JP2021113362A - Vapor deposition mask - Google Patents

Vapor deposition mask Download PDF

Info

Publication number
JP2021113362A
JP2021113362A JP2021072405A JP2021072405A JP2021113362A JP 2021113362 A JP2021113362 A JP 2021113362A JP 2021072405 A JP2021072405 A JP 2021072405A JP 2021072405 A JP2021072405 A JP 2021072405A JP 2021113362 A JP2021113362 A JP 2021113362A
Authority
JP
Japan
Prior art keywords
metal layer
vapor deposition
mask
vapor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021072405A
Other languages
Japanese (ja)
Other versions
JP7149369B2 (en
Inventor
良弘 小林
Yoshihiro Kobayashi
良弘 小林
裕仁 田丸
Hirohito Tamaru
裕仁 田丸
貴士 中島
Takashi Nakajima
貴士 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2021072405A priority Critical patent/JP7149369B2/en
Publication of JP2021113362A publication Critical patent/JP2021113362A/en
Priority to JP2022152810A priority patent/JP7421617B2/en
Application granted granted Critical
Publication of JP7149369B2 publication Critical patent/JP7149369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To provide a vapor deposition mask capable of forming a luminous layer having a uniform height dimension highly accurately with excellent reproductivity.SOLUTION: A mask body 2 is provided with a vapor deposition pattern 6 comprising many independent vapor deposition through-holes 5, and the vapor deposition through-hole 5 has a constitution formed by communicating a small hole part 5a positioned on the substrate side to be vapor-deposited, with a large hole part 5b positioned on the evaporation source side, and formed larger than an opening shape of the small hole part 5a. The mask body 2 includes a lower stage part having the small hole part 5a and extending in a horizontal direction, and an upper stage part having the large hole part 5b and extending toward the upside from the lower stage part, and has a fine recess 50 on the substrate side to be vapor-deposited on the lower stage part.SELECTED DRAWING: Figure 15

Description

本発明は、蒸着マスクに関する。本発明は、例えば蒸着マスク法により、有機EL素子の発光層を形成する際に用いられる有機EL素子用の蒸着マスクに適用できる。 The present invention relates to a vapor deposition mask. The present invention can be applied to a vapor deposition mask for an organic EL device used when forming a light emitting layer of an organic EL device, for example, by a vapor deposition mask method.

特許文献1には、図17に示すごとく、マスク本体102の外周縁に、該マスク本体102の補強用の枠体103が装着された蒸着マスクが開示されている。そこでの枠体103は、被蒸着基板30と同等の熱線膨張係数を有する素材、あるいは低熱線膨張係数の素材からなる。枠体103は、耐熱セラミック系接着剤や耐熱エポキシ樹脂接着剤などの温度変化に対して安定した接着剤からなる接着剤108を介してマスク本体102上に固定されている。マスク本体102は、多数独立の蒸着通孔105からなる有機EL素子の発光層310形成用の蒸着パターン106を、パターン形成領域104内に備える。特許文献1に開示の蒸着マスクによれば、マスク本体102の形成素材が有する熱線膨張係数が被蒸着基板30のそれと異なる場合でも、マスク本体102は被蒸着基板30と同等の熱線膨張係数を有する枠体103の膨張に追随して形状変化し、あるいは低熱線膨張係数を有する枠体103に抑制されて形状変化せず、従って、常温時における被蒸着基板30に対するマスク本体102の整合精度を蒸着窯内における昇温時においても良好に担保できるので、被蒸着基板30上に発光層310を高精度に再現性良く形成できる利点がある。 As shown in FIG. 17, Patent Document 1 discloses a vapor-deposited mask in which a frame body 103 for reinforcing the mask main body 102 is attached to the outer peripheral edge of the mask main body 102. The frame body 103 there is made of a material having a coefficient of linear thermal expansion equivalent to that of the substrate 30 to be vapor-deposited, or a material having a coefficient of linear thermal expansion of low heat. The frame body 103 is fixed on the mask main body 102 via an adhesive 108 made of an adhesive that is stable against temperature changes such as a heat-resistant ceramic adhesive or a heat-resistant epoxy resin adhesive. The mask body 102 includes a vapor deposition pattern 106 for forming a light emitting layer 310 of an organic EL element composed of a large number of independent vapor deposition through holes 105 in the pattern formation region 104. According to the thin-film deposition mask disclosed in Patent Document 1, even when the coefficient of linear thermal expansion of the material forming the mask body 102 is different from that of the film-deposited substrate 30, the mask body 102 has a coefficient of linear thermal expansion equivalent to that of the film-deposited substrate 30. The shape changes according to the expansion of the frame body 103, or the shape does not change due to being suppressed by the frame body 103 having a low coefficient of linear thermal expansion. Since it can be satisfactorily secured even when the temperature is raised in the kiln, there is an advantage that the light emitting layer 310 can be formed on the substrate to be vapor-deposited 30 with high accuracy and good reproducibility.

特開2002−371349号公報JP-A-2002-371349

蒸着マスク法は、被蒸着基板上に蒸着マスクを配置し、該蒸着マスクの蒸着通孔に、気化源により気化された有機材料を蒸着させて、被蒸着基板上に発光層を形成する方法であり、被蒸着基板上に形成される発光層は、均一な高さ寸法を有することが求められている。しかしながら、図17に示す蒸着マスクのように、蒸着通孔105がストレート状であると、蒸着マスクの蒸着通孔105には直進方向だけでなく、斜め方向からも有機材料が飛来するため、斜め方向から蒸着通孔105内に入射する有機材料がマスクの開口上端縁に遮られ、蒸着通孔105の縁部分の被蒸着基板30上には少量の有機材料しか蒸着されず、完成された発光層310は、中央部分が膨らみ、縁部分が漸減した断面視で略水滴状の形状となりやすい。このような歪な形状の発光層310は、輝度にムラがあり、素子の高精度化を図るうえでの大きな障害となる。 The thin-film deposition mask method is a method in which a thin-film deposition mask is placed on a substrate to be vapor-deposited, and an organic material vaporized by a vaporization source is vapor-deposited in the thin-film deposition holes of the thin-film deposition mask to form a light-emitting layer on the substrate to be vapor-deposited. Therefore, the light emitting layer formed on the substrate to be vapor-deposited is required to have a uniform height dimension. However, if the thin-film deposition hole 105 is straight as in the thin-film deposition mask shown in FIG. 17, the organic material flies not only in the straight direction but also in the diagonal direction to the thin-film deposition hole 105 of the vapor deposition mask. The organic material incident on the vapor-deposited through-hole 105 from the direction is blocked by the upper edge of the opening of the mask, and only a small amount of the organic material is vapor-deposited on the substrate 30 to be vapor-deposited at the edge of the vapor-deposited through-hole 105. The layer 310 tends to have a substantially water droplet-like shape in a cross-sectional view in which the central portion is bulged and the edge portion is gradually reduced. The light emitting layer 310 having such a distorted shape has uneven brightness, which is a major obstacle to improving the accuracy of the element.

本発明の目的は、均一な高さ寸法を有する発光層を高精度に再現性良く形成することができる蒸着マスクを提供することにある。 An object of the present invention is to provide a thin-film mask capable of forming a light emitting layer having uniform height dimensions with high accuracy and high reproducibility.

本発明に係る蒸着マスク1は、マスク本体2に、多数独立の蒸着通孔5からなる蒸着パターン6が設けられている。そして、蒸着通孔5は、気化源側に位置する小孔部5aと、被蒸着基板30側に位置し、小孔部5aの開口形状よりも大きく形成された大孔部5bとが連通形成されていることを特徴とする。 The thin-film deposition mask 1 according to the present invention is provided with a thin-film deposition pattern 6 composed of a large number of independent thin-film deposition holes 5 on the mask body 2. Then, in the thin-film deposition hole 5, a small hole portion 5a located on the vaporization source side and a large hole portion 5b located on the vapor deposition substrate 30 side and formed larger than the opening shape of the small hole portion 5a form a communication. It is characterized by being done.

また、マスク本体2は、第一金属層13・44と第二金属層16・45とを有し、第一金属層13・44の上面及び側面を覆うように第二金属層16・45が形成されており、蒸着通孔5間におけるマスク本体2の断面形状が段差状となっていることを特徴とする。 Further, the mask body 2 has a first metal layer 13.44 and a second metal layer 16.45, and the second metal layer 16.45 covers the upper surface and the side surface of the first metal layer 13.44. It is formed, and the cross-sectional shape of the mask main body 2 between the vapor-deposited through holes 5 is stepped.

また、大孔部5bおよび小孔部5aの周面に臨む第二金属層16・45の各上端周縁部をR状とすることを特徴とする。 Further, it is characterized in that the upper end peripheral portions of the second metal layers 16 and 45 facing the peripheral surfaces of the large hole portion 5b and the small hole portion 5a are R-shaped.

また、蒸着パターン6がパターン形成領域4内に形成されており、マスク本体2の外周に、低熱線膨張係数の材質からなる枠体3が配置され、マスク本体2のパターン形成領域4の外周縁4aと枠体3とを金属層9を介して一体的に接合してあることを特徴とする。 Further, the vapor deposition pattern 6 is formed in the pattern forming region 4, and the frame body 3 made of a material having a low coefficient of linear expansion is arranged on the outer periphery of the mask main body 2, and the outer peripheral edge of the pattern forming region 4 of the mask main body 2 is arranged. It is characterized in that 4a and the frame body 3 are integrally joined via a metal layer 9.

また本発明は、マスク本体2に、多数独立の蒸着通孔5からなる蒸着パターン6が設けられた蒸着マスクの製造方法であって、母型10の表面に、レジスト体12aを有する一次パターンレジスト12を形成する工程と、一次パターンレジスト12を用いて、母型10上に第一金属層13を形成する工程と、母型10の表面に、レジスト体15aを有する二次パターンレジスト15を形成する工程と、二次パターンレジスト15を用いて、母型10及び第一金属層13上に第二金属層16を形成する工程と、母型10から第一金属層13および第二金属層16を一体に剥離する工程とを含むことを特徴とする。 Further, the present invention is a method for manufacturing a vapor deposition mask in which a vapor deposition pattern 6 composed of a large number of independent vapor deposition holes 5 is provided in the mask main body 2, and is a primary pattern resist having a resist body 12a on the surface of a master mold 10. A step of forming the primary metal layer 13 on the master die 10 using the primary pattern resist 12 and a step of forming a secondary pattern resist 15 having a resist body 15a on the surface of the master die 10. The step of forming the second metal layer 16 on the master mold 10 and the first metal layer 13 by using the secondary pattern resist 15, and the step of forming the second metal layer 16 from the master mold 10 to the first metal layer 13 and the second metal layer 16. It is characterized by including a step of integrally peeling the metal.

さらに本発明は、マスク本体2に、多数独立の蒸着通孔5からなる蒸着パターン6が設けられた蒸着マスクの製造方法であって、金属膜41がパターン形成された母型40を準備する工程と、母型40表面に、レジスト体43aを有するパターンレジスト43を形成する工程と、パターンレジスト43を用いて、金属膜41上に第一金属層44を形成する工程と、金属膜41及び第一金属層44上に、第二金属層45を形成する工程と、母型10から第一金属層44および第二金属層45を一体に剥離する工程とを含むことを特徴とする。 Further, the present invention is a method for manufacturing a vapor deposition mask in which a vapor deposition pattern 6 composed of a large number of independent vapor deposition holes 5 is provided in the mask main body 2, and is a step of preparing a master mold 40 in which a metal film 41 is patterned. A step of forming a pattern resist 43 having a resist body 43a on the surface of the matrix 40, a step of forming a first metal layer 44 on the metal film 41 using the pattern resist 43, and a step of forming the first metal layer 44 on the metal film 41 and the first metal film 41. It is characterized by including a step of forming a second metal layer 45 on the one metal layer 44 and a step of integrally peeling the first metal layer 44 and the second metal layer 45 from the master mold 10.

本発明に係る蒸着マスクによれば、マスク本体2に設けられた蒸着通孔5は、気化源側に位置する小孔部5aと、被蒸着基板30側に位置し、小孔部5aの開口形状よりも大きく形成された大孔部5bとが連通形成されているので、蒸着通孔5が気化源に向かって外広がり形状となって、広い角度で気化源からの有機材料を受け入れることが可能となり、よって、蒸着通孔がストレート状であるため発生していた開口上端縁による影をなくして、均一な高さ寸法を有する発光層を精度良く形成することが可能となる。 According to the thin-film deposition mask according to the present invention, the thin-film deposition holes 5 provided in the mask body 2 are located on the vaporization source side and the small hole portions 5a on the vapor deposition substrate 30 side. Since the large hole portion 5b formed larger than the shape is formed in communication with the large hole portion 5b, the vapor deposition through hole 5 has an outwardly expanding shape toward the vaporization source, and can accept the organic material from the vaporization source at a wide angle. This makes it possible to eliminate the shadow caused by the upper edge of the opening, which is generated because the thin-film deposition holes are straight, and to form a light emitting layer having a uniform height dimension with high accuracy.

また、本発明に係る蒸着マスクの製造方法によれば、前記マスク本体2が第一金属層13・44と第二金属層16・45と有するものであり、第一金属層13・44の表面を覆うように前記第二金属層16・45を形成しているので、第一金属層13・44と第二金属層16・45との密着性が良く、しかも高精度の蒸着マスクを生産性良く製造することができる。 Further, according to the method for manufacturing a vapor deposition mask according to the present invention, the mask body 2 has a first metal layer 13.44 and a second metal layer 16.45, and the surface of the first metal layer 13.44. Since the second metal layers 16 and 45 are formed so as to cover the above, the adhesion between the first metal layers 13.44 and the second metal layers 16 and 45 is good, and a highly accurate vapor deposition mask can be produced. Can be manufactured well.

本発明の第1実施形態に係る蒸着マスクの縦断側面図Longitudinal side view of the vapor deposition mask according to the first embodiment of the present invention. 本発明の第1実施形態に係る蒸着マスクの分解斜視図An exploded perspective view of the vapor deposition mask according to the first embodiment of the present invention. 本発明の第1実施形態に係る蒸着マスクの製造過程の工程説明図A process explanatory view of the manufacturing process of the vapor-deposited mask according to the first embodiment of the present invention. 本発明の第1実施形態に係る蒸着マスクの製造過程の工程説明図A process explanatory view of the manufacturing process of the vapor-deposited mask according to the first embodiment of the present invention. 本発明の第1実施形態に係る蒸着マスクの製造過程の工程説明図A process explanatory view of the manufacturing process of the vapor-deposited mask according to the first embodiment of the present invention. 本発明の第2実施形態に係る蒸着マスクの縦断側面図Longitudinal side view of the vapor deposition mask according to the second embodiment of the present invention. 本発明の第2実施形態に係る蒸着マスクの要部の平面図Top view of the main part of the vapor deposition mask according to the second embodiment of the present invention. 本発明の第2実施形態に係る蒸着マスクの要部の斜視図Perspective view of the main part of the vapor deposition mask according to the second embodiment of the present invention. 本発明の第2実施形態に係る蒸着マスクの分解斜視図An exploded perspective view of the vapor deposition mask according to the second embodiment of the present invention. 本発明の第2実施形態に係る蒸着マスクの製造過程の工程説明図A process explanatory view of the manufacturing process of the vapor-deposited mask according to the second embodiment of the present invention. 本発明の第2実施形態に係る蒸着マスクの製造過程の工程説明図A process explanatory view of the manufacturing process of the vapor-deposited mask according to the second embodiment of the present invention. 本発明の第2実施形態に係る蒸着マスクの製造過程の工程説明図A process explanatory view of the manufacturing process of the vapor-deposited mask according to the second embodiment of the present invention. 本発明の第3実施形態に係る蒸着マスクの製造過程の工程説明図A process explanatory view of the manufacturing process of the vapor-deposited mask according to the third embodiment of the present invention. 本発明の第3実施形態に係る蒸着マスクの製造過程の工程説明図A process explanatory view of the manufacturing process of the vapor-deposited mask according to the third embodiment of the present invention. 本発明の第3実施形態に係る蒸着マスクの縦断側面図Longitudinal side view of the vapor deposition mask according to the third embodiment of the present invention. 本発明のその他実施形態に係る蒸着マスクの縦断側面図Longitudinal side view of the vapor deposition mask according to another embodiment of the present invention. 従来例の蒸着マスクを示す縦断面図Vertical cross-sectional view showing a conventional vapor deposition mask

(第1実施形態)
図1において、蒸着マスク1は、マスク本体2に、多数独立の蒸着通孔5からなる蒸着パターン6が設けられたものである。マスク本体2は、ニッケルやニッケル−コバルト等のニッケル合金、銅、その他の電着金属を素材として、電鋳法により形成される。図2において、マスク本体2は、200×200mmの四角形状の母型領域の中に、例えば50×50mmの正方形状に4つ独立して形成されており、その内部にパターン形成領域4を備える。このパターン形成領域4に、蒸着通孔5からなる蒸着パターン6が形成されている。
(First Embodiment)
In FIG. 1, the vapor deposition mask 1 is provided with a vapor deposition pattern 6 composed of a large number of independent vapor deposition through holes 5 on the mask main body 2. The mask body 2 is formed by an electroforming method using a nickel alloy such as nickel or nickel-cobalt, copper, or other electrodeposited metal as a material. In FIG. 2, four mask main bodies 2 are independently formed in a square-shaped master region of 200 × 200 mm, for example, in a square shape of 50 × 50 mm, and a pattern forming region 4 is provided therein. .. A thin-film deposition pattern 6 composed of thin-film deposition holes 5 is formed in the pattern-forming region 4.

マスク本体2は、第一金属層13と第二金属層16とを有する。詳しくは、第一金属層13の上面及び側面を覆うように第二金属層16が形成されている。本実施形態において、上面は気化源側を指し、側面は蒸着通孔5に臨む面を指す。このように、第一金属層13の表面を覆うように第二金属層16を形成することで、第一金属層13と第二金属層16とが単に積層された形態に比べ、第一金属層13と第二金属層16との接触する表面積が大きくなるので、第一金属層13と第二金属層16とが強固に密着した積層構造が得られる。マスク本体2の厚みは、好ましくは10〜100μmの範囲とし、本実施例では20μmに設定した。具体的には、第一金属層13の厚みt1は、好ましくは5〜90μmの範囲とし、本実施例では16μmに設定し、第二金属層16の厚みt2は、好ましくは10μm以下とし、本実施例では4μmに設定した。なお、第二金属層16の厚みt2が薄いほど、蒸着通孔5の上端周縁による影をなくすことができる。 The mask body 2 has a first metal layer 13 and a second metal layer 16. Specifically, the second metal layer 16 is formed so as to cover the upper surface and the side surface of the first metal layer 13. In the present embodiment, the upper surface refers to the vaporization source side, and the side surface refers to the surface facing the vapor deposition through hole 5. By forming the second metal layer 16 so as to cover the surface of the first metal layer 13 in this way, the first metal is compared with the form in which the first metal layer 13 and the second metal layer 16 are simply laminated. Since the surface area where the layer 13 and the second metal layer 16 are in contact with each other is increased, a laminated structure in which the first metal layer 13 and the second metal layer 16 are firmly adhered to each other can be obtained. The thickness of the mask body 2 is preferably in the range of 10 to 100 μm, and is set to 20 μm in this embodiment. Specifically, the thickness t1 of the first metal layer 13 is preferably in the range of 5 to 90 μm, set to 16 μm in this embodiment, and the thickness t2 of the second metal layer 16 is preferably set to 10 μm or less. In the examples, it was set to 4 μm. The thinner the thickness t2 of the second metal layer 16, the more the shadow due to the upper end peripheral edge of the thin-film deposition hole 5 can be eliminated.

各蒸着通孔5は、小孔部5aと、この小孔部5aの開口形状よりも大きく形成された大孔部5bとが連通してなるものであり、例えば、小孔部5aは、平面視で前後の長さ寸法が150μm、左右幅寸法が50μmの四角形状を有しており、大孔部5bは、平面視で前後の長さ寸法が300μm、左右幅寸法が150μmの四角形状を有している。小孔部5aが被蒸着基板30側となり、大孔部5bが気化源側となる。これら蒸着通孔5は、前後および/または左右方向に並列状に配設されて蒸着パターン6を構成している。図1に示すように、蒸着通孔5間におけるマスク本体2(第一金属層13及び第二金属層16)は、断面視で段差状に形成されていることにより、蒸着通孔5が小孔部5aと大孔部5bとで構成される形態となる。この大孔部5bによって、広い角度で気化源からの有機材料を受け入れることを可能とし、斜め方向から入射する有機材料にも対応することができるので、均一な高さ寸法の発光層の形成に寄与できる。しかも、図1に示すように、大孔部5bおよび小孔部5aの周面に臨む第二金属層16のそれぞれの上端周縁部(気化源側周縁部)をR状とすることで、大孔部5bおよび小孔部5aの上端周縁による影を限りなくなくすことができ、有機材料の受け入れ角度をより広げることができ、より一層均一な高さ寸法の発光層を得ることができる。なお、図1の縦断面図は、実際の蒸着パターン6の様子を示したものではなく、それを模式的に示したものである。 Each vapor deposition through hole 5 is formed by communicating the small hole portion 5a and the large hole portion 5b formed larger than the opening shape of the small hole portion 5a. For example, the small hole portion 5a is a flat surface. It has a square shape with a front-rear length dimension of 150 μm and a left-right width dimension of 50 μm in view, and the large hole portion 5b has a square shape with a front-rear length dimension of 300 μm and a left-right width dimension of 150 μm in a plan view. Have. The small hole portion 5a is on the vapor deposition substrate 30 side, and the large hole portion 5b is on the vaporization source side. These thin-film deposition holes 5 are arranged in parallel in the front-rear and / or left-right directions to form the thin-film deposition pattern 6. As shown in FIG. 1, the mask main body 2 (first metal layer 13 and second metal layer 16) between the vapor deposition holes 5 is formed in a stepped shape in a cross-sectional view, so that the vapor deposition holes 5 are small. The form is composed of a hole portion 5a and a large hole portion 5b. The large hole portion 5b makes it possible to receive the organic material from the vaporization source at a wide angle, and it is also possible to deal with the organic material incident from an oblique direction, so that a light emitting layer having a uniform height dimension can be formed. Can contribute. Moreover, as shown in FIG. 1, the upper peripheral peripheral portion (peripheral portion on the vaporization source side) of each of the second metal layers 16 facing the peripheral surfaces of the large hole portion 5b and the small hole portion 5a is formed into an R shape. Shadows due to the upper peripheral edges of the hole 5b and the small hole 5a can be eliminated as much as possible, the acceptance angle of the organic material can be further widened, and a light emitting layer having a more uniform height dimension can be obtained. The vertical cross-sectional view of FIG. 1 does not show the actual state of the vapor deposition pattern 6, but schematically shows it.

マスク本体2には、マスク本体2の補強用の枠体3を装着することができる。この枠体3は、ニッケル−鉄合金であるインバー材、あるいはニッケル−鉄−コバルト合金であるスーパーインバー材等のような低熱線膨張係数の材質からなる。枠体3は、マスク本体2よりも肉厚の成形品であり、金属層9によりマスク本体2のパターン形成領域4の外周縁4aと不離一体的に接合される。ここでは、図2に示すごとく、4枚のマスク本体2を1枚の枠体3で保持している。すなわち、枠体3は、その板面上に4つの開口3aが整列配置されており、各開口3aに一枚のマスク本体2が装着される。枠体3は、マスク本体2に対応する開口3aを備え、平板形状に形成されている。枠体3の厚み寸法は、例えば100〜500μm程度とし、本実施例においては200μmに設定した。 A frame body 3 for reinforcing the mask body 2 can be attached to the mask body 2. The frame 3 is made of a material having a low coefficient of linear thermal expansion such as an Invar material which is a nickel-iron alloy or a Super Invar material which is a nickel-iron-cobalt alloy. The frame body 3 is a molded product thicker than the mask body 2, and is inseparably and integrally joined to the outer peripheral edge 4a of the pattern forming region 4 of the mask body 2 by the metal layer 9. Here, as shown in FIG. 2, four mask bodies 2 are held by one frame body 3. That is, the frame body 3 has four openings 3a arranged in an aligned manner on the plate surface thereof, and one mask main body 2 is attached to each opening 3a. The frame body 3 has an opening 3a corresponding to the mask body 2 and is formed in a flat plate shape. The thickness dimension of the frame body 3 is, for example, about 100 to 500 μm, and is set to 200 μm in this embodiment.

枠体3の形成素材としてインバー材やスーパーインバー材を採用したのは、その線膨張係数が2×10-6/℃、あるいは1×10-6/℃以下と極めて小さく、蒸着工程における熱影響によるマスク本体2の寸法変化を良好に抑制できることに拠る。すなわち、例えば、上述のようにマスク本体2がニッケルからなるものであると、その線膨張係数は12.80×10-6/℃であり、被蒸着基板30(図17参照)である一般ガラスの線膨張係数3.20×10-6/℃に比べて数倍大きいため、蒸着時の高温による熱膨張率の違いから、常温下で蒸着マスク1を被蒸着基板30に整合させた際の蒸着位置と、実際の蒸着時における蒸着物質の蒸着位置との間に位置ズレが生じることは避けられない。そこで、マスク本体2を保持する枠体3の形成素材として、インバー材などの線膨張係数の小さな素材を採用してあると、昇温時におけるマスク本体2の膨張に起因する寸法変化、形状変化をよく抑えて、常温時における整合精度を蒸着時の昇温時にも良好に保つことができる。 The Invar material and Super Invar material are used as the forming material for the frame 3 because their linear expansion coefficient is extremely small, 2 × 10 -6 / ℃ or 1 × 10 -6 / ℃ or less, and the thermal effect in the vapor deposition process. This is because the dimensional change of the mask body 2 due to the above can be satisfactorily suppressed. That is, for example, when the mask body 2 is made of nickel as described above, its coefficient of linear expansion is 12.80 × 10 -6 / ° C, and it is a general glass which is a thin-film deposition substrate 30 (see FIG. 17). Since the linear expansion coefficient of 3.20 × 10 -6 / ° C is several times larger than that of 3.20 × 10 -6 / ° C, the difference in the coefficient of thermal expansion due to the high temperature during vapor deposition causes the vapor deposition mask 1 to be matched to the substrate 30 to be vapor-deposited at room temperature. It is inevitable that a positional deviation will occur between the vapor deposition position and the vapor deposition position of the vapor-deposited material during actual vapor deposition. Therefore, if a material having a small coefficient of linear expansion such as an invar material is used as the forming material of the frame body 3 for holding the mask body 2, the dimensional change and shape change due to the expansion of the mask body 2 at the time of temperature rise Can be well suppressed, and the matching accuracy at room temperature can be kept good even at the time of temperature rise during vapor deposition.

図1において、符号9は、パターン形成領域の外周縁4aに係るマスク本体2の上面に積層された金属層を示す。詳しくは、金属層9は、パターン形成領域4の外周縁4aの上面と、枠体3の上面およびパターン形成領域4に臨む側面と、マスク本体2と枠体3との間隙部分に形成されており、これでパターン形成領域4の外周縁4aと枠体3の開口周縁とを不離一体的に接合する。この金属層9は、ニッケルやニッケル−コバルト合金等からなり、メッキ法により形成することができる。 In FIG. 1, reference numeral 9 indicates a metal layer laminated on the upper surface of the mask main body 2 related to the outer peripheral edge 4a of the pattern forming region. Specifically, the metal layer 9 is formed in the upper surface of the outer peripheral edge 4a of the pattern forming region 4, the upper surface of the frame body 3 and the side surface facing the pattern forming region 4, and the gap portion between the mask body 2 and the frame body 3. With this, the outer peripheral edge 4a of the pattern forming region 4 and the opening peripheral edge of the frame body 3 are seamlessly and integrally joined. The metal layer 9 is made of nickel, a nickel-cobalt alloy, or the like, and can be formed by a plating method.

図3ないし図5は、本実施形態に係る蒸着マスクの製造方法を示す。まず、図3(a)に示すごとく、母型10の表面にフォトレジスト層11を形成する。母型10は、例えば、ステンレスや真ちゅう鋼製などの導電性を有するものからなる。また、フォトレジスト層11は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。 3 to 5 show a method for manufacturing a vapor deposition mask according to the present embodiment. First, as shown in FIG. 3A, the photoresist layer 11 is formed on the surface of the matrix 10. The master mold 10 is made of, for example, a conductive material such as stainless steel or brass. Further, the photoresist layer 11 is formed by laminating one or several negative type photosensitive dry film resists according to a predetermined height and thermocompression bonding.

次いで、フォトレジスト層11の上に、蒸着通孔5の大孔部5b位置に対応する透光孔を有するパターンフィルム(ガラスマスク)を密着させたのち、紫外線光を照射して露光を行い、現像、乾燥の各処理を行って、未露光部分を除去することにより、図3(b)に示すごとく、蒸着通孔5の大孔部5b位置に対応する、ストレート状のレジスト体12aを有する一次パターンレジスト12を母型10上に形成した。 Next, a pattern film (glass mask) having a translucent hole corresponding to the position of the large hole portion 5b of the vapor deposition through hole 5 is brought into close contact with the photoresist layer 11, and then exposed by irradiating with ultraviolet light. As shown in FIG. 3B, a straight resist body 12a corresponding to the position of the large hole 5b of the vapor deposition through hole 5 is provided by removing the unexposed portion by performing each of the development and drying treatments. The primary pattern resist 12 was formed on the matrix 10.

次いで、上記母型10を所定の条件に建浴した電鋳槽に入れ、図3(c)に示すごとく、先のレジスト体12aの高さの範囲内で、母型10のレジスト体12aで覆われていない表面(露出領域)にニッケル−コバルト合金を、好ましくは5〜90μm厚の範囲、本実施形態では16μm厚で電鋳して、第一金属層13を形成した。この第一金属層13を形成後、図3(d)に示すごとく、一次パターンレジスト12(レジスト体12a)を除去する。 Next, the mother mold 10 is placed in an electroformed tank that has been bathed under predetermined conditions, and as shown in FIG. 3C, the resist body 12a of the mother mold 10 is used within the height range of the resist body 12a. A nickel-cobalt alloy was electroformed on the uncovered surface (exposed region), preferably in the range of 5 to 90 μm, 16 μm in the present embodiment, to form the first metal layer 13. After forming the first metal layer 13, as shown in FIG. 3D, the primary pattern resist 12 (resist body 12a) is removed.

続いて、図4(a)に示すごとく、第一金属層13の形成領域を含む母型10の表面全体に、フォトレジスト層14を形成した。このフォトレジスト層14は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。 Subsequently, as shown in FIG. 4A, the photoresist layer 14 was formed on the entire surface of the matrix 10 including the formation region of the first metal layer 13. The photoresist layer 14 is formed by laminating one or several negative type photosensitive dry film resists according to a predetermined height and thermocompression bonding.

次いで、蒸着通孔5の小孔部5a位置に対応する透光孔を有するパターンフィルムを密着させたのち、紫外線光を照射して露光を行い、現像、乾燥の各処理を行って、未露光部分を除去することにより、図4(b)に示すごとく、蒸着通孔5の小孔部5a位置に対応するストレート状のレジスト体15aを有する二次パターンレジスト15を母型10上に形成した。 Next, a pattern film having a translucent hole corresponding to the position of the small hole portion 5a of the vapor deposition through hole 5 is brought into close contact with the film, and then exposed by irradiation with ultraviolet light, developed and dried, and unexposed. By removing the portion, as shown in FIG. 4B, a secondary pattern resist 15 having a straight resist body 15a corresponding to the position of the small hole portion 5a of the vapor deposition through hole 5 was formed on the master mold 10. ..

次いで、上記母型10を所定の条件に建浴した電鋳槽に入れ、図4(c)に示すごとく、先のレジスト体15aの高さの範囲内で、母型10及び第一金属層13のレジスト体16aで覆われていない表面(露出領域)にニッケル−コバルト合金を、好ましくは10μm以下の厚さ、本実施形態では4μm厚で電鋳して、第二金属層16を形成した。この時、第一金属層13の端部(頂部や根元)と対向する部分に形成される第二金属層16はR状となる。また、蒸着通孔5に臨む第二金属層16の端部もR状となる。なお、係るR(アール)の曲率は、第二金属層16の厚みを調整することで、所望のR(アール)が得られる。そして、二次パターンレジスト15(レジスト体15a)を除去することにより、図4(d)に示すごとく、多数独立の蒸着通孔5からなる蒸着パターン6を備えたマスク本体2を得た。 Next, the mother mold 10 is placed in an electroformed tank that has been bathed under predetermined conditions, and as shown in FIG. 4 (c), the mother mold 10 and the first metal layer are within the height range of the resist body 15a. The second metal layer 16 was formed by electroforming a nickel-cobalt alloy on the surface (exposed region) of the resist body 16a not covered with the resist body 16a, preferably with a thickness of 10 μm or less, preferably 4 μm in the present embodiment. .. At this time, the second metal layer 16 formed at a portion facing the end portion (top or root) of the first metal layer 13 has an R shape. Further, the end portion of the second metal layer 16 facing the vapor deposition through hole 5 is also R-shaped. As for the curvature of the R (R), a desired R (R) can be obtained by adjusting the thickness of the second metal layer 16. Then, by removing the secondary pattern resist 15 (resist body 15a), as shown in FIG. 4D, a mask body 2 having a vapor deposition pattern 6 composed of a large number of independent vapor deposition through holes 5 was obtained.

続いて、図5(a)に示すごとく、第一金属層13及び第二金属層16(マスク本体2) の形成部分を含む母型10の表面全体に、フォトレジスト層17を形成した。このフォトレジスト層17は、ネガタネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。次いで、前記パターン形成領域4に対応する透光孔を有するパターンフィルムを密着させたのち、紫外線光を照射して露光を行った。かくして、パターン形成領域4に係る部分が露光(17a)されており、それ以外の部分が未露光(17b)のフォトレジスト層17を得たうえで、図5(b)に示すごとく、母型10上に、第一金属層13及び第二金属層16を囲むようにして枠体3を配した。ここでは、未露光のフォトレジスト層17bの粘着性を利用して、母型10上に枠体3を仮止め固定した。 Subsequently, as shown in FIG. 5A, a photoresist layer 17 was formed on the entire surface of the master mold 10 including the formed portions of the first metal layer 13 and the second metal layer 16 (mask body 2). The photoresist layer 17 is formed by laminating one or several negative-type photosensitive dry film resists according to a predetermined height and thermocompression bonding. Next, a pattern film having light-transmitting holes corresponding to the pattern-forming region 4 was brought into close contact with the pattern film, and then exposed to ultraviolet light. Thus, after obtaining the photoresist layer 17 in which the portion related to the pattern forming region 4 is exposed (17a) and the other portion is unexposed (17b), as shown in FIG. 5 (b), the matrix mold is obtained. The frame 3 was arranged on the 10 so as to surround the first metal layer 13 and the second metal layer 16. Here, the frame body 3 was temporarily fixed and fixed on the master die 10 by utilizing the adhesiveness of the unexposed photoresist layer 17b.

次いで、図5(c)に示すごとく、表面に露出している未露光のフォトレジスト層17bを溶解除去して、パターン形成領域4を覆うレジスト体18aを有する三次パターンレジスト18を形成した。なお、このとき、枠体3の下面に存する未露光のフォトレジスト層17bは、母型10上に残留している。 Next, as shown in FIG. 5C, the unexposed photoresist layer 17b exposed on the surface was dissolved and removed to form a tertiary pattern resist 18 having a resist body 18a covering the pattern forming region 4. At this time, the unexposed photoresist layer 17b existing on the lower surface of the frame 3 remains on the matrix 10.

次いで、図5(d)に示すごとく、パターン形成領域4の外周縁4aに係る表面に露出する第二金属層16の上面、枠体3と第二金属層16との間で露出する母型10の表面、および枠体3の表面上に電着金属を電鋳して金属層9を形成し、この金属層9により、第一金属層13を含む第二金属層16と枠体3とを接合した。この時、パターン形成領域4の外周縁4aに係る表面に露出する第二金属層16の上面、および枠体3と第二金属層16との間で露出する母型10の表面における金属層9の層厚が30μmとなっており、枠体3の表面における金属層9の層厚は15μmとなっていた。このように、母型10の表面等と枠体3との間で層厚が異なるのは、金属層9は、母型10の表面から順次積層されていき、そして、金属層9が未露光のフォトレジスト層17bの高さ寸法を超えて枠体3に至ると、枠体3が母型10と導通状態となって、該枠体3の表面に金属層9が形成されることによる。 Next, as shown in FIG. 5D, the upper surface of the second metal layer 16 exposed on the surface of the outer peripheral edge 4a of the pattern forming region 4, and the master mold exposed between the frame 3 and the second metal layer 16. A metal layer 9 is formed by electrocasting an electrodeposited metal on the surface of the 10 and the surface of the frame 3, and the metal layer 9 causes the second metal layer 16 including the first metal layer 13 and the frame 3 to form a metal layer 9. Was joined. At this time, the metal layer 9 on the upper surface of the second metal layer 16 exposed on the surface of the outer peripheral edge 4a of the pattern forming region 4 and the surface of the master mold 10 exposed between the frame 3 and the second metal layer 16. The layer thickness of the metal layer 9 on the surface of the frame 3 was 15 μm. In this way, the layer thickness differs between the surface of the master mold 10 and the frame body 3, because the metal layers 9 are sequentially laminated from the surface of the master mold 10, and the metal layer 9 is unexposed. When the height dimension of the photoresist layer 17b is exceeded and the frame body 3 is reached, the frame body 3 becomes conductive with the master mold 10 and the metal layer 9 is formed on the surface of the frame body 3.

最後に、母型10から第一金属層13、第二金属層16、および金属層9を剥離してから、三次パターンレジスト18および枠体3の下面に存する未露光のフォトレジスト層17bを除去することにより、図1に示すようなマスク1を得た。 Finally, the first metal layer 13, the second metal layer 16, and the metal layer 9 are peeled off from the base metal 10, and then the tertiary pattern resist 18 and the unexposed photoresist layer 17b existing on the lower surface of the frame 3 are removed. As a result, a mask 1 as shown in FIG. 1 was obtained.

(第2実施形態)
本発明の第2実施形態に係る蒸着マスクを図6ないし図12に基づいて説明する。図6において、蒸着マスク1は、多数独立の蒸着通孔5からなる蒸着パターン6が設けられたマスク本体2を備え、このマスク本体2は、ニッケルやニッケルコバルト等のニッケル合金、銅、その他の電着金属を素材として、電鋳法により形成される。図9において、蒸着マスク1は、500mm×400mmの四角形状を呈しており、その内部に複数個のマスク本体2を備える。各マスク本体2は、50×40mmの四角形状に形成されており、その内部にパターン形成領域4を備える。パターン形成領域4には、多数独立の蒸着通孔5からなる発光層形成用の蒸着パターン6が形成されている。
(Second Embodiment)
The vapor deposition mask according to the second embodiment of the present invention will be described with reference to FIGS. 6 to 12. In FIG. 6, the vapor deposition mask 1 includes a mask body 2 provided with a vapor deposition pattern 6 composed of a large number of independent vapor deposition through holes 5, and the mask body 2 is made of a nickel alloy such as nickel or nickel cobalt, copper, or the like. It is formed by electroforming using electrodeposited metal as a material. In FIG. 9, the vapor deposition mask 1 has a quadrangular shape of 500 mm × 400 mm, and a plurality of mask main bodies 2 are provided therein. Each mask body 2 is formed in a square shape of 50 × 40 mm, and includes a pattern forming region 4 inside the mask main body 2. A thin-film deposition pattern 6 for forming a light emitting layer, which is composed of a large number of independent thin-film deposition holes 5, is formed in the pattern formation region 4.

マスク本体2は、第一金属層13と第二金属層16とを有する。詳しくは、図6に示すように、第一金属層13の上面及び側面を覆うように第二金属層16が形成されており、蒸着通孔5間における第一金属層13及び第二金属層16(マスク本体2)の断面形状は段差状に形成されている。このように、第一金属層13の表面を覆うように第二金属層16を形成することで、第一金属層13と第二金属層16とが単に積層された形態に比べ、第一金属層13と第二金属層16との接触する表面積が大きくなるので、第一金属層13と第二金属層16とが強固に密着した積層構造が得られる。マスク本体2の厚みは、好ましくは10〜100μmの範囲とし、本実施例では20μmに設定した。具体的には、第一金属層13の厚みt1は、好ましくは5〜90μmの範囲とし、本実施例では16μmに設定し、第二金属層16の厚みt2は、好ましくは10μm以下とし、本実施例では4μmに設定した。なお、第一金属層13の上面は気化源側を指し、第一金属層13の側面は蒸着通孔5に臨む面を指す。 The mask body 2 has a first metal layer 13 and a second metal layer 16. Specifically, as shown in FIG. 6, the second metal layer 16 is formed so as to cover the upper surface and the side surface of the first metal layer 13, and the first metal layer 13 and the second metal layer between the vapor deposition through holes 5 are formed. The cross-sectional shape of 16 (mask body 2) is formed in a stepped shape. By forming the second metal layer 16 so as to cover the surface of the first metal layer 13 in this way, the first metal is compared with the form in which the first metal layer 13 and the second metal layer 16 are simply laminated. Since the surface area where the layer 13 and the second metal layer 16 are in contact with each other is increased, a laminated structure in which the first metal layer 13 and the second metal layer 16 are firmly adhered to each other can be obtained. The thickness of the mask body 2 is preferably in the range of 10 to 100 μm, and is set to 20 μm in this embodiment. Specifically, the thickness t1 of the first metal layer 13 is preferably in the range of 5 to 90 μm, set to 16 μm in this embodiment, and the thickness t2 of the second metal layer 16 is preferably set to 10 μm or less. In the examples, it was set to 4 μm. The upper surface of the first metal layer 13 points to the vaporization source side, and the side surface of the first metal layer 13 points to the surface facing the vapor deposition through holes 5.

各蒸着通孔5は、小孔部5aと、この小孔部5aの開口形状よりも大きく形成された大孔部5bとが連通してなるものであり、例えば、小孔部5aは、平面視で前後の長さ寸法が150m、左右幅寸法が50μmの四角形状を有しており、大孔部5bは、平面視で前後の長さ寸法が300μm、左右幅寸法が150μmの四角形状を有している。小孔部5aが被蒸着基板30側となり、大孔部5bが気化源側となる。これら蒸着通孔5は、前後または左右方向に並列状に配設されて蒸着パターン6を構成している。このように、蒸着通孔5は、第一金属層13と第二金属層16とが断面視で段差状に形成されることにより、小孔部5aと大孔部5bとで構成される形態となり、この大孔部5bによって、広い角度で気化源からの有機材料を受け入れることを可能とし、斜め方向から入射する有機材料にも対応することができるので、均一な高さ寸法の発光層の形成に寄与できる。しかも、大孔部5bおよび小孔部5aの周面に臨む第二金属層16の各上端周縁部(気化源側周縁部)をR状とすることで、大孔部5bおよび小孔部5aの上端周縁による影を限りなくなくすことができるとともに、有機材料の受け入れ角度をより広げることができ、より一層均一な高さ寸法の発光層を得ることができる。なお、図1の縦断面図は、実際の蒸着パターン6の様子を示したものではなく、それを模式的に示したものである。 Each vapor deposition through hole 5 is formed by communicating the small hole portion 5a and the large hole portion 5b formed larger than the opening shape of the small hole portion 5a. For example, the small hole portion 5a is a flat surface. It has a square shape with a front-rear length dimension of 150 m and a left-right width dimension of 50 μm in view, and the large hole portion 5b has a square shape with a front-rear length dimension of 300 μm and a left-right width dimension of 150 μm in a plan view. Have. The small hole portion 5a is on the vapor deposition substrate 30 side, and the large hole portion 5b is on the vaporization source side. These thin-film deposition holes 5 are arranged in parallel in the front-rear direction or the left-right direction to form the thin-film deposition pattern 6. As described above, the vapor-deposited through hole 5 is formed of a small hole portion 5a and a large hole portion 5b by forming the first metal layer 13 and the second metal layer 16 in a stepped shape in a cross-sectional view. The large hole portion 5b makes it possible to accept the organic material from the vaporization source at a wide angle, and it is also possible to deal with the organic material incident from an oblique direction, so that the light emitting layer having a uniform height dimension can be used. Can contribute to the formation. Moreover, by forming each upper end peripheral edge portion (vaporization source side peripheral edge portion) of the second metal layer 16 facing the peripheral surfaces of the large hole portion 5b and the small hole portion 5a into an R shape, the large hole portion 5b and the small hole portion 5a It is possible to eliminate shadows due to the upper edge of the surface as much as possible, widen the acceptance angle of the organic material, and obtain a light emitting layer having a more uniform height dimension. The vertical cross-sectional view of FIG. 1 does not show the actual state of the vapor deposition pattern 6, but schematically shows it.

マスク本体2には、マスク本体2の補強用の枠体3が装着することができる。この枠体3は、ニッケル−鉄合金であるインバー材、あるいはニッケル−鉄−コバルト合金であるスーパーインバー材等のような低熱線膨張係数の材質からなる。枠体3は、マスク本体2よりも肉厚の成形品であり、金属層9によりマスク本体2のパターン形成領域4の外周縁4aと不離一体的に接合される。ここでは、図9に示すごとく、30枚のマスク本体2を1枚の枠体3で保持している。すなわち、枠体3は、その板面上に30個の開口3aが整列配置されており、各開口3aに一枚のマスク本体2が装着される。枠体3は、マスク本体2に対応する開口3aを備え、平板形状に形成されている。枠体3の厚み寸法は、例えば100〜500μm程度とし、本実施例においては250μmに設定した。 A frame body 3 for reinforcing the mask body 2 can be attached to the mask body 2. The frame 3 is made of a material having a low coefficient of linear thermal expansion such as an Invar material which is a nickel-iron alloy or a Super Invar material which is a nickel-iron-cobalt alloy. The frame body 3 is a molded product thicker than the mask body 2, and is inseparably and integrally joined to the outer peripheral edge 4a of the pattern forming region 4 of the mask body 2 by the metal layer 9. Here, as shown in FIG. 9, 30 mask bodies 2 are held by one frame body 3. That is, 30 openings 3a are arranged side by side on the plate surface of the frame body 3, and one mask main body 2 is attached to each opening 3a. The frame body 3 has an opening 3a corresponding to the mask body 2 and is formed in a flat plate shape. The thickness dimension of the frame body 3 is, for example, about 100 to 500 μm, and is set to 250 μm in this embodiment.

枠体3の形成素材としてインバー材やスーパーインバー材を採用したのは、その線膨張係数が2×10-6/℃、あるいは1×10-6/℃以下と極めて小さく、蒸着工程における熱影響によるマスク本体2の寸法変化を良好に抑制できることに拠る。すなわち、例えば、上述のようにマスク本体2がニッケルからなるものであると、その線膨張係数は12.80×10-6/℃であり、被蒸着基板30(図17参照)である一般ガラスの線膨張係数3.20×10-6/℃に比べて数倍大きいため、蒸着時の高温による熱膨張率の違いから、常温下で蒸着マスク1を被蒸着基板30に整合させた際の蒸着位置と、実際の蒸着時における蒸着物質の蒸着位置との間に位置ズレが生じることは避けられない。そこで、マスク本体2を保持する枠体3の形成素材として、インバー材などの線膨張係数の小さな素材を採用してあると、昇温時におけるマスク本体2の膨張に起因する寸法変化、形状変化をよく抑えて、常温時における整合精度を蒸着時の昇温時にも良好に保つことができる。 The Invar material and Super Invar material are used as the forming material for the frame 3 because their linear expansion coefficient is extremely small, 2 × 10 -6 / ℃ or 1 × 10 -6 / ℃ or less, and the thermal effect in the vapor deposition process. This is because the dimensional change of the mask body 2 due to the above can be satisfactorily suppressed. That is, for example, when the mask body 2 is made of nickel as described above, its coefficient of linear expansion is 12.80 × 10 -6 / ° C, and it is a general glass which is a thin-film deposition substrate 30 (see FIG. 17). Since the linear expansion coefficient of 3.20 × 10 -6 / ° C is several times larger than that of 3.20 × 10 -6 / ° C, the difference in the coefficient of thermal expansion due to the high temperature during vapor deposition causes the vapor deposition mask 1 to be matched to the substrate 30 to be vapor-deposited at room temperature. It is inevitable that a positional deviation will occur between the vapor deposition position and the vapor deposition position of the vapor-deposited material during actual vapor deposition. Therefore, if a material having a small coefficient of linear expansion such as an invar material is used as the forming material of the frame body 3 for holding the mask body 2, the dimensional change and shape change due to the expansion of the mask body 2 at the time of temperature rise Can be well suppressed, and the matching accuracy at room temperature can be kept good even at the time of temperature rise during vapor deposition.

図6において、符号9は、マスク本体2のパターン形成領域4の外周縁4aと枠体3とを接合する金属層を示す。かかる金属層9は、メッキ法により形成されるものであり、ニッケルやニッケル−コバルト合金等の電鋳金属からなる。このように、マスク本体2のパターン形成領域4の外周縁4aと枠体3とを金属層9で接合してあると、マスク本体2と枠体3とを接着剤で接合する形態では不可避であった、洗浄処理等において使用される有機溶剤が接着剤に作用することに起因する接着剤の変質などの不具合は一切生じず、マスク本体2と枠体3との間の良好な接合状態を長期にわたってよく維持できる。 In FIG. 6, reference numeral 9 indicates a metal layer that joins the outer peripheral edge 4a of the pattern forming region 4 of the mask body 2 and the frame body 3. The metal layer 9 is formed by a plating method and is made of an electroformed metal such as nickel or a nickel-cobalt alloy. In this way, if the outer peripheral edge 4a of the pattern forming region 4 of the mask body 2 and the frame body 3 are joined by the metal layer 9, it is unavoidable in the form of joining the mask body 2 and the frame body 3 with an adhesive. There was no problem such as deterioration of the adhesive due to the action of the organic solvent used in the cleaning process on the adhesive, and a good bonding state between the mask body 2 and the frame 3 was maintained. Can be maintained well over the long term.

そのうえで、本実施形態においては、図6ないし図8に示すごとく、マスク本体2のパターン形成領域4の外周縁4aの全周にわたって多数個の通孔21を設けてあり、マスク本体2のパターン形成領域4の外周縁4aと枠体3とを、該通孔21を埋めるように形成された金属層9を介して一体的に接合してある点が着目される。すなわち、本実施形態に係る金属層9は、パターン形成領域4の外周縁4aの上面と、枠体3の上面およびパターン形成領域4に臨む側面と、マスク本体2と枠体3との間隙部分のみならず、さらに通孔21を埋めるように成長・形成されている点が着目される。このように、通孔21を埋めるように成長・形成された金属層9を介してマスク本体2と枠体3とを接合してあると、両者2・3間の接合強度の向上を図ることができるため、枠体3に対するマスク本体2の不用意な脱落や位置ずれを確実に抑えることができる。従って、発光層の再現精度・蒸着精度の向上を図ることができる。 Then, in the present embodiment, as shown in FIGS. 6 to 8, a large number of through holes 21 are provided over the entire circumference of the outer peripheral edge 4a of the pattern forming region 4 of the mask body 2, and the pattern of the mask body 2 is formed. It is noted that the outer peripheral edge 4a of the region 4 and the frame body 3 are integrally joined via a metal layer 9 formed so as to fill the through hole 21. That is, the metal layer 9 according to the present embodiment has an upper surface of the outer peripheral edge 4a of the pattern forming region 4, an upper surface of the frame body 3 and a side surface facing the pattern forming region 4, and a gap portion between the mask body 2 and the frame body 3. Not only that, it is noted that it is further grown and formed so as to fill the through hole 21. When the mask body 2 and the frame body 3 are joined via the metal layer 9 grown and formed so as to fill the through holes 21 in this way, the joining strength between the two 2 and 3 is improved. Therefore, it is possible to reliably prevent the mask body 2 from being inadvertently dropped or misaligned with respect to the frame body 3. Therefore, it is possible to improve the reproduction accuracy and the vapor deposition accuracy of the light emitting layer.

また、図7および図8に示すごとく、マスク本体2の四つの角部を平面視で面取り状に形成している。これによれば、マスク本体2が熱膨張した際に角部に応力が集中することを抑えることができる。なお、図7および図8においては、蒸着通孔5を小孔部5aと大孔部5bとで構成されるものではなく、ストレート状のもので表現している。 Further, as shown in FIGS. 7 and 8, the four corners of the mask body 2 are formed in a chamfered shape in a plan view. According to this, it is possible to suppress the concentration of stress on the corners when the mask body 2 is thermally expanded. In addition, in FIG. 7 and FIG. 8, the vapor deposition through hole 5 is not composed of the small hole portion 5a and the large hole portion 5b, but is represented by a straight one.

図10ないし図12は、本実施形態に係る蒸着マスクの製造方法を示す。まず、図10(a)に示すごとく、母型10の表面にフォトレジスト層11を形成する。母型10としては、導電性を有し、低温膨張係数の素材が望ましく、例えば、42アロイやインバー、SUS430(ステンレス)等が挙げられる。フォトレジスト層11は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。 10 to 12 show a method for manufacturing a vapor deposition mask according to the present embodiment. First, as shown in FIG. 10A, the photoresist layer 11 is formed on the surface of the matrix 10. As the master mold 10, a material having conductivity and a low temperature expansion coefficient is desirable, and examples thereof include 42 alloy, Invar, and SUS430 (stainless steel). The photoresist layer 11 is formed by laminating one or several negative type photosensitive dry film resists according to a predetermined height and thermocompression bonding.

次いで、フォトレジスト層11の上に、蒸着通孔5の大孔部5bおよび接着強度アップ用の通孔21の位置に対応する透光孔を有するパターンフィルム(ガラスマスク)を密着させたのち、紫外線光を照射して露光を行い、現像、乾燥の各処理を行って、未露光部分を溶解除去することにより、図10(b)に示すごとく、前記蒸着通孔5の大孔部5bおよび通孔21の位置に対応する、ストレート状のレジスト体12aを有する一次パターンレジスト12を母型10上に形成した。 Next, a pattern film (glass mask) having a translucent hole corresponding to the position of the large hole portion 5b of the vapor deposition through hole 5 and the through hole 21 for increasing the adhesive strength is brought into close contact with the photoresist layer 11. As shown in FIG. 10B, the large hole portion 5b of the vapor deposition through hole 5 and the large hole portion 5b of the vapor deposition through hole 5 and the unexposed portion are dissolved and removed by performing exposure by irradiating with ultraviolet light, developing and drying. A primary pattern resist 12 having a straight resist body 12a corresponding to the position of the through hole 21 was formed on the master mold 10.

次いで、上記母型10を所定の条件に建浴した電鋳槽に入れ、図10(c)に示すごとく、先のレジスト体14aの高さの範囲内で、母型10のレジスト体14aで覆われていない表面(露出領域)にニッケル−コバルト合金を、好ましくは5〜90μm厚の範囲、本実施例では16μm厚で電鋳して、第一金属層13を形成した。第一金属層13を形成後は、図10(d)に示すごとく、一次パターンレジスト12(レジスト体12a)を除去する。ここで、第一金属層13は、光沢ニッケル層と無光沢ニッケル層との2層構造としても良い。この場合、母型10に光沢ニッケルからなる電着層を5μm電鋳したのち、その上に無光沢ニッケルからなる電着層を11μm電鋳する。このように、第一金属層13を2層構造とすれば、光沢ニッケルが母型10に対してくっつき難く、最後の蒸着マスク1の母型10からの剥離工程を作業効率良く進めることができる。なお、図10(d)において、符号13aは、マスク本体2・2どうしの間に形成された第一金属層を示す。 Next, the mother mold 10 is placed in an electroformed tank that has been bathed under predetermined conditions, and as shown in FIG. 10 (c), the resist body 14a of the mother mold 10 is used within the height range of the resist body 14a. A nickel-cobalt alloy was electroformed on the uncovered surface (exposed region), preferably in the range of 5 to 90 μm, 16 μm in this example, to form the first metal layer 13. After forming the first metal layer 13, the primary pattern resist 12 (resist body 12a) is removed as shown in FIG. 10 (d). Here, the first metal layer 13 may have a two-layer structure of a bright nickel layer and a matte nickel layer. In this case, an electrodeposition layer made of bright nickel is electroformed 5 μm on the master mold 10, and then an electrodeposition layer made of matte nickel is electroformed 11 μm on the electrodeposition layer. In this way, if the first metal layer 13 has a two-layer structure, the bright nickel does not easily stick to the master mold 10, and the final peeling step of the vapor deposition mask 1 from the master mold 10 can be carried out efficiently. .. In FIG. 10D, reference numeral 13a indicates a first metal layer formed between the mask bodies 2 and 2.

続いて、図11(a)に示すごとく、第一金属層13の形成領域を含む母型10の表面全体に、フォトレジスト層14を形成した。このフォトレジスト層14は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。 Subsequently, as shown in FIG. 11A, the photoresist layer 14 was formed on the entire surface of the matrix 10 including the formation region of the first metal layer 13. The photoresist layer 14 is formed by laminating one or several negative type photosensitive dry film resists according to a predetermined height and thermocompression bonding.

次いで、蒸着通孔5の小孔部5a位置に対応する透光孔を有するパターンフィルムを密着させたのち、紫外線光を照射して露光を行い、現像、乾燥の各処理を行って、未露光部分を除去することにより、図11(b)に示すごとく、蒸着通孔5の小孔部5a位置に対応するストレート状のレジスト体15aを有する二次パターンレジスト15を母型10上に形成した。 Next, a pattern film having a translucent hole corresponding to the position of the small hole portion 5a of the vapor deposition through hole 5 is brought into close contact with the film, and then exposed by irradiation with ultraviolet light, developed and dried, and unexposed. By removing the portion, as shown in FIG. 11B, a secondary pattern resist 15 having a straight resist body 15a corresponding to the position of the small hole portion 5a of the vapor deposition through hole 5 was formed on the master mold 10. ..

次いで、上記母型10を所定の条件に建浴した電鋳槽に入れ、図11(c)に示すごとく、先のレジスト体15aの高さの範囲内で、母型10及び第一金属層13のレジスト体16aで覆われていない表面(露出領域)にニッケル−コバルト合金を、好ましくは10μm以下の厚さ、本実施形態では4μm厚で電鋳して、第二金属層16を形成した。この時、第一金属層13の端部(頂部や根元)と対向する部分に形成される第二金属層16はR状となる。また、蒸着通孔5に臨む第二金属層16の端部もR状となる。なお、係るR(アール)の曲率は、第二金属層16の厚みを調整することで、所望のR(アール)が得られる。そして、二次パターンレジスト15(レジスト体15a)を除去することにより、図11(d)に示すごとく、多数独立の蒸着通孔5からなる蒸着パターン6と、および該蒸着パターン6の外周縁全体に接合強度アップ用の通孔21とを備えたマスク本体2を得た。マスク本体2の各角部は、図7および図8に示すごとく、平面視で面取り状に形成している。なお、図11(d)において、符号16aは、マスク本体2・2どうしの間に形成された第二金属層を示しており、第一金属層13a上に形成される。 Next, the mother mold 10 is placed in an electroformed tank that has been bathed under predetermined conditions, and as shown in FIG. 11 (c), the mother mold 10 and the first metal layer are within the height range of the resist body 15a. The second metal layer 16 was formed by electroforming a nickel-cobalt alloy on the surface (exposed region) of the resist body 16a not covered with the resist body 16a, preferably with a thickness of 10 μm or less, preferably 4 μm in the present embodiment. .. At this time, the second metal layer 16 formed at a portion facing the end portion (top or root) of the first metal layer 13 has an R shape. Further, the end portion of the second metal layer 16 facing the vapor deposition through hole 5 is also R-shaped. As for the curvature of the R (R), a desired R (R) can be obtained by adjusting the thickness of the second metal layer 16. Then, by removing the secondary pattern resist 15 (resist body 15a), as shown in FIG. 11D, the vapor deposition pattern 6 composed of a large number of independent vapor deposition through holes 5 and the entire outer peripheral edge of the vapor deposition pattern 6 are formed. A mask body 2 provided with a through hole 21 for increasing the bonding strength was obtained. As shown in FIGS. 7 and 8, each corner of the mask body 2 is formed in a chamfered shape in a plan view. In FIG. 11D, reference numeral 16a indicates a second metal layer formed between the mask bodies 2 and 2, and is formed on the first metal layer 13a.

続いて、図12(a)に示すごとく、第一金属層13及び第二金属層16(マスク本体2)の形成部分を含む母型10の表面全体に、フォトレジスト層17を形成した。このフォトレジスト層17は、先と同様にネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。次いで、パターン形成領域4に対応する透光孔を有するパターンフィルムを密着させたのち、紫外線光を照射して露光を行った。かくして、パターン形成領域4に係る部分が露光(17a)されており、それ以外の部分が未露光(17b)のフォトレジスト層17を得たうえで、図12(b)に示すごとく、母型10上に、第一金属層13及び第二金属層16を囲むようにして枠体3を配した。ここでは、未露光のフォトレジスト層17bの粘着性を利用して、母型10上に枠体3を仮止め固定した。 Subsequently, as shown in FIG. 12 (a), the photoresist layer 17 was formed on the entire surface of the master mold 10 including the formed portions of the first metal layer 13 and the second metal layer 16 (mask body 2). The photoresist layer 17 is formed by laminating one or several negative type photosensitive dry film resists at a predetermined height in the same manner as above by thermocompression bonding. Next, a pattern film having light-transmitting holes corresponding to the pattern-forming region 4 was brought into close contact with the pattern film, and then exposed to ultraviolet light. Thus, after obtaining the photoresist layer 17 in which the portion related to the pattern forming region 4 is exposed (17a) and the other portion is unexposed (17b), as shown in FIG. 12B, the matrix mold is obtained. The frame 3 was arranged on the 10 so as to surround the first metal layer 13 and the second metal layer 16. Here, the frame body 3 was temporarily fixed and fixed on the master die 10 by utilizing the adhesiveness of the unexposed photoresist layer 17b.

次いで、図12(c)に示すごとく、表面に露出している未露光のフォトレジスト層17bを溶解除去して、パターン形成領域を覆うレジスト体18aを有する三次パターンレジスト18を形成した。なお、このとき、枠体3の下面に存する未露光のフォトレジスト層17bは、母型10上に残留している。 Next, as shown in FIG. 12 (c), the unexposed photoresist layer 17b exposed on the surface was dissolved and removed to form a tertiary pattern resist 18 having a resist body 18a covering the pattern forming region. At this time, the unexposed photoresist layer 17b existing on the lower surface of the frame 3 remains on the matrix 10.

次いで、図12(d)に示すごとく、パターン形成領域4の外周縁4aに係る表面に露出する第二金属層16の上面、枠体3と第二金属層16との間で露出する母型10の表面、枠体3の表面上、および通孔21内に電着金属を電鋳して金属層9を形成し、かかる金属層9により第一電着層13及び第二金属層16(マスク本体2)と枠体3とを一体的に接合した。なお、金属層9を形成する前に、通孔21の周辺の第一電着層13、詳しくは、通孔21の内壁面及び該通孔21周辺の第一電着層13上面に対して、酸浸漬、電解処理、ストライクメッキ等の処理を施すことにより、該処理を施した部分と金属層9との接合強度の向上を図ることができる。 Next, as shown in FIG. 12 (d), the upper surface of the second metal layer 16 exposed on the surface of the outer peripheral edge 4a of the pattern forming region 4, and the master mold exposed between the frame 3 and the second metal layer 16. Electroformed metal is electroformed on the surface of 10 and on the surface of the frame 3 and in the through hole 21 to form a metal layer 9, and the metal layer 9 is used to form a first electrodeposition layer 13 and a second metal layer 16 ( The mask body 2) and the frame 3 were integrally joined. Before forming the metal layer 9, the first electrodeposition layer 13 around the through hole 21, specifically, the inner wall surface of the through hole 21 and the upper surface of the first electrodeposition layer 13 around the through hole 21. By performing treatments such as acid immersion, electrolytic treatment, and strike plating, the joint strength between the treated portion and the metal layer 9 can be improved.

最後に、母型10から第一金属層13、第二金属層16、および金属層9を剥離したうえで、これら金属層から枠体3の下面に存する第一金属層13aを剥離し、三次パターンレジスト18および未露光のフォトレジスト層17bを除去することにより、図6に示すような蒸着マスク1を得た。 Finally, after peeling the first metal layer 13, the second metal layer 16, and the metal layer 9 from the master mold 10, the first metal layer 13a existing on the lower surface of the frame 3 is peeled from these metal layers, and the tertiary metal layer 13a is peeled off. By removing the pattern resist 18 and the unexposed photoresist layer 17b, a vapor deposition mask 1 as shown in FIG. 6 was obtained.

(第3実施形態)
本発明の第3実施形態に係る蒸着マスクを図13ないし図15に基づいて説明する。上記各実施形態におけるマスク本体2(蒸着マスク1)は、母型として導電性基板を用い、その表面にパターンレジストを形成後、電鋳して製造しているが、母型として絶縁性基板を用いて製造することもできる。図13および図14は、本実施形態に係る蒸着マスクの製造方法を示すものであり、以下に該製造方法の各工程について説明する。
(Third Embodiment)
The vapor deposition mask according to the third embodiment of the present invention will be described with reference to FIGS. 13 to 15. The mask body 2 (deposited mask 1) in each of the above embodiments is manufactured by using a conductive substrate as a master mold, forming a pattern resist on the surface thereof, and then electroforming. However, an insulating substrate is used as the master mold. It can also be manufactured using. 13 and 14 show a method for manufacturing a vapor-deposited mask according to the present embodiment, and each step of the manufacturing method will be described below.

まず、図13(a)に示すごとく、金属膜41が形成された母型40を用意する。母型40は、例えば、ガラス板や樹脂板など絶縁性基板を用いる。また、金属膜41は、クロムやチタンなどの導電性を有する金属からなる。この金属膜41は、母型40の表面全体に金属膜をスパッタリングにより堆積させ、フォトリソグラフィー技術を用いてレジストパターンを形成後、レジストパターンから露出している金属膜をエッチング除去し、レジストパターンを除去することにより、母型40の表面に金属膜41がパターン形成される。こうしてパターン形成された金属膜41上に、後述する第一金属層44及び第二金属層45が形成され、金属膜41間が蒸着通孔5の小孔部5aの位置に対応する。本実施形態では、母型40としてガラス板、金属膜41としてクロムを用いており、金属膜41の厚みは1μm以下である。 First, as shown in FIG. 13A, a master mold 40 on which the metal film 41 is formed is prepared. As the master mold 40, for example, an insulating substrate such as a glass plate or a resin plate is used. Further, the metal film 41 is made of a conductive metal such as chromium or titanium. In this metal film 41, a metal film is deposited on the entire surface of the master mold 40 by sputtering, a resist pattern is formed by using a photolithography technique, and then the metal film exposed from the resist pattern is etched and removed to form a resist pattern. By removing the metal film 41, a metal film 41 is formed on the surface of the master mold 40. A first metal layer 44 and a second metal layer 45, which will be described later, are formed on the metal film 41 in which the pattern is formed in this manner, and the space between the metal films 41 corresponds to the position of the small hole portion 5a of the vapor deposition through hole 5. In the present embodiment, a glass plate is used as the mother mold 40 and chromium is used as the metal film 41, and the thickness of the metal film 41 is 1 μm or less.

次いで、図13(b)に示すごとく、母型40の表面にフォトレジスト層42を形成する。フォトレジスト層11は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成する。 Next, as shown in FIG. 13 (b), the photoresist layer 42 is formed on the surface of the matrix 40. The photoresist layer 11 is formed by laminating one or several negative type photosensitive dry film resists according to a predetermined height and thermocompression bonding.

次いで、フォトレジスト層42の上に、第一金属層44の形成位置に対応する透光孔を有するパターンフィルム(ガラスマスク)を密着させたのち、紫外線光を照射して露光を行い、現像、乾燥の各処理を行って、未露光部分を除去することにより、図13(c)に示すごとく、第一金属層44の形成位置に対応する、ストレート状のレジスト体43aを有するパターンレジスト43を母型40上に形成した。 Next, a pattern film (glass mask) having light-transmitting holes corresponding to the formation position of the first metal layer 44 is brought into close contact with the photoresist layer 42, and then exposed to ultraviolet light to develop the texture. By performing each process of drying to remove the unexposed portion, as shown in FIG. 13C, a pattern resist 43 having a straight resist body 43a corresponding to the formation position of the first metal layer 44 is obtained. It was formed on the mother mold 40.

次いで、上記母型40を所定の条件に建浴した電鋳槽に入れ、図14(a)に示すごとく、先のレジスト体43aの高さの範囲内で、母型40のレジスト体43aで覆われていない表面(露出領域)にニッケル−コバルト合金を、好ましくは5〜90μm厚の範囲、本実施形態では16μm厚で電鋳して、第一金属層44を形成した。なお、第一金属層44を形成する前に、レジスト体43aから露出する金属膜41表面に、酸化膜、有機膜、高分子膜などを形成しても良い。 Next, the mother mold 40 is placed in an electroformed tank that has been bathed under predetermined conditions, and as shown in FIG. 14A, the resist body 43a of the mother mold 40 is used within the height range of the resist body 43a. A nickel-cobalt alloy was electroformed on the uncovered surface (exposed region), preferably in the range of 5 to 90 μm, 16 μm in this embodiment, to form the first metal layer 44. Before forming the first metal layer 44, an oxide film, an organic film, a polymer film, or the like may be formed on the surface of the metal film 41 exposed from the resist body 43a.

次いで、図14(b)に示すごとく、パターンレジスト43(レジスト体43a)を除去する。 Then, as shown in FIG. 14B, the pattern resist 43 (resist body 43a) is removed.

次いで、上記母型40を所定の条件に建浴した電鋳槽に入れ、図14(c)に示すごとく、金属膜41及び第一金属層44の表面にニッケル−コバルト合金を、好ましくは10μm以下厚、本実施形態では4μm厚で電鋳して、第二金属層45を形成した。この時、金属膜41及び第一金属層44の端部(頂部や根元)と対向する部分に形成される第二金属層45はR状となる。これにより、大孔部5bおよび小孔部5aの上端周縁による影を限りなくなくすことができる。なお、係るR(アール)の曲率は、第二金属層45の厚みを調整することで、所望のR(アール)が得られる。また、第二金属層45を形成する前に、金属膜41及び第一金属層44の表面に、酸化膜、有機膜、高分子膜などを形成しても良い。 Next, the mother mold 40 was placed in an electroformed tank that had been bathed under predetermined conditions, and as shown in FIG. 14 (c), a nickel-cobalt alloy was applied to the surfaces of the metal film 41 and the first metal layer 44, preferably 10 μm. The second metal layer 45 was formed by electroforming with the following thickness, which is 4 μm in the present embodiment. At this time, the second metal layer 45 formed at the portion facing the end portion (top or root) of the metal film 41 and the first metal layer 44 is R-shaped. Thereby, the shadow due to the upper end peripheral edge of the large hole portion 5b and the small hole portion 5a can be eliminated as much as possible. The desired R (R) curvature can be obtained by adjusting the thickness of the second metal layer 45. Further, before forming the second metal layer 45, an oxide film, an organic film, a polymer film, or the like may be formed on the surfaces of the metal film 41 and the first metal layer 44.

最後に、母型40から第一金属層44及び第二金属層45を剥離することにより、図15に示すような、小孔部5aと大孔部5bとを有する蒸着通孔5を備えたマスク本体2(蒸着マスク1)を得た。 Finally, by peeling the first metal layer 44 and the second metal layer 45 from the master mold 40, a thin-film deposition hole 5 having a small hole portion 5a and a large hole portion 5b is provided as shown in FIG. A mask body 2 (deposited mask 1) was obtained.

本実施形態におけるマスク本体2は、第一金属層44の裏面側(被蒸着基板30側)に微小凹み50を有する。この微小凹み50の形状は、金属膜41の形状に対応して形成される。係る微小凹み50が存在することにより、微小凹み50の外周部(小孔部5aの被蒸着基板30側の周縁部)が出っ張り形状となるので、本蒸着マスク1を被蒸着基板30上に載置して蒸着する時に、マスク本体2の蒸着通孔5周辺と被蒸着基板30との線接触により、蒸着マスク1を被蒸着基板30上に密着良く載置することができ、気化源から気化された有機材料のにじみや蒸着マスク1裏面への蒸着を防ぐことができる。 The mask main body 2 in the present embodiment has a minute recess 50 on the back surface side (the substrate 30 side to be vapor-deposited) of the first metal layer 44. The shape of the minute dent 50 is formed corresponding to the shape of the metal film 41. Due to the presence of the micro-dent 50, the outer peripheral portion of the micro-dent 50 (the peripheral portion of the small hole portion 5a on the vapor-deposited substrate 30 side) has a protruding shape. When placed and vapor-deposited, the vapor-deposited mask 1 can be placed on the vapor-deposited substrate 30 in close contact with the vicinity of the vapor-deposited through holes 5 of the mask body 2 and the substrate 30 to be vapor-deposited, and vaporized from the vaporization source. It is possible to prevent bleeding of the organic material and vapor deposition on the back surface of the vapor deposition mask 1.

上記各実施形態において、金属層9は、第一金属層13及び第二金属層16、すなわちマスク本体2を枠体3側に引き寄せる、引っ張り応力F1が作用するようなテンションを加えた状態で形成することができる。かかる引っ張り応力の付与は、電鋳槽中に添加する第2種光沢剤中のカーボンの含有比率を調製することによって実現できる。これにより、第一金属層13及び第二金属層16は、金属層9を介して枠体3に対してピンと張った引っ張り応力が作用した状態で張設されるため、蒸着作業時の周囲温度上昇に対しても、枠体3との熱膨張係数の差に伴うマスク本体2の膨張を吸収し、蒸着マスク1が熱による寸法精度のばらつきが生じ難く、発光層の再現精度・蒸着精度の向上に寄与できる。さらに、マスク本体2を保持する枠体3として熱膨張しにくい材料を採用することで、熱の影響を可及的に抑えることができる。 In each of the above embodiments, the metal layer 9 is formed in a state where the first metal layer 13 and the second metal layer 16, that is, the mask body 2 is attracted to the frame body 3 side, and tension is applied so that the tensile stress F1 acts. can do. The application of such tensile stress can be realized by adjusting the carbon content ratio in the type 2 brightener added to the electroforming tank. As a result, the first metal layer 13 and the second metal layer 16 are stretched with a taut tensile stress acting on the frame 3 via the metal layer 9, so that the ambient temperature during the vapor deposition operation is applied. Even when it rises, it absorbs the expansion of the mask body 2 due to the difference in the coefficient of thermal expansion from the frame body 3, and the vapor deposition mask 1 is less likely to cause variations in dimensional accuracy due to heat, and the reproduction accuracy and vapor deposition accuracy of the light emitting layer are improved. Can contribute to improvement. Further, by adopting a material that does not easily expand thermally as the frame body 3 that holds the mask body 2, the influence of heat can be suppressed as much as possible.

また、上記各実施形態において、マスク本体2、すなわち、第一金属層13及び第二金属層16は、それが内方に収縮する方向の応力F2が作用するようなテンションを加えた状態で形成することもできる。かかる引っ張り応力F2は、第一金属層13及び第二金属層16を作成する際の電鋳層の温度(40〜50℃)と常温(20℃)との温度差に起因して、常温時に第一金属層13及び第二金属層16が収縮するようにすることによって実現できる。より詳しく説明すると、母型10として42アロイやインバー、SUS430(ステンレス)等の低温膨張係数の素材を用いたうえで、40〜50℃の電鋳層内で第一金属層13及び第二金属層16を形成すると、ニッケルやニッケル合金等の第一金属層13及び第二金属層16は、母型10よりも膨張率が大きいため、母型に対して膨張しようとする応力が作用する(尤も、このときの金属層9の膨張は、母型10により規制される)。しかるに、電鋳層温度(40〜50℃)よりも低い常温(20℃)においては、第一金属層13及び第二金属層16は、内方に収縮しようとし、従って母型10から剥離することによって、第一金属層13及び第二金属層16、すなわち、マスク本体2は枠体3に対して引っ張り応力F2が作用することとなる。これにより、マスク本体2を、皺の無いピンと張った状態とできるため、蒸着作業時の周囲温度上昇に対しても、枠体3との熱膨張係数の差に伴うマスク本体2自体の膨張を吸収し、蒸着マスク1が熱による寸法精度のばらつきが生じ難く、発光層の再現精度・蒸着精度の向上に寄与できる。しかも、通孔21を形成すること、マスク本体2の角部を面取り状とすること、マスク本体2を保持する枠体3自体を熱膨張しにくい材質とすることで、熱による寸法精度のばらつきをさらに抑え、発光層の再現精度・蒸着精度の向上により一層寄与できる。 Further, in each of the above embodiments, the mask body 2, that is, the first metal layer 13 and the second metal layer 16 is formed in a state in which tension is applied so that the stress F2 in the direction in which the mask body 2 contracts inward acts. You can also do it. The tensile stress F2 is generated at room temperature due to the temperature difference between the temperature of the electrocast layer (40 to 50 ° C.) and the room temperature (20 ° C.) when the first metal layer 13 and the second metal layer 16 are formed. This can be achieved by allowing the first metal layer 13 and the second metal layer 16 to shrink. More specifically, after using a material having a low coefficient of thermal expansion such as 42 alloy, Invar, and SUS430 (stainless steel) as the matrix 10, the first metal layer 13 and the second metal are used in the electrocast layer at 40 to 50 ° C. When the layer 16 is formed, the first metal layer 13 and the second metal layer 16 such as nickel and nickel alloy have a larger expansion coefficient than the master mold 10, so that a stress to expand the master mold acts ( However, the expansion of the metal layer 9 at this time is regulated by the matrix 10). However, at room temperature (20 ° C.), which is lower than the electroformed layer temperature (40-50 ° C.), the first metal layer 13 and the second metal layer 16 tend to shrink inward and therefore peel off from the master mold 10. As a result, the tensile stress F2 acts on the frame body 3 of the first metal layer 13 and the second metal layer 16, that is, the mask body 2. As a result, the mask body 2 can be kept taut without wrinkles, so that the mask body 2 itself expands due to the difference in the coefficient of thermal expansion from the frame 3 even when the ambient temperature rises during the vapor deposition work. It absorbs and the vapor deposition mask 1 is less likely to cause variations in dimensional accuracy due to heat, and can contribute to improving the reproduction accuracy and vapor deposition accuracy of the light emitting layer. Moreover, by forming the through holes 21, making the corners of the mask body 2 chamfered, and using a material that does not easily expand the frame 3 itself that holds the mask body 2, the dimensional accuracy varies due to heat. Can be further suppressed and further contributed to the improvement of the reproduction accuracy and the vapor deposition accuracy of the light emitting layer.

また、上記各実施形態において、母型の剥離時などに、第一金属層13・44と第二金属層16・45の界面から剥離する場合がある。これを防止するために、第一金属層13・44上に第二金属層16・45を形成する前に、第一金属層13・44表面に対して、表面活性化処理(酸浸漬、陰極電解、化学エッチング、ストライクメッキなど)行うと良い。その他に、図16に示すように、第一金属層13・44の上端周縁に張出部60を形成し、この第一金属層13・44上に第二金属層16・45を形成することで、第一金属層13・44と第二金属層16・45との剥離を防ぐことができる。係る張出部60は、第一金属層13・44を形成する際に、レジスト体12a・43aの厚みを超えて電鋳、いわゆるオーバーハングをさせることで、第一金属層13・44の上端周縁に断面庇形状の張出部60が一体に形成された形状を得ることができる。 Further, in each of the above embodiments, when the mother mold is peeled off, the first metal layer 13.44 and the second metal layer 16/45 may be peeled off from the interface. In order to prevent this, before forming the second metal layer 16.45 on the first metal layer 13.44, the surface of the first metal layer 13.44 is subjected to surface activation treatment (acid immersion, cathode). (Electrolysis, chemical etching, strike plating, etc.) should be performed. In addition, as shown in FIG. 16, an overhanging portion 60 is formed on the upper peripheral periphery of the first metal layer 13.44, and the second metal layer 16.45 is formed on the first metal layer 13.44. Therefore, it is possible to prevent the first metal layers 13.44 and the second metal layers 16/45 from peeling off. When the first metal layers 13.44 are formed, the overhanging portion 60 is electroformed beyond the thickness of the resist bodies 12a / 43a, so-called overhanging, so that the upper end of the first metal layers 13.44 is formed. It is possible to obtain a shape in which an overhanging portion 60 having a cross-sectional eaves shape is integrally formed on the peripheral edge.

蒸着マスク1が有するマスク本体2の枚数は、上記各実施形態に示したものに限られない。また、一次パターンレジスト12を除去する前もしくは後に、第一金属層13を研磨して平滑化してから、第2金属層16を形成するようにしてもよい。また、二次パターンレジスト15を除去する前もしくは後に、第2金属層16を研磨して平滑化してから、パターン形成領域4に三次パターンレジスト18を形成するようにしてもよい。枠体3の材質としては、実施形態に示すインバー材等のような金属材料のほか、できる限り被蒸着基板であるガラス等に近い低熱線膨張係数の材料、例えばガラスやセラミックのようなものを選択することができる。この場合にはこれら材料の少なくとも表面に導電性を付与させることが必要となる。さらに、形成された蒸着マスク1を引っ張り状態で、その外周縁に別途ステンレス、アルミ等の固定枠を周知の方法で固定しても良い。ただ、実施形態のごとく枠体3に各マスク本体2が金属層9を介してテンションを加えた状態で保持されているような場合、固定枠を必要としない所謂フレームレス化が可能となる。 The number of mask bodies 2 included in the vapor deposition mask 1 is not limited to that shown in each of the above embodiments. Further, the first metal layer 13 may be polished and smoothed before or after the primary pattern resist 12 is removed, and then the second metal layer 16 may be formed. Further, before or after removing the secondary pattern resist 15, the second metal layer 16 may be polished and smoothed, and then the tertiary pattern resist 18 may be formed in the pattern forming region 4. As the material of the frame body 3, in addition to a metal material such as an invar material shown in the embodiment, a material having a low coefficient of linear thermal expansion as close as possible to glass or the like as a substrate to be vapor-deposited, for example, a material such as glass or ceramic is used. You can choose. In this case, it is necessary to impart conductivity to at least the surface of these materials. Further, the formed vapor deposition mask 1 may be separately fixed to the outer peripheral edge of the formed vapor deposition mask 1 by a well-known method. However, when each mask body 2 is held in a state where tension is applied to the frame body 3 via the metal layer 9 as in the embodiment, so-called frameless operation that does not require a fixed frame becomes possible.

1 蒸着マスク
2 マスク本体
3 枠体
4 パターン形成領域
4a パターン形成領域の外周縁
5 蒸着通孔
6 蒸着パターン
9 金属層
10 母型
12 一次パターンレジスト
13 第一金属層
15 二次パターンレジスト
16 第二金属層
17 パターンフィルム
18 三次パターンレジスト
21 通孔
40 母型
43 パターンレジスト
44 第一金属層
45 第二金属層
50 微小凹み
60 張出部
1 Vapor deposition mask 2 Mask body 3 Frame body 4 Pattern formation region 4a Outer peripheral edge of pattern formation region 5 Vapor deposition through holes 6 Vapor deposition pattern 9 Metal layer 10 Master 12 Primary pattern resist 13 Primary metal layer 15 Secondary pattern resist 16 Second Metal layer 17 Pattern film 18 Tertiary pattern resist 21 Through hole 40 Mother mold 43 Pattern resist 44 First metal layer 45 Second metal layer 50 Micro dent 60 Overhang

Claims (5)

マスク本体2に多数独立の蒸着通孔5からなる蒸着パターン6が設けられた蒸着マスクであって、
前記蒸着通孔5は、被蒸着基板側に位置する小孔部5aと、気化源側に位置し、前記小孔部5aの開口形状よりも大きく形成された大孔部5bとが連通形成して構成されており、
前記マスク本体2は、前記小孔部5aを有して水平方向に伸びる下段部と、前記大孔部5bを有して前記下段部から上方に向かって伸びる上段部とを備え、
前記下段部の被蒸着基板側に微小凹み50を有することを特徴とする蒸着マスク。
A thin-film mask in which a thin-film deposition pattern 6 composed of a large number of independent thin-film deposition holes 5 is provided on the mask body 2.
In the thin-film vapor deposition hole 5, a small hole portion 5a located on the substrate side to be vapor-deposited and a large hole portion 5b located on the vaporization source side and formed larger than the opening shape of the small hole portion 5a are formed in communication with each other. Is composed of
The mask body 2 includes a lower portion having the small hole portion 5a and extending in the horizontal direction, and an upper portion having the large hole portion 5b and extending upward from the lower portion.
A thin-film deposition mask characterized by having a minute dent 50 on the substrate side to be vapor-deposited in the lower portion.
前記マスク本体2の断面視において、微小凹み50の幅寸法が前記下段部の被蒸着基板側の幅寸法より小さいことを特徴とする請求項1に記載の蒸着マスク。 The vapor deposition mask according to claim 1, wherein the width dimension of the minute recess 50 is smaller than the width dimension of the lower portion on the substrate side to be deposited in the cross-sectional view of the mask main body 2. 前記マスク本体2の断面視において、微小凹み50の幅寸法が前記上段部の被蒸着基板側の幅寸法より大きいことを特徴とする請求項1または2に記載の蒸着マスク。 The vapor deposition mask according to claim 1 or 2, wherein the width dimension of the minute recess 50 is larger than the width dimension of the upper portion on the substrate side to be vapor-deposited in the cross-sectional view of the mask main body 2. 前記マスク本体2の断面視において、微小凹み50の幅寸法が前記上段部の被気化源側の幅寸法より大きいことを特徴とする請求項1ないし3のいずれかに記載の蒸着マスク。 The vapor deposition mask according to any one of claims 1 to 3, wherein the width dimension of the minute dent 50 is larger than the width dimension of the upper portion on the aerated source side in a cross-sectional view of the mask main body 2. 前記微小凹み50の外周部が被蒸着基板側に向かって出っ張り形状に形成されていることを特徴とする請求項1ないし4のいずれかに記載の蒸着マスク。 The vapor deposition mask according to any one of claims 1 to 4, wherein the outer peripheral portion of the micro-dent 50 is formed in a protruding shape toward the substrate to be vapor-deposited.
JP2021072405A 2019-09-27 2021-04-22 Evaporation mask Active JP7149369B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021072405A JP7149369B2 (en) 2019-09-27 2021-04-22 Evaporation mask
JP2022152810A JP7421617B2 (en) 2019-09-27 2022-09-26 vapor deposition mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019177418A JP6875480B2 (en) 2019-09-27 2019-09-27 Thin-film mask and its manufacturing method
JP2021072405A JP7149369B2 (en) 2019-09-27 2021-04-22 Evaporation mask

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019177418A Division JP6875480B2 (en) 2019-09-27 2019-09-27 Thin-film mask and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022152810A Division JP7421617B2 (en) 2019-09-27 2022-09-26 vapor deposition mask

Publications (2)

Publication Number Publication Date
JP2021113362A true JP2021113362A (en) 2021-08-05
JP7149369B2 JP7149369B2 (en) 2022-10-06

Family

ID=69098990

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2019177418A Active JP6875480B2 (en) 2019-09-27 2019-09-27 Thin-film mask and its manufacturing method
JP2021068917A Active JP7203887B2 (en) 2019-09-27 2021-04-15 Mask and manufacturing method thereof
JP2021072405A Active JP7149369B2 (en) 2019-09-27 2021-04-22 Evaporation mask
JP2022152810A Active JP7421617B2 (en) 2019-09-27 2022-09-26 vapor deposition mask

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2019177418A Active JP6875480B2 (en) 2019-09-27 2019-09-27 Thin-film mask and its manufacturing method
JP2021068917A Active JP7203887B2 (en) 2019-09-27 2021-04-15 Mask and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022152810A Active JP7421617B2 (en) 2019-09-27 2022-09-26 vapor deposition mask

Country Status (1)

Country Link
JP (4) JP6875480B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063130A1 (en) 2021-03-19 2022-09-28 Seiko Epson Corporation Cartridge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4634941Y1 (en) * 1968-11-18 1971-12-02
JP2003045657A (en) * 2001-05-24 2003-02-14 Kyushu Hitachi Maxell Ltd Deposition mask for organic el element and its manufacturing method
JP2013084373A (en) * 2011-10-06 2013-05-09 V Technology Co Ltd Mask

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8331158D0 (en) * 1983-11-22 1983-12-29 British Telecomm Metal/semiconductor deposition
JPS60255993A (en) * 1984-05-31 1985-12-17 Mitsubishi Heavy Ind Ltd Formation of plated film having superior bonding strength
JPH0738498B2 (en) * 1986-09-10 1995-04-26 富士通株式会社 Method for manufacturing printed wiring board
US5171718A (en) * 1987-11-27 1992-12-15 Sony Corporation Method for forming a fine pattern by using a patterned resist layer
JPH04111422A (en) * 1990-08-31 1992-04-13 Fujitsu Ltd Manufacture of semiconductor device
US5178745A (en) * 1991-05-03 1993-01-12 At&T Bell Laboratories Acidic palladium strike bath
JPH0715113A (en) * 1993-06-24 1995-01-17 Hitachi Ltd Formation of printed wiring pattern
JP3501284B2 (en) 2001-03-30 2004-03-02 富士通カンタムデバイス株式会社 Method for manufacturing semiconductor device
JP2003107723A (en) * 2001-09-25 2003-04-09 Eastman Kodak Co Manufacturing method for metal mask and metal mask
JP4046268B2 (en) 2002-04-26 2008-02-13 九州日立マクセル株式会社 Vapor deposition mask for organic EL device and manufacturing method thereof
JP4475496B2 (en) 2003-05-21 2010-06-09 九州日立マクセル株式会社 Vapor deposition mask for organic EL device and manufacturing method thereof
JP4349531B2 (en) * 2006-10-27 2009-10-21 Tdk株式会社 Mask device
JP6051876B2 (en) * 2013-01-11 2016-12-27 大日本印刷株式会社 Metal mask and metal mask manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4634941Y1 (en) * 1968-11-18 1971-12-02
JP2003045657A (en) * 2001-05-24 2003-02-14 Kyushu Hitachi Maxell Ltd Deposition mask for organic el element and its manufacturing method
JP2013084373A (en) * 2011-10-06 2013-05-09 V Technology Co Ltd Mask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063130A1 (en) 2021-03-19 2022-09-28 Seiko Epson Corporation Cartridge

Also Published As

Publication number Publication date
JP2020002470A (en) 2020-01-09
JP7149369B2 (en) 2022-10-06
JP6875480B2 (en) 2021-05-26
JP7421617B2 (en) 2024-01-24
JP7203887B2 (en) 2023-01-13
JP2021107584A (en) 2021-07-29
JP2022174324A (en) 2022-11-22

Similar Documents

Publication Publication Date Title
JP4369199B2 (en) Vapor deposition mask and manufacturing method thereof
JP5751810B2 (en) Metal mask manufacturing method, frame member, and manufacturing method thereof
JP4677363B2 (en) Vapor deposition mask and manufacturing method thereof
JP4104964B2 (en) MASK FOR FORMING THIN FILM PATTERN OF LAMINATED STRUCTURE COMPRISING PATTERNED MASK COATING AND SUPPORT AND METHOD FOR PRODUCING THE SAME
JP2008255449A (en) Vapor deposition mask, and method for producing the same
JP4046269B2 (en) Vapor deposition mask for organic EL element and method for producing vapor deposition mask for organic EL element
JP5607312B2 (en) Vapor deposition mask and manufacturing method thereof
US20060204904A1 (en) Metal mask and manufacturing method thereof
KR20170110623A (en) METHOD FOR MANUFACTURING VARIATION MASK
KR20200137032A (en) Deposition mask, method of manufacturing deposition mask and metal plate
JP2006152396A (en) Method for manufacturing metal mask, mask of artwork master for electroforming and artwork master
JP4475496B2 (en) Vapor deposition mask for organic EL device and manufacturing method thereof
JP6728733B2 (en) Method for manufacturing vapor deposition mask and vapor deposition mask
WO2016104207A1 (en) Vapor deposition mask and manufacturing method therefor
JP7421617B2 (en) vapor deposition mask
TWI791549B (en) Evaporation hood
CN108628091B (en) Mask plate and manufacturing method thereof
JP4782548B2 (en) Deposition method
US7799414B2 (en) Laminated structure, donor substrate, and method for fabricating laminated structure
JP2021105221A (en) Support device
KR101786548B1 (en) Metal mask for fabrication of OLED and its manufacturing method
JP7232699B2 (en) Evaporation mask
JP2006159579A (en) Method for manufacturing metal mask plate for printing and metal mask plate for printing
JPH07306521A (en) Mask plate for forming fine pattern and its production
JP2023042234A (en) Metal mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7149369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150