JP2021185740A - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP2021185740A
JP2021185740A JP2021139859A JP2021139859A JP2021185740A JP 2021185740 A JP2021185740 A JP 2021185740A JP 2021139859 A JP2021139859 A JP 2021139859A JP 2021139859 A JP2021139859 A JP 2021139859A JP 2021185740 A JP2021185740 A JP 2021185740A
Authority
JP
Japan
Prior art keywords
mounting surface
pad
converter
pin
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021139859A
Other languages
English (en)
Other versions
JP7250866B2 (ja
Inventor
和樹 笹尾
Kazuki Sasao
悦司 金子
Etsuji Kaneko
秀樹 井藤
Hideki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Interactive Entertainment LLC
Original Assignee
Sony Interactive Entertainment LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Interactive Entertainment LLC filed Critical Sony Interactive Entertainment LLC
Priority to JP2021139859A priority Critical patent/JP7250866B2/ja
Publication of JP2021185740A publication Critical patent/JP2021185740A/ja
Application granted granted Critical
Publication of JP7250866B2 publication Critical patent/JP7250866B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3415Surface mounted components on both sides of the substrate or combined with lead-in-hole components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

【課題】従来のマルチフェーズ電源装置の問題の少なくともひとつを解決することが可能な電源装置を提供する。【解決手段】DC/DCコンバータ200Aは、Nフェーズに対応付けられるN個のインダクタL1_1〜L1_Nと、N個のパワーモジュール220_1〜220_Nを備える。N個のパワーモジュールの少なくともひとつは、N個のインダクタが実装されているプリント基板300Aの主実装面SAと反対側の副実装面SBに実装されることで、スペース的な余裕が生ずる。【選択図】図6

Description

本発明は、電源装置に関する。
パーソナルコンピュータやゲーム専用機などの電子機器において、電池、あるいはインバータから供給される直流電圧を、負荷に最適な電圧レベルに降圧するDC/DCコンバータ(スイッチングレギュレータ)が利用される。
図1は、マルチフェーズの降圧DC/DCコンバータの構成例を示す回路図である。DC/DCコンバータ200は、Nフェーズ(N≧2)で構成され、入力ライン202、出力ライン204、N個のインダクタL1_1〜L1_N、入力キャパシタCi、出力キャパシタCo、コントローラ210、N個のパワーモジュール220_1〜220_Nを備える。
出力ライン204には、消費電力(負荷電流IOUT)がダイナミックに変化する負荷(不図示)が接続される。DC/DCコンバータ200は、入力ライン202の入力電圧VINを受け、所定レベルに安定化された出力電圧VOUTを生成し、負荷に供給する。入力ライン202には、入力電圧VINを安定化させるための入力キャパシタCiが接続され、出力ライン204には、出力電圧VOUTを平滑化するための出力キャパシタCoが接続される。
パワーモジュール220は、主として、VINピン、PGNDピン、SWピン、VCCピン、AGNDピン、PWMピンを備える。パワーモジュール220は、VINピンとSWピンの間に設けられたハイサイドスイッチ(スイッチングトランジスタ)M1と、SWピンとPGNDピンの間に設けられたローサイドスイッチ(同期整流トランジスタトランジスタ)M2と、ハイサイドドライバ222、ローサイドドライバ224、ロジック回路226を含む。
コントローラ210は、複数のインダクタL1_1〜L1_Nそれぞれに流れる電流あるいは負荷電流IOUTを監視し、駆動フェーズ数Kを決定する。たとえばN=4の場合、Kは、1,2,3,4の4つの値(あるいは1,2,4の3つの値)から選択可能とされる。
またコントローラ210は、出力電圧VOUTに応じたフィードバック信号VFBを受け、フィードバック信号VFBが所定の目標電圧VREFに近づくように、デューティ比が調節されるパルス信号SPWMを生成し、N個のパワーモジュール220_1〜220_Nのうち、K個に分配する。K個のパワーモジュール220_1〜220_Kには、(360/K)度の位相差を有するパルス信号SPWM1〜SPWMKが分配される。
以上がDC/DCコンバータ200の構成である。続いてその動作を説明する。ここではM=4であり、駆動フェーズ数Kは2、3、4を取りうる場合を説明する。図2(a)〜(c)はそれぞれ、K=2、3、4のときのスイッチング電圧Vsw1〜Vsw4を示す波形図である。
DC/DCコンバータ200の構成部品はプリント基板上に実装される。従来のDC/DCコンバータ200は、主要な構成部品であるインダクタL1_1〜L1_N、パワーモジュール220_1〜220_Nが、同一実装面にマウントされていた。ここでいう主要な構成部品とは、専有面積が大きく、また大電流が流れる部品である。
主要な構成部品を同一実装面に実装すると、DC/DCコンバータ200の専有面積が大きくなる。これはプリント基板の面積が大きくなることを意味し、コストアップの一因となり得る。
また、複数のパワーモジュール220_1〜220_Nの発熱が大きいアプリケーションでは、複数のパワーモジュール220_1〜220_Nをヒートシンクで冷却する必要がある。ところが複数のパワーモジュール220_1〜220_Nが、複数のインダクタL1_1〜L1_Nなどの他の部品と近接配置すると、ヒートシンクの形状が、他の部品によって制約され、冷却効果が犠牲になるおそれがある。
反対に、冷却効果を優先してレイアウトを決めると、パワーモジュールとインダクタの距離が遠くなり、DC/DCコンバータ200の専有面積が大きくなり、コストアップの要因となりうる。
なおここで説明した課題を当業者の一般的な認識と捉えてはならず、本発明者が独自に認識したものである。
本発明は係る課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、上述の問題の少なくともひとつを解決可能な電源装置の提供にある。
本発明のある態様は、電源装置に関する。電源装置は、直流入力電圧が供給される入力ラインと、負荷が接続される出力ラインと、出力ラインと接続された出力キャパシタと、Nフェーズに対応づけられたN個のインダクタであって、それぞれの一端が出力ラインと接続されるN個のインダクタと、Nフェーズに対応づけられたN個のパワーモジュール(パワーステージモジュールともいう)であって、それぞれが、入力ラインと接続される入力ピン、対応するインダクタの他端と接続されるスイッチングピン、接地されるグランドピンを有する、N個のパワーモジュールと、を備える。N個のパワーモジュールの少なくともひとつはプリント基板の主実装面と反対側の副実装面に実装される。
なお、以上の構成要素の任意の組合せ、本発明の表現を、方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、上述の問題の少なくともひとつを解決できる。
マルチフェーズの降圧DC/DCコンバータの構成例を示す回路図である。 図2(a)〜(c)はそれぞれ、K=2、3、4のときのスイッチング電圧Vsw1〜Vsw4を示す波形図である。 図3(a)は、パワーモジュールの裏面電極のレイアウト図であり、図3(b)は、インダクタの裏面電極のレイアウト図である。 比較技術に係るDC/DCコンバータのレイアウト図である。 比較技術に係るプリント基板の配線パターンを示す図である。 図6(a)、(b)は、実施例1−1に係るDC/DCコンバータのレイアウト図である。 実施例1−1に係るDC/DCコンバータの配線パターンを示す図である。 DC/DCコンバータを副実装面SB側からみた斜視図である。 図9(a)、(b)は、第1構成例に係るヒートシンクの断面図である。 図10(a)、(b)は、第2構成例に係るヒートシンクの断面図である。 図11(a)、(b)は、実施例1−2に係るDC/DCコンバータのレイアウト図である。 実施例1−2に係るDC/DCコンバータの配線パターンを示す図である。 図13(a)、(b)は、実施例1−3に係るDC/DCコンバータのレイアウト図である。 図14(a)、(b)は、実施例1−4に係るDC/DCコンバータのレイアウト図である。 第2の実施の形態に係るDC/DCコンバータの等価回路図である。 図16(a)、(b)は、実施例2−1に係るDC/DCコンバータのレイアウト図である。 実施例2−1に係るDC/DCコンバータの配線パターンを示す図である。 図18(a)、(b)は、実施例2−2に係るDC/DCコンバータのレイアウト図である。 図19(a)、(b)は、実施例2−3に係るDC/DCコンバータのレイアウト図である。 図20(a)〜(e)は、電子機器の組み立て工程を説明する断面図である。 図21(a)〜(e)は、電子機器の組み立て工程を説明する断面図である。 図22(a)〜(e)は、第1面S1への部品実装を説明する図であり、図23(a)〜(e)は、第2面S2への部品実装を説明する図である。 図23(a)〜(e)は、第2面S2への部品実装を説明する図である。 図24(a)〜(e)は、実施の形態に係る電子機器の製造方法を説明する図である。 図25(a)〜(e)は、実施の形態に係る電子機器の製造方法を説明する図である。
(実施の形態の概要)
本明細書の一実施の形態には、マルチフェーズの電源装置が開示される。電源装置は、直流入力電圧が供給される入力ラインと、負荷が接続される出力ラインと、出力ラインと接続された出力キャパシタと、Nフェーズに対応づけられたN個のインダクタと、N個のパワーモジュールと、を備える。
N個のインダクタはそれぞれの一端が出力ラインと接続される。N個のパワーモジュールは、N個のインダクタと対応付けられており、それぞれが、入力ラインと接続される入力ピン、対応するインダクタの他端と接続されるスイッチングピン、接地されるグランドピンを有する。N個のパワーモジュールの少なくともひとつはプリント基板の主実装面と反対側の副実装面に実装される。
副実装面をパワーモジュールの実装に利用することで、スペース的な余裕が生ずる。この余裕を利用することで、上述の問題の少なくともひとつを解決できる。
N個のインダクタは、第1方向に並べて配置され、i番目(i=1〜N)のパワーモジュールは、対応するi番目のインダクタと第1方向と直交する第2方向に隣接して配置されてもよい。
N個のパワーモジュールはすべて、副実装面に実装されてもよい。この場合、N個のパワーモジュールの周囲にスペースが生ずるため、ヒートシンクを設けやすくなる。そこで電源装置は、N個のパワーモジュールの上面に共通して接触するヒートシンクを備えてもよい。
N個のパワーモジュールは、主実装面と副実装面に交互に実装されてもよい。これにより、複数のパワーモジュールが発する熱を、プリント基板の両面に分散させることができる。また、同一実装面にて隣接するパワーモジュールの間隔が2倍に広がるため、熱的な集中を緩和できる。
N個のパワーモジュールは、1番目と2番目、3番目と4番目、・・・とペアをなし、ペアをなす2個のパワーモジュールは、共通の入力ラインと接続されてもよい。これにより、入力ラインに接続されるキャパシタを2フェーズで共有できるため、部品点数を減らすことができる。あるいは、同じ個数のキャパシタを用いた場合、キャパシタの効果を倍増することができる。
以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
(第1の実施の形態)
本発明の一側面は、DC/DCコンバータのレイアウトあるいは実装技術として把握される。本実施の形態において、DC/DCコンバータの機能あるいは等価回路については、図1と同様である。
いくつかの実施例で共通となるパワーモジュール220について説明する。パワーモジュール220自体は、公知であり、さまざまなICメーカによって製造・販売されている。
パワーモジュール220の回路構成は、図1と同様であり、ハイサイドトランジスタM1、ローサイドトランジスタM2、ハイサイドドライバ222、ローサイドドライバ224、ロジック回路226を備える。またパワーモジュール220は、入力(VIN)ピン、スイッチングピン(SW)、グランドピン(PGND,AGND)、電源(VCC)ピン、制御(PWM)ピンなどを備える。なお、パワーモジュール220は、ブートストラップ回路や、各種保護回路などを備え、またそれらに関連する複数のピンを備えるが、本発明と無関係であるため図示せず、説明を省略する。
ロジック回路226をはじめとする各回路ブロックには、VCCピンを介して電源電圧VCCが供給される。AGNDピンは、ハイサイドドライバ222、ローサイドドライバ224、ロジック回路226等のグランドである。VINピンには、直流の入力電圧VINが供給され、PGNDピンは、出力段のグランドである。
ロジック回路226は、PWMピンに入力されるPWM信号SPWMに応じて、ハイサイドパルス、ローサイドパルスを生成する。ハイサイドドライバ222はハイサイドパルスにもとづいてハイサイドトランジスタM1を駆動し、ローサイドドライバ224は、ローサイドパルスにもとづいてローサイドトランジスタM2を駆動する。
続いて主要な回路部品のパッケージのピン配置を説明する。図3(a)は、パワーモジュール220の裏面電極のレイアウト図である。上述のようパワーモジュール220は、VINピン、PGNDピン、SWピン、VCCピン、AGNDピンを備える。この中で、VINピンとGNDピンは、相対的に他のパッドよりも面積が大きい。特にPGNDピン、AGNDピンはサーマルパッドとしての機能も有するため、面積が大きい。PWMピンやその他の制御ピンは、残りのピンに割り当てられる。なお、図3の裏面電極のレイアウトは例示に過ぎず、チップベンダーや製品ごとに異なることは言うまでもない。
図3(b)は、インダクタL1の裏面電極のレイアウト図である。インダクタL1は、対向する2辺の中央に配置された第1電極E1と第2電極E2を有する。
本実施の形態において解決しようとする課題のひとつは、レイアウトの改善である。そこではじめに、比較の基準となるレイアウト(以下、比較技術という)について説明する。
近年の電子回路は、表面実装技術(SDT:Surface Mount Technology)を用いて実装される。表面実装では、プリント基板上に形成されたパッド(ランド)に、クリーム半田を塗布し、マウンタを用いて部品を実装し、リフロー処理を行う。
プリント基板の両面に表面実装により部品を実装する場合、一方の面(先行実装面)に部品を実装する。続いて、プリント基板を裏返した後に、他方の面(後行実装面)に部品を実装する。後行実装面をリフロー処理すると、先行実装面の半田が再加熱される。先行実装面に実装済みの部品が重かったり大きかったりすると、実装済みの部品が位置ズレを起こしたり、落下するおそれがある。この理由から、先行実装面に実装できる部品には、大きさや重さに制約があり、したがって先行実装面が副実装面となるのが一般的である。つまり副実装面には、相対的に少ない部品、軽い部品、小さい部品が実装され、主実装面には、相対的に多くの部品、重い部品、大きな部品が実装される。DC/DCコンバータについても例外ではなく、よって比較技術においても基本的にはすべての部品が主実装面に実装される。
図4は、比較技術に係るDC/DCコンバータのレイアウト図である。この例では、N=3とする。コントローラ210、パワーモジュール220_1〜220_N、入力キャパシタCi、出力キャパシタCo(主要構成部品という)はすべて、プリント基板300Rの主実装面SAにレイアウトされている。
複数のインダクタL1_1〜L1_Nは、プリント基板上の第1方向(x方向)に並べて配置される。パワーモジュール220_#(#=1,2…N)は、対応するインダクタL1_#と第2方向(y方向)に隣接して配置される。これによりパワーモジュール220_#とインダクタL1_#の間の寄生抵抗を下げることができる。
図5は、比較技術に係るプリント基板300Rの配線パターンを示す図である。図中、丸で示すのはビアホールである。プリント基板300には、複数のパターン配線(プリント配線)PTN1_1〜PTN1_3,PTN_2,PTN3_1〜PTN3_3,PTN4が形成される。第1パターン配線PTN1_1〜PTN1_3は、図1の入力ライン202_1〜202_3に対応している。パワーモジュール220_#(#=1,2…N)の入力ピンVINは、対応する第1パターン配線PTN1_#のパッドと接続される。
第2パターン配線PTN2は、グランドプレーンであり、インピーダンスを極力小さくするために、全フェーズ共通で形成されている。パワーモジュール220_#(#=1,2…N)の接地ピンPGNDは、対応するパターン配線PTN2のパッドと接続される。
第1パターン配線PTN1_#と第2パターン配線PTN2の間には、入力キャパシタCi_#が設けられる。入力キャパシタCi_#は、MLCC(多層セラミックコンデンサ)や電解コンデンサであり、あるいはそれらの組み合わせでありうる。
第3パターン配線PTN3_1〜PTN3_3は、図1においてパワーモジュール220のSWピンとインダクタL1の一端を結ぶ配線である。パワーモジュール220_#(#=1,2…N)のSWピンSWは、対応する第3パターン配線PTN3_#のパッドと接続される。またインダクタL1_#(#=1,2…N)の電極E1は、対応する第3パターン配線PTN3_#のパッドと接続される。
第4パターン配線PTN4は、図1における出力ライン204に対応する。インダクタL1_#(#=1,2…N)の電極E2は、対応する第4パターン配線PTN4のパッドと接続される。第4パターン配線PTN4とグランドプレーンの間には、図1の出力キャパシタCo(図5において不図示)が接続される。
第1パターン配線PTN1〜第4パターン配線PTN4は、大電流が流れるため、インピーダンスをなるべく小さくする必要がある。したがってこれらのパターン配線PTN1〜PTN4はそれぞれが多層配線を形成しており、図5に図示しない別の配線層の配線と、ビアホールを介して接続されている。
以上が比較技術に係る部品レイアウトである。続いて、実施の形態に係るレイアウトを説明する。本実施の形態では、N個のパワーモジュール220の少なくともひとつをプリント基板300の主実装面SAと反対側の副実装面SBに実装することとした。以下、いくつかの実施例を説明する。
(実施例1−1)
図6(a)、(b)は、実施例1−1に係るDC/DCコンバータ200Aのレイアウト図である。図6(a)は斜視図を、図6(b)は断面図を示す。実施例1−1では、すべてのパワーモジュール220_1〜220_3が、副実装面SBに実装されている。入力キャパシタCi_#は、パワーモジュール220_#のVINピンの直近に接続することが好ましい。そこで実施例1−1では、入力キャパシタCi_#も副実装面SBに実装される。
図7は、実施例1−1に係るDC/DCコンバータ200Aの配線パターンを示す図である。図7において、主実装面SA側に実装される部品は破線で示し、副実装面SB側に実装される部品は二点鎖線で示す。パターン配線PTN1〜PTN4の機能は、図5と同様である。またパターン配線PTN1〜PTN4は多層配線であり、主実装面SA、副実装面SBの両面(および中間の配線層)にオーバーラップして形成され、それらは互いにビアホールで電気的に接続されている。
以上が実施例1−1に係るDC/DCコンバータ200Aの構成である。副実装面SBをパワーモジュール220の実装に利用することで、主実装面SAあるいは副実装面SBにスペース的な余裕が生ずる。このことによる利点を説明する。
図8は、DC/DCコンバータ200Aを副実装面SB側からみた斜視図である。DC/DCコンバータ200Aは、ヒートシンク240を備える。ヒートシンク240は、複数のパワーモジュール220_1〜220_3それぞれの上面と共通して接している。副実装面SB側には、パワーモジュール220_1〜220_Nの周囲に、パワーモジュール220より背の高い部品は存在しないため、大きなヒートシンク240を設けることができ、冷却効率を高めることができる。
ヒートシンクの具体的な構成例を説明する。図9(a)、(b)は、第1構成例に係るヒートシンク240Aの断面図である。図9(a)は、実施例1−1にヒートシンク240Aを適用した様子を示し、図9(b)は、図4の比較技術に同じヒートシンク240Aを適用した様子を示す。
ヒートシンク240Aは、放熱部分242とコンタクト部分244を有する。放熱部分242には開口が設けられており、この開口にコンタクト部分244が嵌め込まれている。コンタクト部分244は、冷却対象のパワーモジュール220と接触する。
実施例1−1と比較技術を対比する。図9(b)に示すように、パワーモジュール220が主実装面SAに実装される比較技術では、パワーモジュール220の周辺に、背の高い部品221(たとえばインダクタ)が存在する。したがって放熱部分242をプリント基板表面に近づけることが難しくなり、コンタクト部分244のZ方向の高さが高くなる。これは熱抵抗の増加の要因となり、すなわち冷却性能の低下を意味する。
これに対してパワーモジュール220が副実装面SBに実装される実施例1−1では、図9(a)に示すように、パワーモジュール220の周辺に、背の高い部品が存在しないため、放熱部分242をプリント基板表面に近づけることができる。これにより、コンタクト部分244のZ方向の高さを低くできる。これにより熱抵抗を下げ、冷却性能の改善できる。
図10(a)、(b)は、第2構成例に係るヒートシンク240Bの断面図である。ヒートシンク240Bは、一枚の放熱板246で構成され、絞り加工により凸部248が設けられ、放熱板246は凸部248において、パワーモジュール220の表面と接触する。
実施例1−1と比較技術を対比する。図10(b)に示すように比較技術では、パワーモジュール220の周辺に、背の高い部品221(たとえばインダクタ)が存在する。凸部248が部品221と干渉するため、比較技術では、第2構成例を採用することが難しい。
これに対してパワーモジュール220が副実装面SBに実装される実施例1−1では、パワーモジュール220の周辺に、ヒートシンク240Bの凸部248と干渉する部品が存在しない。したがって、ヒートシンク240Bの設計の自由度が高まり、第2構成例に係るヒートシンク240Bを採用できる。
図10のヒートシンク240Bは、図9のヒートシンク240Aと比較して構造が簡素化されているため、コストを下げることができる。また開口が不要であることから、電磁ノイズの遮蔽性能が高く、EMC(Electro Magnetic Compatibility)を改善できる。
(実施例1−2)
実施例1−2では、N=4のDC/DCコンバータ200Bについて説明する。図11(a)、(b)は、実施例1−2に係るDC/DCコンバータ200Bのレイアウト図である。図11(a)は斜視図を、図11(b)は断面図を示す。実施例1−2では、N個のパワーモジュール220_1〜220_Nは、主実装面SAと副実装面SBに交互に実装される。具体的には奇数番目のパワーモジュール220_#(#=1,3,…)は、副実装面SBに実装され、偶数番目のパワーモジュール220_*(*=2,4,…)は、主実装面SAに実装される。もちろん逆であってもよい。
図12は、実施例1−2に係るDC/DCコンバータ200Bの配線パターンを示す図である。図12において、主実装面SA側に実装される部品は破線で示し、副実装面SB側に実装される部品は二点鎖線で示す。パターン配線PTN1〜PTN4の機能は、上述した通りである。またパターン配線PTN1〜PTN4は多層配線であり、主実装面SA、副実装面SBの両面(および中間の配線層)にオーバーラップして形成され、それらは互いにビアホールで電気的に接続されている。
実施例1−2において、N個のパワーモジュールは、1番目と2番目、3番目と4番目、…とペアをなしている。そしてペアをなす2個のパワーモジュール220_i,220_jは、共通の入力ライン(すなわち共通の第1パターン配線PTN1_i,j)と接続される。
実施例1−1あるいは比較技術のように、すべてのパワーモジュール220を同一実装面に実装すると、パワーモジュール220ごとに、第1パターン配線PTN1を形成する必要がある。これに対して、実施例1−2のように、主実装面SAと副実装面SBに交互にパワーモジュール220を実装することで、VIN端子同士が隣接することになるため、入力ラインを共通化できるという利点がある。
加えて、入力ライン(第1パターン配線PTN1_i,j)が共通化されると、入力キャパシタCi_i,jも共通化できるという利点がある。すなわち、主実装面SA側の入力キャパシタCi_i,jは、パワーモジュール220_iの入力キャパシタとして機能すると同時に、副実装面SB側のパワーモジュール220_jの入力キャパシタとしても機能するため、入力キャパシタの効果を倍増することができる。あるいは、同じ入力キャパシタの効果を得るために必要なキャパシタの個数を減らすことができ、コストを削減できる。
(実施例1−3)
図13(a)、(b)は、実施例1−3に係るDC/DCコンバータ200Dのレイアウト図である。実施例1−3は、実施例1−2のインダクタのチップサイズを小さくしたものである。インダクタL1に流れる電流が小さいアプリケーションでは、許容電流が小さい、すなわちチップサイズが小さい部品を選定でき、専有面積を小さくできる。
(実施例1−4)
図14(a)、(b)は、実施例1−4に係るDC/DCコンバータ200Gのレイアウト図である。実施例1−4は、実施例1−3から、インダクタのレイアウトを変更したものであり、具体的には、各インダクタL1_iは、それと対応するパワーモジュール220_iと同一面に実装される。これにより対応するインダクタL1_iとパワーモジュール220_iを低インピーダンスで接続できる。
より好ましくは、インダクタL1_1とL1_2のペアは、プリント基板300Gの両面SA,SBにオーバーラップして実装される。またインダクタL1_3とL1_4のペアは、プリント基板300Gの両面SA,SBにオーバーラップして実装される。これにより、隣接するインダクタの間隔を大きくすることができ、図13(a)、(b)のレイアウトに比べて熱的な集中を緩和できる。
(第2の実施の形態)
実施例1−3において説明したように、インダクタL1に流れるコイル電流が小さいアプリケーションでは、チップサイズを小さくすることができる。しかしながら、インダクタL1に流れるコイル電流が大きいアプリケーションでは、許容電流が大きな、したがってチップサイズの大きな部品を選定せざるをえず、DC/DCコンバータの占有サイズが、インダクタのチップサイズによって制約を受けることとなる。第2の実施の形態では、コイル電流が大きなアプリケーションにおいて、DC/DCコンバータの占有サイズを小さくする技術を説明する。
図15は、第2の実施の形態に係るDC/DCコンバータ200Cの等価回路図である。DC/DCコンバータ200Cにおいて、インダクタL1_#(#=1,2…N)はそれぞれ、インダクタンス値が等しく、チップサイズが同一である2個のインダクタチップL1_#a、L1_#bの並列接続で構成される。
2並列の場合のインダクタチップのインダクタンス値は、単一のインダクタチップの場合の1/2倍となる。一方、2並列の場合に、インダクタチップに流れる電流量は、単一のインダクタチップの場合の1/2倍となる。第2の実施の形態では、チップ当たりの電流量を減らすことで、電流容量の小さい、したがってパッケージサイズの小さいインダクタチップを選定することができる。たとえば、単一のインダクタチップの場合に10mm角のインダクタチップを採用する場合、第2の実施の形態の技術思想を導入して、2並列とすることにより、6mm角のインダクタチップを採用することができる。
DC/DCコンバータ200を搭載した製品を量産する際には、チップ部品の入手性を考慮する必要がある。特に、長い期間にわたり大量に製造、販売される製品では、チップ部品が長期間にわたり安定的に供給される必要がある。現在、チップ部品の小型化が進められており、小さいサイズのインダクタチップのラインナップが増えている代わりに、大きなサイズのチップ部品の入手性が悪くなっている。この観点において、従来において大きなチップサイズのインダクタを、チップサイズの小さい複数のインダクタチップの並列接続に置換することとで、入手性の問題を解決することができる。
(実施例2−1)
図16(a)、(b)は、実施例2−1に係るDC/DCコンバータ200Cのレイアウト図である。図16(a)は斜視図を、図16(b)は断面図を示す。
電気的に並列に接続される2個のインダクタチップL1_#a、L1_#bは、プリント基板300Cの主実装面SAと副実装面SBに、互いにオーバーラップして実装される。
実施例2−1では、N個のパワーモジュール220_1〜220_Nは、第1の実施の形態の実施例1−2と同様に、主実装面SAと副実装面SBに交互に実装される。
図17は、実施例2−1に係るDC/DCコンバータ200Cの配線パターンを示す図である。DC/DCコンバータの占有領域のX方向の長さ(全幅)Wは、インダクタチップの横幅wによって支配的に規定され、具体的には、W=w×N+s×(N−1)となる。sは、インダクタチップのx方向の間隔である。たとえば10mm角のインダクタチップを、6mm角のインダクタチップに置き換えたとすれば、N=4の場合で、DC/DCコンバータの占有領域の全幅を、おおよそ4mm×4=16mm程度、小さくすることができる。
加えて実施例2−1によれば、実施例1−2と同じ効果を得ることができる。すなわち、隣接する2フェーズで入力ラインを共通化でき、また入力キャパシタCi_i,jも共通化できる。
(実施例2−2)
図18(a)、(b)は、実施例2−2に係るDC/DCコンバータ200Eのレイアウト図である。図18(a)は斜視図を、図18(b)は断面図を示す。実施例2−2は、複数のパワーモジュール220_1〜220_4が副実装面SBに実装される点において、図6の実施例1−1と共通する。図18では、入力キャパシタCiは省略するが、実施例1−1と同様に、副実装面SBに実装すればよい。
実施例2−2によれば、実施例2−1と同様に、DC/DCコンバータ200Eの専有面積を小さくできる。
(実施例2−3)
図19(a)、(b)は、実施例2−3に係るDC/DCコンバータ200Fのレイアウト図である。図19(a)は斜視図を、図19(b)は断面図を示す。実施例2−3では、複数のパワーモジュール220_1〜220_4はすべて主実装面SA側に実装される。
実施例2−3によれば、実施例2−1、実施例2−2と同様に、DC/DCコンバータ200Fの専有面積を小さくできる。
(変形例2−1)
実施例2−1〜2−3において、フェーズごとのインダクタL1を、2個のインダクタチップの並列接続としたが、チップの個数は2に限定されず、3個以上としてもよい。
(実装技術)
続いてパワーモジュール220の実装技術を説明する。図1を参照する。DC/DCコンバータ200において、入力ライン202のインダクタ成分や抵抗成分は極力小さいことが望ましい。またPGNDピンについても、なるべく小さなインピーダンスで接地されることが望ましい。図5や図7に示したように、第1パターン配線PTN1には、VINピンを半田付けするためのパッド(ランド)が形成され、第2パターン配線PTN2には、PGNDピンを半田付けするためのパッド(ランド)が形成される。パターン配線PTN1,PTN2のインピーダンスを下げるために、多層配線が採用され、ビアホールが多数設けられるが、インピーダンスを可能な限り下げるためには、パッド(ランド)の内側に、ビアホールを形成することが要求される。このようなビアホールを、パッド内ビアと称する。
図5の比較技術では、パワーモジュール220が主実装面にのみ実装されるため、パッド内ビアの形成に格別の困難性はない。ところが、実施例1−1,1−2,1−3,2−1,2−2では、パワーモジュール220が副実装面に実装されるため、副実装面にパッド内ビアを形成する必要がある。コストを無視すれば、副実装面にパッド内ビアを形成することは不可能ではないが、コストを考慮した場合、従来の表面実装では、副実装面にパッド内ビアを設けることは容易ではない。そこで以下では、副実装面にパッド内ビアを形成可能な表面実装技術について説明する。
はじめに、副実装面にパッド内ビアを設けた場合の問題点を、図20〜図23を参照して説明する。
電子機器は、プリント基板と、プリント基板上に実装される電子部品を備える。近年では、チップインダクタ、チップ抵抗、チップコンデンサ、トランジスタなどの表面実装型の部品(SMD:Surface Mount Device)が主流となっている。
図20(a)〜(e)および図21(a)〜(e)は、電子機器の組み立て工程を説明する断面図である。図20(a)には、部品が実装される前のプリント基板10が示される。プリント基板10の第1面(先行実装面)S1および第2面S2(後行実装面)には、プリント配線(不図示)や、パッド(ランド)12,14が形成されている。パッド12,14は、部品の電極と対応する箇所に配置され、パッド12,14以外の部分は、レジスト11によって覆われている。
図20(b)に示すように、第1面S1の上に、スクリーン(メタルマスクあるいは半田マスクとも称する)20が載置される。スクリーン20には、第1面S1側のパッド12とオーバーラップする箇所に開口22が設けられる。続いて図20(c)に示すように、スクリーン20の上からクリーム半田(半田ペースト)30が塗布される。図20(d)に示すようにスクリーン20を取り外すと、パッド12の上にのみクリーム半田32が残留する。
続いて図20(e)に示すように、マウンタによって第1面S1に部品40がマウントされる。部品40の電極E1,E2と、パッド12の間には、クリーム半田32が挟まれている。この状態でリフロー処理が行われ、部品40と基板10とが電気的、機械的に接続される。
続いて、第2面S2への部品実装を説明する。図21(a)に示すようにプリント基板10は、第2面S2が上側となるように反転される。続いて図21(b)に示すように第2面S2の上にスクリーン50が載置される。スクリーン50には、第2面S2側のパッド14とオーバーラップする箇所に開口52が設けられる。続いて図21(c)に示すように、スクリーン50の上からクリーム半田60が塗布される。図21(d)に示すようにスクリーン50を取り外すと、パッド14の上にのみクリーム半田62が残留する。
続いて図21(e)に示すように、マウンタによって第2面S2に部品70がマウントされる。部品70の電極E1,E2と、パッド14の間には、クリーム半田62が挟まれている。この状態でリフロー処理が行われ、部品70と基板10とが電気的、機械的に接続される。以上が表面実装の説明である。
本発明者は表面実装について検討した結果、以下の課題を認識するに至った。プリント基板10は、複数の配線層を含み、異なる配線層の間はビアを介して接続される。ビアは、通常、パッドの位置を避けて配置されるが、放熱性を高めたり、寄生インピーダンスを削減したい場合には、パッド内に配置される場合もある。パッド内に配置されるビアを、パッド内ビアと称する。
従来の表面実装では、先行実装面である第1面S1にパッド内ビアを形成することが困難であった。図22(a)〜(e)は、第1面S1への部品実装を説明する図であり、図23(a)〜(e)は、第2面S2への部品実装を説明する図である。
図22(a)には、部品が実装される前のプリント基板10Aが示される。プリント基板10Aの第1面(先行実装面)S1には、パッド(ランド)16およびパッド内ビア17が形成される。
第1面S1の上にスクリーン20が載置され(図22(b))、続いてスクリーン20の上からクリーム半田30が塗布される(図22(c))。そしてスクリーン20を取り外すと、パッド16の上にクリーム半田32が残留する(図22(d))。
続いて、マウンタによって第1面S1に部品40Aがマウントされる(図22(e))。部品40Aは裏面電極E3を有し、裏面電極E3とパッド16の間には、クリーム半田32が挟まれている。この状態でリフロー処理が行われ、部品40Aと基板10とが電気的、機械的に接続される。この工程においてクリーム半田32の一部は、パッド内ビア17(スルーホール)を貫通し、第2面S2側から漏れ出る。この半田の漏れ34は、以下で説明するように実装不良を引き起こす。
図23(a)〜(e)を参照して第2面S2への部品実装を説明する。図23(a)に示すようにプリント基板10Aは、第2面S2が上側となるように反転される。続いて図23(b)に示すように第2面S2の上にスクリーン50が載置される。スクリーン50は、パッド14とオーバーラップする箇所に開口52を有する。
そして図23(c)に示すようにスクリーン50の上からクリーム半田60が塗布される。図23(d)は、スクリーン50を取り外した状態を示す。クリーム半田62は、パッド14以外の意図しない領域に塗布されている。この状態で第2面S2に部品70をマウントし、リフロー処理にかけると、隣接するパッド14同士がクリーム半田62によってショートするなどの不良が生ずるおそれがある。
以上が従来の表面実装の問題点である。先行実装面にパッド内ビアを形成したい場合、第2面の実装に、スクリーン印刷を用いず、ニードルディスペンサによって、パッド14の上に選択的にクリーム半田を塗布する方法が考えられる。この方法によれば、第1面S1へのクリーム半田30の影響を受けずに、第2面S2に部品を実装できる。しかしながら、ニードルディスペンサを用いたクリーム半田の塗布は、スクリーン印刷によるそれに比べてスループットが大幅に低下するため、第2面S2の部品点数が多い場合には採用できない。
別のアプローチとして、プリント基板10Aの製造工程において、予めビアホールの内部を金属あるいは樹脂で充填して穴を塞ぐという対策が考えられる。この対策によれば、図22(e)の工程において、第2面S2側へのクリーム半田30の漏れを防止できる。しかしながらこの解決方法では、プリント基板10Aの製造工程が増えるため、プリント基板10Aのコストが高くなる。
以下では、図24および図25を参照して、上述の問題を解決することができる実装技術を説明する。
図24(a)〜(e)および図25(a)〜(e)は、実施の形態に係る電子機器の製造方法を説明する図である。図24(a)〜(e)および図25(a)〜(e)には、表面実装による組み立て工程が示される。
図24(a)〜(e)を参照して、第1面S1への部品実装を説明する。第1面S1への実装については、以下で説明するように図22と実質的に同様である。
図24(a)には、部品が実装される前のプリント基板10Bが示される。プリント基板10Bの第1面(先行実装面)S1には、いくつかのパッド(ランド)12,16が形成される。パッド16には、パッド内ビア17が形成される。プリント基板10B第2面(後行実装面)S2にも同様に、いくつかのパッド14,18が形成される。パッド18には、パッド内ビア19が形成される。
図24(b)に示すように、第1面S1の上にスクリーン20が載置される。スクリーン20には、パッド12,16に対応する箇所に、開口22,24が設けられる。続いてスクリーン20の上からクリーム半田30が塗布される(図24(c))。
そしてスクリーン20を取り外すと、パッド12,16の上にクリーム半田32が残留する(図24(d))。
続いて、マウンタによって第1面S1に部品40,40Aがマウントされる(図24(e))。部品40の電極E1,E2と、パッド12の間には、クリーム半田32が挟まれている。部品40Aは裏面電極E3を有し、裏面電極E3とパッド16の間には、クリーム半田32が挟まれている。この状態でリフロー処理が行われ、部品40Aと基板10とが電気的、機械的に接続される。
この工程においてクリーム半田32の一部は、パッド内ビア17(スルーホール)を貫通し、第2面S2側から漏れ出る。
続いて図25(a)〜(e)を参照して第2面S2への部品実装を説明する。図25(a)に示すようにプリント基板10Bは、第2面S2が上側となるように反転される。続いて図25(b)に示すように、第2面S2の上に、スクリーン50Bが載置される。
本実施の形態において、スクリーン50Bは、パッド14とオーバーラップする箇所に開口52を有する。それに加えてスクリーン50Bには、パッド内ビア19とオーバーラップする箇所に、凹部56が設けられている。この凹部56によって、スクリーン50Bが半田の漏れ34と干渉しないようになっており、スクリーン50Bを第2面S2に密着させることが可能となる。
図25(d)は、スクリーン50Bを取り外した状態を示す。クリーム半田62は、パッド14、18の上にのみ塗布されており、余計なはみ出しが抑えられている。
続いて図25(e)のように、第2面S2に部品70,70Aがマウントされ、リフロー処理にかけられる。これにより部品70に関して、電極E1,E2がパッド14と電気的、機械的に接続される。また部品70Aに関しても、裏面電極E3とパッド18とが電気的、機械的に接続され、半導体装置100が組み立てられる。
以上が実施の形態に係る半導体装置の製造方法である。
このように、本実施の形態によれば、第2面S2にクリーム半田を塗布する際に用いるスクリーン50に、半田の漏れ34との干渉を避けるための凹部56を設けることとした。これにより、半田の漏れ34によるスクリーン50Bの位置ズレを防止でき、またスクリーン50Bと第2面S2の間のギャップにクリーム半田60が侵入するのを防止できる。
なお第2面S2に部品70Aを実装する際に、パッド内ビア19から第1面S1側にも、半田の漏れ64が生じうるが、第1面S1側の部品の実装は完了しているため、悪影響はない。
以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
10 プリント基板
12,14,16 パッド
17 パッド内ビア
18 パッド
19 パッド内ビア
S1 第1面
S2 第2面
20 スクリーン
22 開口
30 クリーム半田
32 クリーム半田
34 半田の漏れ
40 部品
E1,E2 電極
E3 裏面電極
50 スクリーン
52,54 開口
56 凹部
60 クリーム半田
70 部品
100 半導体装置
200 DC/DCコンバータ
202 入力ライン
204 出力ライン
210 コントローラ
220 パワーモジュール
M1 ハイサイドトランジスタ
M2 ローサイドトランジスタ
L1 インダクタ
Ci 入力キャパシタ
Co 出力キャパシタ
222 ハイサイドドライバ
224 ローサイドドライバ
226 ロジック回路
240 ヒートシンク
300 プリント基板
SA 主実装面
SB 副実装面
PTN1 第1パターン配線
PTN2 第2パターン配線
PTN3 第3パターン配線
PTN4 第4パターン配線

Claims (5)

  1. 直流入力電圧が供給される入力ラインと、
    負荷が接続される出力ラインと、
    Nフェーズに対応づけられたN個のインダクタであって、それぞれの一端が前記出力ラインと接続されるN個のインダクタと、
    Nフェーズに対応づけられたN個のパワーモジュールであって、それぞれが、前記入力ラインと接続される裏面電極の入力ピン、対応するインダクタの他端と接続される裏面電極のスイッチングピン、接地される裏面電極のグランドピンを有し、表面実装型である、N個のパワーモジュールと、
    を備え、
    前記N個のインダクタは、第1の高さを有し、
    前記N個のパワーモジュールは、前記第1の高さより低い第2の高さを有し、
    前記N個のインダクタはプリント基板の第1面に実装され、
    前記N個のパワーモジュールは前記プリント基板の第2面に実装されることを特徴とする電源装置。
  2. 前記プリント基板は、
    前記副実装面に前記パワーモジュールの前記入力ピンと対応する箇所に設けられたパッドと、
    前記パッド内に設けられたパッド内ビアと、
    を有することを特徴とする請求項1に記載の電源装置。
  3. 前記N個のパワーモジュールは、前記第1面において第1方向に並べて配置され、
    前記N個のインダクタは、前記第2面において前記第1方向に並べて配置され、
    i番目(i=1〜N)のパワーモジュールは、対応するi番目のインダクタと第1方向と直交する第2方向に離間した位置に配置されることを特徴とする請求項1または2に記載の電源装置。
  4. 前記N個のパワーモジュールの上面に共通して接触するヒートシンクをさらに備えることを特徴とする請求項1から3のいずれかに記載の電源装置。
  5. 前記N個のパワーモジュールの上面に共通して接触し、前記第1方向に伸びるヒートシンクをさらに備えることを特徴とする請求項3に記載の電源装置。
JP2021139859A 2018-10-19 2021-08-30 電源装置 Active JP7250866B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021139859A JP7250866B2 (ja) 2018-10-19 2021-08-30 電源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018197715A JP7250474B2 (ja) 2018-10-19 2018-10-19 電源装置
JP2021139859A JP7250866B2 (ja) 2018-10-19 2021-08-30 電源装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018197715A Division JP7250474B2 (ja) 2018-10-19 2018-10-19 電源装置

Publications (2)

Publication Number Publication Date
JP2021185740A true JP2021185740A (ja) 2021-12-09
JP7250866B2 JP7250866B2 (ja) 2023-04-03

Family

ID=70283040

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018197715A Active JP7250474B2 (ja) 2018-10-19 2018-10-19 電源装置
JP2021139859A Active JP7250866B2 (ja) 2018-10-19 2021-08-30 電源装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018197715A Active JP7250474B2 (ja) 2018-10-19 2018-10-19 電源装置

Country Status (5)

Country Link
US (1) US20210328515A1 (ja)
EP (1) EP3869678A4 (ja)
JP (2) JP7250474B2 (ja)
CN (1) CN112868170A (ja)
WO (1) WO2020080526A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090108821A1 (en) * 2007-03-07 2009-04-30 Martin Standing Multi-phase voltage regulation module
JP2010124570A (ja) * 2008-11-18 2010-06-03 Toshiba Carrier Corp 電力変換装置
JP2016067164A (ja) * 2014-09-25 2016-04-28 株式会社ノーリツ パワーコンディショナ
JP2017112147A (ja) * 2015-12-14 2017-06-22 株式会社小糸製作所 発光モジュール、灯具および発光素子用回路基板
JP2018506259A (ja) * 2015-01-19 2018-03-01 エフィシェント・エナージー・ゲーエムベーハー スイッチング電源
CN207573821U (zh) * 2017-12-14 2018-07-03 苏州众能医疗科技有限公司 一种双面水冷板散热装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794619A (ja) * 1993-09-20 1995-04-07 Hitachi Ltd 混成集積回路装置
US7350175B2 (en) * 2004-09-29 2008-03-25 Matsushita Electric Industrial Co., Ltd. Circuit board design system, design data analysis method and recording medium with analysis program recorded thereon
JP5142119B2 (ja) * 2006-09-20 2013-02-13 住友電装株式会社 放熱構造を備えたプリント基板の製造方法および該方法で製造されたプリント基板の放熱構造
JP5328147B2 (ja) * 2007-12-26 2013-10-30 株式会社ケーヒン パワードライブユニット
JP5420433B2 (ja) * 2010-01-14 2014-02-19 ルネサスエレクトロニクス株式会社 半導体装置および電源装置
JP2013162585A (ja) * 2012-02-02 2013-08-19 Sony Computer Entertainment Inc Dc/dcコンバータ
JP5974603B2 (ja) * 2012-04-17 2016-08-23 株式会社村田製作所 インダクタアレイチップ及びdc−dcコンバータ
JP6034132B2 (ja) * 2012-10-24 2016-11-30 株式会社ソニー・インタラクティブエンタテインメント Dc/dcコンバータおよびそれを用いたゲーム機器
JP6162510B2 (ja) * 2013-07-03 2017-07-12 株式会社ソニー・インタラクティブエンタテインメント 降圧dc/dcコンバータ、そのコントローラおよび制御方法、ならびにそれを用いた電子機器
US9564389B2 (en) * 2014-03-18 2017-02-07 Infineon Technologies Americas Corp. Semiconductor package with integrated die paddles for power stage
JP6106127B2 (ja) * 2014-05-29 2017-03-29 株式会社ソニー・インタラクティブエンタテインメント スイッチングコンバータおよびそれを用いた電子機器
US20160105983A1 (en) * 2014-10-09 2016-04-14 International Rectifier Corporation Insertable Power Unit with Mounting Contacts for Plugging into a Mother Board
US20200260586A1 (en) * 2016-03-03 2020-08-13 Delta Electronics (Shanghai) Co., Ltd. Power module and manufacturing method thereof
CN111952293B (zh) * 2019-05-15 2022-07-01 台达电子企业管理(上海)有限公司 功率模块及其制造方法
US11018588B2 (en) * 2016-06-07 2021-05-25 Sony Interactive Entertainment Inc. DC/DC converter
US10063149B2 (en) * 2016-11-23 2018-08-28 Apple Inc. Multi-phase switching power converter module stack
US10361631B2 (en) * 2017-10-05 2019-07-23 Monolithic Power Systems, Inc. Symmetrical power stages for high power integrated circuits
US10505456B1 (en) * 2018-09-07 2019-12-10 International Business Machines Corporation Fully integrated multi-phase buck converter with coupled air core inductors
JP7107810B2 (ja) * 2018-10-19 2022-07-27 株式会社ソニー・インタラクティブエンタテインメント 半導体装置の製造方法およびスクリーン
JP6835788B2 (ja) * 2018-10-19 2021-02-24 株式会社ソニー・インタラクティブエンタテインメント 電源装置
CN209517580U (zh) * 2018-12-21 2019-10-18 苏州纽克斯电源技术股份有限公司 一种电源
CN112448561B (zh) * 2019-08-30 2022-04-15 台达电子企业管理(上海)有限公司 电源模块及电源模块的制备方法
CN112788842A (zh) * 2019-11-08 2021-05-11 华为技术有限公司 一种芯片供电系统、芯片、pcb和计算机设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090108821A1 (en) * 2007-03-07 2009-04-30 Martin Standing Multi-phase voltage regulation module
JP2010124570A (ja) * 2008-11-18 2010-06-03 Toshiba Carrier Corp 電力変換装置
JP2016067164A (ja) * 2014-09-25 2016-04-28 株式会社ノーリツ パワーコンディショナ
JP2018506259A (ja) * 2015-01-19 2018-03-01 エフィシェント・エナージー・ゲーエムベーハー スイッチング電源
JP2017112147A (ja) * 2015-12-14 2017-06-22 株式会社小糸製作所 発光モジュール、灯具および発光素子用回路基板
CN207573821U (zh) * 2017-12-14 2018-07-03 苏州众能医疗科技有限公司 一种双面水冷板散热装置

Also Published As

Publication number Publication date
WO2020080526A1 (ja) 2020-04-23
JP2020065427A (ja) 2020-04-23
EP3869678A4 (en) 2022-07-06
JP7250474B2 (ja) 2023-04-03
EP3869678A1 (en) 2021-08-25
CN112868170A (zh) 2021-05-28
US20210328515A1 (en) 2021-10-21
JP7250866B2 (ja) 2023-04-03

Similar Documents

Publication Publication Date Title
JP6835788B2 (ja) 電源装置
US20230230749A1 (en) Power system
US6940724B2 (en) DC-DC converter implemented in a land grid array package
JP4953034B2 (ja) 電圧変換器
KR101175831B1 (ko) 집적 인덕터를 포함하는 장치 및 시스템
US6469895B1 (en) Integrated circuit mounting structure including a switching power supply
US20070164428A1 (en) High power module with open frame package
US7721232B2 (en) Designated MOSFET and driver design to achieve lowest parasitics in discrete circuits
US11558960B2 (en) Voltage regulator module and voltage regulation device with same
WO2020080525A1 (ja) 半導体装置の製造方法およびスクリーン
JP2011138812A (ja) 電源モジュール
JP2021185740A (ja) 電源装置
US20090154112A1 (en) Packaging structure of power module
JP6759874B2 (ja) 電力変換装置
US20220336138A1 (en) Magnetic device and power conversion module
US20240074052A1 (en) Integrated substrate and power integrated circuit
WO2024022449A1 (zh) 印刷电路板和包括印刷电路板的电子设备
US20230282569A1 (en) Power supply circuit module
TW202406421A (zh) 印刷電路板和包括印刷電路板的電子設備

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230322

R150 Certificate of patent or registration of utility model

Ref document number: 7250866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150