JP4046268B2 - Vapor deposition mask for organic EL device and manufacturing method thereof - Google Patents

Vapor deposition mask for organic EL device and manufacturing method thereof Download PDF

Info

Publication number
JP4046268B2
JP4046268B2 JP2002127452A JP2002127452A JP4046268B2 JP 4046268 B2 JP4046268 B2 JP 4046268B2 JP 2002127452 A JP2002127452 A JP 2002127452A JP 2002127452 A JP2002127452 A JP 2002127452A JP 4046268 B2 JP4046268 B2 JP 4046268B2
Authority
JP
Japan
Prior art keywords
vapor deposition
resist
mask
organic
electrodeposition layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002127452A
Other languages
Japanese (ja)
Other versions
JP2003323980A (en
Inventor
博士 嶋津
和彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Hitachi Maxell Ltd
Original Assignee
Kyushu Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Hitachi Maxell Ltd filed Critical Kyushu Hitachi Maxell Ltd
Priority to JP2002127452A priority Critical patent/JP4046268B2/en
Publication of JP2003323980A publication Critical patent/JP2003323980A/en
Application granted granted Critical
Publication of JP4046268B2 publication Critical patent/JP4046268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸着マスク法で有機EL素子の発光層を形成する際に用いられる有機EL素子用蒸着マスク、およびこの有機EL素子用蒸着マスクの製造方法に関する。
【0002】
【従来の技術】
CRTや液晶に替わる表示装置として、光透過性の基板上に、有機化合物材料からなる赤(R)、緑(G)、青(B)の3色の発光層がマトリックス状やストライプ状などの各種パターンで配列された有機EL(エレクトロルミネッセンス)表示パネルがある。有機EL素子の発光層の形成方法としては、蒸着マスク法に代表されるドライプロセスによることが、精度、生産性などの観点からして有利であることは広く知られている。図20に示すように従来例に係る蒸着マスク法においては、素子の基板2に発色層51の形成パターンに対応する蒸着通孔52を有する蒸着マスク50を密着させて、該通孔52の部分のみに気化源により気化された有機材料を蒸着させて、基板2上に発色層51を形成する。蒸着マスク50は、ステンレス、鉄、ニッケル合金等を素材とする。
【0003】
【発明が解決しようとする課題】
しかし、この蒸着マスク50では、有機材料が蒸着通孔52の内周面に食い付くために基板2に対する離型性が悪く、さらに発光層51の周縁がマスク50の開口エッジ52aでこそぎ取られて欠け53ができやすい。このように欠け53のある発光層51は、輝度にムラがあり、有機EL素子の高精度化を図るうえで大きな障害となる。
【0004】
また、現行における蒸着マスクの通孔の製造方法としては、ウエットエッチングによる方法やレーザーによる方法などがあるが、ウエットエッチングによる方法では、精度良く形成することができない。また、レーザーによる場合には、形成する蒸着通孔の数が多いと製造コストが高くつき、また、形成時に熱の影響を受けて通孔周りに熱反応による反り、すなわちうねりが生じやすく、位置精度が低下するなどの問題もある。
【0005】
本発明の目的は、均一な形状を有する発光層を高精度に再現性良く形成することができ、さらに安価に製造可能な有機EL素子用蒸着マスクとその製造方法を得るにある。
【0006】
【課題を解決するための手段】
本発明は、図1に示すごとく電着金属からなるマスク本体3に、発光層5形成用の蒸着通孔6が上下貫通状に多数独立して設けられている有機EL素子用の蒸着マスクにおいて、蒸着マスクの上面側、すなわち発光層5の蒸着対象である基板2との対向面側に、該基板2に対する離型性向上用の凸部7が、上方向に突出状に設けられていることを特徴とする。凸部7の突出高さ寸法hは、1〜10μmの範囲にあることが望ましい。
【0007】
具体的には、図3および図6に示すごとく多数の蒸着通孔6を配列形成して、蒸着通孔6の列の間に、多数独立した凸部7を分断列状に並設することができる。この場合には、図7に示すごとく、各凸部7が基板2に対して点状に接触できるような形状であることが望ましい。
【0008】
図9および図10に示すごとく、蒸着通孔6の列の間に、前後に長いリブ状の凸部7を設けることもできる。
【0009】
また、本発明は、電着金属からなるマスク本体3に、基板2に発光層5を形成するための蒸着通孔6が上下貫通状に多数独立して設けられている有機EL素子用の蒸着マスクの製造方法において、図4(c)に示すごとく母型10の表面に、レジスト体13aを有する一次パターンレジスト13を設ける第1のパターンニング工程と、図4(d)に示すごとく母型10上に電着金属を電鋳して、一次電着層14を形成する第1の電鋳工程と、図5(a)に示すごとくレジスト体13aの上面に、上記一次電着層14の任意の位置に対応する開口18bを有する二次パターンレジスト18を設ける第2のパターンニング工程と、図5(b)に示すごとく一次電着層14上の上記開口18bと対応する一に電着金属を電鋳して、該一次電着層14と一体不可分的に二次電着層19を形成する第2の電鋳工程と、母型30から一次および二次電着層14・19を剥離する剥離工程と、
前記剥離工程と前後して、一次および二次パターンレジスト13・18を除去する工程とを含むことを特徴とする。これによれば、一次パターンレジスト13のレジスト体13aの除去に伴い、一次電着層14には蒸着通孔6が形成され、二次パターンレジスト18の開口18bに形成された二次電着層19が、基板2に対する離型性向上用の凸部7となる。パターンレジスト13・18は、フォトレジスト等を使用したリソグラフィー法その他の任意の方法で形成でき、パターンレジスト13・18の形成手段は問わない。
【0010】
図3に示すような有機EL素子用蒸着マスクを製造するには、二次パターンレジスト18に、各蒸着通孔6間に隣接対応させて多数独立の開口18b(四角形状)を設けて、これら開口18bに、多数独立の凸部7を電鋳形成すればよい。
【0011】
図6に示すような有機EL素子用蒸着マスクを製造するには、先の図5(a)および図5(b)の工程に替えて、図8(a)に示すごとく、一次電着層14上に、先の開口18bの形状とは異なる円形の開口を備えた二次パターンレジスト18を例えば1〜3μmの範囲で薄く設ける第2のパターンニング工程と、図8(b)に示すごとく、レジスト体18aの高さを超えて、これをオーバーハングするように一次電着層14上に電着金属を電鋳して、該一次電着層14と一体不可分的に二次電着層19を形成する第2の電鋳工程とを採ればよい。これによっても一次パターンレジスト13のレジスト体13aの除去に伴い、一次電着層14には蒸着通孔6が形成され、二次パターンレジスト18の開口18bに、基板2に対する離型性向上用の凸部7を形成することができる。
【0012】
図9に示すような有機EL素子用蒸着マスクを製造するには、多数独立の開口18bを有する二次パターンレジスト18に替えて、前後方向に長い列状の開口18bがストライプ状に設けてある二次パターンレジスト18を用いればよく、これにて、開口18bに対応して、前後に長いリブ状の凸部7を電鋳形成することができる。
【0013】
さらに、図9に示すような有機EL素子用蒸着マスクは、図11および図12に示すような手順によっても製造できる。つまり、図11(a)に示すごとく母型30上に、前後方向に長い列状のレジスト体31aを有するエッチングレジスト31を設ける第1のパターンニング工程と、図11(b)に示すごとくレジスト体31aの左右方向の間隙にかかる母型30の表面をエッチングして、凹溝32を形成するエッチング工程と、図11(c)に示すごとく凹溝32を埋めるようにエッチングレジストを再コートしてから、図12(a)に示すごとく多数独立のレジスト体34aを有するパターンレジスト34を設ける第2のパターンニング工程と、図12(b)に示すごとくレジスト体34aを除く、母型30上に電着金属を電鋳して、電着層35を形成する電鋳工程と、レジスト体34aを除去するレジスト除去工程と、母型30から電着層35を剥離する剥離工程とを含むような製造方法を採ってもよい。これによれば、レジスト体34aの除去に伴い、電着層35に蒸着通孔6が形成される。また、母型30の凹溝32内に電鋳形成された電着層35の部分が、基板2に対する剥離性向上用の凸部7となる。
【0014】
また、マスク本体3の周縁に、金属製の枠体4を貼り付ける枠貼り付け工程を含ませることができる。この場合には、当該枠貼り付け工程を、剥離工程に先立って行うようにすることが好ましい。
【0015】
【発明の作用効果】
図20に示すように、基板2と蒸着マスク50とが密着するような姿勢で蒸着作業を行うと、蒸着作業後の基板2に対する蒸着マスク50の離版時に、基板2上に蒸着された発光層51の周縁がマスク50の開口エッジ52aでこそぎ取られて、欠け53が生じる不具合がある。この点、本発明に係る有機EL素子用蒸着マスクによれば、図1に示すごとく蒸着マスク1の上面側、すなわち発光層5の蒸着対象である基板2との対向面側に、凸部7を上方向に突出状に設けたので、該凸部7の上端のみが基板2に接触するような姿勢で蒸着作業を進めて、当該作業終了後は発光層5に干渉することなく蒸着マスク1をガラス基板2から離間させることができる。従って、マスク本体3を基板2と密着させた場合に不可避の発光層5の欠けを効果的に防いで、均一な形状を有する発光層5を高精度に再現性良く形成できる。
【0016】
また、凸部7の存在により、マスク本体3全体が補強されるため、蒸着マスク1の全体強度が増し、自重によって撓みにくくできる。従って、蒸着装置内での位置合せ精度にバラツキが生じるような不具合が一切生じず、発光層5の位置精度や再現性の向上を図ることができる。
【0017】
本発明においては、図1に示すように凸部7の突出高さ寸法を、1〜10μmの範囲に設定する。凸部7の高さ寸法が1μm未満であると、離型性の向上効果が得られにくく、高さ寸法が10μmを超えると、マスク1の裏面に蒸着物質が回り込んで、蒸着領域と非蒸着領域との境界に滲みが生じて、発光層5の周縁が不明瞭になる不具合がある。
【0018】
図3に示すごとく、蒸着通孔6の列の間に多数独立した凸部7を分断列状に並設したのは、基板2との接触面積を小さくして、離型性の向上を図るためである。さらに、図6および図7に示すごとく各凸部7を周縁から中央に行くに従って漸次厚みが増す先窄まりのテーパー状としてあると、凸部7は基板2に対して点状に接触するので、より密着性と離型性が向上する。
【0019】
図9に示すごとく、前後に長いリブ状の凸部7を設けてあると、先の図3および図6のような多数独立の凸部7を備える形態と比べて、マスク本体3の裏打ち部分が大きくなるので、マスク1はより撓みにくい形態となり、従って、発光層5の位置精度や再現性に優れた蒸着マスク1が得られる。
【0020】
本発明に係る有機EL素子用蒸着マスクの製造方法によれば、電鋳方法により一次電着層14すなわち蒸着通孔6を有するマスク本体3を形成したので、エッチング加工により蒸着通孔6などを形成する形式に比べて、高精度にしかも生産性を確保してつくれる利点を有する。レーザー加工する形式に比べて、製造コストが安価であることや、熱反応によるうねりが一切生じず、高精度につくれる点でも有利である。
【0021】
枠4の取り付け作業を、母型に付いた状態で行うようにしてあると、マスク本体3の位置ズレが生じにくく、寸法安定性を確保できる利点がある。
【0022】
【発明の実施の形態】
(第1実施例) 図1ないし図3に、本発明の第1実施例に係る有機EL素子用蒸着マスクを示す。図1は、発光層5の蒸着対象であるガラス製の基板2の下方に、当該マスク1を配置させた状態を示している。ここで示されるマスク1は、赤色(R)の発光層5を形成するためのマスクである。マスク1は、ニッケルやニッケルコバルト等のニッケル合金、その他の電着金属を素材として、電鋳方法により形成されたマスク本体3と、これの周縁に貼り付けられたステンレスやアルミニウム等の金属製の枠体4(図2)とからなる。マスク本体3には、発光層5形成用の蒸着通孔6が多数独立して設けられている。マスク本体3の厚みは、好ましくは10〜100μmの範囲とし、本実施例においては、10μmに設定する。なお、図1において、ガラス基板2と発光層5との間には、透明電極やバッファ層等が形成されているが、ここでは図示を省略する。
【0023】
図3に示すごとく、蒸着通孔6は、平面視で前後の長さ寸法が200μm、左右幅寸法が30〜80μmの四角形状を有している。蒸着通孔6は、前後方向に直線的に並ぶ複数個の通孔群を列とし、複数個の列が左右方向に並列状に配設されたマトリクス状に形成されている。互いに隣接する蒸着通孔6の列の間には、図3において仮想線で示すように、緑(G)と青(B)の二つの発光層が形成される。このため、左右方向における隣接する蒸着通孔6の開口間隔は、これら二色の発光層の形成領域ぶんだけ大きく設定されている。図1に示すように、各蒸着通孔6の内周面は、ストレート状である。
【0024】
図1に示すように、マスク1の上面側、すなわち基板2との対向面側には、基板2に対する離型性向上用の凸部7が、上方向に突出状に設けられている。図3に示すように、各凸部7は、平面視で左右に長い四角形状を呈しており、前後方向に並ぶ蒸着通孔6の間に配設されている。本実施例では、凸部7の前後の幅寸法は、10μm、左右幅寸法は100μmと設定してある。図1に示すように、各凸部7は、好ましくは縦断側面視で端部の厚みが薄く、中央部が厚い蒲鉾形状であり、中央部が線接触状にガラス基板2と接触する。
【0025】
凸部7の突出寸法h、すなわち凸部7の中央部における厚み寸法は、1〜10μmとする。凸部7の突出寸法hが1μm未満であると、離型性の向上効果が得られにくい。突出寸法hが10μmを超えると、マスク1の裏面に蒸着物質が回り込んで、蒸着領域と非蒸着領域との境界に滲みが生じやすく、発光層5の周縁の形状が不均一となり易い。
【0026】
図4および図5は本実施例に係る有機EL素子用電着マスクの製造方法を示す。まず、図4(a)に示すごとく、導電性を有する例えばステンレスや真ちゅう鋼製の母型10の表面にフォトレジスト層11を形成する。このフォトレジスト層11は、ネガタイプの感光性ドライフィルムレジストを、所定の高さに合わせて一枚ないし数枚ラミネートして熱圧着により形成した。
【0027】
次いで、図4(b)に示すごとくフォトレジスト層11の上に、前記蒸着通孔6に対応する透光孔12aを有するパターンフィルム12(ガラスマスク)を密着させたのち、紫外光ランプで紫外線光を照射して露光を行い、現像、乾燥の各処理を行って、未露光部分を溶解除去することにより、図4(c)に示すごとく、前記蒸着通孔6に対応するストレート状のレジスト体13aを有する一次パターンレジスト13を母型10上に形成した。
【0028】
続いて、上記母型10を所定の条件に建浴した電鋳槽に入れ、図4(d)に示すごとく先のレジスト体13aの高さの範囲内で、母型10のレジスト体13aで覆われていない表面にニッケルやニッケル合金等の電着金属を好ましくは10〜100μm厚の範囲、本実施例では50μm厚で一次電鋳して、一次電着層14、すなわち前記マスク本体3となる層を形成した。次に、一次電着層14の表面を研磨して平滑化した後、図5(a)に示すごとく、感光性のレジスト等を用いて、レジスト体18aを有する二次パターンレジスト18を一次電着層14上に形成した。ここでは、3〜5μm厚の範囲となるように、レジスト体18aを形成した。二次パターンレジスト18は、凸部7に対応する四角形状の開口18bを有する。レジスト体18aの一部は、一次電着層14上に被さっている。
【0029】
次に図5(b)に示すごとく、一次電着層14の二次パターンレジスト18で覆われていない開口18bの表面に、ニッケルやニッケル合金等の電着金属を好ましくは、1〜10μm厚の範囲、本実施例では3μm厚で電鋳し、二次電着層19すなわち凸部7となる層を形成した。かくして、一次電着層14上に二次電着層19が一体不可分的に形成されたマスク本体3を得た。最後に、一次および二次パターンレジスト13・18を溶解除去してから、マスク本体3の周縁に、アルミやステンレス製などからなる枠体4を取り付け、母型10から一次および二次電着層14・19を剥離することにより、図5(c)に示すように、多数の蒸着通孔6を有するマスク本体3の上面側に多数独立の凸部7を備える有機EL素子用蒸着マスク1を得た。図5(b)に示す二次電鋳工程においては、電鋳槽にブチンジオールなどの第2種光沢剤を建浴して、光沢メッキを行った。これにて、図1に示すごとく、縦断側面視で前後端部の厚みが薄く、中央部が厚い蒲鉾形状の凸部7が得られた。
【0030】
以上のように本実施例に係る有機EL素子用蒸着マスク1では、マスク本体3の上面側に多数独立の凸部7を設けたので、基板2に発光層5を形成する蒸着工程においては、これら凸部7の上端のみが基板2に接触するような姿勢で作業を進めることができる。つまり、マスク本体3が、基板2から僅かに浮いた姿勢で蒸着作業を進めることができる。従って、当該作業終了後は各蒸着通孔6の周縁エッジが発光層5に干渉することなく、蒸着マスク1をガラス基板2から離間させることが可能で、マスク本体3を基板2と密着させた場合に不可避の発光層5の欠けを効果的に防いで、均一な形状を有する発光層5を高精度に再現性良く形成できる。また、実質的にマスク1をマスク本体3と凸部7との二層構造としたので、マスク1の全体強度が増す点でも有利である。
【0031】
凸部7が、前後端部の厚みが薄く、中央部に向かって漸次厚みが増すような、縦断面視で蒲鉾形状としてあると、中央部のみが基板2と線状に接触するため、図1に示すごとく、凸部7の上端の全面が基板2と接触する形態と比べて密着性及び離型性に優れる。また、凸部7を蒸着通孔6の近くに形成した場合には、当該凸部7自身が発光層5に接触して、発光層5の周縁がこそぎ取られるおそれがあるが、凸部7の前後端部の厚みを薄くしてあると、発光層5との接触確率を低く抑えて、この点でも発光層5が欠けるのを効果的に阻止できる。
【0032】
凸部7の突出寸法hを、1〜10μmと低く設定してあるので、マスク1の裏面に蒸着物質が回り込んで、蒸着領域と非蒸着領域との境界に滲みが生じて、形状が不均一となる不具合が少ない。従って、この点でも素子の高精度化に寄与できる。
【0033】
蒸着通孔6は、図3に示すごとく前後方向に直線的に並べるほかに、図16に示すように斜め方向に並べることができる。この図16に示す形態においては、凸部7の左右方向の長さ寸法は、二つの蒸着通孔6の左右方向に係る開口幅寸法よりも僅かに大きく設定してある。それ以外の構成、および作用効果は、図1ないし図3と同様であるので、ここでは説明を省略する。
【0034】
(第2実施例) 図6および図7に、本発明の第2実施例に係る有機EL素子用蒸着マスクを示す。この実施例に係るマスク1では、多数独立の凸部7が、マスク本体3の上面に上方向に突出状に形成されており、各凸部7が平面視で円形状を有している点が、先の第1実施例と相違する。図7に示すように、各凸部7は、周縁から中央に行くに従って漸次厚みが増す先窄まりのテーパー状を呈しており、上端部が基板2(図1参照)と点状に接触する。
【0035】
第2実施例に係る有機EL素子用蒸着マスクの製造方法を図4および図8を使って説明する。まず、図4(a)に示すごとく、導電性を有するステンレスや真ちゅう鋼製の母型10の表面にフォトレジスト層11を形成した。次に、図4(b)に示すごとく、フォトレジスト層11の上に、蒸着通孔6に対応する透光孔12aを持つパターンフィルム12(ガラスマスク)を密着させたのち、紫外線ランプで紫外線を照射して露光を行い、現像・乾燥の各処理を行って、未露光部分を溶解除去することにより、図4(c)に示すごとく、蒸着通孔6に対応するストレート状のレジスト体13aを有する一次パターンレジスト13を母型10上に形成した。続いて、図4(d)に示すごとく、先のレジスト体13aの高さの範囲内で、母型10のレジスト体13aで覆われていない表面にニッケル合金等の電着金属を好ましくは5〜100μm厚の範囲で、本実施例では10μm厚で一次電鋳して、一次電着層14すなわちマスク本体3となる層を形成した。以上の工程は第1実施例と同様である。
【0036】
次に、一次電着層14の表面研磨後、図8(a)に示すごとく、感光性の液状レジスト等を用いて、レジスト体18aを有する二次パターンレジスト18を一次電着層14上に薄く形成した。ここでは、1〜2μm厚の範囲となるように、レジスト体18aを形成した。レジスト体18aで覆われていない部分は、凸部7(図6参照)に対応する円形状の開口18bとなっている。
【0037】
次に、図8(b)に示すごとく一次電着層14の二次パターンレジスト18で覆われていない開口18bの表面に、光沢剤を多く含有するニッケル−コバルト等の電着金属を電鋳して、二次電着層19、すなわち凸部7を形成した。ここでは、レジスト体18aの高さを超えて電着金属を電鋳させて、凸部7がレジスト体18aの縁部に被さるようにオーバーハングさせた。具体的には、3〜5μm厚の範囲で、本実施例では4μm厚で電鋳して、凸部7を形成した。
【0038】
最後に、一次及び二次パターンレジスト13・18を溶解除去してから、マスク本体3の周縁に枠体4(図2参照)を取り付け、母型10から一次および二次電着層14・19を剥離することにより、図8(c)に示すごとく、マスク本体3に凸部7を多数備える有機EL素子用蒸着マスク1を得た。
【0039】
以上のようにして得られた有機EL素子用蒸着マスク1の凸部7は、図6および図7のように、平面視で円形状、縦断側面視で先窄まりのテーパー状となる。凸部7は、前後方向に隣り合う蒸着通孔6の間に位置し、マスク本体3から上方向に突出状に多数独立して設けられる。二次パターンレジスト18を溶解除去することにより、凸部7とマスク本体3との接合部分には、微細な凹入部25が形成される。
【0040】
本実施例に係るマスク1によれば、マスク本体3の上面側に多数独立の凸部7を設けたので、基板2に発光層5を形成する蒸着工程においては、これら凸部7の上端のみが基板2に点接触するような姿勢で作業を進めることができる。従って、当該作業終了後は各蒸着通孔6の周縁エッジが、発光層5に干渉することなく蒸着マスク1をガラス基板2から離間させることが可能で、マスク本体3を基板2と密着させた場合に不可避の発光層5の欠けを効果的に防いで、均一な形状を有する発光層5を高精度に再現性良く形成できる。特に、凸部7を先窄まりのテーパー状として、基板2に対して点状に接触するようにしてあるので、マスク1が優れた密着性と離型性を発揮する点で有利となる。
【0041】
(第3実施例) 図9および図10に、本発明の第3実施例に係る有機EL素子用蒸着マスクを示す。本実施例に係るマスク1においては、各凸部7を左右に長い連続したリブ状としてある点が、先の第1および第2実施例と相違する。各凸部7は、縦断面視で前後端部の厚みが薄く、中央部に向かって漸次厚みが増す蒲鉾形状としてあり、中央部が基板2(図1参照)と、線状に接触するようにしてある。
【0042】
図11および図12は本実施例に係る有機EL素子用蒸着マスクの製造方法を示す。まず、図11(a)に示すごとく、導電性を有するステンレス製の母型30の表面に、左右方向に長いレジスト体31aを有するエッチングレジスト31をストライプ状に形成した。次に、図11(b)に示すごとく、母型30のレジスト体31aで覆われていない表面をエッチング処理して、左右方向に長い凹溝32を形成した。ここでは、化学エッチングを行い、3μmの深みを有する断面蒲鉾状の凹溝32を形成した。
【0043】
次に、図11(c)に示すごとく、凹溝32を埋めるようにレジストを再コートして、母型30の表面全体をエッチングレジスト31で覆ってから、パターン焼付処理、現像処理、不要なレジストの除去処理を行って、図12(a)に示すごとく蒸着通孔6に対応する多数独立のレジスト体34aを有するパターンレジスト34を形成した。続いて、図12(b)に示すごとくレジスト体34aで覆われていない母型30の表面に、ニッケルコバルト等の電着金属を電鋳して、マスク本体3と凸部7とが一体不可分に形成された電着層35を得た。ここでは、マスク本体3に係る電着層35の厚みは、30μm厚とした。
【0044】
レジスト体34aを溶解除去して、蒸着通孔6を形成してから、マスク本体3の周縁に枠体4(図10参照)を取り付け、最後に母型30から電着層を剥離することにより、図12(c)に示すような左右方向に長い連続したリブ状の凸部7を有する有機EL素子用蒸着マスク1を得た。
【0045】
本実施に係る有機EL素子用蒸着マスクによれば、マスク本体3の上面側に多数の連続したリブ状の凸部7を設けたので、基板2に発光層5を形成する蒸着工程においては、これら凸部7の上端のみが基板2に接触するような姿勢で作業を進めて、当該作業終了後は蒸着通孔6の開口エッジが発光層5に干渉することなく蒸着マスク1をガラス基板2から離間させることができる。従って、マスク本体3を基板2と密着させた場合に不可避の発光層5の欠けを効果的に防いで、均一な形状を有する発光層5を高精度に再現性良く形成できる。
【0046】
左右に長い連続したリブ状の凸部7を設けてあると、マスク本体3の裏打ち部分を大きくして、マスク1の自重による撓み変形を効果的に阻止できる。従って、本実施例に係るマスク1は、発光層5の位置精度や再現性に優れたものとなる。
【0047】
(第4実施例) 本実施例に係る有機EL素子用蒸着マスク1は、図13に示すごとく基板2側に設けられた上段層41と、この上段層41の下面側、すなわち気化源43からの飛来方向に形成された下段層42とからなる。蒸着通孔6は、気化源43からの気化物の飛来方向に外広がり状に形成された断面段付き形状をなしている。具体的には、各蒸着通孔6は、上段層41に内周面がストレート状に設けられた小孔部44と、この小孔部44に連通して該小孔部44よりも大きな開口寸法で内周面がストレート状に下段層42側に設けられた大孔部45とからなる。図14は、本実施例に係る有機EL素子用蒸着マスク1を下方向から見た平面図であり、このマスク1では、四角形状の小孔部44の周縁を囲むように、下段層42に四角形状の大孔部45が凹み形成されている。
【0048】
図21に示すごとく、マスク本体3の板厚が厚いと、蒸着通孔6の開口上端縁6aによる影ができて、得られた発光層5は歪な形状となる。この点、図13に示すごとく、マスク本体3を下段層42と上段層41の2層構造として、蒸着通孔6を上段層41側の小孔部44と下段層42側の大孔部45からなる下広がり状の断面段付き形状としてあると、広い角度から気化源43からの気化物を受け入れることが可能となる。従って、先の開口上端縁による影をなくして、均一な高さ寸法を有する断面形状の発光層5が得られる利点がある。また、下段層42の存在による補強効果で蒸着マスク1自体の変形、撓み性等をより一層防止できる。かくして、離型性向上用の凸部7を設けたことと相まって、発光層5を高精度に再現性良く形成することが可能となる。
【0049】
図15(a)に示すように、下段層42を蒸着通孔6の左右両端に沿ってライン状に長く形成して、これら下段層42・42に囲まれた凹み部分を、小孔部44に通じる大孔部45とすることができる。また、図15(b)に示すように、下段層42を分断列状としてもよい。これらの形態によっても、先の図13および図14に示したマスク1と同様の作用効果を得ることができる。
【0050】
上記実施例以外に、本発明に係る有機EL素子用蒸着マスク1は、図17および図18に示すような形態とすることができる。まず、図17(a)では、蒸着通孔6を前後に長い直線状としてあり、そのうえで、該蒸着通孔6の左右縁に沿って、前後に長い分断列状の凸部7を配列してある。図17(b)に示すように、凸部7を前後に長い列状としてもよい。図17(c)に示すように、前後に長い直線状の蒸着通孔6の左右縁に沿って、平面視で円形状の凸部7を等間隔に配置してもよい。
【0051】
図18(a)〜(c)に示すごとく、R、G、Bの三色の発光層のマスク1は、全く異なる形態であってもよい。つまり、図18(a)・(b)示すR用とG用のマスクでは、凸部7は蒸着通孔6の左右の一端側に沿う前後方向に長い列状である。これに対して、図18(c)に示すB用のマスクでは、凸部7は左右方向に長い列状である。
【0052】
上記の各実施例においては、凸部7は蒲鉾形状や先窄まりのテーパー状としていたが、図19に示すごとく、上端面が平坦な断面四角形状であってもよい。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る有機EL素子用蒸着マスクの縦断側面図
【図2】本発明の第1実施例に係る有機EL素子用蒸着マスクの一部拡大斜視図
【図3】本発明の第1実施例に係る有機EL素子用蒸着マスクの平面図
【図4】本発明の第1実施例に係る有機EL素子用蒸着マスクの製造過程の工程説明図
【図5】本発明の第1実施例に係る有機EL素子用蒸着マスクの製造過程の工程説明図
【図6】本発明の第2実施例に係る有機EL素子用蒸着マスクの平面図
【図7】本発明の第2実施例に係る有機EL素子用蒸着マスクの縦断側面図
【図8】本発明の第2実施例に係る有機EL素子用蒸着マスクの製造過程の工程説明図
【図9】本発明の第3実施例に係る有機EL素子用蒸着マスクの平面図
【図10】本発明の第2実施例に係る有機EL素子用蒸着マスクの一部拡大斜視図
【図11】本発明の第3実施例に係る有機EL素子用蒸着マスクの製造過程の工程説明図
【図12】本発明の第3実施例に係る有機EL素子用蒸着マスクの製造過程の工程説明図
【図13】本発明の第4実施例に係る有機EL素子用蒸着マスクを示す縦断面図
【図14】本発明の第4実施例に係る有機EL素子用蒸着マスクを下方向から見た平面図
【図15】(a)・(b)は、第4実施例に係る有機EL素子用蒸着マスクの別実施例形態を示す図であり、該マスクを下方向から見た平面図である。
【図16】本発明に係る有機EL素子用蒸着マスクの別実施形態を示す平面図
【図17】(a)・(b)・(c)は、本発明に係る有機EL素子用蒸着マスクの別実施形態を示す平面図
【図18】(a)・(b)は、本発明に係る有機EL素子用蒸着マスクの別実施形態を示す平面図
【図19】本発明に係る有機EL素子用蒸着マスクの別実施形態を示す縦断面図
【図20】従来例の有機EL素子用蒸着マスクを示す縦断面図
【図21】従来の有機EL素子用蒸着マスクの問題点を説明するための図
【符号の説明】
1 マスク
2 基板
3 マスク本体
4 枠体
5 発光層
6 蒸着通孔
7 凸部
10 母型
13 一次パターンレジスト
13a レジスト体
14 一次電着層
18 二次パターンレジスト
18b 開口
19 二次電着層
30 母型
31 エッチングレジスト
31a レジスト体
32 凹溝
34 パターンレジスト
34a レジスト体
35 電着層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vapor deposition mask for organic EL elements used when forming a light emitting layer of an organic EL element by a vapor deposition mask method, and a method for producing the vapor deposition mask for organic EL elements.
[0002]
[Prior art]
As a display device that replaces CRT and liquid crystal, light emitting layers of red (R), green (G), and blue (B) made of an organic compound material are formed on a light-transmitting substrate in a matrix shape or a stripe shape. There are organic EL (electroluminescence) display panels arranged in various patterns. As a method for forming a light emitting layer of an organic EL element, it is widely known that a dry process represented by an evaporation mask method is advantageous from the viewpoint of accuracy, productivity, and the like. As shown in FIG. 20, in the vapor deposition mask method according to the conventional example, a vapor deposition mask 50 having vapor deposition through holes 52 corresponding to the formation pattern of the coloring layer 51 is brought into close contact with the substrate 2 of the element. Only the organic material vaporized by the vaporization source is vapor-deposited to form the coloring layer 51 on the substrate 2. The vapor deposition mask 50 is made of stainless steel, iron, nickel alloy or the like.
[0003]
[Problems to be solved by the invention]
However, in this vapor deposition mask 50, the organic material bites into the inner peripheral surface of the vapor deposition through hole 52, so that the releasability from the substrate 2 is poor, and the peripheral edge of the light emitting layer 51 is scraped off by the opening edge 52 a of the mask 50. As a result, chipping 53 is likely to occur. As described above, the light emitting layer 51 having the chip 53 has uneven luminance, which is a major obstacle to improving the accuracy of the organic EL element.
[0004]
In addition, as a method for manufacturing a through-hole of a vapor deposition mask at present, there are a wet etching method and a laser method, but the wet etching method cannot be formed with high accuracy. In addition, in the case of using a laser, if the number of vapor deposition through holes to be formed is large, the manufacturing cost becomes high, and warping due to heat reaction, that is, undulation is likely to occur around the through holes due to the influence of heat during formation. There are also problems such as a decrease in accuracy.
[0005]
An object of the present invention is to obtain a vapor deposition mask for an organic EL element which can form a light emitting layer having a uniform shape with high reproducibility and can be manufactured at a low cost, and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
The present invention relates to a vapor deposition mask for an organic EL element in which a large number of vapor deposition through holes 6 for forming a light emitting layer 5 are independently provided in a mask body 3 made of an electrodeposited metal as shown in FIG. On the upper surface side of the vapor deposition mask, that is, on the side facing the substrate 2 on which the light emitting layer 5 is vapor-deposited, a projecting portion 7 for improving releasability with respect to the substrate 2 is provided so as to protrude upward. It is characterized by that. The protrusion height dimension h of the convex portion 7 is desirably in the range of 1 to 10 μm.
[0007]
Specifically, as shown in FIG. 3 and FIG. 6, a large number of vapor deposition through holes 6 are arranged and a large number of independent convex portions 7 are arranged in a divided row between the vapor deposition through holes 6. Can do. In this case, as shown in FIG. 7, it is desirable that each convex portion 7 has a shape that can contact the substrate 2 in a dot shape.
[0008]
As shown in FIGS. 9 and 10, long rib-like convex portions 7 can be provided between the rows of the vapor deposition through holes 6 in the front-rear direction.
[0009]
Further, the present invention provides a vapor deposition for an organic EL element in which a plurality of vapor deposition through holes 6 for forming a light emitting layer 5 on a substrate 2 are independently provided in a mask body 3 made of an electrodeposited metal. In the mask manufacturing method, a first patterning step of providing a primary pattern resist 13 having a resist body 13a on the surface of the mother die 10 as shown in FIG. 4C, and a mother die as shown in FIG. The first electrodeposition step of forming a primary electrodeposition layer 14 by electroforming an electrodeposited metal on the electrode 10, and the upper surface of the resist body 13a as shown in FIG. A second patterning step of providing a secondary pattern resist 18 having an opening 18b corresponding to an arbitrary position, and electrodeposition corresponding to the opening 18b on the primary electrodeposition layer 14 as shown in FIG. A primary electrodeposition layer 14 is formed by electroforming metal. A second electroforming step for forming an inseparable manner the secondary electrodeposited layers 19, a peeling step from the matrix 30 for separating the primary and secondary electrodeposited layers 14, 19,
Before and after the peeling step, a step of removing the primary and secondary pattern resists 13 and 18 is included. According to this, with the removal of the resist body 13 a of the primary pattern resist 13, the vapor deposition through hole 6 is formed in the primary electrodeposition layer 14, and the secondary electrodeposition layer formed in the opening 18 b of the secondary pattern resist 18. 19 becomes the convex part 7 for mold release improvement with respect to the board | substrate 2. As shown in FIG. The pattern resists 13 and 18 can be formed by a lithography method using a photoresist or the like or any other method, and the forming means for the pattern resists 13 and 18 is not limited.
[0010]
In order to manufacture a vapor deposition mask for an organic EL element as shown in FIG. 3, the secondary pattern resist 18 is provided with a large number of independent openings 18b (rectangular shapes) adjacent to each other between the vapor deposition through holes 6, and these. A large number of independent protrusions 7 may be electroformed in the opening 18b.
[0011]
In order to manufacture a vapor deposition mask for an organic EL element as shown in FIG. 6, the primary electrodeposition layer is replaced with the primary electrodeposition layer as shown in FIG. 8 (a) instead of the steps of FIG. 5 (a) and FIG. 5 (b). A second patterning process in which a secondary pattern resist 18 having a circular opening different from the shape of the previous opening 18b is thinly formed in a range of 1 to 3 μm, for example, on the surface 14, as shown in FIG. 8B. The electrodeposition metal is electroformed on the primary electrodeposition layer 14 so as to overhang the resist body 18a, and the secondary electrodeposition layer is inseparably integral with the primary electrodeposition layer 14. What is necessary is just to take the 2nd electroforming process which forms 19. Also by this, with the removal of the resist body 13a of the primary pattern resist 13, the vapor deposition through hole 6 is formed in the primary electrodeposition layer 14, and the opening 18b of the secondary pattern resist 18 is used for improving the releasability with respect to the substrate 2. The convex part 7 can be formed.
[0012]
In order to manufacture a vapor deposition mask for an organic EL element as shown in FIG. 9, a long line-shaped opening 18b in the front-rear direction is provided in a stripe pattern instead of the secondary pattern resist 18 having a large number of independent openings 18b. The secondary pattern resist 18 may be used, and the long rib-like convex portions 7 corresponding to the openings 18b can be electroformed.
[0013]
Furthermore, the vapor deposition mask for organic EL elements as shown in FIG. 9 can be manufactured by the procedure as shown in FIGS. That is, as shown in FIG. 11A, a first patterning process in which an etching resist 31 having a resist body 31a in a long line in the front-rear direction is provided on the mother die 30, and a resist as shown in FIG. An etching process for etching the surface of the master block 30 in the left-right gap of the body 31a to form the concave groove 32, and an etching resist is recoated so as to fill the concave groove 32 as shown in FIG. After that, a second patterning process for providing a pattern resist 34 having a large number of independent resist bodies 34a as shown in FIG. 12A, and on the mother die 30 excluding the resist bodies 34a as shown in FIG. The electrodeposition metal 35 is electroformed to form an electrodeposition layer 35, the resist removal step of removing the resist body 34a, and the electrodeposition layer 35 is peeled off from the matrix 30. Manufacturing method include a separation step may be adopted. According to this, the vapor deposition through-hole 6 is formed in the electrodeposition layer 35 with the removal of the resist body 34a. Further, the portion of the electrodeposition layer 35 formed by electroforming in the concave groove 32 of the mother die 30 becomes the convex portion 7 for improving the peelability from the substrate 2.
[0014]
Moreover, the frame sticking process which sticks the metal frame 4 to the periphery of the mask main body 3 can be included. In this case, it is preferable that the frame attaching process is performed prior to the peeling process.
[0015]
[Effects of the invention]
As shown in FIG. 20, when the deposition operation is performed so that the substrate 2 and the deposition mask 50 are in close contact with each other, the light emission deposited on the substrate 2 when the deposition mask 50 is released from the substrate 2 after the deposition operation. There is a problem that the peripheral edge of the layer 51 is scraped off by the opening edge 52a of the mask 50 and the chip 53 is generated. In this regard, according to the vapor deposition mask for an organic EL element according to the present invention, the convex portion 7 is formed on the upper surface side of the vapor deposition mask 1, that is, on the side facing the substrate 2 on which the light emitting layer 5 is vapor deposited, as shown in FIG. Is provided so as to protrude upward, so that the vapor deposition operation is carried out in such a posture that only the upper end of the projection 7 is in contact with the substrate 2, and after completion of the operation, the vapor deposition mask 1 is not interfered with the light emitting layer 5. Can be separated from the glass substrate 2. Therefore, inevitable chipping of the light emitting layer 5 when the mask body 3 is in close contact with the substrate 2 can be effectively prevented, and the light emitting layer 5 having a uniform shape can be formed with high accuracy and good reproducibility.
[0016]
Moreover, since the whole mask main body 3 is reinforced by presence of the convex part 7, the whole intensity | strength of the vapor deposition mask 1 increases and it can make it hard to bend | deflection by its own weight. Accordingly, there is no problem that the alignment accuracy in the vapor deposition apparatus varies, and the positional accuracy and reproducibility of the light emitting layer 5 can be improved.
[0017]
In this invention, as shown in FIG. 1, the protrusion height dimension of the convex part 7 is set to the range of 1-10 micrometers. When the height dimension of the convex part 7 is less than 1 μm, it is difficult to obtain an effect of improving the releasability, and when the height dimension exceeds 10 μm, the vapor deposition material wraps around the back surface of the mask 1, so There is a problem that bleeding occurs at the boundary with the vapor deposition region and the periphery of the light emitting layer 5 becomes unclear.
[0018]
As shown in FIG. 3, the fact that a large number of independent protrusions 7 are arranged in parallel between the rows of vapor deposition through holes 6 reduces the contact area with the substrate 2 and improves the releasability. Because. Furthermore, as shown in FIG. 6 and FIG. 7, if each convex portion 7 has a tapered shape in which the thickness gradually increases as it goes from the periphery to the center, the convex portion 7 contacts the substrate 2 in a point shape. , Adhesion and releasability are improved.
[0019]
As shown in FIG. 9, if the long rib-like convex portions 7 are provided at the front and rear, the backing portion of the mask main body 3 is compared with the configuration including a large number of independent convex portions 7 as shown in FIGS. 3 and 6. Therefore, the mask 1 is more difficult to bend. Therefore, the vapor deposition mask 1 having excellent positional accuracy and reproducibility of the light emitting layer 5 can be obtained.
[0020]
According to the method for manufacturing a vapor deposition mask for an organic EL element according to the present invention, the mask body 3 having the primary electrodeposition layer 14, that is, the vapor deposition through hole 6 is formed by an electroforming method. Compared to the type to be formed, it has the advantage that it can be manufactured with high accuracy and with high productivity. Compared to the laser processing type, it is advantageous in that the manufacturing cost is low, and no swell due to thermal reaction occurs, and it can be made with high accuracy.
[0021]
If the mounting operation of the frame 4 is performed in a state where it is attached to the mother die, there is an advantage that positional deviation of the mask main body 3 hardly occurs and dimensional stability can be secured.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
First Embodiment FIGS. 1 to 3 show a vapor deposition mask for an organic EL element according to a first embodiment of the present invention. FIG. 1 shows a state in which the mask 1 is arranged below a glass substrate 2 on which the light emitting layer 5 is to be deposited. The mask 1 shown here is a mask for forming the red (R) light emitting layer 5. The mask 1 is made of a nickel alloy such as nickel or nickel cobalt, or other electrodeposited metal as a raw material, and a mask body 3 formed by an electroforming method and a metal made of a metal such as stainless steel or aluminum attached to the periphery thereof. It consists of a frame 4 (FIG. 2). The mask body 3 is provided with a large number of vapor deposition holes 6 for forming the light emitting layer 5 independently. The thickness of the mask body 3 is preferably in the range of 10 to 100 μm, and is set to 10 μm in this embodiment. In FIG. 1, a transparent electrode, a buffer layer, and the like are formed between the glass substrate 2 and the light emitting layer 5, but the illustration is omitted here.
[0023]
As shown in FIG. 3, the vapor deposition through-hole 6 has a rectangular shape with a longitudinal dimension of 200 μm and a lateral width dimension of 30 to 80 μm in plan view. The vapor deposition through-hole 6 is formed in a matrix shape in which a plurality of through-hole groups arranged linearly in the front-rear direction are arranged in a row, and the plurality of rows are arranged in parallel in the left-right direction. Between the rows of the vapor deposition through holes 6 adjacent to each other, two light emitting layers of green (G) and blue (B) are formed as indicated by phantom lines in FIG. For this reason, the opening interval of the adjacent vapor deposition through holes 6 in the left-right direction is set to be as large as the formation region of these two-color light emitting layers. As shown in FIG. 1, the inner peripheral surface of each vapor deposition through-hole 6 is straight.
[0024]
As shown in FIG. 1, on the upper surface side of the mask 1, that is, on the surface facing the substrate 2, a convex portion 7 for improving releasability with respect to the substrate 2 is provided so as to protrude upward. As shown in FIG. 3, each convex portion 7 has a rectangular shape that is long to the left and right in a plan view, and is disposed between the vapor deposition through holes 6 that are aligned in the front-rear direction. In the present embodiment, the width dimension before and after the convex portion 7 is set to 10 μm, and the left and right width dimension is set to 100 μm. As shown in FIG. 1, each convex portion 7 preferably has a bowl shape with a thin end portion and a thick central portion as viewed in a longitudinal side view, and the central portion is in line contact with the glass substrate 2.
[0025]
The protrusion dimension h of the convex part 7, ie, the thickness dimension in the center part of the convex part 7 shall be 1-10 micrometers. When the protrusion dimension h of the convex portion 7 is less than 1 μm, it is difficult to obtain an effect of improving the releasability. When the protruding dimension h exceeds 10 μm, the vapor deposition material goes around to the back surface of the mask 1, and bleeding is likely to occur at the boundary between the vapor deposition region and the non-vapor deposition region, and the shape of the peripheral edge of the light emitting layer 5 tends to be uneven.
[0026]
4 and 5 show a method of manufacturing an electrodeposition mask for organic EL elements according to this example. First, as shown in FIG. 4A, a photoresist layer 11 is formed on the surface of a mother mold 10 made of, for example, stainless steel or brass having conductivity. This photoresist layer 11 was formed by laminating one or several negative photosensitive dry film resists according to a predetermined height, and then thermocompression bonding.
[0027]
Next, as shown in FIG. 4B, a pattern film 12 (glass mask) having a light transmitting hole 12a corresponding to the vapor deposition through hole 6 is brought into close contact with the photoresist layer 11, and then ultraviolet rays are used with an ultraviolet light lamp. A straight resist corresponding to the vapor deposition through-hole 6 as shown in FIG. 4C is obtained by irradiating light, performing development, drying, and dissolving and removing unexposed portions. A primary pattern resist 13 having a body 13 a was formed on the mother die 10.
[0028]
Subsequently, the mother die 10 is put in an electroforming bath that is bathed under a predetermined condition, and the resist member 13a of the mother die 10 is used within the range of the height of the previous resist member 13a as shown in FIG. The electrodeposited metal such as nickel or nickel alloy is preferably subjected to primary electroforming on the uncovered surface in the range of 10 to 100 μm thickness, in this embodiment 50 μm thickness, and the primary electrodeposition layer 14, that is, the mask body 3 and A layer was formed. Next, after polishing and smoothing the surface of the primary electrodeposition layer 14, as shown in FIG. 5A, the secondary pattern resist 18 having the resist body 18 a is made into a primary electrode using a photosensitive resist or the like. It was formed on the deposition layer 14. Here, the resist body 18a is formed so as to have a thickness of 3 to 5 μm. The secondary pattern resist 18 has a rectangular opening 18 b corresponding to the convex portion 7. A part of the resist body 18 a covers the primary electrodeposition layer 14.
[0029]
Next, as shown in FIG. 5B, an electrodeposition metal such as nickel or nickel alloy is preferably deposited on the surface of the opening 18b of the primary electrodeposition layer 14 that is not covered with the secondary pattern resist 18 in a thickness of 1 to 10 μm. In this embodiment, in this example, the film was electroformed with a thickness of 3 μm to form a secondary electrodeposition layer 19, that is, a layer to be the convex portion 7. Thus, the mask body 3 was obtained in which the secondary electrodeposition layer 19 was inseparably formed on the primary electrodeposition layer 14. Finally, after the primary and secondary pattern resists 13 and 18 are dissolved and removed, a frame 4 made of aluminum or stainless steel is attached to the periphery of the mask body 3, and the primary and secondary electrodeposition layers are formed from the matrix 10. By peeling 14 and 19, the organic EL element deposition mask 1 having a large number of independent protrusions 7 on the upper surface side of the mask body 3 having a large number of deposition through-holes 6, as shown in FIG. Obtained. In the secondary electroforming process shown in FIG. 5 (b), a bright plating was performed by putting a second type brightener such as butynediol in the electroforming tank. Thus, as shown in FIG. 1, a ridge-shaped convex portion 7 having a thin front and rear end portion and a thick central portion in a longitudinal side view was obtained.
[0030]
As described above, in the vapor deposition mask 1 for an organic EL element according to the present embodiment, since a large number of independent convex portions 7 are provided on the upper surface side of the mask body 3, in the vapor deposition process of forming the light emitting layer 5 on the substrate 2, The operation can be performed in such a posture that only the upper ends of the convex portions 7 are in contact with the substrate 2. That is, the vapor deposition operation can proceed with the mask body 3 slightly lifted from the substrate 2. Therefore, the vapor deposition mask 1 can be separated from the glass substrate 2 without the peripheral edge of each vapor deposition through-hole 6 interfering with the light emitting layer 5 after the operation is completed, and the mask body 3 is brought into close contact with the substrate 2. In this case, it is possible to effectively prevent the inevitable chipping of the light emitting layer 5 and to form the light emitting layer 5 having a uniform shape with high accuracy and good reproducibility. In addition, since the mask 1 has a substantially two-layer structure of the mask main body 3 and the convex portion 7, it is advantageous in that the overall strength of the mask 1 is increased.
[0031]
When the convex portion 7 has a bowl shape in a longitudinal sectional view in which the thickness of the front and rear end portions is thin and the thickness gradually increases toward the central portion, only the central portion is in linear contact with the substrate 2. As shown in FIG. 1, compared with the form in which the entire upper surface of the convex portion 7 is in contact with the substrate 2, it is excellent in adhesion and releasability. Moreover, when the convex part 7 is formed near the vapor deposition through hole 6, the convex part 7 itself contacts the light emitting layer 5, and there is a possibility that the periphery of the light emitting layer 5 is scraped. If the thickness of the front and rear end portions of 7 is reduced, the probability of contact with the light emitting layer 5 is kept low, and the lack of the light emitting layer 5 can also be effectively prevented in this respect.
[0032]
Since the protrusion dimension h of the convex portion 7 is set to be as low as 1 to 10 μm, the vapor deposition material wraps around the back surface of the mask 1, and bleeding occurs at the boundary between the vapor deposition region and the non-vapor deposition region. There are few defects that become uniform. Therefore, this point can also contribute to high accuracy of the element.
[0033]
The vapor deposition through holes 6 can be arranged in an oblique direction as shown in FIG. 16 in addition to being arranged linearly in the front-rear direction as shown in FIG. In the form shown in FIG. 16, the length dimension of the convex part 7 in the left-right direction is set slightly larger than the opening width dimension of the two vapor deposition through holes 6 in the left-right direction. Other configurations and operational effects are the same as those in FIGS. 1 to 3, and thus description thereof is omitted here.
[0034]
Second Example FIGS. 6 and 7 show a vapor deposition mask for organic EL elements according to a second example of the present invention. In the mask 1 according to this embodiment, a large number of independent protrusions 7 are formed on the upper surface of the mask body 3 so as to protrude upward, and each protrusion 7 has a circular shape in plan view. However, this is different from the first embodiment. As shown in FIG. 7, each convex portion 7 has a tapered shape in which the thickness gradually increases from the periphery toward the center, and the upper end portion contacts the substrate 2 (see FIG. 1) in a dot shape. .
[0035]
The manufacturing method of the vapor deposition mask for organic EL elements which concerns on 2nd Example is demonstrated using FIG. 4 and FIG. First, as shown in FIG. 4A, a photoresist layer 11 was formed on the surface of a matrix 10 made of stainless steel or brass having conductivity. Next, as shown in FIG. 4B, a pattern film 12 (glass mask) having a light transmitting hole 12a corresponding to the vapor deposition through hole 6 is brought into close contact with the photoresist layer 11, and then an ultraviolet ray is irradiated with an ultraviolet lamp. Is exposed to light, and each process of development and drying is performed, and unexposed portions are dissolved and removed, so that a straight resist body 13a corresponding to the vapor deposition through-hole 6 is obtained as shown in FIG. A primary pattern resist 13 having the following is formed on the mother die 10. Subsequently, as shown in FIG. 4 (d), an electrodeposited metal such as a nickel alloy is preferably 5 on the surface not covered with the resist body 13a of the mother die 10 within the range of the height of the previous resist body 13a. In this embodiment, primary electroforming was performed in a thickness of 10 μm in the range of ˜100 μm, and the primary electrodeposition layer 14, that is, the layer that becomes the mask body 3 was formed. The above steps are the same as in the first embodiment.
[0036]
Next, after the surface of the primary electrodeposition layer 14 is polished, as shown in FIG. 8A, a secondary pattern resist 18 having a resist body 18a is formed on the primary electrodeposition layer 14 using a photosensitive liquid resist or the like. Thinly formed. Here, the resist body 18a is formed so as to have a thickness in the range of 1 to 2 μm. A portion not covered with the resist body 18a is a circular opening 18b corresponding to the convex portion 7 (see FIG. 6).
[0037]
Next, as shown in FIG. 8B, an electrodeposition metal such as nickel-cobalt containing a large amount of brightener is electroformed on the surface of the opening 18b of the primary electrodeposition layer 14 not covered with the secondary pattern resist 18. Thus, the secondary electrodeposition layer 19, that is, the convex portion 7 was formed. Here, the electrodeposited metal was electroformed beyond the height of the resist body 18a and overhanged so that the convex portion 7 covered the edge of the resist body 18a. Specifically, the convex portion 7 was formed by electroforming with a thickness of 4 μm in the present example in the range of 3 to 5 μm.
[0038]
Finally, after the primary and secondary pattern resists 13 and 18 are dissolved and removed, the frame body 4 (see FIG. 2) is attached to the peripheral edge of the mask body 3, and the primary and secondary electrodeposition layers 14 and 19 are attached from the matrix 10. As shown in FIG. 8C, an organic EL element deposition mask 1 having a large number of convex portions 7 on the mask body 3 was obtained.
[0039]
The convex part 7 of the vapor deposition mask 1 for organic EL elements obtained as described above has a circular shape in a plan view and a tapered shape in a tapered side view as shown in FIGS. The convex portions 7 are positioned between the vapor deposition through holes 6 adjacent to each other in the front-rear direction, and are provided independently in a large number so as to protrude upward from the mask body 3. By dissolving and removing the secondary pattern resist 18, fine concave portions 25 are formed at the joint portion between the convex portions 7 and the mask body 3.
[0040]
According to the mask 1 according to the present embodiment, since a large number of independent protrusions 7 are provided on the upper surface side of the mask body 3, only the upper ends of these protrusions 7 are formed in the vapor deposition process for forming the light emitting layer 5 on the substrate 2. The work can be carried out in such a posture that makes point contact with the substrate 2. Therefore, after completion of the operation, the peripheral edge of each vapor deposition through hole 6 can separate the vapor deposition mask 1 from the glass substrate 2 without interfering with the light emitting layer 5, and the mask body 3 is brought into close contact with the substrate 2. In this case, it is possible to effectively prevent the inevitable chipping of the light emitting layer 5 and to form the light emitting layer 5 having a uniform shape with high accuracy and good reproducibility. In particular, the convex portion 7 has a tapered shape so as to come into contact with the substrate 2 in a point-like manner, which is advantageous in that the mask 1 exhibits excellent adhesion and releasability.
[0041]
(Third Embodiment) FIGS. 9 and 10 show a vapor deposition mask for an organic EL element according to a third embodiment of the present invention. The mask 1 according to the present embodiment is different from the first and second embodiments in that each convex portion 7 is formed in a continuous rib shape that is long on the left and right. Each convex portion 7 has a ridge shape in which the thickness of the front and rear end portions is thin in a longitudinal sectional view and gradually increases toward the central portion, and the central portion is in linear contact with the substrate 2 (see FIG. 1). It is.
[0042]
FIG. 11 and FIG. 12 show the manufacturing method of the vapor deposition mask for organic EL elements based on a present Example. First, as shown in FIG. 11A, an etching resist 31 having a resist body 31a that is long in the left-right direction is formed in a stripe shape on the surface of a stainless steel mother die 30 having conductivity. Next, as shown in FIG. 11B, the surface not covered with the resist body 31a of the matrix 30 was etched to form a groove 32 that was long in the left-right direction. Here, chemical etching was performed to form a groove 32 having a bowl-shaped cross section having a depth of 3 μm.
[0043]
Next, as shown in FIG. 11 (c), the resist is recoated so as to fill the concave grooves 32, and the entire surface of the mother die 30 is covered with the etching resist 31, and then pattern baking, development, and unnecessary. The resist removal process was performed to form a pattern resist 34 having a large number of independent resist bodies 34a corresponding to the vapor deposition through holes 6 as shown in FIG. Subsequently, as shown in FIG. 12B, an electrodeposited metal such as nickel cobalt is electroformed on the surface of the mother die 30 not covered with the resist body 34a, so that the mask body 3 and the convex portion 7 are inseparably integrated. Thus, an electrodeposition layer 35 formed in the above was obtained. Here, the thickness of the electrodeposition layer 35 according to the mask main body 3 was set to 30 μm.
[0044]
The resist body 34a is dissolved and removed to form the vapor deposition through hole 6, the frame body 4 (see FIG. 10) is attached to the periphery of the mask body 3, and finally the electrodeposition layer is peeled off from the matrix 30. The vapor deposition mask 1 for organic EL elements which has the continuous rib-shaped convex part 7 long in the left-right direction as shown in FIG.12 (c) was obtained.
[0045]
According to the vapor deposition mask for organic EL elements according to the present embodiment, since a large number of continuous rib-shaped convex portions 7 are provided on the upper surface side of the mask body 3, in the vapor deposition process of forming the light emitting layer 5 on the substrate 2, Work is carried out in such a posture that only the upper ends of the convex portions 7 are in contact with the substrate 2. After the work is finished, the vapor deposition mask 1 is placed on the glass substrate 2 without the opening edge of the vapor deposition through-hole 6 interfering with the light emitting layer 5. Can be separated from Therefore, inevitable chipping of the light emitting layer 5 when the mask body 3 is in close contact with the substrate 2 can be effectively prevented, and the light emitting layer 5 having a uniform shape can be formed with high accuracy and good reproducibility.
[0046]
If the rib-shaped convex portions 7 that are long on the left and right are provided, the backing portion of the mask body 3 can be enlarged, and the bending deformation due to the weight of the mask 1 can be effectively prevented. Therefore, the mask 1 according to the present embodiment is excellent in positional accuracy and reproducibility of the light emitting layer 5.
[0047]
Fourth Example An organic EL element deposition mask 1 according to this example includes an upper layer 41 provided on the substrate 2 side and a lower surface side of the upper layer 41, that is, a vaporization source 43 as shown in FIG. The lower layer 42 is formed in the flying direction. The vapor deposition through-hole 6 has a stepped shape in cross section formed so as to spread outward in the direction in which the vaporized material from the vaporization source 43 comes in. Specifically, each vapor deposition through hole 6 has a small hole portion 44 whose inner peripheral surface is provided in a straight shape in the upper layer 41, and an opening larger than the small hole portion 44 that communicates with the small hole portion 44. It has a large hole portion 45 provided on the lower layer 42 side in a straight shape with an inner peripheral surface having a dimension. FIG. 14 is a plan view of the organic EL element deposition mask 1 according to the present embodiment as viewed from below. In this mask 1, the lower layer 42 is formed so as to surround the peripheral edge of the rectangular small hole 44. A rectangular large hole 45 is formed in a recess.
[0048]
As shown in FIG. 21, when the plate thickness of the mask body 3 is thick, a shadow is formed by the opening upper edge 6a of the vapor deposition through hole 6, and the obtained light emitting layer 5 has a distorted shape. In this regard, as shown in FIG. 13, the mask body 3 has a two-layer structure of a lower layer 42 and an upper layer 41, and the vapor deposition through hole 6 has a small hole 44 on the upper layer 41 side and a large hole 45 on the lower layer 42 side. If it is made into the stepped shape of the cross-sectional shape which consists of below, it will become possible to receive the vaporization material from the vaporization source 43 from a wide angle. Therefore, there is an advantage that the light-emitting layer 5 having a uniform cross-sectional shape can be obtained by eliminating the shadow caused by the upper edge of the opening. In addition, the reinforcement effect due to the presence of the lower layer 42 can further prevent the deposition mask 1 itself from being deformed or bent. Thus, coupled with the provision of the projecting portion 7 for improving the releasability, the light emitting layer 5 can be formed with high accuracy and good reproducibility.
[0049]
As shown in FIG. 15 (a), the lower layer 42 is formed in a long line shape along the left and right ends of the vapor deposition through hole 6, and the recessed portion surrounded by these lower layers 42 and 42 is formed as a small hole 44. It can be set as the large hole part 45 which leads to. Moreover, as shown in FIG.15 (b), it is good also considering the lower stage layer 42 as a parting row shape. Also by these forms, the same effect as the mask 1 shown in FIGS. 13 and 14 can be obtained.
[0050]
In addition to the above embodiments, the vapor deposition mask 1 for organic EL elements according to the present invention can be configured as shown in FIGS. First, in FIG. 17A, the vapor deposition through-holes 6 are long and straight, and then, along the left and right edges of the vapor deposition through-holes 6, long divided front and rear convex portions 7 are arranged. is there. As shown in FIG. 17B, the convex portions 7 may be formed in a long row in the front-rear direction. As shown in FIG. 17C, circular convex portions 7 may be arranged at equal intervals in plan view along the left and right edges of the linear vapor deposition through hole 6 that is long in the front-rear direction.
[0051]
As shown in FIGS. 18A to 18C, the masks 1 for the light emitting layers of three colors R, G, and B may have completely different forms. That is, in the R and G masks shown in FIGS. 18A and 18B, the convex portions 7 are in a long line shape in the front-rear direction along the left and right end sides of the vapor deposition through hole 6. On the other hand, in the B mask shown in FIG. 18C, the projections 7 are in a row shape that is long in the left-right direction.
[0052]
In each of the above-described embodiments, the convex portion 7 has a ridge shape or a tapered shape having a tapered shape. However, as shown in FIG. 19, the convex portion 7 may have a square section with a flat upper end surface.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view of a vapor deposition mask for an organic EL device according to a first embodiment of the present invention.
FIG. 2 is a partially enlarged perspective view of a vapor deposition mask for organic EL elements according to a first embodiment of the present invention.
FIG. 3 is a plan view of a vapor deposition mask for organic EL elements according to the first embodiment of the present invention.
FIG. 4 is a process explanatory diagram of a manufacturing process of a vapor deposition mask for an organic EL element according to a first embodiment of the present invention.
FIG. 5 is a process explanatory diagram of a manufacturing process of a vapor deposition mask for an organic EL element according to a first embodiment of the present invention.
FIG. 6 is a plan view of a vapor deposition mask for organic EL elements according to a second embodiment of the present invention.
FIG. 7 is a vertical side view of a vapor deposition mask for organic EL elements according to a second embodiment of the present invention.
FIG. 8 is a process explanatory diagram of a manufacturing process of a vapor deposition mask for organic EL elements according to a second embodiment of the present invention.
FIG. 9 is a plan view of a vapor deposition mask for organic EL elements according to a third embodiment of the present invention.
FIG. 10 is a partially enlarged perspective view of a vapor deposition mask for organic EL elements according to a second embodiment of the present invention.
FIG. 11 is a process explanatory diagram of a manufacturing process of an organic EL element deposition mask according to a third embodiment of the present invention.
FIG. 12 is a process explanatory diagram of a manufacturing process of a vapor deposition mask for organic EL elements according to a third embodiment of the present invention.
FIG. 13 is a longitudinal sectional view showing a vapor deposition mask for an organic EL device according to a fourth embodiment of the invention.
FIG. 14 is a plan view of a vapor deposition mask for an organic EL device according to a fourth embodiment of the present invention as viewed from below.
FIGS. 15A and 15B are diagrams showing another embodiment of the vapor deposition mask for organic EL elements according to the fourth example, and are plan views of the mask as seen from below. FIGS.
FIG. 16 is a plan view showing another embodiment of the vapor deposition mask for organic EL elements according to the present invention.
17 (a), (b), and (c) are plan views showing another embodiment of a vapor deposition mask for organic EL elements according to the present invention.
FIGS. 18A and 18B are plan views showing another embodiment of a vapor deposition mask for organic EL elements according to the present invention.
FIG. 19 is a longitudinal sectional view showing another embodiment of the vapor deposition mask for organic EL elements according to the present invention.
FIG. 20 is a longitudinal sectional view showing a conventional organic EL element deposition mask.
FIG. 21 is a diagram for explaining problems of a conventional vapor deposition mask for organic EL elements.
[Explanation of symbols]
1 mask
2 Substrate
3 Mask body
4 Frame
5 Light emitting layer
6 Vapor deposition hole
7 Convex
10 Mother mold
13 Primary pattern resist
13a resist body
14 Primary electrodeposition layer
18 Secondary pattern resist
18b opening
19 Secondary electrodeposition layer
30 mother mold
31 Etching resist
31a Resist body
32 groove
34 Pattern resist
34a resist body
35 Electrodeposition layer

Claims (4)

電着金属からなるマスク本体(3)に、発光層(5)形成用の蒸着通孔(6)が上下貫通状に多数独立して設けられている有機EL素子用の蒸着マスクであって、
蒸着マスクの上面側、すなわち発光層(5)の蒸着対象である基板(2)との対向面側に、該基板(2)に対する離型性向上用の凸部(7)が、上方向に突出状に設けられており、
前記凸部(7)は平面視で円形状に形成され、縦断側面視で端部の厚みが薄く、中央部が厚く形成されており、該凸部(7)とマスク本体(3)との接合部分には微細な凹入部(25)が形成されており、
前記凸部(7)の中央部は、平坦面を有しない上窄まり状に形成されており、該凸部(7)は基板(2)に対して点接触するようになっており、
前記凸部(7)の周縁部が弧状にカーブしていることを特徴とする有機EL素子用蒸着マスク。
A mask body (3) made of electrodeposited metal is a vapor deposition mask for an organic EL element in which a plurality of vapor deposition through holes (6) for forming a light emitting layer (5) are provided independently in a vertically penetrating manner,
On the upper surface side of the vapor deposition mask, that is, on the side facing the substrate (2) on which the light emitting layer (5) is vapor-deposited, a projecting portion (7) for improving releasability with respect to the substrate (2) It is provided in a protruding shape ,
The convex portion (7) is formed in a circular shape in plan view, and has a thin end portion and a thick central portion in a longitudinal side view, and is formed between the convex portion (7) and the mask body (3). A fine recessed portion (25) is formed in the joint portion,
The central portion of the convex portion (7) is formed in a constricted shape having no flat surface, and the convex portion (7) is in point contact with the substrate (2),
A vapor deposition mask for organic EL elements, wherein a peripheral edge portion of the convex portion (7) is curved in an arc shape .
電着金属からなるマスク本体(3)に、基板(2)に発光層(5)を形成するための蒸着通孔(6)が上下貫通状に多数独立して設けられている有機EL素子用の蒸着マスクの製造方法であって、
母型(10)の表面に、レジスト体(13a)を有する一次パターンレジスト(13)を設ける第1のパターンニング工程と、
母型(10)上に電着金属を電鋳して、一次電着層(14)を形成する第1の電鋳工程と、
レジスト体(13a)の上面に、円形状の開口(18b)を有する二次パターンレジスト(18)を設ける第2のパターンニング工程と、
一次電着層(14)上に電着金属を電鋳して、該一次電着層(14)と一体不可分的に、二次電着層(19)を形成する第2の電鋳工程と、
母型(10)から一次および二次電着層(14・19)を剥離する剥離工程と、
前記剥離工程と前後して、一次および二次パターンレジスト(13・18)を除去する工程とを含み、
前記第2の電鋳工程においては、二次パターンレジスト(18)のレジスト体(18a)の高さを超えて、これをオーバーハングするように一次電着層(14)上に電着金属を電鋳して、該一次電着層(14)と一体不可分的に二次電着層(19)を形成するようにしてあり、
前記第2の電鋳工程においては、二次電着層(19)が縦断側面視で端部の厚みが薄く、中央部が厚くなるように、しかも中央部の周縁部が弧状にカーブして平坦面を有しない上窄まり状となるように形成されており、
一次パターンレジスト(13)のレジスト体(13a)の除去に伴い、一次電着層(14)には蒸着通孔(6)が形成され、
二次パターンレジスト(18)の円形状の開口(18b)に形成された二次電着層(19)が、基板(2)に対する離型性向上用の凸部(7)となるようにしてあり、
二次パターンレジスト(18)の除去に伴い、凸部(7)である二次電着層(19)と、一次電着層(14)であるマスク本体(3)との接合部分に微細な凹入部(25)が形成されるようにしてあることを特徴とする有機EL素子用蒸着マスクの製造方法。
For organic EL elements, a mask body (3) made of electrodeposited metal is provided with a number of vapor deposition holes (6) for forming a light emitting layer (5) on a substrate (2) independently in a vertically penetrating manner. A method of manufacturing a vapor deposition mask of
A first patterning step of providing a primary pattern resist (13) having a resist body (13a) on the surface of the matrix (10);
A first electroforming step of electroforming an electrodeposited metal on the matrix (10) to form a primary electrodeposition layer (14);
A second patterning step of providing a secondary pattern resist (18) having a circular opening (18b) on the upper surface of the resist body (13a);
A second electroforming step in which an electrodeposited metal is electroformed on the primary electrodeposition layer (14) to form a secondary electrodeposition layer (19) inseparably from the primary electrodeposition layer (14); ,
A peeling step of peeling the primary and secondary electrodeposition layers (14, 19) from the matrix (10);
Before and after the peeling step, and removing the primary and secondary pattern resists (13, 18),
In the second electroforming process, an electrodeposited metal is deposited on the primary electrodeposition layer (14) so as to overhang the resist pattern (18a) of the secondary pattern resist (18). The secondary electrodeposition layer (19) is inseparably formed integrally with the primary electrodeposition layer (14) by electroforming,
In the second electroforming step, the secondary electrodeposition layer (19) is curved in an arc shape so that the end portion is thin and the center portion is thick when viewed in a longitudinal side view, and the center portion is thick. It is formed to be a constricted shape without a flat surface,
With the removal of the resist body (13a) of the primary pattern resist (13), a vapor deposition through hole (6) is formed in the primary electrodeposition layer (14),
The secondary electrodeposition layer (19) formed in the circular opening (18b) of the secondary pattern resist (18) is made to be a convex part (7) for improving releasability from the substrate (2). Yes,
Along with the removal of the secondary pattern resist (18), a fine portion is formed at the junction between the secondary electrodeposition layer (19) as the convex portion (7) and the mask body (3) as the primary electrodeposition layer (14). A method for producing a vapor deposition mask for an organic EL element , wherein a recessed portion (25) is formed .
電着金属からなるマスク本体(3)に、基板(2)上に発光層(5)を形成するための蒸着通孔(6)が上下貫通状に多数独立して設けられている有機EL素子用の蒸着マスクの製造方法であって、
母型(30)上に、前後方向に長い列状のレジスト体(31a)を有するエッチングレジスト(31)を設ける第1のパターンニング工程と、
レジスト体(31a)の間隙にかかる母型(30)の表面をエッチングして、凹溝(32)を形成するエッチング工程と、
凹溝(32)を埋めるようにエッチングレジストを再コートしてから、多数独立のレジ スト体(34a)を有するパターンレジスト(34)を設ける第2のパターンニング工程と、
レジスト体(34a)を除く、母型(30)上に電着金属を電鋳して、電着層(35)を形成する電鋳工程と、
レジスト体(34a)を除去するレジスト除去工程と、
母型(30)から電着層(35)を剥離する剥離工程とを含み、
レジスト体(34a)の除去に伴い、電着層(35)に蒸着通孔(6)が形成され、母型(30)の凹溝(32)内に電鋳形成された電着層(35)の部分が、基板(2)に対する離型性向上用の凸部(7)となるようにしてあることを特徴とする有機EL素子用蒸着マスクの製造方法。
An organic EL device in which a mask body (3) made of electrodeposited metal is provided with a large number of vapor deposition through holes (6) for forming a light emitting layer (5) on a substrate (2) independently in a vertically penetrating manner A method of manufacturing a vapor deposition mask for
A first patterning step of providing an etching resist (31) having a row of resist bodies (31a) long in the front-rear direction on the matrix (30);
An etching step of etching the surface of the mother die (30) over the gap of the resist body (31a) to form a concave groove (32);
After re-coated with the etching resist so as to fill the groove (32), a second patterning step of forming a pattern resist (34) having a number independent of the registration list body (34a),
An electroforming step of forming an electrodeposition layer (35) by electroforming an electrodeposition metal on the matrix (30) excluding the resist body (34a);
A resist removal step of removing the resist body (34a);
A peeling step of peeling the electrodeposition layer (35) from the matrix (30),
With the removal of the resist body (34a), the vapor deposition through hole (6) is formed in the electrodeposition layer (35), and the electrodeposition layer (35 formed by electroforming in the concave groove (32) of the mother die (30). ) Is a convex part (7) for improving releasability with respect to the substrate (2) . A method for producing a vapor deposition mask for an organic EL element, wherein:
マスク本体(3)の周縁に、金属製の枠体(4)を貼り付ける枠貼り付け工程を含み、枠貼り付け工程を、剥離工程に先立って行うようにしてある請求項2又は3記載の有機EL素子用蒸着マスクの製造方法。 The periphery of the mask body (3) comprises a frame attaching step of attaching a metal frame (4), the frame attaching process, according to claim 2 or 3 wherein are to perform prior to peeling step The manufacturing method of the vapor deposition mask for organic EL elements .
JP2002127452A 2002-04-26 2002-04-26 Vapor deposition mask for organic EL device and manufacturing method thereof Expired - Fee Related JP4046268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002127452A JP4046268B2 (en) 2002-04-26 2002-04-26 Vapor deposition mask for organic EL device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002127452A JP4046268B2 (en) 2002-04-26 2002-04-26 Vapor deposition mask for organic EL device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003323980A JP2003323980A (en) 2003-11-14
JP4046268B2 true JP4046268B2 (en) 2008-02-13

Family

ID=29541557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002127452A Expired - Fee Related JP4046268B2 (en) 2002-04-26 2002-04-26 Vapor deposition mask for organic EL device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4046268B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200610428A (en) * 2004-07-16 2006-03-16 Toyota Jidoshokki Kk Method for manufacturing organic electroluminescence device
KR101076432B1 (en) 2004-11-11 2011-10-25 엘지디스플레이 주식회사 Masking apparatus and method for fabricating organic electro luminescence display device using the same
JP2007005189A (en) * 2005-06-24 2007-01-11 Tokki Corp Mask for forming organic film, sealing film forming device, as well as forming method of sealing film
JP5476228B2 (en) * 2010-06-29 2014-04-23 株式会社日立ハイテクノロジーズ Photo CVD equipment
CN110214198A (en) 2017-01-26 2019-09-06 夏普株式会社 The manufacturing method of vapor deposition mask, the manufacturing method of vapor deposition mask and organic EL display device
JP6875480B2 (en) * 2019-09-27 2021-05-26 マクセルホールディングス株式会社 Thin-film mask and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976559U (en) * 1982-11-12 1984-05-24 株式会社日立製作所 High frequency spatuta mask jig
JP3295810B2 (en) * 1993-06-03 2002-06-24 九州日立マクセル株式会社 Nickel laminate and method for producing the same
JPH1050478A (en) * 1996-04-19 1998-02-20 Toray Ind Inc Organic field emission element and manufacture thereof
JP2000192224A (en) * 1998-12-24 2000-07-11 Rohm Co Ltd Mask for vapor deposition and selective vapor deposition method
JP2001023773A (en) * 1999-07-08 2001-01-26 Hokuriku Electric Ind Co Ltd Manufacture of organic el element and device therefor
JP2001237072A (en) * 2000-02-24 2001-08-31 Tohoku Pioneer Corp Metal mask and manufacturing method of the same
JP2002038254A (en) * 2000-07-24 2002-02-06 Toray Ind Inc Mask for patterning electro-conductive film

Also Published As

Publication number Publication date
JP2003323980A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP4046269B2 (en) Vapor deposition mask for organic EL element and method for producing vapor deposition mask for organic EL element
JP6688478B2 (en) Method for manufacturing vapor deposition mask and vapor deposition mask
JP6728733B2 (en) Method for manufacturing vapor deposition mask and vapor deposition mask
JP2015036436A (en) Method of producing vapor deposition mask and vapor deposition mask
JP4046268B2 (en) Vapor deposition mask for organic EL device and manufacturing method thereof
JP2004218034A (en) Method of producing metal mask, and metal mask
JP6221585B2 (en) Vapor deposition mask and method of manufacturing vapor deposition mask
JP6599103B2 (en) Vapor deposition mask and manufacturing method thereof
KR20110135552A (en) Jig-integrated mask and fabricating method the same
CN114086220A (en) Method for manufacturing metal mask and electroformed master plate
TW202223122A (en) Method of manufacturing metal mask
JP7421617B2 (en) vapor deposition mask
JP2001237071A (en) Metal mask and manufacturing method of the same
JP4720002B2 (en) Screen printing plate and manufacturing method thereof
JP6869319B2 (en) Mask for arranging solder balls and its manufacturing method
JP4808954B2 (en) Manufacturing method of printing metal mask plate and printing metal mask plate
JPH09300573A (en) Electrocast thin metal plate and manufacture thereof
JP6456229B2 (en) Solder ball suction mask and method of manufacturing the same
CN113416924B (en) Mask, method for manufacturing mask, and master mold for manufacturing mask
JP6636118B2 (en) Mask for arranging solder balls and method of manufacturing the same
CN210529083U (en) Electroforming template
CN115398026B (en) Mask, preparation method thereof and mask assembly
KR102129777B1 (en) Manufacturing method of fine metal mask
CN114032497B (en) Method for manufacturing metal mask and metal mask
JP2023106977A (en) Vapor deposition mask and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees