とした場合、
     前記第1面密度と前記第2面密度とを合計した値に対する前記第3面密度の割合は、0.03%以下である、炭化珪素エピタキシャル基板。
  2.  前記炭化珪素基板の全体厚みばらつきは、6μm以下である、請求項1に記載の炭化珪素エピタキシャル基板。
  3.  前記第1面密度と前記第2面密度とを合計した値に対する前記第3面密度の割合は、0.02%以下である、請求項1または請求項2に記載の炭化珪素エピタキシャル基板。
  4.  前記第1面密度と前記第2面密度とを合計した値に対する前記第3面密度の割合は、0.01%以下である、請求項3に記載の炭化珪素エピタキシャル基板。
  5.  前記第1面密度に対する前記第3面密度の割合は、0.2%以下である、請求項1から請求項4のいずれか1項に記載の炭化珪素エピタキシャル基板。
  6.  前記第1面密度は、1500個/cm2以下である、請求項1から請求項5のいずれか1項に記載の炭化珪素エピタキシャル基板。
  7.  前記第1面密度は、500個/cm2以下である、請求項6に記載の炭化珪素エピタキシャル基板。
  8.  前記第1面密度は、100個/cm2以下である、請求項7に記載の炭化珪素エピタキシャル基板。
  9.  前記第2面密度は、10000個/cm2以下である、請求項1から請求項8のいずれか1項に記載の炭化珪素エピタキシャル基板。
  10.  前記第2面密度は、5000個/cm2以下である、請求項9に記載の炭化珪素エピタキシャル基板。
  11.  前記第2面密度は、2000個/cm2以下である、請求項10に記載の炭化珪素エピタキシャル基板。
  12.  前記第2主面の直径は、150mm以上である、請求項1から請求項11のいずれか1項に記載の炭化珪素エピタキシャル基板。
  13.  前記炭化珪素基板の電気抵抗率は、10mΩ・cm以上である、請求項1から請求項12のいずれか1項に記載の炭化珪素エピタキシャル基板。
PCT/JP2023/000648 2022-02-02 2023-01-12 炭化珪素エピタキシャル基板 WO2023149166A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023578432A JPWO2023149166A1 (ja) 2022-02-02 2023-01-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022014815 2022-02-02
JP2022-014815 2022-02-02

Publications (1)

Publication Number Publication Date
WO2023149166A1 true WO2023149166A1 (ja) 2023-08-10

Family

ID=87552312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000648 WO2023149166A1 (ja) 2022-02-02 2023-01-12 炭化珪素エピタキシャル基板

Country Status (2)

Country Link
JP (1) JPWO2023149166A1 (ja)
WO (1) WO2023149166A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058709A (ja) * 2011-09-09 2013-03-28 Showa Denko Kk SiCエピタキシャルウェハ及びその製造方法
WO2016133172A1 (ja) * 2015-02-18 2016-08-25 新日鐵住金株式会社 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
JP2019218238A (ja) * 2018-06-20 2019-12-26 信越半導体株式会社 炭化珪素単結晶成長装置及び炭化珪素単結晶の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058709A (ja) * 2011-09-09 2013-03-28 Showa Denko Kk SiCエピタキシャルウェハ及びその製造方法
WO2016133172A1 (ja) * 2015-02-18 2016-08-25 新日鐵住金株式会社 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
JP2019218238A (ja) * 2018-06-20 2019-12-26 信越半導体株式会社 炭化珪素単結晶成長装置及び炭化珪素単結晶の製造方法

Also Published As

Publication number Publication date
JPWO2023149166A1 (ja) 2023-08-10

Similar Documents

Publication Publication Date Title
JP5839069B2 (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャル基板およびこれらの製造方法
JP7120427B2 (ja) 炭化珪素基板および炭化珪素エピタキシャル基板
KR101994782B1 (ko) 경면연마 웨이퍼의 제조방법
JP2003229392A (ja) シリコンウエーハの製造方法及びシリコンウエーハ並びにsoiウエーハ
TWI400743B (zh) Silicon wafer and its manufacturing method
JP2016139751A (ja) サファイア基板の研磨方法及び得られるサファイア基板
CN113169034B (zh) 带激光标记的硅晶圆的制造方法
JP5472073B2 (ja) 半導体ウェーハ及びその製造方法
JP6465193B2 (ja) 炭化珪素単結晶基板および炭化珪素エピタキシャル基板
US10395933B2 (en) Method for manufacturing semiconductor wafer
WO2023149166A1 (ja) 炭化珪素エピタキシャル基板
JP6964388B2 (ja) 炭化珪素エピタキシャル基板
JP6260603B2 (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャル基板およびこれらの製造方法
JP6981505B2 (ja) 炭化珪素エピタキシャル基板の製造方法
JP5277722B2 (ja) 炭化珪素単結晶ウェハ表面の研磨方法
JP6855955B2 (ja) レーザマークの印字方法、レーザマーク付きシリコンウェーハの製造方法
JP2004022677A (ja) 半導体ウエーハ
WO2022190469A1 (ja) 炭化珪素基板および炭化珪素基板の製造方法
WO2022190458A1 (ja) 炭化珪素基板および炭化珪素基板の製造方法
JP5846223B2 (ja) 基板および発光素子
JP7294502B1 (ja) SiC単結晶基板
WO2022249914A1 (ja) 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
JP2011086656A (ja) 基板の研磨方法、基板および発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578432

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE