JP2022022200A - メモリ回路及び操作方法 - Google Patents
メモリ回路及び操作方法 Download PDFInfo
- Publication number
- JP2022022200A JP2022022200A JP2021121055A JP2021121055A JP2022022200A JP 2022022200 A JP2022022200 A JP 2022022200A JP 2021121055 A JP2021121055 A JP 2021121055A JP 2021121055 A JP2021121055 A JP 2021121055A JP 2022022200 A JP2022022200 A JP 2022022200A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- bias voltage
- current
- generate
- buffer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0038—Power supply circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/14—Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
- G11C5/147—Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0023—Address circuits or decoders
- G11C13/0026—Bit-line or column circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0069—Writing or programming circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1653—Address circuits or decoders
- G11C11/1655—Bit-line or column circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1673—Reading or sensing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1697—Power supply circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
- G11C2013/0045—Read using current through the cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/14—Dummy cell management; Sense reference voltage generators
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Memories (AREA)
- Static Random-Access Memory (AREA)
- Control Of Electrical Variables (AREA)
Abstract
【課題】抵抗型記憶装置の読み取りのためのバイアス電圧発生器を提供する。【解決手段】メモリ回路100において、バイアス電圧発生回路110は、第1の電流経路と、第1の電圧クランプ装置120と、第1のバッファ144とを有する。バイアス電圧発生回路は、基準電圧Vrefを受信し、基準電圧と第1の駆動電圧VRBLとの電圧差に基づいて第1のバイアス電圧VGを生成する。第1の電圧クランプ装置は、第1の電流経路に第1の駆動電圧を印加することにより、第1のバイアス電圧に基づいて第1の駆動電圧を生成する。第1のバッファは、第1のバイアス電圧を受信し、第1のバイアス電圧に基づいて第2のバイアス電圧VGBを生成する。第2の電流経路111は、抵抗ベースのメモリ装置を有する。第2の電圧クランプ装置は、第2のバイアス電圧に基づいて第2の駆動電圧を生成し、第2の電流経路に第2の駆動電圧を印加する。【選択図】図1A
Description
本願は、2020年7月24日に提出された米国仮出願第63/056、046号の優先権を主張し、当該出願の全ての内容は本明細書中に参考として援用される。
本発明は、メモリ回路及び操作方法に関する。
本発明は、メモリ回路及び操作方法に関する。
一部のアプリケーションでは、集積回路(IC)には、抵抗ベースのメモリデバイスのアレイ(抵抗変化型メモリ(RRAM)セルなど)にデータを格納するメモリ回路が含まれます。 RRAMセルなどの抵抗ベースのメモリデバイスは、高抵抗状態(HRS)または低抵抗状態(LRS)にプログラム可能であり、各状態はRRAMセルによって格納されたロジック状態を表す。
本開示は、添付図面を参照しながら、適切な実施形態について詳細に説明する。なお、業界標準では、様々なバターンがスケールに描かれていない。実際には、議論の明確にするために、各バターンの寸法を任意に増減させることが可能である。
また、下記の開示は、課題を解決するためになされたものであり、発明の要旨を逸脱しない範囲で種々の変更を行うことが可能である。以下、本開示を簡略化するために構成及び配置に関する具体的な例を説明する。もちろん、これらは一例に過ぎず、これらに限定されるものではない。例えば、以下の説明において、第2の特徴の上方にまたは上に第1の特徴を形成するとは、第1の特徴と第2の特徴とが直接接して形成されている態様を含んでもよいし、第1の特徴と第2の特徴とが直接接していなくてもよいように、第1の特徴と第2の特徴との間に付加的なバターンが形成されている態様を含んでもよい。また、本開示は、各実施例において、参照符号及び/またはキャラクターを繰り返してもよい。なお、この繰り返しは、説明を簡単にするためのものであり、本開示の各種の実施形態の「及び」/「または」という組み合わせの関係を限定するものではない。
また、簡単に説明するために、本開示において、「~の下に」、「~の下方に」、「~より低い」、「~の上に」、「アッパー」等の空間的な相対的な用語を用いて、図面に示すように、一つの素子または特徴と他の素子又は特徴との関係を説明する可能性がある。なお、空間的な相対的な用語とは、図面に示す方向又は位置だけではなく、装置の使用中や動作中の異なる方向又は位置も含むものとする。前記装置は他の方向で(90度又は他の方向)回転させてもよく、本開示では、空間的な相対的な用語についても同様に解釈することができる。
幾つかの実施形態において、メモリ回路は、フィードバック構成を用いてバイアス電圧を生成することで、他の手法に比べて負荷を低減し、読み取り動作を高速化する。メモリ回路は、抵抗型メモリ素子を含む電流経路と、抵抗型メモリ素子を含む電流経路の少なくとも一部の抵抗特性を模擬するレプリカ抵抗素子とを含む。本発明の好ましい態様によれば、読み取り動作時に、電圧クランプ装置が電流経路に駆動電圧を駆動するためのバイアス電圧を生成するためのアロカル型のバッファ回路を備え、前記フィードバックは、前記レプリカ抵抗素子に供給されるバイアス電圧を生成するための別のバッファ回路によって提供される。バイアス電圧は、レプリカ抵抗素子に流れる参照電流を含むフィードバック構成を用いて与えられ、参照電圧を生成することが好ましい。
このようなフィードバック構成を有しない手法と比較して、バイアス電圧発生器の待機電力を低減し、動的に出力可能な電荷量を増加させることで、消費電力を低減し、メモリ回路の高速化を図ることができる。
幾つかの実施形態において、図1A及び図1Bは、本実施形態に係るメモリ回路100を示す図である。図1Aは、対応するセンスアンプSAと電流経路111との間に直列に接続された複数の電圧クランプ素子120に接続されたバイアス電圧発生回路110を含む上段図である。図1Bは、メモリ回路100内のバイアス電圧生成回路110に接続された電流経路111、センスアンプSA、及び電圧クランプ装置120の一例を示す図である。
図1Aは、後述するバイアス電圧発生器110の詳細を示す図であり、図1Bは、インスタンス型記憶装置150を含む電流経路111の詳細を示す図である。
図1Bには、簡単に理解するために、導電線L1と導電線L2との間に接続された各抵抗型メモリ素子150が示されている。メモリ回路100は、図1A及び図1Bに示す抵抗型メモリ素子150の配列に加えて、1つ以上の追加構成要素、例えば、少なくとも1つの制御回路又は論理回路を含むメモリマクロ(図示せず)のサブセットである。図1Aには、電源電圧/ノードVDDも示されており、図1A及び図1Bには、グランド記号で示された電源基準電圧/ノード(例えば、グランド)も示されている。
抵抗型記憶装置150は、論理状態を示す高抵抗状態(HRS:High Resistance State)と低抵抗状態(LRS:Low Resistance State)のいずれかを有することが可能な記憶装置である。抵抗ベース記憶装置150は、導電線L1に接続された端子152と、導電線L2に接続された端子153とを有する。抵抗型記憶装置150は、導電パスとも呼ばれる1本以上のフィラメントの有無に基づいて、HRSに相当する大きな絶縁性とLRSに相当する大きな導電性とのいずれかを有することができる抵抗層(図示せず)を備えている。動作時には、空孔や欠陥移動等の各種機構の1つ以上に基づいて、例えばフィラメントを形成することにより、抵抗型記憶素子150をLRSにセットし、加熱等の機構の1つ以上に基づいて、抵抗型記憶素子150をHRSにリセットすることにより、抵抗型記憶素子150をHRSにリセットする。
抵抗型記憶装置150は、抵抗層と直列に接続され、ゲートが入力端子(図示せず)に接続された選択トランジスタ(図示せず)を備え、活性化電圧に応じて、抵抗型記憶装置150と導電線対L1/L2とを接続するように構成されている。抵抗型メモリ素子150は、RRAM素子、磁気トンネル接合(MTJ:Magnetic Tunnel Junction)素子、相変化メモリ(PCM:Phase Change Memory)素子等を含む。図1A及び図1Bの例では、抵抗ベース記憶装置150は、RRAM装置を含む。
幾つかの実施形態において、抵抗型記憶装置150は、LRSにおける抵抗値が1kΩ-4kΩ、及び/又はHRSにおける抵抗値が15kΩ-30kΩであることが好ましい。その他の抵抗値/範囲も本発明の範囲内である。
これにより、選択トランジスタのドレインーソース間電圧分だけ低下した端子152の電圧V1と端子153の電圧V2との差に等しいメモリセル電圧V12に基づいて、抵抗型メモリ素子150が読み取り可能となる。
メモリ回路100、すなわちメモリ回路100を含むメモリマクロは、メモリセル電圧V12が、読み取り動作時の抵抗型メモリ素子150のLRSまたはHRSを検出することに対応した読み取り電圧レベルとなるように構成されている。メモリセル電圧V12は、抵抗型メモリ素子150をプログラムするために、第1のプログラム電圧レベルに設定されて抵抗型メモリ素子150をLRSに設定し、第2のプログラム電圧レベルに設定されて抵抗型メモリ素子150をHRSに設定する。幾つかの実施形態では、第1の書き込み電圧レベル及び第2の書き込み電圧レベルの大きさは、読み取り電圧レベルの大きさよりも大きい。
幾つかの実施形態において、第1及び第2の書き込み動作及び読み取り動作のそれぞれは、同じ極性であってもよいし、第1及び第2の書き込み動作及び読み取り動作の一方と、第1及び第2の書き込み動作及び読み取り動作の他方とは異なる極性であってもよい。第1及び第2の書き込み動作及び読み取り動作のそれぞれにおいて、抵抗ベースメモリ素子150に印加されるメモリセル電圧V12は、端子152と端子153との間に、メモリセル電圧の極性に応じた方向に電流Idを流す。
読み取り動作時には、メモリセル電圧V12が読み取り電圧レベルに設定され、電流Idが生成される。電流Idは、抵抗変化型記憶装置150がHRSである場合に第1の電流レベルを有し、抵抗変化型記憶装置150がLRSである場合に第2の電流レベルを有する。HRSの抵抗レベルはLRSの抵抗レベルよりも高いため、第1の電流レベルは第2の電流レベルよりも低い。各センスアンプSAは、電流Idが第1の電流レベルであるか第2の電流レベルであるかを検出することにより、対応する抵抗ベース記憶装置150がHRSであるかLRSであるかを検出するように構成されている。
各抵抗ベース記憶装置150は、電流経路111に設けられている。電圧クランプ装置120は、電流Idを生成するために、駆動電圧VDを生成し、電流経路111に印加する。図1A及び図1Bでは、各センスアンプSAは、1つの抵抗ベース記憶装置150と、1対の導電線L1、L2とに接続されている。この構成は、説明を簡単にするためのものである。幾つかの実施形態では、各センスアンプSA及び各電圧クランプ装置120は、一組の抵抗型メモリ装置150に接続されており、組内の各抵抗型メモリ装置150は、異なる一対の導電線に接続されている。
2つ以上の回路素子は、2つ以上の回路素子間の1つ以上の直接的な電気的接続及び/又は1つ以上の間接的な電気的接続に基づいて接続されていると考えられる。接続された2つ以上の回路素子間の電気的な通信は、1つ以上の論理デバイスによって、例えば、反転させたり、条件をつけたりすることが可能である。
図1Bに示すように、各電流経路111は、対応する電圧クランプ装置120と電源基準ノードとの間に接続されている。電圧クランプ素子120は、ゲート端子等の制御端子に入力される電圧に基づいて、ソース端子等の導電路端子の電圧を制限するスイッチング素子、例えばNMOS素子である。
電流経路111は、パスセグメント130、140と、パスセグメント130、140間に接続された導電線L1、L2と、導電線L1、L2間に接続された抵抗ベース記憶装置150とを含む。パスセグメント130は、導電線L1を選択するマルチプレクサである。この場合、パスセグメント140は、導電線L2を選択するマルチプレクサである。他の実施形態では、パスセグメント130は、導電線L2を選択するマルチプレクサである。この場合、パスセグメント140は、導電線L1を選択するマルチプレクサである。
各センスアンプSA及び各電圧クランプ装置120に、複数の(導電線対間に接続された)抵抗型記憶装置150が接続されている場合には、パスセグメント130、140を用いて、各種の抵抗型記憶装置150を選択する(導電線対を選択する)。パスセグメント130、140によって抵抗型メモリ素子150が選択された場合、電流Idは、抵抗型メモリ素子150(延いては、対応する1対の導電線)を流れるが、センスアンプSA及び電圧クランプ装置120にも接続されている他の抵抗型メモリ素子150(延いては、対応する1対の導電線)には流れない。
センスアンプSAは、読み取り動作時に選択抵抗型記憶装置150がHRSであるかLRSであるかを検出するために、電流経路111に印加される駆動電圧VDを適切な駆動電圧レベルに維持する。しかし、温度変動によって電圧クランプ装置120の動作が変化すると、駆動電圧レベルが変動する可能性がある。
メモリ回路100は、電圧クランプ素子120が生成する駆動電圧VDの駆動電圧レベルを制御するために、各電圧クランプ素子120に接続されたバイアス電圧発生器110を備える。バイアス電圧発生器110は、電圧クランプ装置120毎にバイアス電圧VGBを生成して制御する。より具体的には、バイアス電圧発生器110は、電圧クランプ素子120と電源基準ノードとの間に接続された抵抗によらず、例えば抵抗状態に基づいて、各電圧クランプ素子120が生成する駆動電圧VDの駆動電圧レベルを一定電圧近傍に維持するように構成されている。バイアス電圧発生器110は、バイアス電圧VGBの電圧レベルを調整して、駆動電圧VDを、センスアンプSAが各抵抗型記憶装置150がLRSであるかHRSであるかを検出するために必要な駆動電圧レベルに維持するように構成されている。
バイアス電圧発生器110は、グローバル制御回路139と、ローカルバッファ144とを備える。図1Aに示す実施形態では、バイアス電圧発生器110は、電圧クランプ装置120ごとに32個のローカルバッファ144を有する。他の実施形態では、バイアス電圧発生器110は、32個より多い又は32個より少ない数のローカルバッファ144を有する。ローカルバッファ144は、電圧クランプ装置120に入力されるバイアス電圧VGBを生成する。ローカルバッファ144は、電圧クランプ素子120及び電流経路111の抵抗挙動を抵抗型記憶素子150で模擬するための構成要素を含むバッファ141の構成要素によってはロードされない。ローカルバッファ144を設けることにより、バイアス電圧発生器110のサイズを小さくすることができ、省電力化及び省面積化を図ることができる。
図1A及び図1Bにおいて、電圧クランプ素子120は、NMOS素子で構成されている。NMOS素子のゲートは、接続されたローカルバッファ144からバイアス電圧VGBを受ける。NMOS素子のドレインはセンスアンプ(SA)に接続され、NMOS素子のソースは電流経路111に接続されている。NMOS素子は、電流経路から電流Idを生成する。
図1Aにおいて、グローバル制御回路139は、バイアス電圧VGを生成するように構成されている。動作時には、各ローカルバッファ144にバイアス電圧VGが入力され、各ローカルバッファ144は、バイアス電圧VGに基づいてバイアス電圧VGBを調整するように構成されている。後述するように、グローバル制御回路139は、バイアス電圧VGBのバイアス電圧レベルを調整するために、バイアス電圧VGのバイアス電圧レベルを調整し、センスアンプSAが必要とする駆動電圧VDの駆動電圧レベルを維持するように構成されている。グローバル制御回路139をローカルバッファ144から分離することにより、グローバル制御回路139は、電圧クランプ素子120及び電流経路111に負荷されないため、電圧クランプ素子回路に負荷される場合に比べて消費電力が少なく、省面積化を図ることができる。
グローバル制御回路139は、オペアンプ143と、バッファ141と、レプリカ回路145とを含む。レプリカ回路145は、抵抗ベース記憶装置150を有する電流経路111の少なくとも一部の抵抗を模擬するように構成されている。レプリカ回路145は、電流経路111の抵抗値に基づいて所定の抵抗値を有する経路抵抗を与えるように構成されている。すなわち、レプリカ回路145は、第1電流経路111の動作条件(例えば、温度、物理的、電圧条件)が変化することによって、第1電流経路111の抵抗挙動を模擬するように構成されている。種々の実施形態において、レプリカ回路145は、多結晶シリコン材料(poly)、シリコンを含む化合物材料、半導体材料または化合物など、第1電流経路111の抵抗変化を模擬するのに適した材料を含む。ここで、所定の抵抗値とは、抵抗性記憶素子150の抵抗値に基づくものであり、抵抗性記憶素子150を含む電流経路111の少なくとも一部の抵抗値に基づくものである。。
幾つかの実施形態において、所定の抵抗値は、HRSまたはLRSにおける抵抗ベースメモリ素子の抵抗値、HRSにおける抵抗ベースメモリ素子の抵抗値よりも高い抵抗値、LRSにおける抵抗ベースメモリ素子の抵抗値よりも低い抵抗値、または、HRSにおける抵抗ベースメモリ素子の抵抗値とLRSとの間の抵抗値に対応する。幾つかの実施形態では、レプリカ回路145は、電圧クランプ装置120及び電流経路111全体の抵抗挙動を模擬するように構成されている。
幾つかの実施形態において、レプリカ回路145は、抵抗値による記憶素子抵抗値と等しい所定の抵抗値、または、抵抗値による記憶素子抵抗値に由来する所定の抵抗値、例えば、抵抗値による記憶素子抵抗値の倍数または分数の抵抗値を有するように構成されている。
レプリカ回路145は、電圧クランプ装置120が受けたバイアス電圧VGBを受けない。これに代えて、バッファ141はバイアス電圧VGBを生成し、レプリカ回路145はバッファ141からバイアス電圧VGBを受け取るように構成されている。バッファ141は、オペアンプ143からバイアス電圧VGを受け取り、バイアス電圧VGに基づいてバイアス電圧VGBを調整する。
動作時には、オペアンプ143及びレプリカ回路145を用いて、電流経路111の抵抗挙動を模擬し、駆動電圧VDを適切な駆動電圧レベルに維持する。オペアンプ143は、レプリカ回路145からのフィードバックに基づいて、バイアス電圧VGを生成し、バイアス電圧VGを調整する。より具体的には、レプリカ回路145は、駆動電圧VRBLを生成するように構成されている。レプリカ回路145は、バイアス電圧VGBに基づいて駆動電圧VRBLを調整するように構成されている。動作時、レプリカ回路145は、電流経路111の抵抗挙動を模擬し、駆動電圧VRBLの駆動電圧レベルを駆動電圧VDの駆動電圧レベルを模擬する。
バイアス電圧発生器110は、基準電圧Vrefと駆動電圧VRBLとの電圧差に基づいて、バイアス電圧VGを調整する。図1Aにおいて、オペアンプ143は、基準電圧Vrefが入力される非反転入力端子NITと、駆動電圧VRBLが入力される反転端子ITと、バイアス電圧VGが出力される出力端子OTとを有する。基準電圧Vrefは、ほぼ一定の基準電圧レベルに設定されている。基準電圧Vrefは、動作時には、動作や環境変動により電流経路111の抵抗挙動が変動しても、駆動電圧VDの駆動電圧レベルが電流Idの電流レベルを適切な読み取りレベルの大きさに維持するように、オペアンプ143にバイアス電圧VGを調整させる所定の基準電圧レベルを有する。
図2は、本開示の実施形態に係るメモリ回路100Aのダイヤグラムである。
メモリ回路100Aは、メモリ回路100の一実施形態である。なお、図2において、メモリ回路100と同一の構成要素には、図1と同一の符号を付し、説明を省略する。
メモリ回路100Aは、グローバル制御回路139A及びローカルバッファ144Aを含むバイアス電圧発生器110Aを有する。本実施形態では、ローカルバッファ144Aとして1つのバッファを示している。いくつかの実施形態では、全てのローカルバッファ144は、ローカルバッファ144Aと同一である。他のローカルバッファ144は、ローカルバッファ144Aとは異なる構成、例えば、図4及び図5を参照して後述する構成を有する。他のローカルバッファ144は、ローカルバッファ144Aと同様に設けられ、他のローカルバッファ144とは異なる構成で設けられている。
バイアス電圧生成回路110Aは、図1Aに示したグローバル制御回路139の一実施形態であるグローバル制御回路139Aを含む。グローバル制御回路139Aは、上述したオペアンプ143と、バッファ141Aと、レプリカ回路145Aとを含む。バッファ141Aは、図1Aに関して前述したバッファ141の一実施形態であり、レプリカ回路145Aは、図1Aに関して前述したレプリカ回路145の一実施形態である。
図2に示す実施形態では、バイアス電圧発生器110Aは、オペアンプ143の出力端子OTと電力基準ノードとの間に接続された容量素子C1を含む。容量素子C1は、キャパシタ、またはキャパシタとして構成されたNMOS素子またはPMOS素子を含む。動作時には、容量素子C1は、ローカルバッファ144及び/又は144Aからのデカップリングノイズ等により、バイアス電圧VGを安定化させるように作用する。幾つかの実施形態では、バイアス電圧発生器110Aは、容量素子C1を備えている。
ローカルバッファ144Aは、電流源200と、電流源200にソースフォロア接続されたNMOS素子202とを含む。本実施形態では、NMOS素子202のドレインは電源電圧VDDを受け、NMOS素子202のゲートはオペアンプ143の出力端子OTからバイアス電圧VGを受け、NMOS素子202のソースはノードBN1に接続されている。ノードBN1は、電圧クランプ装置120のゲート及び電流源200のアノードに接続されている。電流源200のカソードは、電力基準ノードに接続されている。このように、NMOS素子202は、三極管領域で動作するように構成されている。電流源200は、電流IB1を生成する。NMOS素子202は、ソースからノードBN1にバイアス電圧VGBを生成する。これにより、NMOS素子202は、動作時に、電流源200の電流IB1を導通させ、その導通電流が電流源200が発生する電流IB1と一致するように、バイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。これにより、NMOS素子202は、電流源200で生成された電流IB1が導通するように、バイアス電圧VGのバイアス電圧レベルの変化に応じてバイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。NMOS素子202は、ゲートにほとんど電流を引き込まず、電圧クランプ素子120に低インピーダンスを与えるという利点がある。
電流源200は、アクティブ状態およびスタンバイ状態で動作するように構成されている。アクティブ状態では、ローカルバッファ144Aは、リード動作を行うためにアクティブに動作している。スタンバイ状態では、ローカルバッファ144Aはオンであるが、リード動作を行うためにアクティブに動作していない。このように、電流源200は、アクティブ状態における第1の電流レベルと、スタンバイ状態における第2の電流レベルとを有し、第1の電流レベルが第2の電流レベルよりも大きい電流IB1を生成するように構成されている。
幾つかの実施形態において、電流源200は、第1電流値が100マイクロアンペア(μA)-10ミリアンペア(mA)の電流IB1を生成するように構成されている。本実施形態では、電流源200は、900μA-1.1mA程度、例えば1mA又は1mAに近く第1電流レベルを有する電流IB1を生成するように構成されている。
幾つかの実施形態において、電流源200は、第1電流値が1μAー100μAの電流IB1を生成するように構成されている。本実施形態では、電流源200は、8μAー12μA程度、例えば10μA又は10μAに近く第1電流レベルを有する電流IB1を生成するように構成されている。
バッファ141Aは、電流源204と、電流源204にソースフォロア接続されたNMOS素子206とを含む。本実施形態では、NMOS素子206のドレインは電源電圧VDDを受け、NMOS素子206のゲートはオペアンプ143の出力端子OTからバイアス電圧VGを受け、NMOS素子206のソースはノードBN2に接続されている。ノードBN2は、レプリカ回路145A内の電圧クランプ素子120Rのゲートと、電流源204のアノードとに接続されている。電流源204のカソードは、電力基準ノードに接続されている。このように、NMOS素子206は、三極管領域で動作するように構成されている。電流源204は、電流IB2を生成する。NMOS素子206は、ソースからノードBN2にバイアス電圧VGBを生成する。これにより、NMOS素子206は、動作時に、電流源204の電流IB2を導通させ、導通させた電流が電流源204が生成する電流IB2と一致するように、バイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。これにより、NMOS素子206は、電流源204で生成された電流IB2が導通するように、バイアス電圧VGのバイアス電圧レベルの変化に応じてバイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。バッファ141Aの利点は、NMOS素子206がゲートにほとんど電流を引き込まず、電圧クランプ素子120Rに低インピーダンスを与えることである。
幾つかの実施形態において、電流源200がスタンバイモードのとき、電流IB2の電流レベルは、電流IB1の第2電流レベルと略等しい。動作時には、ローカルバッファ141Aは、スタンバイ時にローカルバッファ144Aがバイアス電圧VGBを生成するためのフィードバックを維持することにより、スタンバイ時にメモリ回路100Aが消費する電力量を他の手法に比べて大幅に低減することができる。また、ローカルバッファ144Aは、電荷の動的な変化を電圧クランプ装置120のゲートに与えることができ、外乱や遷移時のバイアス電圧VGBを安定化させることができる。
レプリカ回路145Aは、電圧クランプ装置120及び電流経路111の抵抗挙動を模擬するように構成されている。レプリカ回路145Aは、電圧クランプ装置120Rと、レプリカパスセグメント130Rと、レプリカ抵抗ベース記憶装置150Rと、レプリカパスセグメント140Rとを有する。電圧クランプ装置120Rは、電圧クランプ装置120の動作を模擬するように構成され、レプリカパスセグメント130Rは、パスセグメント130の抵抗挙動を模擬するように構成され、レプリカ抵抗型記憶装置150Rは、抵抗型記憶装置150の抵抗挙動を模擬するように構成され、レプリカパスセグメント140Rは、パスセグメント140の抵抗挙動を模擬するように構成されている。レプリカパスセグメント130R、レプリカ抵抗ベース記憶装置150R及びレプリカパスセグメント140Rは、レプリカ電流経路111Rを構成する。これにより、レプリカ電流路111Rは、電流路111の抵抗挙動を模擬するように構成されている。
幾つかの実施形態において、電圧クランプ素子120Rは、ドレインが電源電圧VDDを受け、ゲートがノードBN2からバイアス電圧VGBを受け、ソースがフィードバックノードFBNに接続されたNMOS素子である。電圧クランプ装置120Rは、動作時には、フィードバックノードFBNにおいて、レプリカ電流経路111Rに駆動電圧VRBLが印加されることにより、レプリカ電流経路111Rを伝搬するレプリカ電流IRを生成するように、ソースから駆動電圧VRBLを生成するように構成されている。レプリカパスセグメント130Rは、1つのパスセグメント130の抵抗を模擬するように直列に接続された3つのFETを含む。レプリカパスセグメント140Rは、1つのパスセグメント140の抵抗を模擬するように直列に接続された2つのFETを含む。
レプリカ抵抗型記憶装置150Rは、レプリカ選択トランジスタ151Rと、レプリカ抵抗素子RP1とを含む。レプリカ選択トランジスタ151Rは、抵抗ベース記憶装置150内の選択トランジスタの抵抗挙動を模擬するように構成されている。トランジスタ151Rは、レプリカ電流IRの電流レベルとアンプ143の出力電圧とで規定される所定のトランジスタバイアスに対して、同じトランジスタバイアスを有する抵抗ベース記憶装置150の選択トランジスタのドレイン・ソース間電圧の値と等しい電圧降下を有するように、抵抗ベース記憶装置150の選択トランジスタの寸法に合わせた寸法を有している。種々の実施形態において、トランジスタ151Rは、与えられたトランジスタバイアスに対して、ドレインーソース間の電圧値に由来する値、例えば、ドレインーソース間の電圧値の数倍または数分の1倍の電圧降下を発生するように、選択トランジスタの寸法に関係する寸法を有する。
抵抗素子RP1は、経路抵抗を与える1つ以上の導電セグメントである。1つ以上の導電セグメントは、所定の抵抗値を有する経路抵抗を与える寸法を有する。種々の実施形態において、1つ以上の導電セグメントは、所定の抵抗値を有するのに適した多結晶シリコン材料(poly)またはシリコンを含む化合物材料、半導体材料または化合物などを含む。ここで、所定の抵抗値とは、抵抗を用いた記憶装置、例えば、抵抗を用いた記憶装置150の抵抗値に基づくものである。
幾つかの実施形態において、所定の抵抗値は、HRSまたはLRSにおける抵抗ベースメモリ素子150の抵抗値に対応する。HRSにおける抵抗ベースメモリ素子150の抵抗値よりも高い抵抗値、LRSにおける抵抗ベースメモリ素子150の抵抗値よりも低い抵抗値、またはHRSにおける抵抗ベースメモリ素子150の抵抗値とLRSとの間の抵抗値であることが好ましい。
幾つかの実施形態において、抵抗素子RP1は、抵抗型メモリ素子150の抵抗値と等しい所定の抵抗値、または抵抗型メモリ素子150の抵抗値に由来する他の値、例えば、抵抗型メモリ素子150の抵抗値の倍数または分数の抵抗値を有するように構成される。幾つかの実施形態では、抵抗素子RP1の所定の抵抗値は、抵抗ベース記憶素子150の抵抗値に加えて、一対の導電線L1、L2の適切な部分の抵抗値を含む。このように、本実施形態では、抵抗ベースメモリ素子150の抵抗値に、一対の導電線L1、L2の適正部分の抵抗値を加算した値に応じて、所定の抵抗値を設定する。
抵抗素子RP1は、1kΩ-50kΩの範囲内の所定の抵抗値を有するように構成されることが好ましい。抵抗素子RP1は、2kΩ-5kΩの範囲内の所定の抵抗値を有するように構成されている。その他の所定の抵抗値/範囲も本発明の範囲内である。
動作中の時、抵抗型メモリ素子150を含む電流経路111の抵抗挙動を模擬したレプリカ電流経路111Rに駆動電圧VRBLの駆動電圧レベルが印加される。オペアンプ143の反転端子ITには、駆動電圧VRBLがフィードバックされており、オペアンプ143は、駆動電圧VRBLの駆動電圧レベルと基準電圧Vrefの基準電圧レベルとが略等しくなるまで、バイアス電圧VGのバイアス電圧レベルを調整するように構成されている。これにより、バッファ141Aによって、レプリカ電圧クランプ装置120Rのゲートに入力されるバイアス電圧VGBのバイアス電圧レベルが調整される。これに応じて、ローカルバッファ144Aは、電圧クランプ装置120のゲートに入力されるバイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。これにより、電圧クランプ装置120は、バイアス電圧VGBのバイアス電圧レベルの調整に応じて、駆動電圧VDの駆動電圧レベルを調整するように構成されている。これにより、駆動電圧VDの駆動電圧レベルは、基準電圧Vrefの基準電圧レベルに応じた適切な電圧レベルに維持される。
いくつかの実施形態では、レプリカ回路145Aは、上述したように、スタンバイ状態において電流源200が生成した第2電流レベルに対応する電流レベルを有するレプリカ電流IRを生成するように構成されている。いくつかの実施形態では、電流源204は、スタンバイ状態において電流源200が生成した第2電流レベルに対応する電流レベルを有する電流IB2を生成するように構成される。オペアンプ143は、待機状態において電流源200が生成する第2の電流レベルと同程度の大きさの電流を引き込むように構成されている。
これにより、メモリ回路100Aは、オペアンプ143、バッファ141A、レプリカ回路145A、及びローカルバッファ144及び/又は144Aを備えない手法に基づくメモリ回路よりも総待機電流が小さくなるように構成されている。
非限定的な例では、スタンバイ状態で、オペアンプ143は40μAを消費し、バッファ141Aは10μAを消費し、レプリカ回路145Aは10μAを消費し、ローカルバッファ144および/または144Aの32個のインスタンスのそれぞれは、そのような10μAを消費し。メモリ回路100Aのバイアス電圧発生器110Aは、スタンバイ状態で合計380μAを消費すること。他の電流レベル/範囲は、本開示の範囲内である。
図3は、本開示の実施形態に係る読取動作中のバイアス電圧VGBのグラフである。
図3は、図2に示したメモリ回路100Aのバイアス電圧発生器110Aが生成するバイアス電圧VGBの一例を経時的にプロットしたものである。制御信号C1は、メモリ回路100Aがオフ状態からスタンバイ状態に切り替わることに対応する時刻t1において、低電圧状態から高電圧状態に切り替わるように構成されている。時刻t2において、メモリ回路100Aがスタンバイ状態からアクティブ状態に切り替わることに対応して、制御信号C2が低電圧状態から高電圧状態に切り替わり、メモリ回路100Aが読み取り動作を行う。時刻t3において、読み取り動作が終了し、制御信号C2が高電圧状態から低電圧状態に切り替わり、メモリ回路100Aがアクティブ状態からスタンバイ状態に戻る。
図3の例では、時刻t1から時刻t2までの期間において、バイアス電圧VGBの初期電圧レベルは、約300ミリボルト(mV)である。時刻t2-t3において、バイアス電圧VGBは、読み取り動作時に約30mVの電圧降下を示し、その後、初期の約300mVの電圧レベルに戻り、オペアンプ143、バッファ141A、レプリカ回路145A、ローカルバッファ144および/または144Aを用いずにバイアス電圧を生成する他の手法と同等の性能レベルを示す。その他の初期電圧レベル及び/又は電圧降下レベルも本発明の範囲内である。
図4は、本開示の実施形態に係るメモリ回路100Bのダイヤグラムである。
メモリ回路100Bは、メモリ回路100の一実施形態である。なお、図4において、メモリ回路100Aおよびメモリ回路100と同一の構成要素については、図1Aー図2と同一の符号を付し、説明を省略する。
メモリ回路100Bは、グローバル制御回路139A及びローカルバッファ144Bを含むバイアス電圧発生器110Bを含む。本実施形態では、ローカルバッファ144Bとしてバッファ1のみを示している。いくつかの実施形態では、全てのローカルバッファ144は、ローカルバッファ144Bと同一である。他のローカルバッファ144は、ローカルバッファ144Bとは異なる構成、例えば、上述したローカルバッファ144Aや、図2、図3、図5で説明した構成である。他のローカルバッファ144は、ローカルバッファ144Bと同様に設けられ、他のローカルバッファ144とは異なる構成で設けられる。
ローカルバッファ144Bは、電流源400と、電流源400にソースフォロア接続されたNMOS素子402とを含む。本実施形態では、NMOS素子402のドレインは電源電圧VDDを受け、NMOS素子402のゲートはオペアンプ143の出力端子OTからバイアス電圧VGを受け、NMOS素子402のソースはノードBN1に接続されている。ノードBN1は、電圧クランプ装置120のゲート及び電流源400のアノードに接続されている。電流源400のカソードは、電力基準ノードに接続されている。このように、NMOS素子402は、三極管領域で動作するように構成されている。電流源400は、電流IB1を生成する。本実施形態では、電流源400は、スタンバイ状態およびアクティブ状態のいずれにおいても、第2電流レベルの電流IB1を生成するように構成されている。このため、電流源400は、図2に関して前述した電流源200とは異なり、メモリ回路100Bがスタンバイ状態であるかアクティブ状態であるかに応じて、異なる2つの電流レベルで動作することはない。
また、ローカルバッファ144Bは、電流源404と、NMOS素子406とを有する。電流源404及びNMOS素子406は、スタンバイ状態では非活性化され、アクティブ状態では活性化されるように構成されている。NMOS素子406のゲートには、バイアス電圧VGが印加される。ノード408は、電源電圧VDDを受けるように構成されている。ノード408とNMOS素子406のドレインとの間には、スイッチ410が接続されている。スイッチ410は、スタンバイ状態では開状態となり、アクティブ状態では閉状態となるように構成されている。これにより、NMOS素子406は、アクティブ状態において、ドレインに電源電圧VDDを受ける。スタンバイ状態では、NMOS素子406は、ドレインに電源電圧VDDを受けておらず、非活性状態である。NMOS素子のソースは、ノードBN3に接続される。ノードBN3は、ノードBN1及び電圧クランプ装置120のゲートに接続される。ノードBN3と電流源404のアノードとの間には、スイッチ412が接続されている。スイッチ412は、スタンバイ状態では開状態となり、アクティブ状態では閉状態となるように構成されている。これにより、電流源404は、アクティブ状態において活性化され、スタンバイ状態において非活性化される。電流源404が活性化されると、電流源404は、第3の電流レベルを有する電流IB3を生成する。図2で説明した第1の電流レベルは、第2の電流レベルプラス第3の電流レベルである。このように、読み取り動作時にローカルバッファ144Bがアクティブ状態である場合、電流源400及び電流源404は、第1の電流レベルの合計電流を生成するように構成されている。スタンバイ状態では、電流源404は非活性であるため、電流IB3は発生せず、合計電流は第2の電流レベルの電流IB1となる。
スタンバイ状態において、ノードBN1のNMOS素子402は、NMOS素子402のソースからバイアス電圧VGBを生成する。これにより、NMOS素子402は、動作時に、電流源400の電流IB1を導通させ、導通した電流が電流源400が生成する電流IB1と一致するように、バイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。これにより、NMOS素子402は、電流源400で生成された電流IB1が導通するように、バイアス電圧VGのバイアス電圧レベルの変化に応じてバイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。NMOS素子406は、スタンバイ状態では非活性であるため、バイアス電圧VGの調整には寄与せず、消費電力に大きく寄与する。
アクティブ状態では、NMOS素子406が活性化される。ノードBN1のNMOS素子402とノードBN3のNMOS素子406は、NMOS素子402のソースとNMOS素子406のソースから一括してバイアス電圧VGBを生成するように構成されている。従って、NMOS素子402及びNMOS素子406は、動作時には、電流源400の電流IB1と電流源404の電流IB3との和に等しい電流を流すように構成されている。これにより、NMOS素子402及びNMOS素子406は、導通電流が電流源400及び404により生成される電流IB1+IB3に一致するように、バイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。これにより、NMOS素子402及び406は、電流源400及び電流源404により生成された電流IB1+IB3が導通するように、バイアス電圧VGのバイアス電圧レベルの変化に応じてバイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。これにより、NMOS素子402及びNMOS素子406を含むローカルバッファ144Bは、アクティブ状態ではバイアス電圧VGBの調整に迅速に対応可能な電荷を流し、スタンバイ状態では低電流・低電力で動作するダイナミック電流を与えるように構成されている。
図5は、本開示の実施形態に係るメモリ回路100Cのダイヤグラムである。
メモリ回路100Cは、メモリ回路100の一実施形態である。なお、図5において、図1A及び図1Bと同一の構成要素には同一の符号を付し、説明を省略する。
メモリ回路100Cは、グローバル制御回路139B及びローカルバッファ144Cを含むバイアス電圧発生器110Cを含む。本実施形態では、ローカルバッファ144Cとして、バッファ1のみを示している。いくつかの実施形態では、全てのローカルバッファ144は、ローカルバッファ144Cと同一である。他の実施形態では、他のローカルバッファ144は、ローカルバッファ144Cとは異なる構成、例えば、上記のローカルバッファ144A、および/または、図2および図4で説明した構成を有する。他の実施形態では、他のローカルバッファ144は、ローカルバッファ144Cと同様に設けられ、他のローカルバッファ144とは異なる構成で設けられる。
ローカルバッファ144Cは、電流源500と、電流源500にソースフォロア接続されたPMOS素子502とを含む。本実施形態では、PMOS素子502のドレインは電源基準電圧を受け、PMOS素子502のゲートはオペアンプ143の出力端子OTからバイアス電圧VGを受け、PMOS素子502のソースはノードBN1に接続されている。ノードBN1は、電圧クランプ装置120のゲート及び電流源500のカソードに接続されている。電流源500のアノードは、電源電圧VDDを受けるように構成されている。このように、PMOS素子502は、三極管領域で動作するように構成されている。本実施形態では、電流源500は、スタンバイ状態およびアクティブ状態のいずれにおいても、第2電流レベルの電流IB1を生成するように構成されている。このため、電流源500は、図2の電流源200とは異なり、メモリ回路100Cがスタンバイ状態であるかアクティブ状態であるかに応じて、異なる2つの電流レベルで動作することはない。
また、ローカルバッファ144Cは、電流源504と、PMOS素子506とを有する。電流源504及びPMOS素子506は、スタンバイ状態では非活性化され、アクティブ状態では活性化されるように構成されている。PMOS素子506は、バイアス電圧Vgを受けるゲートを有する。PMOS素子506のドレインは、電源基準電圧を受けるように構成されている。電源基準ノードとPMOS素子506のドレインとの間には、スイッチ512が接続されている。スイッチ512は、スタンバイ状態では開状態となり、アクティブ状態では閉状態となるように構成されている。これにより、PMOS素子506は、活性状態において、電源基準電圧をPMOS素子506のドレインに受ける。スタンバイ状態では、PMOS素子506は、ドレインに電源基準電圧を受けておらず、非活性状態である。PMOS素子506のソースは、ノードBN3に接続される。ノードBN3は、ノードBN1及び電圧クランプ装置120のゲートに接続される。ノード508は、電源電圧VDDを受けるように構成されている。ノード508と電流源504のアノードとの間には、スイッチ510が接続されている。電流源504のカソードは、ノードBN3に接続される。PMOS素子506のソースは、ノードBN3にも接続されている。スイッチ510は、スタンバイ状態において開状態となり、アクティブ状態において閉状態となるように構成されている。これにより、電流源504は、アクティブ状態において活性化され、スタンバイ状態において非活性化される。電流源504が活性化されると、電流源504は、第3の電流レベルの電流IB3を生成する。図2で説明した第1の電流レベルは、第2の電流レベルプラス第3の電流レベルである。このように、読み取り動作時において、ローカルバッファ144Cがアクティブ状態である場合、電流源500及び電流源504は、第1の電流レベルの合計電流を生成するように構成されている。スタンバイ状態では、電流源504は非活性であるため、電流IB3は生成されず、合計電流は第2の電流レベルの電流IB1となる。
スタンバイ状態において、ノードBN1のPMOS素子502は、PMOS素子502のソースからバイアス電圧VGBを生成する。これにより、PMOS素子402は、動作時に電流源500の電流IB1を導通させ、PMOS素子502は、導通した電流が電流源が生成する電流IB1と一致するようにバイアス電圧VGBのバイアス電圧レベルを調整する。そこで、PMOS素子502は、電流源500で生成された電流IB1が導通するように、バイアス電圧VGのバイアス電圧レベルの変化に応じてバイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。PMOS素子506は、スタンバイ状態では非活性であるため、バイアス電圧VGの調整には寄与せず、消費電力に大きく寄与する。
アクティブ状態では、PMOS素子506が活性化される。ノードBN1のPMOS素子502とノードBN3のPMOS素子506は、PMOS素子502のソースとPMOS素子506のソースから一括してバイアス電圧VGBを生成するように構成されている。したがって、PMOS素子502とPMOS素子506は、動作時には、電流源500の電流IB1と電流源504の電流IB3との和の電流を流すように構成されている。これにより、PMOS素子502及びPMOS素子506は、導通電流が電流源500、504が生成する電流IB1+IB3に一致するように、バイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。これにより、PMOS素子502及び506は、電流源500及び電流源504により生成された電流IB1+IB3が導通するように、バイアス電圧VGのバイアス電圧レベルの変化に応じてバイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。これにより、PMOS素子502とPMOS素子506とを含むローカルバッファ144Cは、アクティブ状態ではバイアス電圧VGBの調整に迅速に対応可能な電荷を流し、スタンバイ状態では低電流・低電力で動作する動的電流を与えるように構成されている。
グローバル制御回路139Bは、図1Aに示したグローバル制御回路139の一実施形態である。グローバル制御回路139Bは、図1Aおよび図2に関して前述したオペアンプ143およびレプリカ回路145Aを含むとともに、バッファ141Bを含む。
バッファ141Bは、電流源514と、電流源514にソースフォロア接続されたPMOS素子516とを有する。本実施形態では、PMOS素子516のドレインは電源基準ノードに接続され、PMOS素子516のゲートはオペアンプ143の出力端子OTからバイアス電圧VGを受けるように構成され、PMOS素子516のソースはノードBN2に接続されている。ノードBN2は、レプリカ回路145Aの電圧クランプ素子120Rのゲートと、電流源514のカソードとに接続されている。電流源514のアノードは、電源電圧VDDを受けるように構成されている。このように、PMOS素子516は、三極管領域で動作するように構成されている。電流源514は、電流IB2を生成する。ノードBN2のPMOS素子516は、ソースからバイアス電圧VGBを生成する。これにより、PMOS素子516は、動作時には、電流源514の電流IB2を導通させ、その導通電流が電流源514が生成する電流IB2と一致するようにバイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。これにより、PMOS素子516は、電流源514で生成された電流IB2が導通するように、バイアス電圧VGのバイアス電圧レベルの変化に応じてバイアス電圧VGBのバイアス電圧レベルを調整するように構成されている。バッファ141Bの利点は、PMOS素子516がゲートにほとんど電流を流せず、電圧クランプ素子120Rに低インピーダンスを示すことである。バッファ141Bは、スタンバイ時にローカルバッファ144Cがバイアス電圧VGBを生成するためのフィードバックを維持することで、スタンバイ時にメモリ回路100Cが消費する電力量を他の手法に比べて大幅に削減する。
図6は、本開示の実施形態に係るメモリ回路600のダイヤグラムである。
メモリ回路600は、基準段602と、電圧センス段604と、利得段606と、バッファ608と、電圧クランプ装置610と、電流経路612とを有する。後述するように、基準段602、電圧検出段604、利得段606、バッファ608は、図1-図5で説明したバイアス電圧VGBを生成するバイアス電圧発生器に相当する。
各電流経路612は、多重化スイッチ613と、抵抗ベース記憶装置614とを含む。多重化スイッチ613は、電圧クランプ装置610と抵抗記憶装置614との間に直列に接続されている。各多重化スイッチ613は、対応する電流経路612が選択されている場合には閉状態となり、対応する電流経路612が選択されていない場合には開状態となるように構成されている。抵抗変化型メモリ素子614は、可変抵抗素子618と直列に接続され、ゲートが入力端子(図示せず)に接続された選択トランジスタ616を備え、活性化電圧に応じて抵抗変化型メモリ素子614を対応する導電線(図示せず)に接続するように構成されている。いくつかの実施形態では、抵抗変化素子618は、RRAM素子、MTJ素子、PCM素子などを含む。
幾つかの実施形態において、電圧クランプ素子610は、ドレインがセンスアンプ(図示せず)に接続され、ソースが電流経路612に接続され、ゲートがバイアス電圧VGBを有するノードNTSに接続されたNMOS素子である。動作時において、ある選択トランジスタ616がオンであり、選択トランジスタ616が閉じている場合、バイアス電圧VGBは、電圧クランプ装置610により、対応する電流経路612に駆動電圧Vmtjを印加し、読み取り電流Imtjを生成する。
基準ステージ602は、基準電圧VGB_refを生成するように構成されている。本実施形態では、基準ステージ602は、電流源620と、NMOS素子M1と、抵抗素子622と、容量素子626とを有する。電流源620は、アノードに電源電圧VDDが供給され、カソードがNMOS素子M1のドレインに接続されている。電流源620は、電流レベルIrefの電流624を生成する。NMOS素子M1のドレインは、NMOS素子M1のゲートに接続されている。抵抗素子622は、NMOS素子M1のソースと電源基準ノードとの間に接続されている。容量素子626は、NMOS素子M1のゲートと電源基準ノードとの間に接続されている。抵抗素子622は、レプリカ抵抗素子RP1および図2について上述したように電流経路612の抵抗値をレプリカするように構成されたRrefの抵抗値を有する。NMOS素子M1はチャネルサイズ1Xを有しており、NMOS素子M1の電圧VGS(図示せず)はチャネルサイズ1Xと電流レベルIrefの関数となる。
これにより、基準段602は、動作時に、電流レベルIrefに基づいて生成されるNMOS素子M1の電圧Vgsと抵抗素子622の両端電圧とを加算した電圧レベルを有する基準電圧VGB_refを生成する。電流レベルIrefは、可変抵抗素子618の所定の活性化電流に相当する。
電圧検出段604は、バイアス電圧VGBに応じた電圧VsをノードNRSに生成する。電圧検出段604は、NMOS素子M3と抵抗素子628とを含む。NMOS素子M3のドレイン及びゲートは、いずれもノードNTSに接続されることにより互いに接続され、バイアス電圧VGBを受けるように構成されている。NMOS素子M3のソースは、ノードNRSに接続されている。抵抗素子628は、ノードNRSと電力基準ノードとの間に接続される。抵抗素子628は抵抗値Rref/nを有し、NMOS素子M3はチャネルサイズn*X(nは1以上の正数)を有する。
これにより、NMOS素子M3及び抵抗素子628は、動作時にノードNTSのバイアス電圧VGBを分圧してノードNRSの電圧Vsを生成する分圧回路として構成される。電圧Vsは、NMOS素子M3の電圧Vgs(図示せず)と抵抗素子628の両端電圧との比に応じた電圧レベルを有する。この比の値は、チャネルサイズn*Xと抵抗Rref/nに基づくため、nの値を変化させてもほぼ一定である。
幾つかの実施形態において、nは、1-8の値をとることが好ましい。本実施形態では、nは2-6の範囲内の値であり、例えば4である。nのその他の値/範囲は、本発明の範囲内である。
増幅段606は、電圧検出段604のノードNRSに接続されたノードNSSに入力される電圧Vsに基づいて、基準電圧VGB_refとバイアス電圧VGBとのオフセットを増幅する。増幅段606は、電流源630と、NMOS素子M2と、抵抗素子632とを有する。電流源630のアノードは電源電圧VDDを受けるように構成され、電流源630のカソードはノードNDSに接続される。NMOS素子M2のドレインはノードNDSに接続され、NMOS素子M2のソースはノードNSSに接続され、NMOS素子M2のゲートは基準段602のNMOS素子M1のゲートに接続される。抵抗素子632は、ノードNSSと電力基準ノードとの間に接続される。
電流源630は、電流レベルm*Irefの電流634を生成するように構成されており、この電流634は、抵抗値Rref/mを有し、NMOS素子M2は、チャネルサイズm*X(mは1以上の正数)を有している。
これにより、増幅段606は、NMOS素子M2のゲートに入力される基準電圧VGB_refとノードNSSに入力される電圧Vsとに応じてノードNDSにバイアス電圧Vbを生成する共通のゲートアンプとして構成される。これにより、利得段606の利得は、数mの値を変化させるために略一定の値となるように構成されている。
幾つかの実施形態において、mは、1-8の範囲の値であることが好ましい。幾つかの実施形態においてmは、2-6の範囲内の値であり、例えば4である。mのその他の値/範囲は、本発明の範囲内である。
バッファ608は、ノードNDSに入力されたバイアス電圧Vbに基づいて、ノードNTSにバイアス電圧VGBを生成する。本実施形態では、バッファ608は、PMOS素子Mpを含む。PMOS素子Mpは、電源電圧VDDを受けるドレインと、ノードNDSに接続されたゲートと、ノードNTSに接続されたソースとを有する。
これにより、バッファ608は、基準段602で生成された基準電圧VGB_refと、電圧検出段604で生成された電圧Vsに応じて利得段606で生成されたバイアス電圧Vbとの相対的な電圧レベルで制御された電圧レベルを有するノードNTSにバイアス電圧VGBを生成する共通ソースアンプとして構成されている。
これにより、メモリ回路600は、基準段602と、電圧検出段604と、利得段606と、バイアス電圧VGBを生成するためのフィードバック構成を有するバッファ608とを備える。バイアス電圧VGBの生成に用いられる総電流は、電流源620により生成される電流624と、電流源630により生成される電流634と、PMOS素子Mpにより制御される電流Ivgbとの和である。
スタンバイ状態およびアクティブ状態のいずれにおいても、電流624は所定の電流レベルIrefを有し、電流634は所定の電流レベルm*Irefを有する。スタンバイ状態では、電流Ivgbは、バイアス電圧VGBの電圧レベルと、PMOS素子Mp及び抵抗素子628の構成とによって電流レベルが制御される。活性状態では、選択活性により、電流Ivgbは、電圧クランプ装置610を介して電流経路612に容量結合することをトリガとして、1つ以上の高い過渡電流レベルを有する。PMOS素子Mpは、メモリ回路600のフィードバック配置に基づいて、スタンバイ状態では電流レベルが低く、アクティブ状態では電流レベルが1つ以上高い電流Ivgbを供給するように構成されている。
これにより、メモリ回路600は、他のアプローチと比較して、待機電力を低減し、動的に転送可能な電荷量を増加させたバイアス電圧VGBを生成することができ、消費電力を低減し、メモリ回路の高速化を図ることができる。
図7は本開示の実施形態に係る読取動作を実行する方法700のフローチャートである。方法700は、例えば、図1A及び図1Bに関して前述したメモリ回路100、図2に関して前述したメモリ回路100A、図4に関して前述したメモリ回路100B、図5に関して前述したメモリ回路100C、図6に関して前述したメモリ回路600などのメモリ回路を用いることができる。
方法700の動作が図7に示されているシーケンス。図7は説明のみを目的としています。方法700の動作は、図7に示されているものとは異なるシーケンスで実行することができる。いくつかの実施形態では、図7に示されているものに加えて、操作が行われる。図7は、図7に示される操作の前、間、最中、および/または後に実行される。いくつかの実施形態では、方法700の操作は、メモリマクロを操作する方法の操作のサブセットである。
ステップ702では、基準電圧と帰還電圧とに基づいて第1のバイアス電圧を生成する。いくつかの実施形態では、基準電圧および帰還電圧に基づいて第1バイアス電圧を生成することは、図1A、図2、図4および図5に関して前述したように、基準電圧Vrefおよび駆動電圧VRBLに基づいてバイアス電圧VGを生成することを含む。
幾つかの実施形態では、フィードバック電圧に基づいて第1のバイアス電圧を生成することは、第1のバイアス電圧に基づいてフィードバック電圧を生成するために第1の電圧クランプ装置を用いることを含む。幾つかの実施形態では、第1の電圧クランプ装置を用いて第1のバイアス電圧に基づく帰還電圧を生成することは、図2、図4及び図5に関して前述したように、電圧クランプ装置120Rを用いてバイアス電圧VGに基づく駆動電圧Vrblを生成することを含む。
いくつかの実施形態では、第1の電圧クランプ装置を用いて帰還電圧を生成することは、レプリカ回路に帰還電圧を印加することを含む。ここで、レプリカ回路に帰還電圧を印加するとは、図2、図4及び図5を参照して説明したように、駆動電圧VRBLをレプリカ回路145Aに印加することである。
幾つかの実施形態では、第1の電圧クランプ装置を用いて、第1のバイアス電圧に基づいて帰還電圧を生成することで、第1の電圧クランプ装置が受ける第2のバイアス電圧を生成する第1のバッファを備える。第1のバッファを用いて第2のバイアス電圧を生成することは、図1A、図2、図4、図5で説明したように、バッファ141、141A、141Bを用いてバイアス電圧VGBを生成することを含む。
幾つかの実施形態では、基準電圧及び帰還電圧に基づいて第1バイアス電圧を生成することは、図6に関して前述したように、基準電圧VGB_ref及び電圧Vsに基づいてバイアス電圧Vbを生成することを含む。
幾つかの実施形態では、基準電圧と帰還電圧とに基づいて第1バイアス電圧を生成することは、基準電流に基づいて基準電圧を生成することを含む。いくつかの実施形態では、基準電流に基づいて基準電圧を生成することは、図6に関して前述したように、基準電流Irefに基づいて基準電圧VGB_refを生成することを含む。
いくつかの実施形態では、基準電流に基づいて基準電圧を生成することは、レプリカ抵抗素子を用いて基準電流を導通させることを含む。ここで、レプリカ抵抗素子に基準電流を流すとは、図6で説明したように、抵抗素子622に基準電流Irefを流すことを含む。
ステップ704では、第1のバッファを用いて、第1のバイアス電圧から第2のバイアス電圧を生成する。幾つかの実施形態では、第2バイアス電圧を生成することは、図1A-図6に関して前述したように、バイアス電圧VGBを生成することを含む。
幾つかの実施形態では、第1のバッファを用いて第2のバイアス電圧を生成することは、ローカルバッファを用いることを含む。いくつかの実施形態では、ローカルバッファは、複数のローカルバッファのうちの1つのローカルバッファであり、第2バイアス電圧は、複数の第2バイアス電圧のうちの1つの第2バイアス電圧であり、第1バッファを用いて第2バイアス電圧を生成することは、複数のローカルバッファを用いて複数の第2バイアス電圧を生成することを含む。
幾つかの実施形態では、第1バッファを用いて第2バイアス電圧を生成することは、図1A、図2、図4及び図5に関して前述したように、バッファ144、144A、144B及び/又は144Cを用いてバイアス電圧Vgbを生成することを含む。
幾つかの実施形態では、第1のバッファを用いて第1のバイアス電圧から第2のバイアス電圧を生成することは、フィードバック構成に含まれるバッファを用いることを含む。第1のバッファを用いて第1のバイアス電圧から第2のバイアス電圧を生成することは、図6で説明したように、バッファ608を用いて、増幅段606で受けた電圧Vsからバイアス電圧VGBを生成し、電圧Vbを生成することを含む。
ステップ706では、第2のバイアス電圧に基づいて、ローカル電圧クランプ装置により第1の駆動電圧を生成する。幾つかの実施形態では、図1Aー2、図4及び図5に関して前述したように、第2のバイアス電圧に基づいてローカル電圧クランプ装置で第1の駆動電圧を生成することは、バイアス電圧VGBに基づいて電圧クランプ装置120で駆動電圧VDを生成することを含む。
幾つかの実施形態では、図6に関して前述したように、第2のバイアス電圧に基づいてローカル電圧クランプ装置で第1の駆動電圧を生成することは、バイアス電圧VGBに基づいて電圧クランプ装置610で駆動電圧Vmtjを生成することを含む。
ステップ708では、抵抗ベースのメモリ素子を含む電流経路に第1の駆動電圧を印加する。抵抗型メモリ素子を含む電流経路に第1の駆動電圧を印加することは、RRAM素子またはMTJ素子を含む電流経路を含むことが好ましい。
幾つかの実施形態では、図1Aー図2、図4及び図5を参照して説明したように、抵抗型メモリ素子150を含む電流経路111に駆動電圧VDを印加することを含む。
幾つかの実施形態では、図6で説明したように、抵抗型メモリ素子614を含む電流経路612に駆動電圧Vmtjを印加する。
方法700の動作の一部または全部を実行することにより、メモリ回路のフィードバック構成に基づく電圧クランプ装置にバイアス電圧が与えられ、メモリ回路100、100A、100B、100C、600について上述した効果が実現される。
実施形態によれば、メモリ回路は、第1の電流経路を有するバイアス電圧発生器と、第1の電圧クランプ装置と、第1のバッファと、を備える。前記バイアス電圧発生器は、基準電圧を受け、前記基準電圧と第1の駆動電圧との電圧差に基づいて第1のバイアス電圧を生成し、前記第1の電圧クランプ部は、前記第1の電流経路に前記第1の駆動電圧を印加することにより、前記第1のバイアス電圧に基づいて前記第1の駆動電圧を生成し、前記第1のバッファは、前記第1のバイアス電圧を受け、前記第1のバイアス電圧に基づいて第2のバイアス電圧を生成する。メモリ回路は、抵抗を用いたメモリ素子を含む第2の電流経路と、第2のバイアス電圧に基づいて第2の駆動電圧を生成し、第2の電流経路に第2の駆動電圧を印加する第2の電圧クランプ素子とを含む。バイアス電圧発生器は、非反転入力端子に基準電圧が入力され、反転入力端子に第1の駆動電圧が入力され、出力端子に第1のバイアス電圧が出力されるオペアンプを有する。幾つかの実施形態では、前記メモリ回路は、前記第1のバイアス電圧を受け、前記第1のバイアス電圧に基づいて第3のバイアス電圧を生成する第2のバッファと、第2の抵抗ベースの記憶素子を有する第3の電流経路と、前記第3のバイアス電圧に基づいて第3の駆動電圧を生成し、前記第3の電流経路に前記第3の駆動電圧を印加する第3の電圧クランプ手段と、をさらに含む。幾つかの実施形態では、前記バイアス電圧発生器は、前記第1のバイアス電圧に基づいて第3のバイアス電圧を生成する第2のバッファを含み、前記第1の電圧クランプ手段は、前記第3のバイアス電圧に基づいて前記第1の駆動電圧を生成する。前記第1のバッファは、第1の電流源と、前記第1の電流源にソースフォロア接続された第1のNMOS素子とを有し、前記第1のNMOS素子のゲートは、前記第1のバイアス電圧を受けて前記第1のNMOS素子のソースから前記第2のバイアス電圧を生成し、前記第1の電流源は、スタンバイ状態及びアクティブ状態で動作する第1の電流を生成し、前記第1の電流源は、前記アクティブ状態における第1の電流レベルと、前記スタンバイ状態における第2の電流レベルとを有し、前記第1の電流レベルは、前記第2の電流レベルよりも大きいことが好ましい。第2のバッファは、第2の電流源と、第2の電流源にソースフォロア接続された第2のNMOS素子とを含み、第2のNMOS素子のゲートは、第1のバイアス電圧を受けてNMOS素子のソースから第3のバイアス電圧を生成し、第2の電流源は、第2の電流レベル程度の第2の電流を生成する。幾つかの実施形態では、抵抗変化型記憶装置は、RRAM装置を含む。いくつかの実施形態では、第1のバッファは、第1のバイアス電圧を受けるゲートを有する第1のNMOS素子と、スタンバイ状態において非活性化され、アクティブ状態において活性化される第2のNMOS素子と、第1のバイアス電圧を受けるゲートを有する第2のNMOS素子と、ソースフォロア構成において第1のNMOS素子に接続され、第1の電流レベルを有する第1の電流を生成する第1の電流源と、スタンバイ状態において非活性化され、アクティブ状態において活性化され、第1の電流レベルよりも高い第2の電流レベルを有する第2の電流を生成する第2の電流源と、を含み、第2の電圧クランプ素子は、第1のNMOS素子のソースと第2のNMOS素子のソースとに接続され、第2のバイアス電圧を受ける。幾つかの実施形態では、前記第1のバッファは、電源電圧が供給される第1のノードと、前記第2のNMOS素子のドレインと前記第1のノードとの間に直列に接続されたスイッチとを含み、前記スイッチは、前記スタンバイ状態では開放され、前記アクティブ状態では閉鎖される。幾つかの実施形態では、前記第1のバッファは、前記第2のNMOS素子と前記第1の電流源との間に接続されたスイッチを含み、前記スイッチは、前記スタンバイ状態において開状態となり、前記アクティブ状態において閉状態となるように構成される。いくつかの実施形態では、第1のバッファは、第1のバイアス電圧を受けるゲートを有する第1のPMOS素子と、スタンバイ状態において非活性化され、アクティブ状態において活性化される第2のPMOS素子と、第1のバイアス電圧を受けるゲートを有する第2のPMOS素子と、ソースフォロア構成において第1のPMOS素子に接続され、第1の電流レベルを有する第1の電流を生成する第1の電流源と、スタンバイ状態において非活性化され、アクティブ状態において活性化され、第1の電流レベルよりも高い第2の電流レベルを有する第2の電流を生成する第2の電流源と、を含み、第2の電圧クランプ素子は、第1のPMOS素子のソースと第2のPMOS素子のソースとに接続され、第2のバイアス電圧を受ける。幾つかの実施形態では、前記第1バッファは、電源電圧が供給される第1ノードと、前記第2電流源と前記第1ノードとの間に直列に接続されたスイッチと、を含み、前記スイッチは、前記スタンバイ状態において開放され、前記アクティブ状態において閉鎖される。幾つかの実施形態では、前記第1のバッファは、前記第2のPMOS素子と電源基準ノードとの間に接続されたスイッチを含み、前記スイッチは、前記スタンバイ状態では開放され、前記アクティブ状態では閉塞されるように構成される。
幾つかの実施形態において、メモリ回路は、抵抗型メモリ素子を有する第1の電流経路と、第1の電流経路に第1の駆動電圧を生成する第1の電圧クランプ素子と、第1のバッファと、抵抗型メモリ素子を有する第1の電流経路の少なくとも一部の抵抗を模擬するレプリカ回路とを有するバイアス電圧発生器と、を備える。前記バイアス電圧発生器は、基準電圧を受けて第1バイアス電圧を生成し、前記第1バッファは、前記第1バイアス電圧に基づいて第2バイアス電圧を生成し、前記第1レプリカ回路は、前記第2バイアス電圧に基づいて第2駆動電圧を生成し、前記バイアス電圧発生器は、前記基準電圧と前記第2駆動電圧との電圧差に基づいて前記第1バイアス電圧を調整する。幾つかの実施形態では、前記メモリ回路は、前記第1のバイアス電圧を受け、前記第1のバイアス電圧に基づいて第3のバイアス電圧を生成する第2のバッファを含み、前記第1の電圧クランプ手段は、前記第3のバイアス電圧に基づいて前記第1の駆動電圧を生成する。ある実施形態において、前記メモリ回路はセンスアンプを含み、前記第1の電圧クランプ装置は、ドレインが前記センスアンプの入力端子に接続され、ソースが前記第1の電流経路に接続されたNMOS素子を含む。バイアス電圧生成回路は、非反転入力端子に基準電圧が入力され、反転入力端子に第1の駆動電圧が入力され、出力端子に第1のバイアス電圧が出力されるオペアンプを有し、オペアンプの出力端子は、第1のバッファのNMOS素子のゲートに接続される。前記メモリ回路は、第2の抵抗型メモリ素子を有する第2の電流経路と、第4のバイアス電圧に基づいて第3の駆動電圧を生成する第2の電圧クランプ素子と、前記第2の電流経路に前記第3の駆動電圧を印加する第2の電圧クランプ素子と、前記第1のバイアス電圧を受け、前記第1のバイアス電圧に基づいて前記第4のバイアス電圧を生成する第3のバッファと、を有する。
幾つかの実施形態において、参照電圧を生成する参照ステージと、前記参照電圧と第1のバイアス電圧との電圧差を検出する電圧検出ステージと、前記電圧差に基づいて第2のバイアス電圧を生成するゲインステージと、前記第2のバイアス電圧に基づいて前記第1のバイアス電圧を生成するバッファと、前記第1のバイアス電圧に基づいて第1の駆動電圧を生成する第1の電圧クランプ装置と、第1の抵抗ベース記憶装置を有する第1の電流経路と、を備え、前記第1の電圧クランプ装置は、前記第1の電流経路に前記第1の駆動電圧を印加する。本発明の好ましい態様は、前記メモリ回路は、前記第1のバイアス電圧に基づいて第2の駆動電圧を生成する第2の電圧クランプ手段と、第2の抵抗ベース記憶手段を有する第2の電流経路とを有し、前記第2の電圧クランプ手段は、前記第2の電流経路に前記第2の駆動電圧を印加することを特徴とする。
以上、いくつかの実施形態の概要について説明したが、当業者であれば、本開示の態様をより好適に理解することができる。当業者であれば、本明細書に記載された実施形態と同様の目的を達成するために、他のプロセスや構造を設計、変更すること、および/または同一の効果を達成することは容易であることを理解されるべきである。当業者であれば、これらと均等な構成については、本発明の趣旨及び範囲から逸脱することなく、本発明の趣旨及び範囲から逸脱することなく、種々の変更、置換及び変更を加えることが可能であることを認識すべきである。
Claims (20)
- 第1の電流経路と、第1の電圧クランプ装置と、第1のバッファとを有するバイアス電圧発生器と、
抵抗ベースのメモリ装置を有する第2の電流経路と、
前記第2のバイアス電圧に基づいて第2の駆動電圧を生成し、前記第2の電流経路に前記第2の駆動電圧を印加するように構成される第2の電圧クランプ装置と、を備え、
前記バイアス電圧発生器は、基準電圧を受信し、前記基準電圧と第1の駆動電圧との電圧差に基づいて第1のバイアス電圧を生成するように構成され、
前記第1の電圧クランプ装置は、前記第1の電流経路に前記第1の駆動電圧を印加することにより、前記第1のバイアス電圧に基づいて前記第1の駆動電圧を生成するように構成され、
前記第1のバッファは、前記第1のバイアス電圧を受信し、前記第1のバイアス電圧に基づいて第2のバイアス電圧を生成するように構成される、メモリ回路。 - 前記バイアス電圧発生器はオペアンプを有し、前記オペアンプは前記基準電圧を受信するように構成される非反転入力端子と、前記第1の駆動電圧を受信するように構成される反転端子と、前記第1のバイアス電圧を出力するように構成される出力端子とを備える、
請求項1に記載のメモリ回路。 - 前記バイアス電圧発生器は、
前記第1のバイアス電圧を受信し、前記第1のバイアス電圧に基づいて第3のバイアス電圧を生成するように構成される第2のバッファと、
第2の抵抗ベースのメモリ装置を有する第3の電流経路と、
前記第3のバイアス電圧に基づいて第3の駆動電圧を生成し、前記第3の電流経路に前記第3の駆動電圧を印加するように構成される第3の電圧クランプ装置と、を更に備える、
請求項1に記載のメモリ回路。 - 前記バイアス電圧発生器は前記第1のバイアス電圧に基づいて第3のバイアス電圧を生成するように構成される第2のバッファを有し、ここで、前記第1の電圧クランプ装置は前記第3のバイアス電圧に基づいて前記第1の駆動電圧を生成するように構成される、
請求項1に記載のメモリ回路。 - 前記第1のバッファは、第1の電流源と、ソースフォロワー構成において前記第1の電流源に接続された第1のNMOS素子とを有し、
前記第1のNMOS素子のゲートは、前記第1のバイアス電圧を受信することにより、前記第1のNMOS素子のソースから前記第2のバイアス電圧を生成するように構成され、
前記第1の電流源は、第1の電流を生成し、スタンバイ状態及びアクティブ状態で動作するように構成され、ここで、前記第1の電流源は、前記アクティブ状態における第1の電流レベルと、前記スタンバイ状態における第2の電流レベルとを有し、前記第1の電流レベルは前記第2の電流レベルより高いマグニチュードを有する、
請求項4に記載のメモリ回路。 - 前記第2のバッファは、第2の電流源と、ソースフォロワー構成において前記第2の電流源に接続された第2のNMOS素子とを有し、
前記第2のNMOS素子のゲートは、前記第1のバイアス電圧を受信することにより、前記NMOS素子のソースから前記第3のバイアス電圧を生成するように構成され、
前記第2の電流源は、ほぼ前記第2の電流レベルで第2の電流を生成するように構成される、
請求項5に記載のメモリ回路。 - 前記抵抗ベースのメモリ装置は、抵抗ランダムアクセスのメモリ(RRAM)装置を有する、
請求項1に記載のメモリ回路。 - 前記第1のバッファは、
前記第1のバイアス電圧を受信するように構成されるゲートを有する第1のNMOS素子と、
スタンバイ状態において非アクティブ化され、アクティブ状態においてアクティブ化され、前記第1のバイアス電圧を受信するように構成されるゲートを有する第2のNMOS素子と、
ソースフォロワー構成において前記第1のNMOS素子に接続され、第1の電流レベルを有する第1の電流を生成するように構成される第1の電流源と、
前記スタンバイ状態において非アクティブ化され、前記アクティブ状態においてアクティブ化され、前記第1の電流レベルよりも高い第2の電流レベルで第2の電流を生成するように構成される第2の電流源と、を備え、ここで、
前記第2の電圧クランプ装置は、前記第2のバイアス電圧を受信するように、前記第1のNMOS素子のソース及び前記第2のNMOS素子のソースに接続されている、
請求項1に記載のメモリ回路。 - 前記第1のバッファは、
供給電圧を受信するように構成される第1のノードと、
前記第2のNMOS素子のドレインと前記第1のノードとの間に直列に接続されたスイッチとを備え、ここで、
前記スイッチは、前記スタンバイ状態において開放され、前記アクティブ状態において閉鎖されるように構成される、
請求項8に記載のメモリ回路。 - 前記第1のバッファは、前記第2のNMOS素子と前記第2の電流源との間に接続されたスイッチを有し、ここで、
前記スイッチは、前記スタンバイ状態において開放され、前記アクティブ状態において閉鎖されるように構成される、
請求項8に記載のメモリ回路。 - 前記第1のバッファは、
前記第1のバイアス電圧を受信するように構成されるゲートを有する第1のPMOS素子と、
スタンバイ状態において非アクティブ化され、アクティブ状態においてアクティブ化され、前記第1のバイアス電圧を受信するように構成されるゲートを有する第2のPMOS素子と、
ソースフォロワー構成において前記第1のPMOS素子に接続され、第1の電流レベルを有する第1の電流を生成するように構成される第1の電流源と、
前記スタンバイ状態において非アクティブ化され、前記アクティブ状態においてアクティブ化され、前記第1の電流レベルよりも高い第2の電流レベルで第2の電流を生成するように構成される第2の電流源と、を備え、ここで、
前記第2の電圧クランプ装置は、前記第2のバイアス電圧を受信するように、前記第1のPMOS素子のソース及び前記第2のPMOS素子のソースに接続されている。
請求項1に記載のメモリ回路 - 前記第1のバッファは、
供給電圧を受信するように構成される第1のノードと、
前記第2の電流源と前記第1のノードとの間に直列に接続されたスイッチとを備え、ここで、前記スイッチは、前記スタンバイ状態において開放され、前記アクティブ状態において閉鎖されるように構成される、
請求項11に記載のメモリ回路。 - 前記第1のバッファは、前記第2のPMOS素子とパワー基準ノードとの間に接続されたスイッチを有し、ここで、前記スイッチは、前記スタンバイ状態において開放され、前記アクティブ状態において閉鎖されるように構成される、
請求項11に記載のメモリ回路。 - 第1の抵抗ベースのメモリ装置を有する第1の電流経路と、
前記第1の電流経路で第1の駆動電圧を生成するように構成される第1の電圧クランプ装置と、
第1のバッファと、前記抵抗ベースのメモリ装置を有する前記第1の電流経路の少なくとも一部の抵抗をミミックするように構成されるレプリカ回路とを有するバイアス電圧発生器と、を備え、ここで、
前記バイアス電圧発生器は、基準電圧を受信し、第1のバイアス電圧を生成するように構成され、
前記第1のバッファは、前記第1のバイアス電圧に基づいて第2のバイアス電圧を生成するように構成され、
前記レプリカ回路は、前記第2のバイアス電圧に基づいて第2の駆動電圧を生成するように構成され、
前記バイアス電圧発生器は、前記基準電圧と前記第2の駆動電圧との電圧差に基づいて前記第1のバイアス電圧を調整するように構成される、メモリ回路。 - 前記第1のバイアス電圧を受信し、前記第1のバイアス電圧に基づいて第3のバイアス電圧を生成するように構成される第2のバッファを有し、ここで、
前記第1の電圧クランプ装置は前記第3のバイアス電圧に基づいて前記第1の駆動電圧を生成するように構成される、
請求項14に記載のメモリ回路。 - センスアンプを更に備え、ここで、前記第1の電圧クランプ装置はNMOS素子を有し、前記NMOS素子は前記センスアンプの入力端子に接続されたドレインと、前記第1の電流経路に接続されたソースとを備える、
請求項14に記載のメモリ回路。 - 前記バイアス電圧発生器はオペアンプを更に有し、前記オペアンプは、前記基準電圧を受信するように構成される非反転入力端子と、前記第1の駆動電圧を受信するように構成される反転端子と、前記第1のバイアス電圧を出力するように構成される出力端子とを備え、ここで、前記オペアンプの出力端子は前記第1のバッファのNMOS素子のゲートに接続される、
請求項14に記載のメモリ回路。 - 第2の抵抗ベースのメモリ装置を有する第2の電流経路と、
第3のバイアス電圧に基づいて第3の駆動電圧を生成し、前記第2の電流経路に前記第3の駆動電圧を印加するように構成される第2の電圧クランプ装置と、
前記第1のバイアス電圧を受信し、前記第1のバイアス電圧に基づいて前記第3のバイアス電圧を生成するように構成される第2のバッファと、を更に備える、
請求項14に記載のメモリ回路。 - 基準電圧を生成するように構成される基準ステージと、
前記基準電圧と第1のバイアス電圧との電圧差を検出するように構成される電圧センシングステージと、
前記電圧差に基づいて第2のバイアス電圧を生成するように構成されるゲインステージと、
前記第2のバイアス電圧に基づいて前記第1のバイアス電圧を生成するように構成されるバッファと、
前記第1のバイアス電圧に基づいて第1の駆動電圧を生成するように構成される第1の電圧クランプ装置と、
第1の抵抗ベースのメモリ装置を有する第1の電流経路と、を備え、
前記第1の電圧クランプ装置は、前記第1の電流経路に前記第1の駆動電圧を印加するように構成される、メモリ回路。 - 前記第1のバイアス電圧に基づいて第2の駆動電圧を生成するように構成される第2の電圧クランプ装置と、
第2の抵抗ベースのメモリ装置を有する第2の電流経路と、を備え、
前記第2の電圧クランプ装置は、前記第2の電流経路に前記第2の駆動電圧を印加するように構成される、
請求項19に記載のメモリ回路。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063056046P | 2020-07-24 | 2020-07-24 | |
US63/056,046 | 2020-07-24 | ||
US17/209,965 | 2021-03-23 | ||
US17/209,965 US11651819B2 (en) | 2020-07-24 | 2021-03-23 | Memory circuit and method of operating the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022022200A true JP2022022200A (ja) | 2022-02-03 |
Family
ID=77021138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021121055A Pending JP2022022200A (ja) | 2020-07-24 | 2021-07-21 | メモリ回路及び操作方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US11651819B2 (ja) |
EP (1) | EP3944245A1 (ja) |
JP (1) | JP2022022200A (ja) |
KR (1) | KR102486224B1 (ja) |
CN (1) | CN113628643B (ja) |
DE (1) | DE102021107803A1 (ja) |
TW (1) | TWI759221B (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12009807B2 (en) * | 2022-02-15 | 2024-06-11 | Infineon Technologies Ag | Slew rate control for fast switching output stages |
US12057178B2 (en) * | 2022-06-02 | 2024-08-06 | Micron Technology, Inc. | Cell voltage drop compensation circuit |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2307240C (en) * | 2000-05-01 | 2011-04-12 | Mosaid Technologies Incorporated | Matchline sense circuit and method |
KR100464536B1 (ko) * | 2002-03-22 | 2005-01-03 | 주식회사 하이닉스반도체 | 자기 저항 램 |
KR100437464B1 (ko) | 2002-07-02 | 2004-06-23 | 삼성전자주식회사 | 오프셋 보상 감지 방식을 갖는 반도체 메모리 장치 |
JP2007234133A (ja) * | 2006-03-01 | 2007-09-13 | Matsushita Electric Ind Co Ltd | 半導体記憶装置及び半導体集積回路システム |
JP4969432B2 (ja) * | 2007-12-19 | 2012-07-04 | 株式会社日立製作所 | Ponシステム、光信号受信方法及びolt |
JP5106297B2 (ja) * | 2008-07-30 | 2012-12-26 | 株式会社東芝 | 半導体記憶装置 |
CN101685675B (zh) * | 2008-09-26 | 2014-01-15 | 美光科技公司 | 存储器单元操作 |
KR101498219B1 (ko) | 2008-11-04 | 2015-03-05 | 삼성전자주식회사 | 가변 저항 메모리 장치 및 그것을 포함하는 메모리 시스템 |
US8737120B2 (en) | 2011-07-29 | 2014-05-27 | Micron Technology, Inc. | Reference voltage generators and sensing circuits |
US9281061B2 (en) | 2012-09-19 | 2016-03-08 | Micron Technology, Inc. | Methods and apparatuses having a voltage generator with an adjustable voltage drop for representing a voltage drop of a memory cell and/or a current mirror circuit and replica circuit |
KR102055841B1 (ko) * | 2013-03-05 | 2019-12-13 | 삼성전자주식회사 | 출력 버퍼 회로 및 이를 포함하는 소스 구동 회로 |
US9287859B2 (en) | 2013-04-19 | 2016-03-15 | Micron Technology, Inc. | Flexible input/output transceiver |
US9142267B1 (en) | 2014-03-17 | 2015-09-22 | Nanya Technology Corporation | Power generator for data line of memory apparatus |
CN105337606B (zh) * | 2014-06-30 | 2018-08-31 | 意法半导体研发(深圳)有限公司 | 支持压力测试的具有栅极钳位的驱动器电路 |
CN204180046U (zh) * | 2014-06-30 | 2015-02-25 | 意法半导体研发(深圳)有限公司 | 电子电路及驱动电路 |
US9419615B2 (en) * | 2015-01-20 | 2016-08-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Driver circuit |
US10755779B2 (en) | 2017-09-11 | 2020-08-25 | Silicon Storage Technology, Inc. | Architectures and layouts for an array of resistive random access memory cells and read and write methods thereof |
US10762960B2 (en) | 2017-11-30 | 2020-09-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Resistive random access memory device |
US10957366B2 (en) * | 2018-05-24 | 2021-03-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Circuits and methods for compensating a mismatch in a sense amplifier |
US10950303B2 (en) | 2018-06-01 | 2021-03-16 | Taiwan Semiconductor Manufacturing Company Ltd. | RRAM current limiting circuit |
US10930344B2 (en) * | 2018-06-01 | 2021-02-23 | Taiwan Semiconductor Manufacturing Company Ltd. | RRAM circuit and method |
US11342010B2 (en) * | 2019-10-01 | 2022-05-24 | Macronix International Co., Ltd. | Managing bit line voltage generating circuits in memory devices |
-
2021
- 2021-03-23 US US17/209,965 patent/US11651819B2/en active Active
- 2021-03-29 DE DE102021107803.2A patent/DE102021107803A1/de active Pending
- 2021-04-27 KR KR1020210054422A patent/KR102486224B1/ko active IP Right Grant
- 2021-06-07 TW TW110120557A patent/TWI759221B/zh active
- 2021-07-21 EP EP21186934.2A patent/EP3944245A1/en not_active Withdrawn
- 2021-07-21 JP JP2021121055A patent/JP2022022200A/ja active Pending
- 2021-07-23 CN CN202110837181.3A patent/CN113628643B/zh active Active
-
2023
- 2023-05-12 US US18/316,442 patent/US20230282278A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN113628643B (zh) | 2024-03-26 |
US11651819B2 (en) | 2023-05-16 |
KR102486224B1 (ko) | 2023-01-06 |
CN113628643A (zh) | 2021-11-09 |
US20220028453A1 (en) | 2022-01-27 |
TWI759221B (zh) | 2022-03-21 |
KR20220013308A (ko) | 2022-02-04 |
EP3944245A1 (en) | 2022-01-26 |
TW202205289A (zh) | 2022-02-01 |
DE102021107803A1 (de) | 2022-01-27 |
US20230282278A1 (en) | 2023-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5824505B2 (ja) | 磁気抵抗メモリ装置、ビットセルアクセス方法及び磁気抵抗ランダムアクセスメモリ | |
JP4283769B2 (ja) | 少なくとも2つの明確な抵抗状態を有するメモリ用の検知増幅器 | |
CN107134291B (zh) | 磁性随机存取存储器(mram)和操作方法 | |
US8467253B2 (en) | Reading memory elements within a crossbar array | |
US20230282278A1 (en) | Memory circuit and method of operating the same | |
US8184476B2 (en) | Random access memory architecture including midpoint reference | |
JP2004152475A (ja) | 少なくとも2つの異なった抵抗状態を有するメモリ用センス増幅器バイアス回路 | |
US9019746B2 (en) | Resistive memory device and method for driving the same | |
KR20130027840A (ko) | 데이터 리드회로, 이를 포함하는 불휘발성 메모리 장치 및 불휘발성 메모리 장치의 데이터 리드 방법 | |
KR20120079739A (ko) | 반도체 메모리 장치 | |
CN111755037B (zh) | 读出放大电路以及mram电路 | |
US10319423B2 (en) | Memory device with a low-current reference circuit | |
US11289144B1 (en) | Non-volatile memory with virtual ground voltage provided to unselected column lines during memory write operation | |
US11348628B2 (en) | Non-volatle memory with virtual ground voltage provided to unselected column lines during memory read operation | |
KR20230004076A (ko) | 리드 기준 전류 생성기 | |
US20140347910A1 (en) | Reading memory elements within a crossbar array | |
KR102451354B1 (ko) | 판독 및 기록 마진이 증가된 메모리 디바이스 및 방법 | |
CN113539307B (zh) | 基于操作参数的电流调节技术 | |
JP2024064782A (ja) | 抵抗変化素子の書き込み回路、及び半導体装置 | |
KR20240105386A (ko) | 반도체 회로 |