JP2021149996A - 半導体記憶装置、及び半導体記憶装置の制御方法 - Google Patents

半導体記憶装置、及び半導体記憶装置の制御方法 Download PDF

Info

Publication number
JP2021149996A
JP2021149996A JP2020051578A JP2020051578A JP2021149996A JP 2021149996 A JP2021149996 A JP 2021149996A JP 2020051578 A JP2020051578 A JP 2020051578A JP 2020051578 A JP2020051578 A JP 2020051578A JP 2021149996 A JP2021149996 A JP 2021149996A
Authority
JP
Japan
Prior art keywords
voltage
transistor
terminal
oxide film
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020051578A
Other languages
English (en)
Inventor
元樹 田村
Motoki Tamura
元樹 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Devices and Storage Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Devices and Storage Corp filed Critical Toshiba Corp
Priority to JP2020051578A priority Critical patent/JP2021149996A/ja
Priority to US17/012,118 priority patent/US11386971B2/en
Publication of JP2021149996A publication Critical patent/JP2021149996A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/18Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links

Abstract

【課題】アンチヒューズ素子に接続されるトランジスタの耐圧をより低下させることが可能な半導体記憶装置を提供することである。【解決手段】本実施形態に係る半導体記憶装置は、アンチヒューズ素子と、第1素子とを備える。アンチヒューズ素子は、書き込み電圧を印加可能な第1端子に一端が接続され、ゲート酸化膜を有する。第1素子は、アンチヒューズ素子の他端に接続される。ゲート酸化膜を破壊する書き込み電圧が第1端子に印加され、且つゲート酸化膜を破壊しない場合に、第1素子は、一端と他端との間の電位差がゲート酸化膜を破壊する電位未満となる第2電位を他端に供給する。【選択図】図2

Description

本発明の実施形態は、半導体記憶装置、及び半導体記憶装置の制御方法
に関する。
アンチヒューズ素子は、基本的にコンデンサと同等の構成である。このアンチヒューズ素子は書き込まれない状態では両端子間がオープンであり、書き込まれるとコンデンサの誘電体層が短絡され両端子間が短絡状態になる。このアンチヒューズ素子を利用することでより半導体記憶装置をより小型化できる。ところが、キャパシタ構造のアンチヒューズ素子によるカップリング作用により、アンチヒューズ素子に接続されるトランジスタに高い電圧がかかってしまい、高耐圧のトランジスタが必要となってしまう。
特開2015−149694号公報 特許6505624号公報
本発明が解決しようとする課題は、アンチヒューズ素子に接続されるトランジスタの耐圧をより低下させることが可能な半導体記憶装置を提供することである。
本実施形態に係る半導体記憶装置は、アンチヒューズ素子と、第1素子とを備える。アンチヒューズ素子は、書き込み電圧を印加可能な第1端子に一端が接続され、ゲート酸化膜を有する。第1素子は、アンチヒューズ素子の他端に接続される。ゲート酸化膜を破壊する書き込み電圧が第1端子に印加され、且つゲート酸化膜を破壊しない場合に、第1素子は、一端と他端との間の電位差がゲート酸化膜を破壊する電位未満となる第2電位を他端に供給する。
半導体記憶装置のブロック図。 アンチヒューズメモリ回路の構成例を示す図。 アンチヒューズメモリ回路に印可される電圧と各モードとの関係を示す表。 第1電圧生成回路の詳細な構成例を示す回路図。 レベルシフタ回路の構成例を示す図。 レベルシフタ回路の動作例を説明する図。 第1電圧生成回路の真理値表。 第2電圧生成回路の構成例を示す図。 第2電圧生成回路の真理値表。 電源回路の詳細な構成例を示す図。 第2実施形態に係るアンチヒューズメモリ回路の構成例を示す図。 2実施形態に係るアンチヒューズメモリ回路に印可される電圧と各モードとの関係を示す表。 レベルシフタ回路の真理値表。 レベルシフタ回路の構成例を示す図。 第2実施形態に係る電源回路の構成例を示す図。 PMOSトランジスタで構成されるレベルダウン回路の真理値表。 PMOSトランジスタで構成されるレベルダウン回路の構成例と動作例を示す図。 NMOSトランジスタで構成されるレベルダウン回路の真理値表。 NMOSトランジスタで構成されるレベルダウン回路の構成例と動作例を示す図。
以下、本発明の実施形態に係る半導体記憶装置、及び半導体記憶装置の制御方法について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は、本発明の実施形態の一例であって、本発明はこれらの実施形態に限定して解釈されるものではない。また、本実施形態で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号又は類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。
(第1実施形態)
図1は、半導体記憶装置1のブロック図である。図1に示すように、半導体記憶装置1は、アンチヒューズ素子の書き込みが可能な装置であり、アンチヒューズメモリ回路10と、第1電圧生成回路20と、第2電圧生成回路30と、電源回路40と、を備える。半導体記憶装置1は、シリコン基板(P−substrate)上にDeep N−well、そのDeep N−well内にP−wellを置き、そのP−well内にNMOSトランジスタを配置する構成の一般的なシリコンプロセス のほか、例えばSOI(Silicon On Insulator)基板上に配置することもできる。
アンチヒューズメモリ回路10は、複数のアンチヒューズ素子を有する。アンチヒューズ素子は、ゲート酸化膜を有する。このアンチヒューズ素子は、キャパシタ構造であり、書き込み前は2端子間がオープン状態である。一方で、書き込みにより2端子間に高電圧が印加され、ゲート酸化膜を破壊されると、2端子間が短絡する。なお、アンチヒューズメモリ回路10の詳細は後述する。また、本実施形態では、一つのアンチヒューズ素子について説明するが、他のアンチヒューズ素子も同様の構成を有する。
第1電圧生成回路20は、例えば電源回路40から供給される第1電圧V1、第2電圧V2、第3電圧V3に基づき、アンチヒューズメモリ回路10に供給する第4電圧VBPを生成する。なお、本実施系形態では、第1電圧V1をVDD、第2電圧V2を2×VDD、第3電圧V3を3×VDDとして扱う。また、V0を基準電位とし、説明を簡単にするため0ボルトとする。
第2電圧生成回路30は、例えば電源回路40から供給される第1電圧V1、第2電圧V2に基づき、アンチヒューズメモリ回路10に供給するゲート電圧PRG2_Xを生成する。第1電圧生成回路20、及び第2電圧生成回路30の詳細も後述する。
電源回路40は、第1電圧生成回路20に例えば第1電圧V1、第2電圧V2、及び第3電圧V3を供給する。また、電源回路40は、第2電圧生成回路30に例えば第1電圧V1、第2電圧V2を供給する。なお、電源回路40の詳細も後述する。
図2は、アンチヒューズメモリ回路10の構成例を示す図である。図3は、アンチヒューズメモリ回路10に印可される電圧と各モードとの関係を示す表である。アンチヒューズメモリ回路10は、例えばアンチヒューズ素子MP0と、トランジスタMN3、MN0、MN1、MN2とセンスアンプS/Aを有している。例えば、本実施形態では、トランジスタMN3、MN0、MN1、MN2の耐圧をVDD+2x閾値電圧Vthとする。
図2に示すように、アンチヒューズ素子MP0(Cell)は、例えばPMOSトランジスタのソース、ドレイン端子を接続して構成される。ソース、ドレイン端子が接続されるノードNaには、端子T0を介して電圧VBPが印可可能に構成される。また、ノードNbには、ダイオードD1を介して第2電圧V2が印可可能に構成される。
アンチヒューズ素子MP0のゲート端子と基準電位V0の間には、トランジスタMN3、MN0、MN1が直列に接続される。トランジスタMN3は、例えばNMOSトランジスタであり、ノードN1、N10のそれぞれにソース、ドレインが接続される。トランジスタMN3のゲートには端子T1を介して電圧PRG2_Xが印可可能に構成される。
トランジスタMN0は、例えばNMOSトランジスタであり、ノードN10、N0のそれぞれにソース、ドレインが接続される。トランジスタMN0のゲートには端子T2を介して電圧VBTが印可可能に構成される。
トランジスタMN1は、例えばNMOSトランジスタであり、ノードN1と基準電位V0のノードN4のそれぞれにソース、ドレインが接続される。トランジスタMN1のゲートには端子T3を介して電圧PRG1が印可可能に構成される。
トランジスタMN0のドレインとトランジスタMN1のソースが接続されるノードN0にはノードN7を介してセンスアンプS/Aと、トランジスタMN2のソースが接続される。
トランジスタMN2は、例えばNMOSトランジスタであり、ドレインがノードN6を介して基準電位V0に接続される。トランジスタMN2のゲートには端子T5を介して電圧DCpが印可可能に構成される。
図3においてPRGmodeは、後述する第1電圧生成回路20と、第2電圧生成回路30の入力端子に印可される電圧を示している。PRG1は端子T3に印可される電圧PRG1を示している。また、DCpは端子T5に印可される電圧DCpを示し、stateは、アンチヒューズメモリ回路10の状態を示している。また、端子T0に印可される電圧VBPをVBPで示し、端子T2に印可される電圧VBTをVBTで示し、端子T1に印可される電圧PRG2_XをPRG2_Xが示している。さらにまた、N1がノードN1の電圧を示し、N0がノードN0の電圧を示し、S/AoutがセンスアンプS/Aの出力を示す。
まず、アンチヒューズメモリ回路10のプログラム(programu)状態のcell書き込みでは、端子T0に印可される電圧VBPが3xVDDであり、端子T1、T2、T3に印可される電圧PRG2_X、VBT、PRG1がそれぞれVDDである。また、T5に印可される電圧が0ボルトである。これにより、トランジスタMN3、MN0、MN1は導通状態となり、トランジスタMN2は非導通状態となる。このため、ノードN1は基準電位V0となる。これにより、端子T0とノードN1間の電圧が3xVDDとなり、アンチヒューズ素子MP0のゲート酸化膜が破壊される。そして、アンチヒューズ素子MP0のゲートと、ソース、ドレイン、バックゲート間は導通状態となる。
一方で、ゲート酸化膜が破壊しないためには、例えば端子T0と端子N1との電圧をVDD+閾値電圧Vth以内に抑制する必要がある。換言する端子T0と端子N1との電圧をVDD+閾値電圧Vth以内に抑制する様に非書き込み時の設計値が設定されている。また、ノードN1は電圧VBPとアンチヒューズ素子MP0のカップリング(coupling)により電圧VBPに近い高電圧になる。すなわち、電圧VBPが3xVDDである場合に、ノードN1は3xVDDに近い高電圧になる場合がある。
換言すると、非書き込み時に、ノードN1を(2xVDD)−Vth未満へ低下させなければアンチヒューズ素子MP0のゲート酸化膜は破壊されない。すなわち、電圧PRG2_Xを2xVDDにすれば、ノードN1を(2xVDD)+閾値電圧Vthの電圧よりも上昇させないよう抑えることができる。このため、本実施形態では、非書き込み時に、ノードN1に接続されるトランジスタMN3のゲートに、端子T0とノードN1との間の電位差がゲート酸化膜を破壊する電位未満となる電位PRG2_X=2xVDDを印可する。これにより、非書き込み時にゲート酸化膜が破壊することが抑制される。
また、トランジスタMN3、MN0のバックゲートは、解放されており、ノードN1、N0の電圧はフローティング状態である。このため、ノードN1、N0間の電位差はランジスタMN3、MN0により分圧される。これにより、ノードN0には0からVDD、ノードN10にはVDDから2VDD、ノードN1には2VDDから3VDDが印可され、上述のように、各トランジスタMN3、MN0、MN1を耐圧VDD+2x閾値電圧Vth以内の低耐圧により構成可能である
次に、リード(Read)する場合、端子T0に印可される電圧VBPがVDDであり、端子T1、T2、T3に印可される電圧PRG2_X、VBT、PRG1がそれぞれVDD、VDD、0ボルトである。また、T5に印可される電圧がVDDである。すなわち、リード(Read)前にDCpをVDDとしてノードN0の電位を十分V0へ近づける。そして、一定時間経過したのちセンスアンプS/AでノードN0の電位を検知する。アンチヒューズ素子MP0が書き込み済みならば、ゲート酸化膜が破壊され導通状態であるので、電圧VBPの電圧VDDから閾値電圧Vth低下した電圧が計測される。一方で、アンチヒューズ素子MP0が未書き込みであれば、ゲート酸化膜が非導通状態であるので、0ボルトの電圧が計測される。
ここで、図4乃至図7に基づき第1電圧生成回路20の詳細な構成を説明する。図4は、第1電圧生成回路20の詳細な構成例を示す回路図である。図4に示すように、第1電圧生成回路20は、レベルシフタ回路20aと、レベルシフタ回路20bと、を備える。図4に示すように、レベルシフタ回路20aと、レベルシフタ回路20bとが2段構成となっている。端子TPRGに電圧PRGmodeが供給される。
図5は、レベルシフタ回路20aの構成例を示す図である。図5に示すように、レベルシフタ回路20aは、NMOSトランジスタNn11、Nn12、Nn31.Nn32.Nn51、Nn52と、PMOSトランジスタNp12、Np22、Np41.Np42.Np61、Np62とを有する。トランジスタNn11とトランジスタNp21がカスケード接続され、トランジスタNn31とトランジスタNp41がカスケード接続され、トランジスタNn51とトランジスタNp61がカスケード接続され、トランジスタNn12とトランジスタNp22がカスケード接続され、トランジスタNn32とトランジスタNp42がカスケード接続され、トランジスタNn52とトランジスタNp62がカスケード接続される。
また、トランジスタNn11のドレインとトランジスタNp21のソースとの接続ノードn1122は、トランジスタNn12とトランジスタNp22のゲートに接続される。更に接続ノードn1122は、トランジスタNn31のドレインに接続される。トランジスタNp41のソースはノードn5152に接続される。そして、トランジスタNp61のドレインとトランジスタNn51のソースの接続ノードn5152は、トランジスタNp62とトランジスタN52のゲートに接続される。トランジスタNn11のゲートとトランジスタNp21のゲートの接続部が端子TPRGであり、電圧PGRmodeが印可される。また、トランジスタNp62のドレインとトランジスタNn52のソースの接続部に出力端子OUT1が接続される。
図6は、レベルシフタ回路20aの動作例を説明する図である。左側が端子TPRGに電圧VDDが印可されたときの動作例であり、右側が端子TPRGに0ボルトが印可されたときの動作例である。
まず、端子TPRGに電圧VDDが印可されるとトランジスタNn11、Nn31、Nn51、Np22、Np42、Np62が導通状態となり、残りのトランジスタが非導通状態となる。これにより、端子OUT0_Xは0ボルト、端子OUT0は2×VDDとなる。また、端子OUT1_XはVDD、端子OUT1は2×VDDとなる。
次に、端子TPRGに基準電位V0(0ボルト)が印可されるとトランジスタNn11、Nn31、Nn51、Np22、Np42、Np62が非導通状態となり、残りのトランジスタが導通状態となる。これにより、端子OUT0_Xは2×VDD、端子OUT0は0ボルトとなる。また、端子OUT1_Xは2×VDD、端子OUT1はVDDとなる。
再び図4に戻ると、レベルシフタ回路20bはレベルシフタ回路20aと同等の構成である。このため、ノードN2を介して入力される電圧が2×VDD又はVDDである。すなわち、端子TPRGに電圧VDDが印可されると端子T0は3×VDDとなり、端子TPRGに0ボルトが印可されると端子T0はVDDとなる。
図7は、第1電圧生成回路20の真理値表であり、電圧PRGmodが端子TPRGに印可される電圧を示し、N2がノードN2の電圧を示し、VBPが端子T0の電圧を示す。このように、第1電圧生成回路20は、電圧PRGmodがVDDのときに、3×VDDを端子T0に出力し、電圧PRGmodが0ボルトのときに、VDDを端子T0に出力する。これにより、図2に示す端子T0に電圧VBPとして、VDD、又は3×VDDを供給可能となる。
図8は、第2電圧生成回路30の構成例を示す図である。図8に示すように、第2電圧生成回路30は、レベルシフタ回路30aと、アンド回路30bとを備える。レベルシフタ回路30aは、レベルシフタ回路20aと同等の構成であり、ノードn80にアンド回路30bが接続されている。アンド回路30bには端子TPRGと、反転端子TPARG1が接続されている。
図9は、第2電圧生成回路20の真理値表である。PRGmodeが端子TPRGに印可される電圧であり、PARG1が端子反転端子TPARG1に印可される電圧である。また、レベルシフタ回路20aの出力端子TPRG2_Xの電圧をPRG2_Xで示す。電圧PRGmodeがVDD且つ電圧PARG1がVDDの場合、レベルシフタ回路30aの出力は0ボルトであり、電圧PRG2_Xは、VDDとなる。一方で、電圧PRGmodeがVDD且つ電圧PARG1が0ボルトの場合、レベルシフタ回路30aの出力はVDDであり、電圧PRG2_Xは、2×VDDとなる。また、電圧PRGmodeが0ボルト且つ電圧PARG1が0ボルトの場合、レベルシフタ回路30aの出力は0ボルトであり、電圧PRG2_Xは、VDDとなる。このように、第2電圧生成回路20は、図2のT1端子に、2×VDD又はVDDを印可可能である。
図10は、電源回路40の詳細な構成例を示す図である。電源回路40は、第1昇圧回路40aと、第2昇圧回路40bと、を備える。すなわち第1昇圧回路40aは、一般的な昇圧回路(例えばcross−coupled switched capacitors型voltage doubler回路)と同様の回路である。第1昇圧回路40aは、入力端子T40aに入力される振幅VDDのクロック信号CLK_V1を増幅し、出力端子T40bから2×VDDを出力する。第2昇圧回路40bは、第1昇圧回路40aの入力部をレベルシフタ回路400bで構成した点で第1昇圧回路40aと相違する。すなわち、第2昇圧回路40bの入力クロックは振幅が2×VDDとなり、出力端子T40cから3×VDDを出力する。このように電源回路40は、安定的に電圧、2×VDD、3×VDDを、第1電圧生成回路20、及び第2電圧生成回路30に供給可能である。
以上説明したように、本実施形態によれば、アンチヒューズ素子MP0の端子T0にゲート酸化膜を破壊する書き込み電圧が印加され、且つゲート酸化膜を破壊しない場合に、アンチヒューズ素子MP0の他端であるノードN1に接続されるトランジスタMN3のゲートに、端子T0とノードN1との間の電位差がゲート酸化膜を破壊する電位未満となる電位PRG2_Xを印可する。これにより、アンチヒューズ素子MP0の非書き込み時にゲート酸化膜の破壊が抑制され、且つ電圧PRG2_Xと基準電位VOの電位差をトランジスタMN0、MN3、MN1で分圧可能であり、トランジスタMN0、MN3、MN1の低耐圧化が可能である。また、アンチヒューズ素子MP0の非書き込み時に印可される可能性のあるカップリングによる高電圧が印可されても、トランジスタMN0、MN3に分圧が可能であり、トランジスタMN0、MN3の低耐圧化が可能である。
(第2実施形態)
第2実施形態に係る半導体記憶装置1は、ノードN1に係る電圧をトランジスタMN3のゲート電圧により制御していたが、本実施形態に係る半導体記憶装置2は、レベルシフタ回路L/Sにより制御することで相違する。以下では、第1実施形態と相違する点を説明する。なお、第2実施形態に係る半導体記憶装置1では、第2電圧生成回路30は、アンチヒューズメモリ回路10に含まれてもよい。
図11は、第2実施形態に係るアンチヒューズメモリ回路10の構成例を示す図である。図12は、第2実施形態に係るアンチヒューズメモリ回路10に印可される電圧と各モードとの関係を示す表である。
第2実施形態に係るアンチヒューズメモリ回路10は、例えばアンチヒューズ素子MP0と、レベルシフタ回路L/Sと、トランジスタMN0、MN2とセンスアンプS/Aを有している。図11に示すようにノードN1と基準電位V0の間には、トランジスタMN0、MN2が直列接続されている。また、ノードN1にレベルシフタ回路L/Sが接続されている。
図12のPRGmodeは、端子TPRGに印可される電圧を示し、PRG1は端子TPRG1に印可される電圧を示す。
まず、アンチヒューズメモリ回路10のプログラム(programu)状態のcell書き込みでは、端子T0に印可される電圧VBPが3xVDDであり、端子TPRG、端子TPRG1、T2、T5に印可される電圧PRGmode、PRG1、VGT、Dcpは、それぞれVDDである。これにより、トランジスタMN0、MN2は導通状態となる。このため、端子T0とノードN1間の電圧差が3xVDDとなり、アンチヒューズ素子MP0のゲート酸化膜が破壊される。これにより、アンチヒューズ素子MP0のゲートと、ソース、ドレイン、バックゲート間は導通状態となる。
上述のように、アンチヒューズ素子MP0のゲート酸化膜を破壊しないためには、例えば端子T0と端子N1との電圧をVDD+閾値電圧Vth以内に抑制する必要がある。そこで、本実施形態では、非書き込み時に、ノードN1にレベルシフタ回路L/Sから2xVDDの電圧を印加する。これにより、アンチヒューズ素子MP0のゲート酸化膜の破壊が抑制される。
図13は、レベルシフタ回路L/Sの真理値表である。LSoutはレベルシフタ回路L/Sの出力電圧であり、ノードN1に印可される。電圧PRGmode、PRG1がそれぞれVDDの場合に、LSoutは0ボルトとなる。また、圧PRGmode、PRG1がそれぞれVDD、0ボルトの場合に、LSoutは2×VDDとなる。更に、電圧PRGmode、PRG1がそれぞれボルト、VDDの場合に、LSoutはフローティングとなり、0〜VDDの間の値をとる。
図14は、レベルシフタ回路L/Sの構成例を示す図ある。図5で示したレベルシフタ回路20aと基本構成は同様であり、トランジスタNn32のゲートにオア回路が接続され、トランジスタNp21とトランジスタNn11のゲートの接続点に、更に直列接続されたトランジスタNp01とトランジスタNn01とが接続される点でレベルシフタ回路20aと相違する。
このような構成によりTPRGに電圧VDDが印可される場合には、レベルシフタ回路20aと同様に動作する。ただし、トランジスタNp01とトランジスタNn01とが接続されるため、電圧PRG1が0ボルトのときに、2×VDDを出力し、VDDのときに0ボルトを出力する。
図15は、第2実施形態に係る電源回路40の構成例を示す図である。第2実施形態に係る電源回路40は、降圧回路50aと、レベルダウン回路50bと、昇圧回路40aとを有する。降圧回路50aは、振幅がV2である入力クロック信号CLK_V2を降圧し、電圧V1を出力する(参照:特許文献2)。また、昇圧回路40aは、図10で示した昇圧回路40aと同等の構成である。レベルダウン回路50bは、例えば、2つのPMOSトランジスタで構成される。第1のPMOSトランジスタの一端に第2のNMOSトランジスタのゲートが接続され、第2のNMOSトランジスタのソースに電圧V1が印可され、ドレインが第1のPMOSトランジスタの他端に接続される。このような構成により、電圧V3と電圧V1が第1電圧生成回路20に供給される。なあ、第2実施形態に係る電源回路40を第1実形態の電源回路と使用することも可能である。一方で、第1実施形態に係る電源回路40を第2実形態の電源回路と使用することも可能である。
図16は、こPMOSトランジスタで構成されるレベルダウン回路の真理値表である。また、図17は、PMOSトランジスタで構成されるレベルダウン回路の構成例と動作例を示す図である。2xVDDが入力された場合には、2xVDDを出力し、0ボルトが印可された場合にはVDDを出力する。
図18は、NMOSトランジスタで構成されるレベルダウン回路の真理値表である。図19はNMOSトランジスタで構成されるレベルダウン回路の構成例と動作例を示す図である。図19で示すレベルダウン回路は、例えば、2つのNMOSトランジスタで構成される。第1のNMOSトランジスタの一端に第2のNMOSトランジスタのゲートが接続され、第2のNMOSトランジスタのソースに電圧V1が印可され、ドレインが第1のNMOSトランジスタの他端に接続される。2xVDDが入力された場合には、VDDを出力し、0ボルトが印可された場合には0ボルトを出力する。
以上説明したように、本実施形態によれば、アンチヒューズ素子MP0の端子T0にゲート酸化膜を破壊する書き込み電圧が印加され、且つゲート酸化膜を破壊しない場合に、アンチヒューズ素子MP0の他端であるノードN1に接続されるレベルシフタ回路L/Sが、端子T0とノードN1との間の電位差がゲート酸化膜を破壊する電位未満となる電位2×VDDを印可する。これにより、アンチヒューズ素子MP0の非書き込み時にゲート酸化膜の破壊が抑制され、且つ電圧PRG2_Xと基準電位VOをトランジスタMN0、MN2で分圧可能であり、トランジスタMN0、MN2の低耐圧化が可能である。また、
レベルシフタ回路L/Sにより電圧を印加するので、ノードN1から基準電位V0までの回路構成によらずに目的とする電圧をノードN1に印可できる。
以上、いくつかの実施形態を説明したが、これらの実施形態は、例としてのみ提示したものであり、発明の範囲を限定することを意図したものではない。本明細書で説明した新規な装置、方法及びプログラムは、その他の様々な形態で実施することができる。また、本明細書で説明した装置、方法及びプログラムの形態に対し、発明の要旨を逸脱しない範囲内で、種々の省略、置換、変更を行うことができる。
1:半導体記憶装置、10:アンチヒューズメモリ回路、20:第1電圧生成回路、20a、20b:レベルシフタ回路、30:第2電圧生成回路、40:電源回路、MP0:アンチヒューズ素子、MN0、MN1、MN2、MN3:トランジスタ、L/S:レベルシフタ回路。

Claims (10)

  1. 書き込み電圧を印加可能な第1端子に一端が接続され、ゲート酸化膜を有するアンチヒューズ素子と、
    前記アンチヒューズ素子の他端に接続される第1素子と、
    を備え、
    前記ゲート酸化膜を破壊する前記書き込み電圧が前記第1端子に印加され、且つ前記ゲート酸化膜を破壊しない場合に、前記第1素子は、前記一端と前記他端との間の電位差が前記ゲート酸化膜を破壊する電位未満となる第2電位を前記他端に供給する、半導体記憶装置。
  2. 前記第1素子は一端が前記他端に接続された第1トランジスタであり、
    前記第1トランジスタの他端に一端が接続される第2トランジスタと、
    前記第2トランジスタの他端に一端が接続され、他端に基準電位が供給される第3トランジスタと、を備え、
    前記ゲート酸化膜を破壊しない場合に、前記アンチヒューズ素子の他端と前記第3トランジスタの一端との間の電圧を前記第1トランジスタ及び前記第2トランジスタで分圧する、請求項1に記載の半導体記憶装置。
  3. 前記第1トランジスタと前記第2トランジスタとはMOSトランジスタである、請求項2に記載の半導体記憶装置。
  4. 前記ゲート酸化膜を破壊しない場合に、前記第1トランジスタのゲートには、前記アンチヒューズ素子の他端が前記第2電位となるゲート電圧が印加される、請求項2又は3に記載の半導体記憶装置。
  5. 前記第1素子はレベルシフタ回路であり、前記ゲート酸化膜を破壊しない場合に、前記第2電位を前記アンチヒューズ素子の他端に供給する、請求項1に記載の半導体記憶装置。
  6. 前記第1端子に前記書き込み電圧を供給可能な第1電圧生成回路を更に備える、請求項4に記載の半導体記憶装置。
  7. 前記第1電圧生成回路は、レベルシフタ回路を複数備える、請求項6に記載の半導体記憶装置。
  8. 前記ゲート電圧を生成する第2電圧生成回路を更に備える、請求項6又は7に記載の半導体記憶装置。
  9. 前記第1電圧生成回路と前記第2電圧生成回路とに電圧を供給可能な電源回路を更に備える、請求項8に記載の半導体記憶装置。
  10. 書き込み電圧を印加可能な第1端子に一端が接続され、ゲート酸化膜を有するアンチヒューズ素子と、
    前記アンチヒューズ素子の他端に接続される第1素子と、
    を備える半導体記憶装置の制御方法であって、
    前記ゲート酸化膜を破壊する前記書き込み電圧が前記第1端子に印加され、且つ前記ゲート酸化膜を破壊しない場合に、前記第1素子が、前記一端と前記他端との間の電位差が前記ゲート酸化膜を破壊する電位未満となる第2電位を前記他端に供給するように制御する半導体記憶装置の制御方法。
JP2020051578A 2020-03-23 2020-03-23 半導体記憶装置、及び半導体記憶装置の制御方法 Pending JP2021149996A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020051578A JP2021149996A (ja) 2020-03-23 2020-03-23 半導体記憶装置、及び半導体記憶装置の制御方法
US17/012,118 US11386971B2 (en) 2020-03-23 2020-09-04 Semiconductor storage device and control method of semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020051578A JP2021149996A (ja) 2020-03-23 2020-03-23 半導体記憶装置、及び半導体記憶装置の制御方法

Publications (1)

Publication Number Publication Date
JP2021149996A true JP2021149996A (ja) 2021-09-27

Family

ID=77748229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020051578A Pending JP2021149996A (ja) 2020-03-23 2020-03-23 半導体記憶装置、及び半導体記憶装置の制御方法

Country Status (2)

Country Link
US (1) US11386971B2 (ja)
JP (1) JP2021149996A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886940A (en) * 1997-08-21 1999-03-23 Micron Technology, Inc. Self-protected circuit for non-selected programmable elements during programming
US20080002504A1 (en) * 2006-07-03 2008-01-03 Hiroaki Nakano Semiconductor memory device in which data is stored in nonvolatile state, by using semiconductor elements of metal oxide semiconductor (mos) structure
US20080043510A1 (en) * 2006-08-16 2008-02-21 Fujitsu Limited Semiconductor memory device containing antifuse write voltage generation circuit
US20080042234A1 (en) * 2006-08-18 2008-02-21 Fujitsu Limited Electric fuse circuit and electronic component
JP2009136112A (ja) * 2007-11-30 2009-06-18 Toshiba Corp 半導体集積装置
US20140285171A1 (en) * 2013-03-22 2014-09-25 Kabushiki Kaisha Toshiba Voltage conversion circuit and switching control circuit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328447B1 (ko) * 2000-02-21 2002-03-16 박종섭 안티퓨즈 리페어 회로
JP4615884B2 (ja) 2004-03-23 2011-01-19 川崎マイクロエレクトロニクス株式会社 アンチヒューズ素子
JP4282529B2 (ja) 2004-04-07 2009-06-24 株式会社東芝 半導体集積回路装置及びそのプログラム方法
US7755162B2 (en) 2004-05-06 2010-07-13 Sidense Corp. Anti-fuse memory cell
JP4981661B2 (ja) 2004-05-06 2012-07-25 サイデンス コーポレーション 分割チャネルアンチヒューズアレイ構造
US7280425B2 (en) * 2005-09-30 2007-10-09 Intel Corporation Dual gate oxide one time programmable (OTP) antifuse cell
JP2010182365A (ja) * 2009-02-04 2010-08-19 Elpida Memory Inc アンチヒューズ回路及び半導体記憶装置
JP5780650B2 (ja) 2011-11-11 2015-09-16 株式会社Joled レベルシフタ回路、走査回路、表示装置、及び、電子機器
JP6177155B2 (ja) 2014-02-10 2017-08-09 ソニーセミコンダクタソリューションズ株式会社 発振回路および周波数シンセサイザ
JP6505624B2 (ja) 2016-03-15 2019-04-24 株式会社東芝 降圧回路
US10090309B1 (en) 2017-04-27 2018-10-02 Ememory Technology Inc. Nonvolatile memory cell capable of improving program performance

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886940A (en) * 1997-08-21 1999-03-23 Micron Technology, Inc. Self-protected circuit for non-selected programmable elements during programming
US20080002504A1 (en) * 2006-07-03 2008-01-03 Hiroaki Nakano Semiconductor memory device in which data is stored in nonvolatile state, by using semiconductor elements of metal oxide semiconductor (mos) structure
JP2008016085A (ja) * 2006-07-03 2008-01-24 Toshiba Corp 半導体記憶装置
US20080043510A1 (en) * 2006-08-16 2008-02-21 Fujitsu Limited Semiconductor memory device containing antifuse write voltage generation circuit
JP2008047215A (ja) * 2006-08-16 2008-02-28 Fujitsu Ltd アンチヒューズ書込電圧発生回路を内蔵する半導体メモリ装置
US20080042234A1 (en) * 2006-08-18 2008-02-21 Fujitsu Limited Electric fuse circuit and electronic component
JP2008047248A (ja) * 2006-08-18 2008-02-28 Fujitsu Ltd 電気ヒューズ回路及び電子部品
JP2009136112A (ja) * 2007-11-30 2009-06-18 Toshiba Corp 半導体集積装置
US20140285171A1 (en) * 2013-03-22 2014-09-25 Kabushiki Kaisha Toshiba Voltage conversion circuit and switching control circuit
JP2014187764A (ja) * 2013-03-22 2014-10-02 Toshiba Corp 電圧変換回路および切替制御回路

Also Published As

Publication number Publication date
US20210295935A1 (en) 2021-09-23
US11386971B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
JP6284989B2 (ja) 電圧ブースト可能な小規模アンチヒューズ回路を備えるメモリシステム
EP3196886A1 (en) Power switch circuit
US5111429A (en) Single event upset hardening CMOS memory circuit
US7079413B2 (en) Semiconductor memory device with back gate potential control circuit for transistor in memory cell
JP5342324B2 (ja) 昇圧回路
US7592850B2 (en) Level shifter including boosting circuit
WO2004038919A1 (ja) 電圧発生回路、電圧発生装置及びこれを用いた半導体装置、並びにその駆動方法
US20020060930A1 (en) Semiconductor integrated circuit device
US5886942A (en) Word line driver and semiconductor device
US6512394B1 (en) Technique for efficient logic power gating with data retention in integrated circuit devices
US9646992B2 (en) Semiconductor memory
JP4264758B2 (ja) 強誘電体記憶装置および電子機器
US5029132A (en) Random access memory device having parallel non-volatile memory cells
JP2021149996A (ja) 半導体記憶装置、及び半導体記憶装置の制御方法
KR102287699B1 (ko) 데이터 독출 회로
US6249462B1 (en) Data output circuit that can drive output data speedily and semiconductor memory device including such a data output circuit
GB2294345A (en) Voltage boosting circuit of a semiconductor memory
US4833343A (en) Clock generator having complementary transistors
JP2011159914A (ja) Esd保護回路及び半導体装置
JP2012065042A (ja) 論理回路とそれを使用するメモリ
EP0230385A2 (en) Semiconductor memory
JP2013222474A (ja) 不揮発性メモリ回路、半導体装置、及び読出し方法
JPH0457288A (ja) 半導体記憶装置
EP3282450B1 (en) Memory system with small size antifuse circuit capable of boosting voltage
JP5708865B2 (ja) 論理回路とそれを使用するメモリ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230414