JP2021155330A - 半絶縁性ヒ化ガリウム結晶基板 - Google Patents

半絶縁性ヒ化ガリウム結晶基板 Download PDF

Info

Publication number
JP2021155330A
JP2021155330A JP2021098885A JP2021098885A JP2021155330A JP 2021155330 A JP2021155330 A JP 2021155330A JP 2021098885 A JP2021098885 A JP 2021098885A JP 2021098885 A JP2021098885 A JP 2021098885A JP 2021155330 A JP2021155330 A JP 2021155330A
Authority
JP
Japan
Prior art keywords
semi
insulating gaas
insulating
gaas crystal
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021098885A
Other languages
English (en)
Other versions
JP7095781B2 (ja
Inventor
真弥 河本
Masaya Kawamoto
真弥 河本
誠 木山
Makoto Kiyama
誠 木山
幸雄 石川
Yukio Ishikawa
幸雄 石川
克司 橋尾
Katsushi Hashio
克司 橋尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2021098885A priority Critical patent/JP7095781B2/ja
Publication of JP2021155330A publication Critical patent/JP2021155330A/ja
Application granted granted Critical
Publication of JP7095781B2 publication Critical patent/JP7095781B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】比抵抗が高くとも、主面のミクロ平坦性が高い半絶縁性ヒ化ガリウム結晶基板を提供する。【解決手段】半絶縁性ヒ化ガリウム結晶基板は、面方位が(100)の直径2Rmmの主面において、上記主面の中心から[010]方向に、0mm、0.5Rmm、および(R−17)mmの距離の点を中心とする3つの測定領域のそれぞれについて、比抵抗の平均値が5×107Ω・cm以上であり、比抵抗の標準偏差を比抵抗の平均値で除して得られる変動係数が0.50以下である。【選択図】図1

Description

本発明は、半絶縁性ヒ化ガリウム結晶基板に関する。
半絶縁性ヒ化ガリウム結晶基板などの半絶縁性化合物半導体基板では、半導体デバイスの性能向上に直結する構造の微細化および複雑化に資するため、主面のミクロ領域における平坦性(以下、ミクロ平坦性ともいう)を向上させることが求められている。基板の主面のミクロ平坦性は、研磨条件だけでなく基板の物性の影響を受ける。具体的には、基板主面のミクロ平坦性を向上させるには、基板の主面内の比抵抗のミクロ領域における分布(以下、ミクロ分布ともいう)が均一であることが重要である。
比抵抗の主面のミクロ領域における分布(ミクロ分布)が均一であり主面のミクロ平坦性が高い半絶縁性ヒ化ガリウム基板を得る観点から、T. Kawase et al., "Properties of 6-inch Semi-insulating GaAs Substrates Manufactured by Vertical Boat Method", GaAs ManTech1999, April, 1999, pp19-22(非特許文献1)は、比抵抗および基板の中心から100μmピッチで外周方向に80mm長のミクロ領域における変動係数(当該ミクロ領域における標準偏差を平均値で除したものをいう。)が0.073である半絶縁性ヒ化ガリウム基板を開示する。
T. Kawase et al., "Properties of 6-inch Semi-insulating GaAs Substrates Manufactured by Vertical Boat Method", GaAs ManTech1999, April, 1999, pp19-22
本開示の一態様にかかる半絶縁性ヒ化ガリウム結晶基板は、面方位が(100)の直径2Rmmの主面において、前記主面の中心から[010]方向に、0mm、0.5Rmm、および(R−17)mmの距離の点を中心とする3つの測定領域のそれぞれについて、比抵抗の平均値が5×107Ω・cm以上であり、比抵抗の標準偏差を比抵抗の平均値で除して得られる変動係数が0.50以下である。
図1は、本態様にかかる半絶縁性ヒ化ガリウム結晶基板の一例を示す概略平面図である。 図2は、本態様にかかる半絶縁性ヒ化ガリウム結晶基板の比抵抗を測定する方法の一例を示す概略断面図である。 図3は、本態様にかかる半絶縁性ヒ化ガリウム結晶基板の製造に用いられる装置の一例を示す概略図である。 図4は、本態様にかかる半絶縁性ヒ化ガリウム結晶基板の製造に用いられる装置の別の例を示す概略図である。 図5は、本態様にかかる半絶縁性ヒ化ガリウム結晶基板の製造に用いられる装置のさらに別の例を示す概略図である。
[本開示が解決しようとする課題]
しかしながら、T. Kawase et al., "Properties of 6-inch Semi-insulating GaAs Substrates Manufactured by Vertical Boat Method", GaAs ManTech1999, April, 1999, pp19-22(非特許文献1)に開示の半絶縁性ヒ化ガリウム基板の比抵抗は、その最大値は非特許文献1に記載されていないが、非特許文献1に記載されているグラフから読み取ると、5×107Ω・cm未満である。比抵抗が5×107Ω・cm以上に大きい半絶縁性ヒ化ガリウム結晶基板においては、比抵抗のミクロ分布のばらつきが基板の中心部と外周部とで大きくなり、比抵抗のミクロ分布を均一にすることが困難であり、主面のミクロ平坦性が低くなるという問題点がある。
本開示は、上記問題点を解決して、比抵抗が高くとも、主面のミクロ平坦性が高い半絶縁性ヒ化ガリウム結晶基板を提供することを目的とする。
[本開示の効果]
本開示によれば、比抵抗が高くとも、主面のミクロ平坦性が高い半絶縁性ヒ化ガリウム結晶基板を提供できる。
[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。
[1]本発明の一実施形態にかかる半絶縁性ヒ化ガリウム結晶基板は、面方位が(100)の直径2Rmmの主面において、上記主面の中心から[010]方向に、0mm、0.5Rmm、および(R−17)mmの距離の点を中心とする3つの測定領域のそれぞれについて、比抵抗の平均値が5×107Ω・cm以上であり、比抵抗の標準偏差を比抵抗の平均値で除して得られる変動係数が0.50以下である。本実施形態の半絶縁性ヒ化ガリウム結晶基板は、面方位が(100)である主面における比抵抗のミクロ分布が均一であり、主面のミクロ平坦性が高い。
[2]上記半絶縁性ヒ化ガリウム結晶基板において、上記主面の直径2Rmmを150mm以上とすることができる。かかる半絶縁性ヒ化ガリウム結晶基板は、面方位が(100)である主面の直径が150mm以上の大口径であっても、主面における比抵抗のミクロ分布が均一であり、主面のミクロ平坦性が高い。
[3]上記半絶縁性ヒ化ガリウム結晶基板において、比抵抗の上記変動係数を0.10以下とすることができる。かかる半絶縁性ヒ化ガリウム結晶基板は、面方位が(100)である主面における比抵抗のミクロ分布が極めて均一であり、主面のミクロ平坦性が極めて高い。
[本発明の実施形態の詳細]
以下、本発明の実施形態についてさらに詳細に説明するが、これらに限定されるものではない。以下においては、図面を参照しながら説明するが、本明細書および図面において同一または対応する要素に同一の符号を付すものとし、それらについて同じ説明は繰り返さない。また、本明細書および図面中の(hkl)は面方位を示し、[hkl]は方位を示す。ここで、h、kおよびlは同じまたは異なる整数でありミラー指数と呼ばれる。ミラー指数の前に表される「−」は、本来数字の頭上に表されるものであり、そのミラー指数の後に「バー」と読まれる。たとえば、[0−10]は、「ゼロ・イチ・バー・ゼロ」と読まれる。
本明細書において「A〜B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。さらに、本明細書において、化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。
≪半絶縁性ヒ化ガリウム結晶基板≫
図1を参照して、本実施形態にかかる半絶縁性GaAs結晶基板11(半絶縁性ヒ化ガリウム結晶基板)は、面方位が(100)の直径2Rmmの主面において、上記主面の中心から[010]方向に、0mm、0.5Rmm、および(R−17)mmを中心とする3つの測定領域のそれぞれについて、比抵抗の平均値が5×107Ω・cm以上であり、比抵抗の標準偏差を比抵抗の平均値で除して得られる変動係数が0.50以下である。本実施形態の半絶縁性GaAs結晶基板11は、面方位が(100)である主面における比抵抗のミクロ分布が均一であり、主面のミクロ平坦性が高い。
本実施形態の半絶縁性GaAs結晶基板11は、その比抵抗の平均が5×107Ω・cm以上であり、好ましくは7.5×107Ω・cm以上であり、より好ましくは1.0×108Ω・cm以上である。
<主面>
図1に示すように、本実施形態の半絶縁性GaAs結晶基板11は、主面の面方位が(100)である。すなわち、半絶縁性GaAs結晶基板11は、半絶縁性GaAs結晶体から、その(100)面を主面として切り出すことにより得られる。
半絶縁性GaAs結晶基板11の主面の直径2Rmmは、特に制限はないが、大きいほど好ましく、150mm以上が好ましい。かかる半絶縁性GaAs結晶基板は、面方位が(100)である主面の直径が150mm以上の大口径であっても、主面における比抵抗のミクロ分布が均一であり、主面のミクロ平坦性が高い。
<比抵抗の平均値および変動係数>
図1に示すように、本実施形態の半絶縁性GaAs結晶基板11は、主面の中心から[010]方向に、0mm、0.5Rmm、および(R−17)mmを中心とする3つの測定領域のそれぞれについて、比抵抗の平均値が5×107Ω・cm以上であり、比抵抗の標準偏差を比抵抗の平均値で除して得られる変動係数が0.50以下である。本実施形態の半絶縁性GaAs結晶基板11は、比抵抗の上記変動係数が0.50以下であることから、主面における比抵抗のミクロ分布が均一であり、主面のミクロ平坦性が高い。
主面の中心とは、図1に示すように、半絶縁性GaAs結晶基板11の主面を円であると仮定した場合に、その円の中心をさす。主面の中心から[010]方向は、主面の中心から[0−10]方向にノッチ部11nが形成されている基板においては、ノッチ部11nから主面の中心を見る方向に相当する。
主面の直径が2Rmmの半絶縁性GaAs結晶基板において、比抵抗のミクロ分布を測定するための3つの測定領域は、図1に示すように、主面の中心から[010]方向にr0=0mm(すなわち主面の中心点)を中心とする中心部測定領域F0、主面の中心から[010]方向にr1=0.5Rmm(すなわち主面の中心と主面の外周との中間点)を中心とする中間部測定領域F1、および主面の中心から[010]方向にr2=(R−17)mm(すなわち主面の外周から内側に17mmの距離にある点)を中心とする外周部測定領域F2である。
比抵抗の測定は、中心部測定領域F0、中間部測定領域F1および外周部測定領域F2のそれぞれの領域において、それぞれの領域の中心から[010]方向に−5mmから+5mmの距離の範囲に亘って100μm(0.1mm)ピッチの101点で行う。上記101点における比抵抗の測定値から比抵抗の平均値および比抵抗の標準偏差を算出する。得られた比抵抗の標準偏差を得られた比抵抗の平均値で除することにより比抵抗の変動係数を算出する。
比抵抗の測定は、図2に示すような3端子ガード法により行う。すなわち、半絶縁性GaAs結晶基板11の比抵抗を測定する主面(以下、表側主面ともいう)上に直径70μmの円が上記の3つの測定領域のそれぞれの中心から[010]方向に−5mmから+5mmの距離の範囲に亘って100μm(0.1mm)ピッチで101個配置するパターンをフォトリソグラフィにより作製する。その後、半絶縁性GaAs結晶基板11の表側主面およびその反対側の主面(以下、裏側主面ともいう)に、厚さ300nmのAu層、厚さ40nmのNi層および厚さ80nmのAuGe層を順次蒸着して、リフトオフした後、475℃で6分間熱処理して合金化することにより測定用電極E1,E2を形成する。測定用電極E1,E2について図2に示すように配線して、電圧印加範囲0V〜10V、電圧印加ステップ1Vの条件で、裏側主面から電圧を印加し、パターン化された測定用電極E1内の電流を測定する。かかる測定を[010]方向に10mmの長さに亘って100μmピッチでパターン化された測定用電極E1毎に行う。比抵抗の測定値は、電流−電圧曲線の傾きから算出した抵抗値を半絶縁性GaAs結晶基板11の試料厚さdで除した後、パターン化された測定用電極E1の面積Sを乗じることにより導出する。
比抵抗の平均値は、デバイス作製時のリーク電流を低減する観点から、5×107Ω・cm以上が好ましい。また、比抵抗の平均値は、半絶縁性発現の機構から、1×109Ω・cm以下である場合が多い。
本実施形態の半絶縁性GaAs結晶基板11において、上記3つの測定領域(中心部測定領域F0、中間部測定領域F1および外周部測定領域F2)のそれぞれについて、比抵抗の変動係数は0.10以下が好ましい。かかる半絶縁性GaAs結晶基板は、比抵抗の変動係数が0.10以下であることから、主面における比抵抗のミクロ分布が極めて均一であり、主面のミクロ平坦性が極めて高い。
<転位密度>
本実施形態の半絶縁性GaAs結晶基板11において、主面における比抵抗のミクロ分布を均一にする観点から、上記3つの測定領域(中心部測定領域F0、中間部測定領域F1および外周部測定領域F2)のそれぞれについて、転位密度は、9.5×103cm-2以下が好ましく、5.5×103cm-2以下がより好ましい。
転位密度の測定は、半絶縁性GaAs結晶基板11を450℃の溶融KOH(水酸化カリウム)中で20分間エッチングしたときに形成されるエッチピットの密度の測定により行う。上記3つの測定領域(中心部測定領域F0、中間部測定領域F1および外周部測定領域F2)のそれぞれの中心を顕微鏡により拡大し、それらの1mm角視野内のエッチピットの数を計測することによりエッチピット密度を算出する。
≪半絶縁性ヒ化ガリウム結晶基板の製造方法≫
半絶縁性GaAs結晶基板の比抵抗のミクロ分布を均一化するためには、比抵抗のミクロ分布に影響を与える転位密度の分布を均一化することが重要である。半絶縁性GaAs結晶基板は、通常、[100]方向に結晶成長させた大口径の半絶縁性GaAs結晶体を(100)面およびそれに平行な面で切り出すことにより製造する。[100]方向に結晶成長させた大口径の半絶縁性GaAs結晶体においては、面方位が(100)の断面における転位密度は、その断面の中心および外周において高くなり、中心と外周との中間において低くなるという不均一な分布を有する。したがって、このような転位密度の不均一な分布を均一化する必要がある(方策I)。また、GaAs結晶の結晶学的性質から、半絶縁性GaAs結晶体の転位密度は<100>方向([010]方向ならびにこの方向に結晶学的に等価な[00−1]方向、[0−10]方向および[001]方向の4方向の総称)で高くなりやすい。そのため、<100>方向における転位密度を低くする必要がある(方策II)。さらに、上記転位密度の不均一な分布を均一化する(方策I)とともに、<100>方向における転位密度を低くする(方策II)ことが好ましい(方策III)。
<方策I>
図3に、半絶縁性GaAs結晶体の製造に用いられる装置の第1例を示す。図3(A)は装置の概略上面図であり、図3(B)は装置の概略側断面図である。上記の転位密度の不均一な分布は、半絶縁性GaAs結晶体10の結晶成長の際に、半絶縁性GaAs結晶体10とGaAs原料融液4との固液界面からの下方の放熱が減少することに由来するものと考えられる。すなわち、固液界面からの下方への放熱は、固液界面が上昇することにより、GaAs原料融液4からステージ(坩堝を支持するために坩堝下方に位置する台をいう、図示せず)への直接的な放熱から、GaAs原料融液4から半絶縁性GaAs結晶体10を介在したステージへの間接的な放熱に変化するため、減少する。しかし、従来の半絶縁性GaAs結晶体の製造方法においては、図3に示すような断熱材3が配置されていないため、結晶成長用坩堝2の側面側に配置されたヒータ(図示せず。)からの加熱は、固液界面が上昇しても変化しない。このため、従来の半絶縁性GaAs結晶体の製造方法においては、固液界面の上昇に伴って下方への放熱が小さくなるため、側面からの入熱が一定のままでは、固液界面の液相側からの入熱と、固相側からの放熱の熱収支が変わってしまい、固液界面相対位置や形状の変化による熱応力が発生して転位密度の分布を不均一にする。第1例は、方策Iとして、上記の熱収支の変化を抑制することにより転位密度の分布を均一化するために、結晶成長用坩堝2とヒータとの間に、具体的には結晶成長用坩堝2の側面外周の周りに、テーパ付の断熱材3を配置する。
第1例における断熱材3は、筒状形状を有し、GaAs種結晶SC側(以下、シード側ともいう。)に対応する部分に比べて半絶縁性GaAs結晶体の結晶成長面側(以下、テール側ともいう。)に対応する部分の断熱性が高くなるようにテーパが設けられている。断熱材3の材質は、特に制限はなく、たとえば、カーボン、窒化ホウ素(BN)、窒化ケイ素(Si34)、ムライト(3Al23・2SiO2〜2Al23・SiO2)およびアルミナ(Al23)などが挙げられる。これにより、半絶縁性GaAs結晶体10の結晶成長の際、固液界面が上昇するにつれて、結晶成長用坩堝2の側面側からの入熱が減少することにより熱収支の変化が抑制されるため、熱応力の発生が抑制されて、転位密度の分布が均一になる。
<方策II>
図4に、半絶縁性GaAs結晶体の製造に用いられる装置の第2例を示す。図4(A)は装置の概略上面図であり、図4(B)は装置の概略側断面図である。半絶縁性GaAs結晶体10中の転位は熱応力により発生するものと考えられることから、半絶縁性GaAs結晶体10の<100>方向における転位密度を低くするために、半絶縁性GaAs結晶体10の<100>方向の温度差を小さくする必要がある。このため、第2例は、方策IIとして、結晶成長用坩堝2とヒータとの間に、具体的には結晶成長用坩堝2の側面外周の周りに、半絶縁性GaAs結晶体10の<100>方向([010]方向を含む結晶学的に等価な4方向、具体的には、[010]方向、[00−1]方向、[0−10]方向および[001]方向を意味する。以下同じ。)に断熱性が高い部分を有する断熱材3を配置する。
第2例における断熱材3は、第1材料3aと、第1材料3aよりも断熱性の高い(すなわち、熱伝導率の低い)材質からなる第2材料3bと、を周方向に45°ずつ交互に並べることより形成されている円筒形状を有する。断熱材3は、結晶成長用坩堝2において[100]方向に結晶成長する半絶縁性GaAs結晶体10の<110>方向([01−1]方向を含む結晶学的に等価な4方向、具体的には、[01−1]方向、[0−1−1]方向、[0−11]方向および[011]方向を意味する。以下同じ。)に第1材料3aが位置し、<100>方向に第2材料3bが位置するように配置される。断熱材3の第1材料3aおよび第2材料3bは、第2材料3bが第1材料3aに比べて断熱性の高い(熱伝導率の低い)材質で形成されていれば特に制限はなく、たとえば、第1材料3aの材質としてカーボンを挙げられ、第2材料3bの材質として窒化ホウ素(BN)、窒化ケイ素(Si34)、ムライト(3Al23・2SiO2〜2Al23・SiO2)およびアルミナ(Al23)などが挙げられる。これにより、半絶縁性GaAs結晶体10の結晶成長の際、半絶縁性GaAs結晶体10の<110>方向の温度分布が均一化されるため、熱応力の発生が抑制されて、転位密度の分布が均一になる。
<方策III>
図5に、半絶縁性GaAs結晶体の製造に用いられる装置の第3例を示す。図5(A)は装置の概略上面図であり、図5(B)は装置の概略側断面図である。第3例は、上記方策Iおよび方策IIを組み合わせた方策IIIとして、結晶成長用坩堝2とヒータとの間に、具体的には結晶成長用坩堝2の側面外周の周りに、半絶縁性GaAs結晶体10の<100>方向に断熱性が高い部分を有するテーパ付の断熱材3を配置する。
第3例における断熱材3は、上記方策Iのため、筒状形状を有し、GaAs種結晶SC側(以下、シード側ともいう。)に対応する部分に比べて半絶縁性GaAs結晶体の結晶成長面側(以下、テール側ともいう。)に対応する部分の断熱性が高くなるようにテーパが設けられているとともに、上記方策IIのため、第1材料3aと、第1材料3aよりも断熱性の高い(すなわち、熱伝導率の低い)材質からなる第2材料3bと、を周方向に45°ずつ交互に並べることより形成されており、結晶成長用坩堝2において[100]方向に結晶成長する半絶縁性GaAs結晶体10の<110>方向に第1材料3aが位置し、<100>方向に第2材料3bが位置するように配置される。断熱材3の第1材料3aおよび第2材料3bは、第2材料3bが第1材料3aに比べて断熱性の高い(熱伝導率の低い)材質で形成されていれば特に制限はなく、たとえば、第1材料3aの材質としてカーボンを挙げられ、第2材料3bの材質として窒化ホウ素(BN)、窒化ケイ素(Si34)、ムライト(3Al23・2SiO2〜2Al23・SiO2)およびアルミナ(Al23)などが挙げられる。
第3例においては、上記方策Iに対応する構成により、半絶縁性GaAs結晶体10の結晶成長の際、固液界面が上昇するにつれて、結晶成長用坩堝2の側面側からの吸熱が減少することにより熱収支の変化が抑制されるため、熱応力の発生が抑制されるとともに、上記方策IIに対応する構成により、半絶縁性GaAs結晶体10の結晶成長の際、半絶縁性GaAs結晶体10の<110>方向の温度分布が均一化されるため、熱応力の発生が抑制される。このため、転位密度の分布がさらに均一になる。
上記第1例〜第3例の製造方法により得られた半絶縁性GaAs結晶体10から、その(100)面を主面として切り出すことにより、上述の半絶縁性GaAs結晶基板11を製造することができる。
≪実施例I≫
<半絶縁性GaAs結晶基板の製造>
実施例Iにおいては、図3に示す装置を用いて、直径150mmの大口径のカーボンをドープした半絶縁性GaAs結晶体10を垂直ボート法により成長させた。断熱材3は、筒状形状を有し、GaAs種結晶SC側(以下、シード側ともいう。)に対応する部分に比べて半絶縁性GaAs結晶体の結晶成長面側(以下、テール側ともいう。)に対応する部分の断熱性が高くなるように、具体的にはシード側に比べてテール側の断熱材3の厚さが大きくなるように、テーパを設けた。断熱材3の材質は窒化ケイ素(Si34)とした。半絶縁性GaAs結晶体10の成長条件は常法とした。これにより実施例Iの半絶縁性GaAs結晶体を製造した。
上記のように製造された半絶縁性GaAs結晶体から(100)面を主面として切り出すことにより、厚さ600μmの複数の半絶縁性GaAs結晶基板を製造した。製造された複数の半絶縁性GaAs結晶基板のうち、半絶縁性GaAs結晶体10の最もGaAs種結晶SC側(以下、最シード側ともいう。)に対応する部分から得られた半絶縁性GaAs結晶基板を実施例I−1の半絶縁性GaAs結晶基板とし、半絶縁性GaAs結晶体10の最も結晶成長面側(以下、最テール側ともいう。)に対応する部分から得られた半絶縁性GaAs結晶基板を実施例I−2の半絶縁性GaAs結晶基板とした。
<比抵抗の平均値および変動係数ならびに転位密度の評価>
上記のように製造された実施例I−1(最シード側)および実施例I−2(最テール側)の半絶縁性GaAs結晶基板の主面の上記3つの測定領域(中心部測定領域F0、中間部測定領域F1および外周部測定領域F2)のそれぞれにおける比抵抗のミクロ分布の指標となる平均値および変動係数ならびに転位密度を上述の方法により測定し、上記3つの測定領域のそれぞれにおける比抵抗の平均値および変動係数ならびに転位密度の評価を行った。結果を表1にまとめた。
<表面平坦度の評価>
上記のようにして製造された実施例I−1(最シード側)および実施例I−2(最テール側)の半絶縁性GaAs結晶基板の主面の上記3つの測定領域(中心部測定領域F0、中間部測定領域F1および外周部測定領域F2)のそれぞれにおける表面平坦度を測定して評価した。その測定方法は、以下のとおりとした。すなわち、実施例I−1および実施例I−2の半絶縁性GaAs結晶基板の主面をミラー加工した。上記中心部測定領域F0、中間部測定領域F1および外周部測定領域F2のそれぞれの中心を中心とする20mm角の範囲について、各20mm角領域における平坦度測定器(コーニング・トロペル社ウルトラソート6220)を用いて、LTV(Local Thickness Variation)測定を行なった。結果を表1にまとめた。
≪実施例II≫
<半絶縁性GaAs結晶基板の製造>
実施例IIにおいては、図4に示す装置を用いて、直径150mmの大口径のカーボンをドープした半絶縁性GaAs結晶体10を垂直ブリッジマン法により成長させた。断熱材3は、第1材料3aと、第1材料3aよりも断熱性の高い(すなわち、熱伝導率の低い)材質からなる第2材料3bと、を周方向に45°ずつ交互に並べることより形成されている円筒形状を有し、第1材料3aの材質をカーボンとし、第2材料3bの材質を窒化ケイ素(Si34)とした。また、断熱材3は、結晶成長用坩堝2において[100]方向に結晶成長する半絶縁性GaAs結晶体10の<110>方向に第1材料3aの中心軸が位置し、<100>方向に第2材料3bの中心軸が位置するように配置した。これにより実施例IIの半絶縁性GaAs結晶体を製造した。
上記のように製造された実施例IIの半絶縁性GaAs結晶体から実施例Iと同様に切り出すことにより、厚さ600μmの複数の半絶縁性GaAs結晶基板を製造した。製造された複数の半絶縁性GaAs結晶基板のうち、半絶縁性GaAs結晶体10の最シード側に対応する部分から得られた半絶縁性GaAs結晶基板を実施例II−1の半絶縁性GaAs結晶基板とし、半絶縁性GaAs結晶体10の最テール側に対応する部分から得られた半絶縁性GaAs結晶基板を実施例II−2の半絶縁性GaAs結晶基板とした。
<比抵抗の平均値および変動係数、転位密度、ならびに表面平坦度の評価>
上記のように製造された実施例II−1(最シード側)および実施例II−2(最テール側)の半絶縁性GaAs結晶基板の主面の上記3つの測定領域(中心部測定領域F0、中間部測定領域F1および外周部測定領域F2)のそれぞれにおける比抵抗の平均値および変動係数、転位密度、ならびに表面平坦度を実施例Iと同様にして評価した。結果を表1にまとめた。
≪実施例III≫
<半絶縁性GaAs結晶基板の製造>
実施例IIIにおいては、図5に示す装置を用いて、直径150mmの大口径のカーボンをドープした半絶縁性GaAs結晶体10を垂直ブリッジマン法により成長させた。断熱材3は、筒状形状を有し、GaAs種結晶SC側(以下、シード側ともいう。)に対応する部分に比べて半絶縁性GaAs結晶体の結晶成長面側(以下、テール側ともいう。)に対応する部分の断熱性が高くなるように、具体的にはシード側に比べてテール側の断熱材3の厚さが大きくなるように、テーパを設けた。また、断熱材3は、第1材料3aと、第1材料3aよりも断熱性の高い(すなわち、熱伝導率の低い)材質からなる第2材料3bと、を周方向に45°ずつ交互に並べることより形成されており、第1材料3aの材質をカーボンとし、第2材料3bの材質を窒化ケイ素(Si34)とした。また、断熱材3は、結晶成長用坩堝2において[100]方向に結晶成長する半絶縁性GaAs結晶体10の<110>方向に第1材料3aの中心軸が位置し、<100>方向に第2材料3bの中心軸が位置するように配置した。これにより実施例IIIの半絶縁性GaAs結晶体を製造した。
上記のように製造された実施例IIIの半絶縁性GaAs結晶体から実施例Iと同様に切り出すことにより、厚さ600μmの複数の半絶縁性GaAs結晶基板を製造した。製造された複数の半絶縁性GaAs結晶基板のうち、半絶縁性GaAs結晶体10の最シード側に対応する部分から得られた半絶縁性GaAs結晶基板を実施例III−1の半絶縁性GaAs結晶基板とし、半絶縁性GaAs結晶体10の最テール側に対応する部分から得られた半絶縁性GaAs結晶基板を実施例III−2の半絶縁性GaAs結晶基板とした。
<比抵抗の平均値および変動係数、転位密度、ならびに表面平坦度の評価>
上記のように製造された実施例III−1(最シード側)および実施例III−2(最テール側)の半絶縁性GaAs結晶基板の主面の上記3つの測定領域(中心部測定領域F0、中間部測定領域F1および外周部測定領域F2)のそれぞれにおける比抵抗の平均値および変動係数、転位密度、ならびに表面平坦度を実施例Iと同様にして評価した。結果を表1にまとめた。
≪比較例I≫
断熱材を用いなかったこと以外は、実施例Iと同様にして比較例Iの半絶縁性GaAs結晶体を製造した。製造された比較例Iの半絶縁性GaAs結晶体から実施例Iと同様に切り出すことにより、厚さ600μmの複数の半絶縁性GaAs結晶基板を製造した。製造された複数の半絶縁性GaAs結晶基板のうち、半絶縁性GaAs結晶体10の最シード側に対応する部分から得られた半絶縁性GaAs結晶基板を比較例I−1の半絶縁性GaAs結晶基板とし、半絶縁性GaAs結晶体10の最テール側に対応する部分から得られた半絶縁性GaAs結晶基板を比較例I−2の半絶縁性GaAs結晶基板とした。製造された比較例I−1(最シード側)および比較例I−2(最テール側)の半絶縁性GaAs結晶基板の主面の上記3つの測定領域(中心部測定領域F0、中間部測定領域F1および外周部測定領域F2)のそれぞれにおける比抵抗の平均値および変動係数、転位密度、ならびに表面平坦度を実施例Iと同様にして評価した。結果を表1にまとめた。
Figure 2021155330
表1を参照して、比較例I−1および比較例I−2の半絶縁性GaAs結晶基板においては、主面の中心部測定領域、中間部測定領域および外周部測定領域のいずれにおいても比抵抗の平均値は5.0×107Ω・cm以上であったが、主面の中心部測定領域および外周部測定領域において、比抵抗の変動係数が0.50を超えており、転位密度が1.0×104cm-2以上であり、表面平坦度も1.0μm以上と大きかった。
上記の比較例I−1および比較例I−2の半絶縁性GaAs結晶基板に対して、上記方策Iを行って製造した実施例I−1および実施例I−2の半絶縁性GaAs結晶基板においては、主面の中心部測定領域、中間部測定領域および外周部測定領域のいずれにおいても、比抵抗の平均値は5.0×107Ω・cm以上であり、比抵抗の変動係数が0.50以下である0.39以下であり、転位密度が9.5×103cm-2以下である8.6×103cm-2以下であり、表面平坦度も0.8μm以下と小さかった。すなわち、上記方策Iを行った実施例I−1および実施例I−2においては、主面における比抵抗のミクロ分布が均一であり、主面のミクロ平坦性が高い半絶縁性GaAs結晶基板が得られた。
ここで、実施例I−1の半絶縁性GaAs結晶基板は実施例Iの半絶縁性GaAs結晶体の最シード側から切り出されたものであるため、実施例I−1の半絶縁性GaAs結晶基板の主面は、実施例Iの半絶縁性GaAs結晶体の最シード側の断面に相当した。また、実施例I−2の半絶縁性GaAs結晶基板は実施例Iの半絶縁性GaAs結晶体の最テール側から切り出されたものであるため、実施例I−2の半絶縁性GaAs結晶基板の主面は、実施例Iの半絶縁性GaAs結晶体の最テール側の断面に相当した。したがって、実施例I−1および実施例I−2の主面についての結果は、実施例Iの半絶縁性GaAs結晶体の最シード側および最テール側の断面についての結果に相当した。すなわち、上記方策Iを行った実施例Iにおいては、断面における比抵抗のミクロ分布が均一であり、断面のミクロ平坦性が高い半絶縁性GaAs結晶体が得られた。
上記の比較例I−1および比較例I−2の半絶縁性GaAs結晶基板に対して、上記方策IIを行って製造した実施例II−1および実施例II−2の半絶縁性GaAs結晶基板においては、主面の中心部測定領域、中間部測定領域および外周部測定領域のいずれにおいても、比抵抗の平均値は5.0×107Ω・cm以上であり、比抵抗の変動係数が0.50以下である0.42以下であり、転位密度が9.5×103cm-2以下である9.0×103cm-2以下であり、表面平坦度も0.8μm以下と小さかった。すなわち、上記方策IIを行った実施例II−1および実施例II−2においては、主面における比抵抗のミクロ分布が均一であり、主面のミクロ平坦性が高い半絶縁性GaAs結晶基板が得られた。
ここで、実施例II−1の半絶縁性GaAs結晶基板は実施例IIの半絶縁性GaAs結晶体の最シード側から切り出されたものであるため、実施例II−1の半絶縁性GaAs結晶基板の主面は、実施例IIの半絶縁性GaAs結晶体の最シード側の断面に相当した。また、実施例II−2の半絶縁性GaAs結晶基板は実施例IIの半絶縁性GaAs結晶体の最テール側から切り出されたものであるため、実施例II−2の半絶縁性GaAs結晶基板の主面は、実施例IIの半絶縁性GaAs結晶体の最テール側の断面に相当した。したがって、実施例II−1および実施例II−2の主面についての結果は、実施例IIの半絶縁性GaAs結晶体の最シード側および最テール側の断面についての結果に相当した。すなわち、上記方策IIを行った実施例IIにおいては、断面における比抵抗のミクロ分布が均一であり、断面のミクロ平坦性が高い半絶縁性GaAs結晶体が得られた。
上記の比較例I−1および比較例I−2の半絶縁性GaAs結晶基板に対して、上記方策IIIを行って製造した実施例III−1および実施例III−2の半絶縁性GaAs結晶基板においては、主面の中心部測定領域、中間部測定領域および外周部測定領域のいずれにおいても、比抵抗の平均値は5.0×107Ω・cm以上であり、比抵抗の変動係数が0.10以下であり、転位密度が5.5×103cm-2以下であり、表面平坦度も0.5μm以下と極めて小さかった。すなわち、上記方策IIIを行った実施例III−1および実施例III−2においては、主面における比抵抗のミクロ分布が極めて均一であり、主面のミクロ平坦性が極めて高い半絶縁性GaAs結晶基板が得られた。
ここで、実施例III−1の半絶縁性GaAs結晶基板は実施例IIIの半絶縁性GaAs結晶体の最シード側から切り出されたものであるため、実施例III−1の半絶縁性GaAs結晶基板の主面は、実施例IIIの半絶縁性GaAs結晶体の最シード側の断面に相当した。また、実施例III−2の半絶縁性GaAs結晶基板は実施例IIIの半絶縁性GaAs結晶体の最テール側から切り出されたものであるため、実施例III−2の半絶縁性GaAs結晶基板の主面は、実施例IIIの半絶縁性GaAs結晶体の最テール側の断面に相当した。したがって、実施例III−1および実施例III−2の主面についての結果は、実施例IIIの半絶縁性GaAs結晶体の最シード側および最テール側の断面についての結果に相当した。すなわち、上記方策IIIを行った実施例IIIにおいては、断面における比抵抗のミクロ分布が極めて均一であり、断面のミクロ平坦性が極めて高い半絶縁性GaAs結晶体が得られた。
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
2 結晶成長用坩堝、3 断熱材、3a 第1材料、3b 第2材料、4 GaAs原料融液、10 半絶縁性GaAs結晶体、11 半絶縁性GaAs結晶基板、11n ノッチ部、E1,E2 測定用電極、F0 中心部測定領域、F1 中間部測定領域、F2 外周部測定領域、SC GaAs種結晶。

Claims (3)

  1. 面方位が(100)の直径2Rmmの主面において、
    前記主面の中心から[010]方向に、0mm、0.5Rmm、および(R−17)mmの距離の点を中心とする3つの測定領域のそれぞれについて、
    前記測定領域の中心から[010]方向に−5mmから+5mmの距離の範囲に亘って100μmピッチの101点で比抵抗の測定を行い、前記101点における前記比抵抗の測定値から算出される前記比抵抗の平均値が5×107Ω・cm以上であり、
    450℃の溶融水酸化カリウム中で20分間エッチングしたときに形成されるエッチピットの各前記測定領域の中心の1mm角内の密度として算出される転位密度が9.5×103cm-2以下である、半絶縁性ヒ化ガリウム結晶基板。
  2. 前記主面の直径2Rmmが150mm以上である、請求項1に記載の半絶縁性ヒ化ガリウム結晶基板。
  3. 前記転位密度が5.5×103cm-2以下である、請求項1または請求項2に記載の半絶縁性ヒ化ガリウム結晶基板。
JP2021098885A 2019-04-02 2021-06-14 半絶縁性ヒ化ガリウム結晶基板 Active JP7095781B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021098885A JP7095781B2 (ja) 2019-04-02 2021-06-14 半絶縁性ヒ化ガリウム結晶基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019070541A JP6900967B2 (ja) 2017-09-21 2019-04-02 半絶縁性ヒ化ガリウム結晶基板
JP2021098885A JP7095781B2 (ja) 2019-04-02 2021-06-14 半絶縁性ヒ化ガリウム結晶基板

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019070541A Division JP6900967B2 (ja) 2017-09-21 2019-04-02 半絶縁性ヒ化ガリウム結晶基板

Publications (2)

Publication Number Publication Date
JP2021155330A true JP2021155330A (ja) 2021-10-07
JP7095781B2 JP7095781B2 (ja) 2022-07-05

Family

ID=67545668

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019070541A Active JP6900967B2 (ja) 2017-09-21 2019-04-02 半絶縁性ヒ化ガリウム結晶基板
JP2021098885A Active JP7095781B2 (ja) 2019-04-02 2021-06-14 半絶縁性ヒ化ガリウム結晶基板

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019070541A Active JP6900967B2 (ja) 2017-09-21 2019-04-02 半絶縁性ヒ化ガリウム結晶基板

Country Status (1)

Country Link
JP (2) JP6900967B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100410A (en) * 1980-01-14 1981-08-12 Sumitomo Electric Ind Ltd Gallium arsenide crystal of low defect density and semi-insulation
JPH04215439A (ja) * 1990-12-14 1992-08-06 Nikko Kyodo Co Ltd GaAs単結晶基板の製造方法
JPH08188499A (ja) * 1995-01-10 1996-07-23 Japan Energy Corp GaAs単結晶の製造方法
JPH09194300A (ja) * 1995-11-14 1997-07-29 Japan Energy Corp GaAs基板の製造方法
JP2000103699A (ja) * 1998-09-28 2000-04-11 Sumitomo Electric Ind Ltd GaAs単結晶基板およびそれを用いたエピタキシャルウェハ
JP2002540051A (ja) * 1999-03-19 2002-11-26 フライベルガー・コンパウンド・マテリアルズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 単結晶を製造するための装置
JP2004026584A (ja) * 2002-06-26 2004-01-29 Sumitomo Electric Ind Ltd GaAs単結晶製造方法及びGaAs単結晶

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100410A (en) * 1980-01-14 1981-08-12 Sumitomo Electric Ind Ltd Gallium arsenide crystal of low defect density and semi-insulation
JPH04215439A (ja) * 1990-12-14 1992-08-06 Nikko Kyodo Co Ltd GaAs単結晶基板の製造方法
JPH08188499A (ja) * 1995-01-10 1996-07-23 Japan Energy Corp GaAs単結晶の製造方法
JPH09194300A (ja) * 1995-11-14 1997-07-29 Japan Energy Corp GaAs基板の製造方法
JP2000103699A (ja) * 1998-09-28 2000-04-11 Sumitomo Electric Ind Ltd GaAs単結晶基板およびそれを用いたエピタキシャルウェハ
JP2002540051A (ja) * 1999-03-19 2002-11-26 フライベルガー・コンパウンド・マテリアルズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 単結晶を製造するための装置
JP2004026584A (ja) * 2002-06-26 2004-01-29 Sumitomo Electric Ind Ltd GaAs単結晶製造方法及びGaAs単結晶

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAAS MANTECH, vol. 1999, JPN6021006989, pages 19 - 22, ISSN: 0004779799 *

Also Published As

Publication number Publication date
JP7095781B2 (ja) 2022-07-05
JP6900967B2 (ja) 2021-07-14
JP2019131461A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
KR101823216B1 (ko) 탄화규소 단결정 웨이퍼 및 탄화규소 단결정 잉곳의 제조 방법
TWI630292B (zh) SiC磊晶晶圓及其製造方法、以及缺陷識別方法
JPWO2009035095A1 (ja) エピタキシャルSiC単結晶基板及びエピタキシャルSiC単結晶基板の製造方法
KR20110071092A (ko) 탄화규소 단결정 및 탄화규소 단결정 웨이퍼
JP2006290635A (ja) 炭化珪素単結晶の製造方法及び炭化珪素単結晶インゴット
JP2016164120A (ja) 炭化珪素単結晶ウェハ
JP6508431B1 (ja) 半絶縁性ヒ化ガリウム結晶基板
JP6900967B2 (ja) 半絶縁性ヒ化ガリウム結晶基板
JP4654030B2 (ja) SiCウェハおよびその製造方法
JP7148427B2 (ja) SiCエピタキシャルウェハ及びその製造方法
JPH1017399A (ja) 6H−SiC単結晶の成長方法
JP6512369B1 (ja) 半絶縁性化合物半導体基板および半絶縁性化合物半導体単結晶
JP4937967B2 (ja) 炭化珪素エピタキシャルウェハの製造方法
Mikulla et al. Manga: Manufacturable GaN SiC substrates and GaN epi wafer supply chain
JP7179219B1 (ja) SiCデバイス及びその製造方法
WO2023282000A1 (ja) 炭化珪素単結晶および炭化珪素基板
JP6500828B2 (ja) SiC単結晶の製造方法
JP2010278211A (ja) 炭化シリコン膜の製造方法
JP2022151601A (ja) 炭化ケイ素エピタキシャル基板およびその製造方法
JP2019043818A (ja) SiC単結晶の製造方法
JP2018095542A (ja) n型SiC単結晶の製造方法
JP2018048044A (ja) SiC単結晶の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7095781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150