JP4615884B2 - アンチヒューズ素子 - Google Patents

アンチヒューズ素子 Download PDF

Info

Publication number
JP4615884B2
JP4615884B2 JP2004084572A JP2004084572A JP4615884B2 JP 4615884 B2 JP4615884 B2 JP 4615884B2 JP 2004084572 A JP2004084572 A JP 2004084572A JP 2004084572 A JP2004084572 A JP 2004084572A JP 4615884 B2 JP4615884 B2 JP 4615884B2
Authority
JP
Japan
Prior art keywords
contact hole
antifuse element
electrode
semiconductor substrate
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004084572A
Other languages
English (en)
Other versions
JP2005276907A (ja
Inventor
健二郎 牟田
智治 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Microelectronics Inc
Original Assignee
Kawasaki Microelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Microelectronics Inc filed Critical Kawasaki Microelectronics Inc
Priority to JP2004084572A priority Critical patent/JP4615884B2/ja
Publication of JP2005276907A publication Critical patent/JP2005276907A/ja
Application granted granted Critical
Publication of JP4615884B2 publication Critical patent/JP4615884B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Description

本発明は、半導体装置で用いられるアンチヒューズ素子に関するものである。
アンチヒューズ素子は、初期状態の非プログラム状態では絶縁もしくは高抵抗性を示し、書き込み後のプログラム状態では低抵抗化して導通状態となる、電気的にプログラム可能な素子である。一般的なヒューズ素子が所定電流を流すことで遮断状態となるのに対し、アンチヒューズ素子は、所定電圧を印加することで導通状態となることからこのように呼ばれており、近年、製造後のプログラミングを必要とする半導体装置で利用されている。
アンチヒューズ素子として、従来より、MOSFET型、PNダイオード型などが提案されている。また、本出願人は、特願2003−36847号においてLOCOS分離型のアンチヒューズ素子を提案している。
LOCOS分離型のアンチヒューズ素子は、LOCOS法などによって形成された分離領域によって分離された2つのアクティブ領域内に拡散層を形成し、この拡散層にAl(アルミニウム)合金等からなる電極を接続した構造のものである。
LOCOS分離型のアンチヒューズ素子のプログラム時には、電極間に高電圧を印加して、Si(シリコン)基板内に電極を構成する金属(例えばAl)を侵入させることによって、拡散層間のLOCOS酸化膜下に導電性フィラメントを形成する。これにより、2つの電極間は導電性フィラメントを介して短絡され、導通状態となる。
ところが、最近では、拡散層にAl合金からなる電極を直接接続するのではなく、例えば薄いTiN(チタンナイトライド)/Ti(チタン)からなるバリアメタル層を介して接続することが一般的になっている。この場合、バリアメタル層によってプログラム時のフィラメント形成が阻害され、破壊後の抵抗値のばらつきが大きくなるという問題があった。
なお、本発明のアンチヒューズ素子に関連性のある従来技術として、例えば特許文献1〜3がある。
特許文献1には、アノード電極およびカソード電極が下地バリア金属層を有するツエナーザップダイオードにおいて、アノード電極およびカソード電極のそれぞれの長さを幅より大きくすることにより、短絡後の抵抗を低減することが開示されている。
特許文献2には、グラフト部(p+領域)−アノード部(p領域)−カソード部(n+領域)の平面構造を有するツエナーザップダイオードにおいて、破壊・短絡が発生する領域を正確に制御し、破壊・短絡に必要な電圧、電流のばらつきを低減するため、対向するカソード部とグラフト部との少なくとも一方に突起を設けることが開示されている。なお、コンタクトに突起部を設けることも可能である。
特許文献3は、ゲート酸化膜を破壊する方式のアンチヒューズ素子の多結晶シリコン電極へのコンタクト形成に関するもので、通常のコンタクト孔よりも大きなコンタクト孔を開口し、下地膜(TiN)を形成し、W(タングステン)膜を堆積した後、W膜をTiNまでエッチバックすることにより、通常のコンタクト孔にはWプラグを形成するとともに、多結晶シリコン電極へのコンタクト孔からは側壁部を除いてWを除去してTiN膜を露出し、アルミ配線を形成することが開示されている。
特開平10−229204号公報 特開平6−151897号公報 米国特許第6,440,781号明細書
本発明の目的は、前記従来技術に基づく問題点を解消し、破壊後の抵抗値のばらつきを抑え、安定した破壊歩留まりを得ることができるアンチヒューズ素子を提供することにある。
上記目的を達成するために、本発明は、半導体基板表面層内に形成したPN接合と、該半導体基板表面を覆う絶縁膜に形成されたコンタクト孔の底面において前記半導体基板表面に接続される2つの電極とを有し、該2つの電極から逆方向電圧を印加して前記PN接合を降伏させ、逆方向電流を流すことによって前記電極の金属を前記半導体基板表面層に侵入させて前記PN接合を破壊し、恒久的な導通状態に遷移させるアンチヒューズ素子であって、
前記2つの電極のコンタクト孔のそれぞれの底面は、概略、該2つのコンタクト孔間を結ぶ線に平行な2辺と、該2辺に垂直な2辺とからなる四角形の形状を有し、該平行な方向の寸法を長さ、垂直な方向の寸法を幅とし、
前記逆方向電圧印加時に相対的に正の電圧を印加する第1の電極のコンタクト孔の長さは幅の2倍以上であり、かつ、相対的に負の電圧を印加する第2の電極のコンタクト孔の底面の面積は前記第1のコンタクト孔の底面の面積の1/2以下であることを特徴とするアンチヒューズ素子を提供する。
さらに、前記第1および第2のコンタクト孔の互いに対向する先端部分において、前記第1のコンタクト孔のみが、他の部分に比較して幅が狭まった形状を有することが好ましい。
ここで、前記第2のコンタクト孔の底面の面積が前記第1のコンタクト孔の底面の面積の1/4以下であるのが好ましい。
また、前記第1のコンタクト孔の長さが幅の4倍以上であるのが好ましい。
また、前記コンタクト孔の底面および側面には、前記電極の金属の移動を阻害するバリアメタル層が形成されており、前記電極は前記半導体基板表面に該バリアメタル層を介して接続されているのが好ましい。
また、第1導電型の前記半導体基板表面層内に絶縁材料が埋め込まれた分離領域と、該分離領域の両側の前記半導体基板表面層内に形成された第2導電型の拡散層とからなり、該両側に形成された拡散層のそれぞれに前記電極が接続されているのが好ましい。
また、第1導電型の前記半導体基板表面上に、ゲート絶縁膜を介してゲート電極が形成されるとともに、該ゲート電極の両側の前記半導体基板表面層内に形成された第2導電型の拡散層とからなり、該両側に形成された拡散層のそれぞれに前記電極が接続されているのが好ましい。
また、前記両側に形成された拡散領域の対向する辺の間の距離が一定であるのが好ましい。
本発明のアンチヒューズ素子によれば、第1のコンタクト孔のみにおいて、その幅よりも長さを長くして、その面積を増加させることにより、導電性フィラメントの形成に必要となる、コンタクト孔内に存在するAlの量を増加させることができる。これに対して、第2のコンタクト孔の形状は従来通りの正方形もしくは正方形に近いものであり、アンチヒューズ素子の占める面積の増加を最小限に抑えることができる。また、高電圧が印加される第1のコンタクト孔の、第2のコンタクト孔に対向する先端部分の幅を狭くして、この先端部分に電界を集中させることにより、この先端部分から導電性フィラメントを形成することができる。すなわち、破壊後のフィラメントの形成位置を特定することができる。このため、破壊後の抵抗値を低くすることができるとともに、そのばらつきを抑えることができ、破壊後歩留まりを向上させることができる。
以下に、添付の図面に示す好適実施形態に基づいて、本発明のアンチヒューズ素子を詳細に説明する。
図1(a)および(b)は、本発明のアンチヒューズ素子の構成を表す一実施形態のレイアウト断面図およびその上面図である。同図に示すアンチヒューズ素子10は、半導体装置で用いられるLOCOS分離型のもので、P型Si基板12の表面層にはPウェル(Pウェル層)14が形成され、その表面層内には、絶縁物であるLOCOS酸化膜16が埋め込まれた分離領域が形成されている。LOCOS酸化膜16によって分離された2つのアクティブ領域内のPウェル14の表面層内には、所定深さのN+拡散層18a、18bが形成されている。すなわち、Pウェル14とN+拡散層18a、18bにより、P型Si基板12の表面層内の二ヵ所にPN接合が形成されている。
分離領域となるLOCOS酸化膜16上、およびN+拡散層18a、18b上の全面には第1層間絶縁膜20が被覆されており、N+拡散層18a、18b上の第1層間絶縁膜20には、それぞれN+拡散層18a、18b表面が露出するところまで開口された所定寸法のコンタクト孔22a、22bが形成されている。図1中右側のソース側のコンタクト孔22bはほぼ正方形の形状であり、同左側のドレイン側のコンタクト孔22aは、その長さLdが幅Wd1よりも長く、ソース側のコンタクト孔22bに対向する先端部分の幅Wd2が他の部分に比較して狭まった形状を有する。
ここで、本実施形態のアンチヒューズ素子10において、N+拡散層18a、18bの幅aは4.0μmである。また、図1中左側のN+拡散層18aの長さbは7.6μm、同右側のN+拡散層18bの長さcは3.4μmである。ドレイン側のコンタクト孔22aの長さLdは6.0μm、幅Wd1は1.4μ、幅Wd2は0μmである。また、ソース側のコンタクト孔22bの長さLs、幅Ws1、およびドレイン側のコンタクト孔22aに対向する先端部分の幅Ws2はともに1.4μmである。
第1層間絶縁膜20上、およびコンタクト孔22a、22b内の側壁および底面にはTiN/Tiからなるバリアメタル層24が被覆され、バリアメタル層24が形成されたコンタクト孔22a、22b内の底面周辺部および側壁には、タングステン(W)サイドウォール26が形成されている。このWサイドウォール26は、アンチヒューズ素子10に必須の要素ではなく、MOSFETなどの通常の素子用のコンタクト孔内にWプラグを形成する際同時に形成されるものである。
第1層間絶縁膜20上のバリアメタル層24上には、それぞれのコンタクト孔22a、22bに対応したAlCu(アルミニウム銅合金)配線28a、28bが所定の形状に形成されている。前述のバリアメタル層24もAlCu配線28a、28bの形状に一致する形状に形成されている。また、AlCu配線28a、28bは、それぞれのコンタクト孔22a、22b内にも被覆され、コンタクト孔22a、22bの底面において、PN接合が形成されたP型Si基板12の表面層にバリアメタル層24を介して接続する、電極を形成している。
図2(a)に示す初期状態からアンチヒューズ素子10を導通状態にプログラムする場合、同図(b)に示すように、AlCu配線28a側を高電圧(相対的に正の電圧)、AlCu配線28b側を低電圧(相対的に負の電圧)とし、AlCu配線28a、28bを介してN+拡散層18a、18b間に所定の破壊電圧を印加する。この破壊電圧は、ドレイン側のN+拡散層18aとPウェル14との間のPN接合に対して逆方向であり、このPN接合の耐圧を超える電圧を有する。この、接合耐圧を超える逆方向電圧の印加により、ドレイン側のPN接合が降伏し、ドレイン側のN+拡散層18aからソース側のN+拡散層18bに向けて逆方向電流Irevが流れる。
これにより、図2(c)に示すように、ドレイン側のコンタクト孔22a内のAlCu配線28aのAlがバリアメタル層24を破壊し、さらにN+拡散層18a内に侵入してPN接合を破壊する。そして、さらにLOCOS酸化膜16下の半導体層内にAlが侵入し、両N+拡散層18a、18b間を接続する導電性フィラメント30が形成され、両N+拡散層18a、18b間は恒久的な導通状態となる。
アンチヒューズ素子10では、ドレイン側のコンタクト孔22aのみにおいて、その幅よりも長さを長くして、その面積を増加させることにより、導電性フィラメントの形成に必要となる、コンタクト孔22a内に存在するAlの量を増加させることができる。これに対して、ソース側のコンタクト孔22bの形状は従来通りの正方形もしくは正方形に近い形状であり、アンチヒューズ素子10の占める面積の増加を最小限に抑えることができる。
また同様に、高電圧が印加されるドレイン側のコンタクト孔22aのみにおいて、他方(ソース側)のコンタクト孔22bに対向する先端部分の幅を狭くして、この先端部分に電界を集中させることにより、この先端部分から導電性フィラメント30を形成することができる。すなわち、破壊後のフィラメント30の形成位置を特定することができる。このため、破壊後の抵抗値を低くすることができるとともに、そのばらつきを抑えることができ、破壊後歩留まりを向上させることができる。
なお、アンチヒューズ素子を形成する半導体層としてNウェルを使用することもできる。この場合、Nウェルの表面層内にはP+拡散層が形成される。また、Si基板以外の半導体基板に本発明を適用することも可能である。また、配線金属層の材質はAlCu合金に限定されるわけではないが、例えば実質的にシリコンを含まないアルミニウム合金層であるのが好ましい。
また、バリアメタル層の材質や構成も上記具体例に限定されないし、本発明は、バリアメタル層のないアンチヒューズ素子にも同様に適用可能である。また、本発明のアンチヒューズ素子は、LOCOS分離型のものに限定されず、PNダイオード型、MOSFET型、等、従来公知のさまざまな、コンタクト孔底面から半導体層内に配線金属層の金属を侵入させて導電性フィラメントを形成する型式のアンチヒューズ素子に適用可能である。
ここで、LOCOS分離型のアンチヒューズ素子は、図1に示すように、第1導電型の半導体基板の表面層内に絶縁材料が埋め込まれた分離領域と、この分離領域の両側の半導体基板表面層内に形成された第2導電型の拡散層とからなり、両側に形成された拡散層のそれぞれに電極が接続された構成を有するものである。
また、MOSFET型のアンチヒューズ素子は、第1導電型の半導体基板表面上に、ゲート絶縁膜を介してゲート電極が形成されるとともに、ゲート電極の両側の半導体基板表面層内に形成された第2導電型の拡散層とからなり、両側に形成された拡散層のそれぞれに電極が接続された構成を有するものである。なお、LOCOS分離型の場合もMOSFET型の場合も、両側に形成された拡散領域の対向する辺の間の距離は一定であるのが好ましい。
また、ドレイン側のコンタクト孔の長さは、実施形態の値に限定されず、幅の2倍以上とするのが好ましく、4倍以上とするのがさらに好ましい。また、ドレイン側のコンタクト孔の、ソース側のコンタクト孔に対向する先端部分の幅は、同じコンタクト孔の他の部分の幅よりも狭くしてあればよい。例えば、図1、2に示されたように、先端部分を除いた他の部分の幅が一定である場合には、先端部分の幅は、他の部分の幅の1/2以下とすることが好ましい。また、ソース側のコンタクト孔の底面の面積は、ドレイン側のコンタクト孔の底面の面積の1/2以下とするのが好ましく、1/4以下であるのがさらに好ましい。
特許文献1には、アノード電極およびカソード電極の両方のコンタクトの長さを幅に比較して大きくすることが提案されている。そして特に、両方のコンタクトの面積の差を互いに25%以内にすることが好ましいとしている。しかし、両方のコンタクトの長さを大きくすると、必然的に、アンチヒューズ素子の長さ方向の寸法が大きくなる。そこで、一方のコンタクトのみの長さを大きくすることによって破壊後の抵抗値を低減するとともに、そのばらつきを低減できる可能性があるかどうかを実験してみた。
図3(a)〜(d)のタイプ1〜4に示すように、アンチヒューズ素子のコンタクト孔の幅、および対向する辺の形状を変化させて破壊後の抵抗値を測定した。また、比較のために、図3(e)のタイプ5に示す従来構成のアンチヒューズ素子の破壊後抵抗値も測定した。その破壊後抵抗値の測定結果のグラフを図4〜図7に示す。なお、アンチヒューズ素子の破壊後抵抗値の測定は、タイプ1〜5の構成のそれぞれのアンチヒューズ素子について160個ずつ行い、その中の最大値を代表値とした。
ここで、図3(a)のタイプ1は、図1と同じ構成および寸法のものである。すなわち、ドレイン側のコンタクト孔の長さLdを幅Wd1よりも長くし、かつ幅Wd2を狭くした構成のものである。より具体的には、ドレイン側のコンタクト孔の幅Wd1=1.4μm、幅Wd2=0、長さLd=6.0μmである。また、ソース側のコンタクト孔の幅Ws1=幅Ws2=長さLs=1.4μmである。
また、図3(b)のタイプ2は、図1において、ドレイン側のコンタクト孔の幅Wd2を狭くすることなく、図3(e)に示す従来のアンチヒューズ素子と同じ幅Wd2=1.4μmとしたもの、図3(c)のタイプ3は、同図(b)において、ドレイン側のコンタクト孔の幅Wd1=4.0μmに広くしたもの、図3(d)のタイプ4は、図1において、さらにソース側のコンタクト孔の、他方(ドレイン側)のコンタクト孔に対向する先端部分の幅をWs2=0μmに狭くしたものである。
また、図3(e)のタイプ5は、従来構成のもので、具体的には、ドレイン側のコンタクト孔の幅Wd1=幅Wd2=長さLd=1.4μmである。同じく、ソース側のコンタクト孔の幅Ws1=幅Ws2=長さLs=1.4μmである。
また、図4のグラフは、ドレイン側のコンタクト孔の先端部分の幅Wd2と破壊後抵抗値の最大値との関係を表す。図5のグラフは、ドレイン側のコンタクト孔の長さLdと破壊後抵抗値の最大値との関係、図6のグラフは、ドレイン側のコンタクト孔の先端部分の幅Wd2/長さLdと破壊後抵抗値の最大値との関係、図7のグラフは、ドレイン側のコンタクト孔の面積Sdと破壊後抵抗値の最大値との関係をそれぞれ表す。
まずグラフには示していないが、ソース側のコンタクト孔のみの長さLsを大きくした場合には、従来構成のものに比較してむしろ悪化する(破壊できない)ことがわかった。これに対してドレイン側のコンタクト孔のみの長さLdを大きくすると、図5に示されたように、破壊後の抵抗値(の最大値(以下、同じ))を、従来構成のものに比較して顕著に低減することができることが分かった。
すなわち、特許文献1の記載とは異なり、ドレイン側のコンタクト孔のみの長さLdを大きくすることによって、破壊後の抵抗値の低減が実現できることが明らかになった。この結果は、フィラメントを形成するAlがドレイン側のコンタクト孔から供給されており、ドレイン側のコンタクト孔の長さLdを大きくして面積Sdを増大させることにより、コンタクト孔内のAlCu量が増大し、フィラメント形成に必要なAlを十分供給できるようになったためであると理解することができる。
しかし、ドレイン側のコンタクトの幅Wd1を大きくすることによって面積を増大させた場合には、図7に示されたように、面積Sdはさらに大きくなったにもかかわらず、破壊後の抵抗値は増大した(タイプ2とタイプ3との比較)。破壊の際には、ドレイン側のコンタクト孔の、ソース側のコンタクト孔に対向する先端部分近傍において局所的な電界集中が発生し、バリアメタルが破壊され、Alの侵入が開始されるものと考えられる。従って、ドレイン側のコンタクト孔の幅Wd1(=Wd2)が大きくなると、この電界集中が起きにくくなり、安定なフィラメント形成が起きにくくなるものと考えられる。
すなわち、ドレイン側のコンタクト孔の幅Wd1を大きくせず、幅Wd1に比較して長さLdを大きくすることによって面積を大きくすることが好ましい。具体的には、ドレイン側のコンタクト孔の長さLdを幅Wd1の2倍程度以上(Wd1/Ld≦0.5)とすれば、図6のグラフから分かるように、破壊後の抵抗値を2000Ω以下(従来の1/2未満)にすることができる。
また、プログラム時に、ドレイン側のコンタクト孔の、ソース側のコンタクト孔に対向する先端部分において電界集中が起きやすくするためには、ドレイン側のコンタクト孔の幅Wd1はなるべく小さくすることが好ましい。しかし、むやみに小さくしても面積Sdの確保のために長さLdを大きくすることが必要になるため、アンチヒューズ素子の面積増大につながる。
そこで、ドレイン側のコンタクト孔の、ソース側のコンタクト孔と対向する先端部分の幅Wd2を、他の部分の幅に比較して狭くした場合について検討し、図4および図6に示されたように、破壊後の抵抗値をさらに低減できる結果を得た(タイプ2と、タイプ1との比較)。タイプ1では、ドレイン側のコンタクト孔の、ソース側のコンタクト孔に対向する先端部分における電界集中が起こりやすくなり、フィラメントの形成がさらに安定化するためと考えられる。
これに対し、図4に示されたように、ドレイン側のコンタクト孔の先端部分の幅Wd2に加えて、ソース側のコンタクト孔の、ドレイン側コンタクト孔と対向する先端部分の幅Ws2も狭くした場合には、むしろ破壊後の抵抗値は増大した(タイプ1とタイプ4との比較)。従って、ドレイン側のコンタクト孔のみにおいて、先端部分の幅Wd2を狭くすることが好ましい。
既に述べたように、破壊後の抵抗値を低減するためにソース側のコンタクト孔の長さLsを大きくする必要はない。通常は、正方形に形成する。何らかの理由によって長方形、もしくはその他の形状にすることも可能であるが、アンチヒューズ素子の長さ方向の寸法を大きくしないためには、せいぜい、長さを幅の1.5倍以下、もしくはさらに1.2倍以下にすることが好ましい。
もしくは、ドレイン側のコンタクト孔のみの長さLdを大きくすることにより、アンチヒューズ素子全体の寸法の増大を避けながら、破壊後の抵抗値を低減するという観点からは、ソース側のコンタクト孔の具体的な形状にかかわらず、ソース側のコンタクト孔の面積を、ドレイン側のコンタクト孔の面積Sdの1/2以下にすることが好ましい。
アンチヒューズ素子のコンタクト孔の幅は、実用的には、他の素子のコンタクト孔にWプラグを埋め込む際に、タングステン膜をエッチバックして底面のバリアメタルを確実に露出させるために必要な最低の幅を確保する必要がある。必須ではないが、通常は、ドレイン側、ソース側ともに、この観点で設定した同一の幅にする。この場合、前述の1/2の面積比は、1/2の長さの比に相当する。
また、LOCOS分離型のアンチヒューズ素子の場合、2つのn+拡散領域間の間隔(分離領域の幅)は一定である。すなわち、互いに対向する辺に突起等は設けられない。MOSFET型の場合も、同様に、2つのn+拡散領域間の間隔(ゲート電極の幅)は同一である。例えば、分離領域の幅、もしくは、ゲート電極の幅を、デザインルールによってそれぞれに許される最小の寸法で一定にする。これによって、アンチヒューズ素子の寸法を最小にしながら、書き込み時以外の通常の動作電圧の範囲内においては確実に非導通状態を保つことができる。
次に、本発明のアンチヒューズ素子の適用例として、記憶回路を例に挙げて説明する。
図8は、本発明のアンチヒューズ素子を利用した1ビットの記憶回路の構成を表す概略図である。同図に示す記憶回路32は、半導体装置の内部に搭載されるもので、アンチヒューズ素子34と、その書込回路36と、インバータ38とを備えている。
アンチヒューズ素子34は、図1に示す構成のもので、インバータ38の入力端子とグランドGNDとの間に接続されている。
書込回路36は、アンチヒューズ素子34に書き込み(プログラム)を行う際の破壊電圧および破壊電流を供給するもので、P型MOSトランジスタ(以下、PMOSという)40と、抵抗素子42とを備えている。PMOS40のソースは書き込み用電源Vdd1に接続され、そのドレインは、インバータ38の入力端子に接続されている。また、PMOS40のゲートには選択信号Aが入力され、抵抗素子42は、電源Vdd1と選択信号Aとの間に接続されている。
インバータ38は、PMOS44と、N型MOSトランジスタ(以下、NMOSという)46と、抵抗素子50とを備えている。PMOS44およびNMOS46のソースは、それぞれ電源VDDおよびグランドGNDに接続されている。また、PMOS44およびNMOS46のドレインは出力端子OUTに接続され、そのゲートは、インバータ38の入力端子に接続されている。抵抗素子50は、電源VDDとインバータ38の入力端子との間に接続されている。
記憶回路32において、アンチヒューズ素子34の非導通状態における抵抗値はほぼ無限大である。アンチヒューズ素子34がプログラムされる前の初期状態において、インバータ38の入力端子は、抵抗素子50の抵抗値とアンチヒューズ素子34の抵抗値(無限大)との抵抗分割により決定される電圧レベルのハイレベルとなり、その出力端子OUTは、グランドGNDの電圧レベルのローレベルとなる。
アンチヒューズ素子34をプログラムする場合、選択信号Aがローレベルとされ、PMOS40はオン状態となる。この状態において、電源Vdd1から、アンチヒューズ素子34のプログラムに必要となる破壊電圧および破壊電流が供給されると、アンチヒューズ素子34がプログラムされて導通状態となる。抵抗素子50の抵抗値>>アンチヒューズ素子34の導通状態における抵抗値である。従って、インバータ38の入力端子はローレベルとなり、その出力端子OUTは、電源VDDの電圧レベルのハイレベルとなる。
なお、電源Vdd1はパッド電極等であって、例えば複数の記憶回路がある場合には、複数の記憶回路で共通に使用され、複数の記憶回路の各々は、半導体装置内部で生成される、各々の記録回路を選択するための選択信号Aによって選択される。本実施形態の記憶回路の場合、選択信号Aがローレベルの記憶回路のみが選択され、電源Vdd1から供給される破壊電圧および破壊電流が、選択されたオン状態のPMOS40を介してアンチヒューズ素子に供給される。
次に、複数のアンチヒューズ素子を有する半導体装置の書込回路の構成について説明する。
図1の構成のアンチヒューズ素子では、複数のアンチヒューズ素子を使用した回路を構成する場合、図9に示すように、書込回路として、各アンチヒューズ素子52a、52b、…にそれぞれ1つずつPMOSドライバ54a、54b、…が必要となる。アンチヒューズ素子をプログラムするためには100mA程度の電流が必要となるため、PMOSドライバの面積は大きくなる。また、面積の大きいPMOSドライバが各アンチヒューズ素子に1つずつ必要となるため、アンチヒューズ素子の個数が増大するに従って、その回路面積も大きくなる。
ところで、図9に示す書込回路の代わりに、図10に示す書込回路を用いて各アンチヒューズ素子をプログラムすることができれば、アンチヒューズ素子を用いた回路の面積を縮小することができる。図10に示す書込回路では、1個のPMOSドライバ60を複数のアンチヒューズ素子58a、58b、…で共有し、PMOSドライバ60の代わりにNMOS62a、62b、…をスイッチとして使用する。すなわち、NMOSスイッチにより、プログラムしようとするアンチヒューズ素子を選択できる。
また、図11に示すように、図10に示す回路を複数行備え、アンチヒューズ素子をマトリクス状に配置することにより、さらに多くのアンチヒューズ素子からなる回路を構成することもできる。同図において、Dは図10に示すPMOSドライバを表し、Fはアンチヒューズ素子およびNMOSスイッチからなる回路を表す。この回路では、プログラムしようとするアンチヒューズ素子に対応するPMOSドライバおよびNMOSスイッチをオンにすることにより、択一的に1つのアンチヒューズ素子を選択できる。
ここで、NMOS、PMOSで同じ電流を得るためのデバイス面積を考えると、NMOSはPMOSの約半分の面積となる。このため、図10に示す書込回路は、図9に示す書込回路よりも面積の縮小が可能となる。
しかし、図1に示す構成のアンチヒューズ素子では、図10に示す書込回路を使用することができない。これは、図1に示すアンチヒューズ素子が基板と絶縁されていないからである。図1に示すアンチヒューズ素子は、図12に概略構成を示すように、アンチヒューズ素子を形成するN+拡散層18a、18bが、P型Si基板12の表面層に形成されたPウェル14内に形成されている。Pウェル14は、P+拡散層56に接続された基板コンタクトを介してグランド電位に接続されている。
このため、2つのN+拡散領域18a、18bの間を接続する導電性フィラメントが形成され、アンチヒューズ素子が導通状態になると、2つのN+拡散領域18a、18はPウェル14を通じてSi基板12およびグランド電位に接続された状態になる。アンチヒューズ素子52a、52bを形成するために共通に、もしくは個別に設けられたPウェル14の基板コンタクトを省略すれば、N+拡散層18a、18bが同一のPウェル14に設けられた基板コンタクトを通じてグランド電位に接続された状態は避けることができる。しかしこの場合にも、同一のP型Si基板12の表面に形成される他のPウェル14、例えばNMOSを形成するためのPウェル14には、基板コンタクトを設ける必要がある。従って、導通状態になったアンチヒューズ素子の2つのN+拡散領域18a、18bは、P型Si基板12および他のPウェル14を通じてグランドに接続された状態になる。
このため、例えば図13に等価回路を示すように、1つのアンチヒューズ素子(図13では左端のアンチヒューズ素子)をプログラムすると、基板抵抗64が見える状態になる。図13の回路では、左端から2つ目のアンチヒューズ素子側の回路と比較して、左端のアンチヒューズ素子側の回路の抵抗が低いため、PMOSドライバ60からの電流は左端のアンチヒューズ素子側の回路に流れてしまう。従って、1つのアンチヒューズ素子をプログラムした後は、他のアンチヒューズ素子をプログラムすることができない。このように、図1に示す構成のアンチヒューズ素子では、図10に示す書込回路を使用することができない。
なお、この問題は、図1に示す構成のLOCOS分離型のアンチヒューズ素子に限らず、MOSFET型やPNダイオード型などの他の形式のアンチヒューズ素子であっても、P基板表面のPウェル内に形成すれば、同様の問題が発生する。
この問題を解決するため、図14に示すように、図1に示す構成のアンチヒューズ素子において、素子分離をしているLOCOS酸化膜16下に、アンチヒューズ素子の周囲を囲むNウェル66を追加するとともに、Pウェル14内の下部に深いN−層68を追加する。また、アンチヒューズ素子のあるPウェル14内にはP+拡散層の基板コンタクトをとらない。これにより、アンチヒューズ素子と他のP+拡散層の基板コンタクトとを電気的に絶縁する。
もしくは、プログラム時にアンチヒューズ素子を形成したPウェル14の電位を固定したい場合は、アンチヒューズ素子を形成したPウェル14内にP+拡散層を設け、このP+拡散層とNMOSスイッチのドレイン(アンチヒューズ素子のソース)とを接続すればよい。また、プログラム時にアンチヒューズ素子の周囲のNウェル66(と深いN−層68)の電位を固定するには、Nウェル66とアンチヒューズ素子のソースとを接続すればよい。
また、上記問題を解決する他の形態として、図15に示すように、P基板12中のNウェル70の中に浅いPウェル72を作り、このPウェル72の中にアンチヒューズ素子を作成する。また、アンチヒューズ素子を形成する浅いPウェル72内には、P+拡散層の基板コンタクトを取らない。これにより、アンチヒューズ素子と他のP+拡散層の基板コンタクトとを電気的に絶縁する。
もしくは、プログラム時に浅いPウェル72の電位を固定したい場合は、浅いPウェル72内にP+拡散層を設け、このP+拡散層とNMOSスイッチのドレイン(アンチヒューズ素子のソース)とを接続すればよい。また、プログラム時にアンチヒューズ素子の周囲のNウェル70の電位を固定するには、Nウェル70とアンチヒューズ素子のソースとを接続すればよい。
また、上記問題を解決する他の形態として、図16に示すように、イオンインプラにより深いNウェル74を作り、この深いNウェル74の中にアンチヒューズ素子のPウェル76を作成する。また、アンチヒューズ素子を形成するPウェル76内には、P+拡散層の基板コンタクトを取らない。これにより、アンチヒューズ素子と他のP+拡散層の基板コンタクトとを電気的に絶縁する。
もしくは、アンチヒューズ素子を形成するPウェル76内にP+拡散層を設け、このP+拡散層とNMOSスイッチのドレイン(アンチヒューズ素子のソース)とを接続すればよい。また、プログラム時にアンチヒューズ素子の周囲の深いNウェル74の電位を固定するには、深いNウェル74とアンチヒューズ素子のソースとを接続すればよい。
上記3つの形態のアンチヒューズ素子は、いずれもアンチヒューズ素子と基板との間が絶縁されている。このため、これらの形態のアンチヒューズ素子を複数用いて構成された回路であれば、図10に示す書込回路を使用して、各アンチヒューズ素子をプログラムすることができる。図10に示す回路では、図14〜16に示されたウェル構造を形成するためにアンチヒューズ素子自体の寸法は多少大きくなるが、PMOSドライバが1個で済むため、例えば10個のアンチヒューズ素子を設けた場合には、図9の回路と比較して30%程度の面積縮小が実現できる。
本発明は、基本的に以上のようなものである。
以上、本発明のアンチヒューズ素子について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
(a)および(b)は、本発明のアンチヒューズ素子の構成を表す一実施形態のレイアウト断面図およびその上面図である。 (a)〜(c)は、図1に示すアンチヒューズ素子のプログラム時の状態を表すレイアウト断面図およびその上面図である。 (a)〜(e)は、アンチヒューズ素子の各種構成を表すレイアウト上面図である。 アンチヒューズ素子のドレイン側のコンタクト孔の先端部分の幅Wd2と破壊後抵抗の最大値との関係を表すグラフである。 アンチヒューズ素子のドレイン側のコンタクト孔の長さLdと破壊後抵抗の最大値との関係を表すグラフである。 アンチヒューズ素子のドレイン側のコンタクト孔の先端部分の幅Wd2/長さLdと破壊後抵抗の最大値との関係を表すグラフである。 アンチヒューズ素子のドレイン側のコンタクト孔の面積Sdと破壊後抵抗の最大値との関係を表すグラフである。 本発明のアンチヒューズ素子を利用した1ビットの記憶回路の構成を表す概略図である。 本発明のアンチヒューズ素子を複数用いた回路の構成を表す概略図である。 本発明のアンチヒューズ素子を複数用いた回路の構成を表す概略図である。 本発明のアンチヒューズ素子を複数用いた回路の構成を表す概略図である。 図1に示すアンチヒューズ素子の概略構成を表すレイアウト断面図である。 図10に示す回路において、左端のアンチヒューズ素子をプログラムした後の状態を表す等価回路である。 本発明のアンチヒューズ素子の構成を表す別の実施形態のレイアウト断面図である。 本発明のアンチヒューズ素子の構成を表す別の実施形態のレイアウト断面図である。 本発明のアンチヒューズ素子の構成を表す別の実施形態のレイアウト断面図である。
符号の説明
10、34、52a、52b、58a、58b アンチヒューズ素子
12 半導体基板
14、72、76 Pウェル
16 LOCOS酸化膜
18a、18b、56 拡散層
20 層間絶縁膜
22a、22b コンタクト孔
24 バリアメタル層
26 サイドウォール
28a、28b 配線
30 導電性フィラメント
32 記憶回路
36 書込回路
38 インバータ
40、44、54a、54b、60 P型MOSトランジスタ
42、50 抵抗素子
46、62a、62b N型MOSトランジスタ
64 基板抵抗
66、70、74 Nウェル
68 N−層

Claims (5)

  1. 半導体基板表面層内に形成したPN接合と、該半導体基板表面を覆う絶縁膜に形成されたコンタクト孔の底面において前記半導体基板表面に接続される2つの電極とを有し、該2つの電極から逆方向電圧を印加して前記PN接合を降伏させ、逆方向電流を流すことによって前記電極の金属を前記半導体基板表面層に侵入させて前記PN接合を破壊し、恒久的な導通状態に遷移させるアンチヒューズ素子であって、
    前記2つの電極のコンタクト孔のそれぞれの底面は、概略、該2つのコンタクト孔間を結ぶ線に平行な2辺と、該2辺に垂直な2辺とからなる四角形の形状を有し、該平行な方向の寸法を長さ、垂直な方向の寸法を幅とし、
    前記逆方向電圧印加時に相対的に正の電圧を印加する第1の電極のコンタクト孔の長さは幅の2倍以上であり、かつ、相対的に負の電圧を印加する第2の電極のコンタクト孔の底面の面積は前記第1のコンタクト孔の底面の面積の1/2以下であることを特徴とするアンチヒューズ素子。
  2. 前記第1および第2のコンタクト孔の互いに対向する先端部分において、前記第1のコンタクト孔のみが、他の部分に比較して幅が狭まった形状を有することを特徴とする請求項1に記載のアンチヒューズ素子。
  3. 前記コンタクト孔の底面および側面には、前記電極の金属の移動を阻害するバリアメタル層が形成されており、前記電極は前記半導体基板表面に該バリアメタル層を介して接続されていることを特徴とする請求項1または2記載のアンチヒューズ素子。
  4. 第1導電型の前記半導体基板表面層内に絶縁材料が埋め込まれた分離領域と、該分離領域の両側の前記半導体基板表面層内に形成された第2導電型の拡散層とからなり、該両側に形成された拡散層のそれぞれに前記電極が接続されたことを特徴とする請求項1ないし3のいずれかに記載のアンチヒューズ素子。
  5. 第1導電型の前記半導体基板表面上に、ゲート絶縁膜を介してゲート電極が形成されるとともに、該ゲート電極の両側の前記半導体基板表面層内に形成された第2導電型の拡散層とからなり、該両側に形成された拡散層のそれぞれに前記電極が接続されたことを特徴とする請求項1ないし3のいずれかに記載のアンチヒューズ素子。
JP2004084572A 2004-03-23 2004-03-23 アンチヒューズ素子 Expired - Fee Related JP4615884B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084572A JP4615884B2 (ja) 2004-03-23 2004-03-23 アンチヒューズ素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084572A JP4615884B2 (ja) 2004-03-23 2004-03-23 アンチヒューズ素子

Publications (2)

Publication Number Publication Date
JP2005276907A JP2005276907A (ja) 2005-10-06
JP4615884B2 true JP4615884B2 (ja) 2011-01-19

Family

ID=35176274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084572A Expired - Fee Related JP4615884B2 (ja) 2004-03-23 2004-03-23 アンチヒューズ素子

Country Status (1)

Country Link
JP (1) JP4615884B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9633943B2 (en) 2015-08-14 2017-04-25 International Business Machines Corporation Method and structure for forming on-chip anti-fuse with reduced breakdown voltage

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115842A (ja) * 2005-10-19 2007-05-10 Seiko Npc Corp 半導体記憶装置
JP5283975B2 (ja) * 2007-06-07 2013-09-04 ルネサスエレクトロニクス株式会社 半導体記憶装置ならびにそのデータ書込方法およびデータ読出方法
WO2016117056A1 (ja) * 2015-01-21 2016-07-28 新電元工業株式会社 半導体装置、および半導体装置の製造方法
JP2021149996A (ja) 2020-03-23 2021-09-27 株式会社東芝 半導体記憶装置、及び半導体記憶装置の制御方法
US20240203873A1 (en) * 2022-12-14 2024-06-20 Globalfoundries Singapore Pte. Ltd. Antifuse devices and methods of making thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294067A (ja) * 1989-03-31 1990-12-05 Texas Instr Inc <Ti> 電界効果トランジスタの選択的プログラミング方法
JPH06151897A (ja) * 1992-11-13 1994-05-31 Sony Corp ツェナーザップダイオード及びその作製方法
JPH10229204A (ja) * 1997-02-17 1998-08-25 Sony Corp 半導体装置
JP2002319674A (ja) * 2001-02-27 2002-10-31 Internatl Business Mach Corp <Ibm> 二元的な厚さの誘電体層を有する半導体デバイスおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294067A (ja) * 1989-03-31 1990-12-05 Texas Instr Inc <Ti> 電界効果トランジスタの選択的プログラミング方法
JPH06151897A (ja) * 1992-11-13 1994-05-31 Sony Corp ツェナーザップダイオード及びその作製方法
JPH10229204A (ja) * 1997-02-17 1998-08-25 Sony Corp 半導体装置
JP2002319674A (ja) * 2001-02-27 2002-10-31 Internatl Business Mach Corp <Ibm> 二元的な厚さの誘電体層を有する半導体デバイスおよびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9633943B2 (en) 2015-08-14 2017-04-25 International Business Machines Corporation Method and structure for forming on-chip anti-fuse with reduced breakdown voltage
US10083907B2 (en) 2015-08-14 2018-09-25 International Business Machines Corporation Method and structure for forming on-chip anti-fuse with reduced breakdown voltage

Also Published As

Publication number Publication date
JP2005276907A (ja) 2005-10-06

Similar Documents

Publication Publication Date Title
KR100310573B1 (ko) 비휘발성 메모리 셀 및 그 어레이
US8592942B2 (en) Non-volatile semiconductor memory device
KR100761564B1 (ko) 반도체 기억 장치
JP4981661B2 (ja) 分割チャネルアンチヒューズアレイ構造
US7833860B2 (en) Recessed gate dielectric antifuse
US20090115021A1 (en) Antifuse element in which more than two values of information can be written
JP5503971B2 (ja) 半導体装置
TW201803079A (zh) 半導體裝置
JP2012079942A (ja) 半導体装置
US7126204B2 (en) Integrated semiconductor circuit with an electrically programmable switching element
JP2008288358A (ja) Otpメモリセル、otpメモリ及びotpメモリセルの製造方法
JP4615884B2 (ja) アンチヒューズ素子
JP2007005580A (ja) メモリ
US20050218475A1 (en) Low power fuse structure and method for making the same
US7105900B2 (en) Reduced floating body effect static random access memory cells and methods for fabricating the same
US20080029826A1 (en) Semicondutor memory device and method of manufacturing the same
US7087974B2 (en) Semiconductor integrated circuit including anti-fuse and method for manufacturing the same
US20230096886A1 (en) Semiconductor integrated circuit device and method of providing bias power to the same
JP2006049784A (ja) 半導体記憶装置及びその製造方法
JP6329882B2 (ja) アンチヒューズメモリおよび半導体記憶装置
WO2014203813A1 (ja) 半導体装置
JP2002231907A (ja) 半導体記憶装置及びその製造方法
KR20000051373A (ko) 메모리 칩 용 전기적 퓨즈

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

R150 Certificate of patent or registration of utility model

Ref document number: 4615884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees