JP2021116475A - 炭酸リチウムの精製方法 - Google Patents

炭酸リチウムの精製方法 Download PDF

Info

Publication number
JP2021116475A
JP2021116475A JP2021000826A JP2021000826A JP2021116475A JP 2021116475 A JP2021116475 A JP 2021116475A JP 2021000826 A JP2021000826 A JP 2021000826A JP 2021000826 A JP2021000826 A JP 2021000826A JP 2021116475 A JP2021116475 A JP 2021116475A
Authority
JP
Japan
Prior art keywords
lithium
lithium carbonate
purifying
carbonate
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021000826A
Other languages
English (en)
Other versions
JP7442829B2 (ja
Inventor
幸雄 佐久間
Yukio Sakuma
幸雄 佐久間
順 中澤
Jun Nakazawa
順 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asaka Riken Co Ltd
Original Assignee
Asaka Riken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asaka Riken Co Ltd filed Critical Asaka Riken Co Ltd
Priority to JP2021000826A priority Critical patent/JP7442829B2/ja
Publication of JP2021116475A publication Critical patent/JP2021116475A/ja
Application granted granted Critical
Publication of JP7442829B2 publication Critical patent/JP7442829B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

【課題】粗炭酸リチウムから、精製された炭酸リチウムを効率よく回収することができる炭酸リチウムの精製方法を提供する。【解決手段】炭酸リチウムの精製方法は、アルミニウム塩溶液を添加した後、液性をpH4〜9の範囲に調整し、析出した水酸化アルミニウムを濾別してリチウムイオンと該アルミニウム塩の陰イオンとの塩からなる精製リチウム塩溶液を得る工程と、該精製リチウム塩溶液にアルカリ金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備える。【選択図】 なし

Description

本発明は、炭酸リチウムの精製方法に関する。
近年、リチウムイオン電池の普及に伴い、主として廃リチウムイオン電池からリチウム等の有価金属を回収する方法が種々提案されている。
例えば、従来、リチウムイオン電池からリチウムを回収する方法として、廃リチウムイオン電池を焙焼して、該廃リチウムイオン電池に正極活物質として含まれるリチウム化合物を還元して炭酸リチウムの形態とした後、該廃リチウムイオン電池を粉砕し、得られた粉末を水又は酸性溶液に溶解し、得られた溶液に炭酸イオンを供給してリチウムを炭酸水素リチウムとして溶解させた後、加熱して脱炭酸することにより析出する炭酸リチウムを回収する方法が知られている。
尚、前記廃リチウムイオン電池としては、電池製品としての寿命の消尽した使用済みのリチウムイオン電池、製造不良等の原因により廃棄されたリチウムイオン電池等が用いられる。
ところで、一般に、リチウムイオン電池は、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されており、該セパレータ及び電解液は有機化合物により構成されている。この結果、前記焙焼の際に廃リチウムイオン電池を急激に高温に加熱すると、前記筐体中で前記セパレータ及び電解液が気化し、該廃リチウムイオン電池が爆発(破裂)する虞があるという問題がある。
そこで、従来、前記廃リチウム電池を焙焼する際に、まず、100〜250℃の温度に加熱して第1の焙焼を行い、その後さらに300〜650℃の温度に加熱して第2の焙焼を行うことにより該廃リチウムイオン電池に含まれるリチウムを炭酸リチウムの形態とすることが知られている(例えば、特許文献1参照)。このようにするときには、前記第1の焙焼でセパレータ及び電解液を構成する有機化合物が分解されるので、前記第2の焙焼において該廃リチウムイオン電池の爆発(破裂)を避けることができる。
しかし、前記特許文献1に記載の方法では、焙焼を2段階で行うため、処理が繁雑になるという問題がある。
本出願人は、前記問題を解決するために、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されたリチウムイオン電池からリチウムを回収する方法において、該筐体に塩水中で開口部を形成する工程と、開口部が形成された該筐体を、不活性雰囲気下、650〜720℃の範囲の温度に所定時間維持して焙焼する工程と、前記範囲の温度で焙焼されたリチウムイオン電池を破砕し、篩分けすることにより粗炭酸リチウムを得る工程と、該粗炭酸リチウムに、難溶性炭酸塩を生成し得る金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備えるリチウムイオン電池からのリチウムの回収方法を提案している(特願2019−124215号参照)。
しかしながら、前記リチウムイオン電池からのリチウムの回収方法は、粗炭酸リチウムから、精製された炭酸リチウムを効率よく回収するために、さらなる改良が望まれる。
特開2012−229481号公報
本発明は、かかる事情に鑑み、粗炭酸リチウムから、精製された炭酸リチウムを効率よく回収することができる炭酸リチウムの精製方法を提供することを目的とする。
かかる目的を達成するために、本発明の炭酸リチウムの精製方法の第1の形態は、炭酸リチウムの精製方法であって、粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4〜9の範囲に調整し、析出した水酸化アルミニウムを濾別してリチウムイオンと該アルミニウム塩の陰イオンとの塩からなる精製リチウム塩溶液を得る工程と、該精製リチウム塩溶液にアルカリ金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする。
本発明の炭酸リチウムの精製方法の第1の形態によれば、まず、前記粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4〜9の範囲に調整する。このようにすると、アルミニウムは両性金属であるので、前記pHの範囲では難溶性の水酸化アルミニウムが析出する。このとき、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物が前記水酸化アルミニウムに取り込まれる形で、同時に析出する。
そこで、析出した水酸化アルミニウムを濾別すると、主としてリチウムイオンと前記アルミニウム塩の陰イオンとの塩からなるリチウム塩溶液が得られるが、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物は前記水酸化アルミニウムに取り込まれているので、結果としてリン、フッ素等の不純物の含有量が低減された精製リチウム塩溶液を得ることができる。
そして、本発明の炭酸リチウムの精製方法の第1の形態によれば、前記精製リチウム塩溶液に、アルカリ金属水酸化物溶液を添加することにより、液性がアルカリ性になるので、リン、フッ素等の不純物の含有量が低減された水酸化リチウム溶液を得ることができる。
そこで、前記水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が著しく低減されて精製された高純度の炭酸リチウムを効率よく回収することができる。
また、本発明の炭酸リチウムの精製方法の第1の形態は、前記粗炭酸リチウムにアルミニウム塩溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることが好ましい。このようにするときには、前記鉱酸の塩としての粗リチウム塩の溶液を得ることができ、前記粗炭酸リチウムからのリチウムの溶出量を増加させることができるので、前記粗炭酸リチウムに代えて、前記粗リチウム塩溶液を用いることにより、リン、フッ素等の不純物の含有量が低減されて精製された高純度の炭酸リチウムの収量を増加させることができる。
また、本発明の炭酸リチウムの精製方法の第2の形態は、炭酸リチウムの精製方法であって、粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4〜9の範囲に調整し、析出した水酸化アルミニウムを濾別して精製リチウム塩溶液を得る工程と、該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする。
本発明の炭酸リチウムの精製方法の第2の形態によれば、本発明の炭酸リチウムの精製方法の第1の形態と同一にして精製リチウム塩溶液を得た後、該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収する。前記精製リチウム塩溶液は前述のように、リン、フッ素等の不純物の含有量が低減されているので、該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が著しく低減されて精製された高純度の炭酸リチウムを効率よく回収することができる。
本発明の炭酸リチウムの精製方法の第2の形態は、本発明の炭酸リチウムの精製方法の第1の形態と同様に、前記粗炭酸リチウムにアルミニウム塩溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることが好ましく、このようにすることにより、リン、フッ素等の不純物の含有量が低減されて精製された高純度の炭酸リチウムの収量を増加させることができる。
本発明の炭酸リチウムの精製方法の各形態において、前記粗炭酸リチウムとしては、例えば、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されたリチウムイオン電池の該筐体に塩水中で開口部を形成した後、開口部が形成された該筐体を、不活性雰囲気下、650〜720℃の範囲の温度に所定時間維持して焙焼されたリチウムイオン電池を破砕し、篩分けすることにより得られたものを用いることができる。
前記リチウムイオン電池の電解液は、例えば、六フッ化リン酸リチウム(LiPF)等の化合物を含有するので、前述のようにして得られた前記粗炭酸リチウムは、前記電解液由来のリン、フッ素等の不純物を含有しており、本発明の炭酸リチウムの精製方法の各形態による精製に適している。
次に、本発明の実施の形態についてさらに詳しく説明する。
本実施形態の炭酸リチウムの精製方法に用いる粗炭酸リチウムは、例えば、リチウムイオン電池の筐体に開口部を形成し、開口部が形成された該筐体を、不活性雰囲気下、650〜720℃の範囲の温度に所定時間維持して焙焼した後、焙焼されたリチウムイオン電池を破砕し、篩分けすることにより得ることができる。
前記リチウムイオン電池は、電池製品としての寿命の消尽した使用済みのリチウムイオン電池、製造不良等の原因により廃棄されたリチウムイオン電池等であってもよく、未使用のリチウムイオン電池であってもよい。
前記リチウムイオン電池は、一般に、正極と負極とがセパレータを介して重ね合わされた状態で、電解液と共に鉄やアルミニウム等からなる金属製筐体に収容されている。前記正極はアルミニウム箔等からなる正極電極板に正極活物質が塗布されており、前記負極は銅箔等の負極電極板に負極活物質が塗布されている。
前記正極活物質は、例えば、前記リチウム化合物として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、アルミン酸リチウム等のリチウムと他の金属との複合酸化物を含んでおり、前記負極活物質は、例えば、炭素を含んでいる。また、前記電解液は、例えば、六フッ化リン酸リチウム等の電解質が有機溶媒に溶解されている。
前記リチウムイオン電池の筐体に開口部を形成する操作は、該筐体に機械的に破孔を形成することにより行ってもよく、該筐体の少なくとも一部を分解することにより行ってもよい。前記筐体に機械的に破孔を形成する操作は、例えば、所定の間隔を存して平行に配置される一方、互いに反対方向に回転する二軸のギヤを備えるギアクラッシャー等の装置を用いて行うことができる。
また、前記筐体に前記開口部が形成された前記リチウムイオン電池は、例えば塩水中に所定時間浸漬することにより、放電することが好ましい。前記リチウムイオン電池を放電しておくことにより、後工程における爆発(破裂)を回避することができる。
尚、本実施形態では、前記筐体に機械的に破孔を形成する操作を塩水中で行うことにより、開口部(破孔)の形成と放電とを同時に行うことができるので好ましい。
前記開口部が形成された筐体の焙焼は、該筐体を不活性雰囲気下、600℃以上、好ましくは650〜720℃の範囲の温度に加熱することにより行うことができる。このようにすると、前記筐体に収容されているセパレータ及び電解液を構成する有機化合物が分解されて気化するが、本実施形態では、該筐体に開口部が形成されているので、気化した有機化合物は該開口部から該筐体外に放出され、爆発(破裂)することがない。また、前記焙焼を不活性雰囲気下で行うことにより、前記正極活物質に含まれるリチウム化合物が還元されて炭酸リチウムが生成する。
次に、焙焼されたリチウムイオン電池を粉砕し、篩分けすることにより、前記炭酸リチウムと、前記筐体、正極電極板、負極電極板、セパレータ等とが分離され、篩下に前記炭酸リチウムを粗炭酸リチウムとして得ることができる。前記リチウムイオン電池の粉砕は、例えば、二軸式破砕機等を用いて行うことができる。また、前記篩い分けは、例えば目開き0.5〜2mmの範囲の振動篩機を用いて行うことができる。
前記粗炭酸リチウムは、前記電解液由来のフッ素やリン酸の化合物の他、前記複合酸化物に由来するニッケル、コバルト等の金属を含んでいる。
次に、本実施形態の炭酸リチウムの精製方法の第1の態様について説明する。
本実施形態の炭酸リチウムの精製方法の第1の態様では、まず、前記のようにして得られた粗炭酸リチウムに、アルミニウム塩水溶液を添加した後、液性をpH4〜9の範囲に調整する。前記アルミニウム塩としては、塩化アルミニウム、硫酸アルミニウム、アルミン酸のアルカリ金属塩等を挙げることができる。
前記pHの調整は、酸又はアルカリを添加することにより行うことができる。前記酸としては、例えば、塩酸、硫酸、硝酸等を挙げることができ、前記アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム等を挙げることができる。
このようにすると、アルミニウムは両性金属であるので、前記pHの範囲では難溶性の水酸化アルミニウムが析出する。このとき、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物が前記水酸化アルミニウムに取り込まれる形で、同時に析出する。
そこで、析出した水酸化アルミニウムを濾別すると、主としてリチウムイオンと前記アルミニウム塩の陰イオンとの塩からなるリチウム塩水溶液が得られるが、前記粗炭酸リチウムに含有されるリン、フッ素等の不純物は前記水酸化アルミニウムに取り込まれているので、結果としてリン、フッ素等の不純物の含有量が低減された精製リチウム塩溶液を得ることができる。前記リチウム塩は、例えば、前記アルミニウム塩が塩化アルミニウムである場合には、塩化リチウムが生成する。
本実施形態の炭酸リチウムの精製方法の第1の態様では、次に、前記精製リチウム塩溶液に、アルカリ金属水酸化物溶液を添加することにより、液性がアルカリ性になるので、水溶液中に水酸化リチウムが生成する。前記アルカリ金属水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム等を挙げることができ、リン、フッ素等の不純物の含有量が低減された水酸化リチウム水溶液を得ることができる。
本実施形態の炭酸リチウムの精製方法の第1の態様では、次に、前記水酸化リチウム水溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が著しく低減されて精製された高純度の炭酸リチウムを効率よく回収することができる。
また、本実施形態の炭酸リチウムの精製方法の第1の態様では、前記粗炭酸リチウムに前記アルミニウム塩水溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、塩酸等の鉱酸を添加してもよい。このようにすることにより、前記鉱酸として塩酸を用いる場合には、前記鉱酸の塩としての粗塩化リチウム水溶液を得ることができ、前記粗炭酸リチウムからのリチウムの溶出量を増加させることができる。
本実施形態の炭酸リチウムの精製方法の第1の態様では、前記粗炭酸リチウムに代えて、前記粗塩化リチウム水溶液を用いることにより、リン、フッ素等の不純物の含有量が低減されて精製された高純度の炭酸リチウムの収量を増加させることができる。
次に、本実施形態の炭酸リチウムの精製方法の第2の態様について説明する。
本実施形態の炭酸リチウムの精製方法の第2の態様では、本実施形態の炭酸リチウムの精製方法の第1の形態と同一にして精製リチウム塩溶液を得た後、該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収する。前記炭酸塩としては、例えば、炭酸ナトリウム等のアルカリ金属炭酸塩を挙げることができる。
前記精製リチウム塩溶液は前述のように、リン、フッ素等の不純物の含有量が低減されているので、該精製リチウム塩溶液に前記炭酸塩を添加し、析出した炭酸リチウムを回収することにより、リン、フッ素等の不純物の含有量が著しく低減されて精製された高純度の炭酸リチウムを効率よく回収することができる。

Claims (5)

  1. 炭酸リチウムの精製方法であって、
    粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4〜9の範囲に調整し、析出した水酸化アルミニウムを濾別してリチウムイオンと該アルミニウム塩の陰イオンとの塩からなる精製リチウム塩溶液を得る工程と、
    該精製リチウム塩溶液にアルカリ金属水酸化物溶液を添加し、水酸化リチウム溶液を得る工程と、
    該水酸化リチウム溶液に炭酸ガスを供給し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする炭酸リチウムの精製方法。
  2. 請求項1記載の炭酸リチウムの精製方法において、前記粗炭酸リチウムにアルミニウム塩溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることを特徴とする炭酸リチウムの精製方法。
  3. 炭酸リチウムの精製方法であって、
    粗炭酸リチウムに、アルミニウム塩溶液を添加した後、液性をpH4〜9の範囲に調整し、析出した水酸化アルミニウムを濾別して精製リチウム塩溶液を得る工程と、
    該精製リチウム塩溶液に炭酸塩を添加し、析出した炭酸リチウムを回収する工程とを備えることを特徴とする炭酸リチウムの精製方法。
  4. 請求項3記載の炭酸リチウムの精製方法において、前記粗炭酸リチウムにアルミニウム塩溶液を添加する前に、該粗炭酸リチウムを水に懸濁させ、鉱酸を添加して粗リチウム塩溶液を得る工程を備えることを特徴とする炭酸リチウムの精製方法。
  5. 請求項1〜請求項4のいずれか1項記載の炭酸リチウムの精製方法において、前記粗炭酸リチウムは、正極と、負極と、両極間に配置されたセパレータと、電解液とが金属製の筐体に収容されたリチウムイオン電池の該筐体に塩水中で開口部を形成した後、開口部が形成された該筐体を、不活性雰囲気下、650〜720℃の範囲の温度に所定時間維持して焙焼されたリチウムイオン電池を破砕し、篩分けすることにより得られたものであることを特徴とする炭酸リチウムの精製方法。
JP2021000826A 2020-01-21 2021-01-06 炭酸リチウムの精製方法 Active JP7442829B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021000826A JP7442829B2 (ja) 2020-01-21 2021-01-06 炭酸リチウムの精製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020007303A JP6861446B1 (ja) 2020-01-21 2020-01-21 炭酸リチウムの精製方法
JP2021000826A JP7442829B2 (ja) 2020-01-21 2021-01-06 炭酸リチウムの精製方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020007303A Division JP6861446B1 (ja) 2020-01-21 2020-01-21 炭酸リチウムの精製方法

Publications (2)

Publication Number Publication Date
JP2021116475A true JP2021116475A (ja) 2021-08-10
JP7442829B2 JP7442829B2 (ja) 2024-03-05

Family

ID=75521016

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020007303A Active JP6861446B1 (ja) 2020-01-21 2020-01-21 炭酸リチウムの精製方法
JP2021000826A Active JP7442829B2 (ja) 2020-01-21 2021-01-06 炭酸リチウムの精製方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020007303A Active JP6861446B1 (ja) 2020-01-21 2020-01-21 炭酸リチウムの精製方法

Country Status (1)

Country Link
JP (2) JP6861446B1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140084A1 (ja) * 2022-01-21 2023-07-27 株式会社アサカ理研 リチウム塩を含む水性液からリチウムを回収する方法
KR102552102B1 (ko) * 2022-06-09 2023-07-06 한국선별기 주식회사 폐내화갑으로부터 음이온교환을 이용하여 고순도의 탄산리튬을 제조하는 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4358954B2 (ja) 1999-12-28 2009-11-04 株式会社アサカ理研 使用済み密閉型電池の開口方法
CN101775505B (zh) * 2010-02-08 2011-08-31 中南大学 氯化焙烧法从锂云母中提取锂的方法和设备
JP2012106874A (ja) 2010-11-15 2012-06-07 Sumitomo Metal Mining Co Ltd 水酸化リチウムの精製方法
JP2012229481A (ja) * 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd 使用済みリチウムイオン電池類の有価物の分別回収方法
JP6352669B2 (ja) 2014-04-11 2018-07-04 Jx金属株式会社 リチウムイオン電池廃棄物の処理方法
JP2019178395A (ja) 2018-03-30 2019-10-17 Jx金属株式会社 リチウムイオン電池スクラップからのリチウムの回収方法
JP6651115B1 (ja) * 2019-05-07 2020-02-19 株式会社アサカ理研 リチウムイオン電池からのリチウムの回収方法
JP6647667B1 (ja) * 2019-07-03 2020-02-14 株式会社アサカ理研 リチウムイオン電池からのリチウムの回収方法

Also Published As

Publication number Publication date
JP7442829B2 (ja) 2024-03-05
JP2021113147A (ja) 2021-08-05
JP6861446B1 (ja) 2021-04-21

Similar Documents

Publication Publication Date Title
JP6651115B1 (ja) リチウムイオン電池からのリチウムの回収方法
US6514311B1 (en) Clean process of recovering metals from waste lithium ion batteries
CN110112481B (zh) 废旧磷酸铁锂电池循环利用制备磷酸铁锂正极材料的方法
CN106910889B (zh) 一种从废旧磷酸铁锂电池中再生正极活性物质的方法
JP6647667B1 (ja) リチウムイオン電池からのリチウムの回収方法
JP4144820B2 (ja) リチウムイオン2次電池からの正極活物質の再生方法
CN111392750B (zh) 一种从废旧锂离子电池中除杂回收锂的方法
CN110085939B (zh) 一种废旧磷酸铁锂电池正极片的分离回收方法
KR102132120B1 (ko) 이산화탄소를 이용한 폐 리튬이온 이차전지의 재활용 방법
JP6766014B2 (ja) リチウムイオン二次電池スクラップからのリチウムの回収方法
US20130206607A1 (en) Lithium Extraction Method, and Metal Recovery Method
KR101823952B1 (ko) 리튬이온 2차전지의 폐 양극재로부터 리튬을 회수하여 탄산리튬을 제조하는 방법
CN110148801B (zh) 一种废旧磷酸铁锂电池正极片的真空分离方法
CN112310500B (zh) 一种废旧磷酸铁锂材料中铝元素的分离方法
JPH116020A (ja) リチウムイオン電池廃材からの高純度コバルト化合物の回収法
WO2019026978A1 (ja) リチウム化合物の溶解方法および、炭酸リチウムの製造方法、ならびに、リチウムイオン二次電池スクラップからのリチウムの回収方法
JP7442829B2 (ja) 炭酸リチウムの精製方法
JP7271833B2 (ja) リチウムの回収方法
KR20170052012A (ko) 리튬 이차전지의 제조공정에 있어서의 폐 리튬 이차전지 전극의 재활용 방법
JP2023063319A (ja) リチウムイオン電池廃棄物の処理方法および、硫酸塩の製造方法
JP7286085B2 (ja) リチウムイオン電池からのリチウムの回収方法
WO2024066184A1 (zh) 一种磷酸铁锂电池的回收方法
JP2019026531A (ja) リチウム化合物の溶解方法および、炭酸リチウムの製造方法
JP7060899B1 (ja) 廃リチウムイオン電池からのリチウム回収システム
CN117897508A (zh) 从废旧锂离子电池中回收锂的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7442829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150