JP2021101433A - 発光素子、発光装置、照明装置、及び電子機器 - Google Patents

発光素子、発光装置、照明装置、及び電子機器 Download PDF

Info

Publication number
JP2021101433A
JP2021101433A JP2021063363A JP2021063363A JP2021101433A JP 2021101433 A JP2021101433 A JP 2021101433A JP 2021063363 A JP2021063363 A JP 2021063363A JP 2021063363 A JP2021063363 A JP 2021063363A JP 2021101433 A JP2021101433 A JP 2021101433A
Authority
JP
Japan
Prior art keywords
layer
light emitting
emitting element
substance
abbreviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2021063363A
Other languages
English (en)
Inventor
広美 瀬尾
Hiromi Seo
広美 瀬尾
瀬尾 哲史
Tetsushi Seo
哲史 瀬尾
信晴 大澤
Nobuharu Osawa
信晴 大澤
孝洋 牛窪
Takahiro Ushikubo
孝洋 牛窪
筒井 哲夫
Tetsuo Tsutsui
哲夫 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2021101433A publication Critical patent/JP2021101433A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】高輝度の発光を呈し、且つ低電圧で駆動可能な発光素子を提供することを課題の一とする。また、消費電力の低減された発光装置または電子機器を提供することを課題の一とする。【解決手段】陽極と陰極との間にn(nは2以上の自然数)層のEL層を有し、m(mは自然数、1≦m≦n−1)番目のEL層と、(m+1)番目のEL層との間には、陽極側から順に、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属化合物、アルカリ土類金属化合物、または希土類金属の化合物のいずれかを含む第1の層と、第1の層と接して、電子輸送性の高い物質を含む第2の層と、第2の層と接して、正孔輸送性の高い物質及びアクセプター性物質を含む領域と、を有する発光素子を提供する。また、この発光素子を用いた発光装置及び電子機器を提供する。【選択図】図1

Description

以下に開示する発明は、一対の電極間に発光層を有する発光素子に関する。また、その
発光素子を用いた発光装置、並びにその発光装置を用いた照明装置及び電子機器に関する
近年、発光性の有機化合物や無機化合物を発光物質として用いた発光素子の開発が盛ん
である。特に、エレクトロルミネッセンス(以下、EL)素子と呼ばれる発光素子の構成
は、電極間に発光物質を含む発光層を設けただけの単純な構造であり、薄型軽量・高速応
答性・直流低電圧駆動などの特性から、次世代のフラットパネルディスプレイ素子として
注目されている。また、このような発光素子を用いたディスプレイは、コントラストや画
質に優れ、視野角が広いという特徴も有している。さらに、これらの発光素子は面状光源
であるため、液晶ディスプレイのバックライトや照明等の光源としての応用も考えられて
いる。
発光素子は、一対の電極間に設けられた発光層に電流を与え、発光層に含まれる発光物
質を励起させることにより、所定の発光色を得ることができる。このような発光素子の発
光輝度を高める為には、発光層に多くの電流を供給する方法が考えられるが、低消費電力
化のメリットを損なうことになってしまう。また、発光層に多くの電流を流すことにより
、発光素子の劣化を早めてしまうことにもなる。
そこで、複数の発光層を積層し、単層の場合と同じ電流密度の電流を流すことによって
、発光輝度が高くなるといった発光素子が提案されている(例えば特許文献1)。
特許第3933591号公報
特許文献1では、複数の発光ユニット(以下、本明細書においてEL層とも表記する)
を有し、各発光ユニットが電荷発生層によって仕切られた発光素子を提案している。より
具体的には、第1の発光ユニットの電子注入層として機能する金属ドーピング層上に、5
酸化バナジウムよりなる電荷発生層を有し、さらに当該電荷発生層を介して、第2の発光
ユニットが積層された構造の発光素子が開示されている。しかしながら、このような構造
の発光素子においては、金属ドーピング層と、酸化物より成る電荷発生層との界面におい
て相互作用が起こり、界面が強電界となるため、発光素子の駆動に高い電圧が必要となる
上述した問題を鑑みて、高輝度の発光を呈し、且つ低電圧で駆動可能な発光素子を提供
することを課題の一とする。また、消費電力の低減された発光装置または電子機器を提供
することを課題の一とする。
本明細書で開示する発光素子の構成の一は、陽極と陰極との間にn(nは2以上の自然
数)層のEL層を有し、m(mは自然数、1≦m≦n−1)番目のEL層と、(m+1)
番目のEL層との間には、陽極側から順に、アルカリ金属、アルカリ土類金属、希土類金
属、アルカリ金属化合物、アルカリ土類金属化合物、または希土類金属の化合物のいずれ
かを含む第1の層と、第1の層と接して、電子輸送性の高い物質を含む第2の層と、第2
の層と接して、正孔輸送性の高い物質及びアクセプター性物質を含む領域と、を有する。
また、本明細書で開示する発光素子の別の構成の一は、陽極と陰極の間にn(nは2以
上の自然数)層のEL層を有し、m(mは自然数、1≦m≦n−1)番目のEL層と、(
m+1)番目のEL層との間には、陽極側から順に、電子輸送性の高い物質とドナー性物
質を含む第1の層と、第1の層と接して、電子輸送性の高い物質を含む第2の層と、第2
の層と接して、正孔輸送性の高い物質及びアクセプター性物質を含む領域と、を有する。
また、上記の電子輸送性の高い物質とドナー性物質を含む第1の層において、ドナー性
物質を、電子輸送性の高い物質に対して質量比で、0.001以上0.1以下の比率で添
加した構成としてもよい。また、ドナー性物質は、アルカリ金属、アルカリ土類金属、希
土類金属、アルカリ金属化合物、アルカリ土類金属化合物、または希土類金属の化合物と
するのが好ましい。
また、上記構成において、正孔輸送性の高い物質及びアクセプター性物質を含む領域は
、正孔輸送性の高い物質に対して質量比で、0.1以上4.0以下の比率でアクセプター
性を物質添加した領域である。当該領域で発生したキャリアのうち、正孔(ホール)は(
m+1)番目のEL層へ注入され、電子は第2の層へと移動する。
また、上記構成において、正孔輸送性の高い物質及びアクセプター性物質を含む領域は
、正孔輸送性の高い物質を含む層とアクセプター性物質を含む層とが積層された領域であ
ってもよい。
また、上記構成において、第2の層に含まれる電子輸送性の高い物質は、好ましくは、−
5.0eV以上、さらに好ましくは−5.0eV以上−3.0eV以下のLUMO準位を
有する物質を用いるのが好ましい。
また、上記構成を有する発光素子は低駆動電圧を実現できるため、これを発光素子とし
て用いた発光装置(画像表示デバイスや発光デバイス)は、低消費電力を実現できる。し
たがって、上記構成を有する発光素子を用いた発光装置、並びに、その発光装置を用いた
照明装置及び電子機器も本発明の一態様として含むものとする。
上記構成は、上記課題の少なくとも一を解決する。
なお、本明細書中における発光装置とは、発光素子を用いた画像表示装置等の電子機器
もしくは照明装置を含む。また、発光素子にコネクター、例えば異方導電性フィルムもし
くはTAB(Tape Automated Bonding)テープもしくはTCP(
Tape Carrier Package)が取り付けられたモジュール、TABテー
プやTCPの先にプリント配線板が設けられたモジュール、または発光素子にCOG(C
hip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも
全て発光装置に含むものとする。
なお、本明細書において、第1または第2などとして付される序数詞は便宜上用いるも
のであり、工程順又は積層順を示すものではない。また、本明細書において発明を特定す
るための事項として固有の名称を示すものではない。
複数の発光層を有し、且つ低電圧で駆動可能な発光素子を提供することができる。
さらに、上述した発光素子を用いて発光装置を作製することにより、消費電力が少ない
発光装置を提供することができる。また、そのような発光装置を照明装置又は電子機器に
適用することにより、消費電力が少ない照明装置又は電子機器を提供することができる。
発光素子の素子構造の一例およびバンド図を示す図。 発光素子の素子構造の一例およびバンド図を示す図。 発光素子の素子構造の一例およびバンド図を示す図。 発光素子の素子構造の一例を示す図。 アクティブマトリクス型の発光装置を示す図。 パッシブマトリクス型の発光装置を示す図。 電子機器を示す図。 照明装置を示す図。 実施例の発光素子及び比較発光素子の素子構造を示す図。 実施例1の発光素子の特性を示す図。 実施例1の発光素子の特性を示す図。 実施例の発光素子及び比較発光素子の素子構造を示す図。 実施例2の発光素子の特性を示す図。 実施例2の発光素子の特性を示す図。 実施例3の発光素子の特性を示す図。 実施例3の発光素子の特性を示す図。 実施例4の発光素子の特性を示す図。 実施例4の発光素子の特性を示す図。 実施例5の発光素子の特性を示す図。 実施例5の発光素子の特性を示す図。 実施例6の比較発光素子の素子構造を示す図。 実施例6の発光素子の特性を示す図。 実施例6の発光素子の特性を示す図。 発光素子の素子構造の一例及び発光スペクトルを示す図。 実施例7の発光素子の特性を示す図。 実施例7の発光素子の特性を示す図。 実施例8の発光素子の特性を示す図。 実施例8の発光素子の特性を示す図。 実施例8の発光素子の特性を示す図。 実施例9の発光素子の特性を示す図。 実施例9の発光素子の特性を示す図。 実施例9の発光素子の特性を示す図。
以下に、実施の態様について図面を用いて詳細に説明する。ただし、本明細書で開示す
る発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその
形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本
明細書の実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、実
施の形態を説明するための全図において、同一部分又は同様な機能を有する部分には同一
の符号を付し、その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、発光素子の一態様について図1を用いて説明する。
図1(A)に示す素子構造は、一対の電極(陽極101、陰極102)間に発光領域を
含む第1のEL層103及び第2のEL層107が挟まれており、第1のEL層103と
第2のEL層107との間には陽極101側から電子注入バッファー104、電子リレー
層105、及び電荷発生領域106が順次積層された構造を有する。
電荷発生領域106は、正孔輸送性の高い物質とアクセプター性物質を含む領域であり
、発光素子のキャリアである正孔(ホール)と電子が発生する。電荷発生領域106で発
生した正孔は、第2のEL層107へ移動し、電子は電子リレー層105へ移動する。ま
た、電子リレー層105は、電子輸送性が高いため、電子注入バッファー104へ電子を
速やかに送ることが可能である。さらに、電子注入バッファー104は、第1のEL層1
03に電子を注入する場合の注入障壁を緩和することができるため、第1のEL層103
への電子注入効率を高めることができる。
電子注入バッファー104には、アルカリ金属、アルカリ土類金属、希土類金属、およ
びこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸
リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲ
ン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を
含む)等の電子注入性の高い物質を用いることが可能である。または、電子注入バッファ
ー104を、電子輸送性の高い物質とドナー性物質を含む構成としてもよい。
図1(B)には、図1(A)の素子構造におけるバンド図を示す。図1(B)において
、111は、陽極101のフェルミ準位、112は、陰極102のフェルミ準位、113
は、第1のEL層103のLUMO(最低空分子軌道:Lowest Unoccupi
ed Molecular Orbital)準位、114は、電子リレー層105のL
UMO準位、115は、電荷発生領域106におけるアクセプターのアクセプター準位、
116は、第2のEL層107のLUMO準位を示す。
図1(B)において、陽極101から注入された正孔は、第1のEL層103に注入さ
れる。一方、電荷発生領域106で発生した電子は、電子リレー層105に移動した後、
電子注入バッファー104を介して第1のEL層103へ注入され、正孔と再結合し、発
光する。また、電荷発生領域106で発生した正孔は、第2のEL層107へ移動し、第
2のEL層107において、陰極102から注入された電子と再結合して発光する。
本実施の形態で示す発光素子において、電子リレー層105は、電荷発生領域106に
おいて発生した電子を効率よく第1のEL層103に注入する層として機能するため、電
子リレー層105には、LUMO準位が、電荷発生領域106におけるアクセプターのア
クセプター準位と、第1のEL層103のLUMO準位との間の準位を占めるような材料
を用いるのが好ましい。具体的には、LUMO準位がおよそ−5.0eV以上である材料
を用いるのが好ましく、−5.0eV以上−3.0eV以下である材料を用いるのがより
好ましい。
電荷発生領域106に含まれるアクセプター性物質と、電子注入バッファー104に含
まれる電子注入性の高い物質またはドナー性物質とは、それぞれ強いアクセプター性また
は強いドナー性を有するため、電荷発生領域106と電子注入バッファー104が接した
場合、界面にて電子の授受を起こし、発光素子の駆動電圧が上昇する。また、電荷発生領
域106と電子注入バッファー104とが接した界面でPN接合が形成されることで、発
光素子の駆動電圧が上昇する可能性がある。しかしながら、本実施の形態で示す発光素子
は、電子リレー層105によって電荷発生領域106と電子注入バッファー104が接す
るのを防止することができ、電荷発生領域106に含まれるアクセプター性物質と、電子
注入バッファー104に含まれる電子注入性の高い物質またはドナー性物質とが、相互作
用を起こすのを防ぐことができる。また、電子リレー層105に上記の範囲のLUMO準
位を有する材料を用いることで、電子注入バッファー104との界面が強電界となるのを
抑制し、且つ、電荷発生領域106において発生した電子を効率よく第1のEL層103
へと注入することができる。
また、図1(B)のバンド図に示すように、電荷発生領域106から電子リレー層10
5に移動した電子は、電子注入バッファー104によって、注入障壁が緩和されるために
第1のEL層103のLUMO準位113へと容易に注入される。なお、電荷発生領域1
06において発生した正孔は、第2のEL層107に移動する。
次に、上述した発光素子に用いることができる材料について、具体的に説明する。
陽極101としては、仕事関数の大きい(具体的には4.0eV以上が好ましい)金属
、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的
には、例えば、酸化インジウム−酸化スズ(ITO:Indium Tin Oxide
)、珪素若しくは酸化珪素を含有した酸化インジウム−酸化スズ、酸化インジウム−酸化
亜鉛(IZO:Indium Zinc Oxide)、酸化タングステン及び酸化亜鉛
を含有した酸化インジウム等が挙げられる。
これらの導電性金属酸化物膜は、通常スパッタにより成膜されるが、ゾル−ゲル法など
を応用して作製しても構わない。例えば、酸化インジウム−酸化亜鉛(IZO)は、酸化
インジウムに対し1〜20wt%の酸化亜鉛を加えたターゲットを用いてスパッタリング
法により形成することができる。また、酸化タングステン及び酸化亜鉛を含有した酸化イ
ンジウムは、酸化インジウムに対し酸化タングステンを0.5〜5wt%、酸化亜鉛を0
.1〜1wt%含有したターゲットを用いてスパッタリング法により形成することができ
る。
また、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(
Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム
(Pd)、チタン(Ti)、または金属材料の窒化物(例えば、窒化チタン等)、モリブ
デン酸化物、バナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化
物、チタン酸化物等を用いて陽極101を形成することも可能である。また、ポリ(3,
4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS
)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の導電性ポリマ
ーを用いても良い。但し、第1のEL層103の一部として、陽極101と接する電荷発
生領域を設ける場合には、仕事関数の大小に関わらず、Al、Ag、様々な導電性材料を
陽極101に用いることができる。
陰極102としては、仕事関数の小さい(具体的には3.8eV以下であることが好ま
しい)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好まし
い。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元
素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウ
ム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およ
びこれらを含む合金(MgAg、AlLi)、ユウロピウム(Eu)、イッテルビウム(
Yb)等の希土類金属およびこれらを含む合金等が挙げられる。なお、アルカリ金属、ア
ルカリ土類金属、これらを含む合金の膜は、真空蒸着法を用いて形成することができる。
また、アルカリ金属またはアルカリ土類金属を含む合金はスパッタリング法により形成す
ることも可能である。また、銀ペーストなどをインクジェット法などにより成膜すること
も可能である。
また、アルカリ金属化合物、アルカリ土類金属化合物、または希土類金属の化合物(例
えば、フッ化リチウム(LiF)、酸化リチウム(LiOx)、フッ化セシウム(CsF
)、フッ化カルシウム(CaF)、フッ化エルビウム(ErF)など)の薄膜と、ア
ルミニウム等の金属膜とを積層することによって、陰極102を形成することも可能であ
る。但し、第2のEL層107の一部として、陰極102と接する電荷発生領域を設ける
場合には、仕事関数の大小に関わらず、Al、Ag、ITO、珪素若しくは酸化珪素を含
有した酸化インジウム−酸化スズ等様々な導電性材料を陰極102に用いることができる
なお、本実施の形態に示す発光素子においては、陽極および陰極のうち、少なくとも一
方が透光性を有すればよい。透光性は、ITOのような透明電極を用いるか、あるいは電
極の膜厚を薄くすることにより確保できる。
第1のEL層103、及び第2のEL層107は、少なくとも発光層を含んで形成され
ていればよく、発光層以外の層をさらに有する積層構造であっても良い。なお、第1のE
L層103に含まれる発光層と第2のEL層107に含まれる発光層とは、それぞれ異な
っていてもよい。また、第1のEL層103および第2のEL層107はそれぞれ独立に
、発光層以外の層をさらに有する積層構造であっても良い。発光層以外には、正孔注入性
の高い物質、正孔輸送性の高い物質または電子輸送性の高い物質、電子注入性の高い物質
、バイポーラ性(電子及び正孔の輸送性の高い物質)の物質等からなる層が挙げられる。
具体的には、正孔注入層、正孔輸送層、発光層、正孔阻止層(ホールブロッキング層)、
電子輸送層、電子注入層等が挙げられ、これらは、陽極側から適宜組み合わせて構成する
ことができる。さらに、第1のEL層103のうちの陽極101と接する側に電荷発生領
域を設けることもできる。
上述したEL層に含まれる各層を構成する材料について、以下に具体例を示す。
正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては
、例えば、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化
物、マンガン酸化物等を用いることができる。この他、フタロシアニン(略称:HPc
)や銅フタロシアニン(略称:CuPc)等のフタロシアニン系の化合物、或いはポリ(
3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/P
SS)等の高分子等によっても正孔注入層を形成することができる。
正孔輸送層は、正孔輸送性の高い物質を含む層である。正孔輸送性の高い物質としては
、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(
略称:NPBまたはα−NPD)やN,N’−ビス(3−メチルフェニル)−N,N’−
ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4
’,4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)
、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:
TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニル
アミノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(スピロ−
9,9’−ビフルオレン−2−イル)−N―フェニルアミノ]ビフェニル(略称:BSP
B)などの芳香族アミン化合物、3−[N−(9−フェニルカルバゾール−3−イル)−
N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−
ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェ
ニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−
フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCz
PCN1)等が挙げられる。その他、4,4’−ジ(N−カルバゾリル)ビフェニル(略
称:CBP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略
称:TCPB)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H
−カルバゾール(略称:CzPA)等のカルバゾール誘導体等を用いることができる。こ
こに述べた物質は、主に10−6cm/Vs以上の正孔移動度を有する物質である。但
し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。な
お、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二
層以上積層したものとしてもよい。
これ以外にも、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニル
トリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジ
フェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルア
ミド](略称:PTPDMA)ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’
−ビス(フェニル)ベンジジン](略称:Poly−TPD)などの高分子化合物を正孔
輸送層に用いることができる。
発光層は、発光物質を含む層である。発光物質としては、以下に示す蛍光性化合物を用
いることができる。例えば、N,N’−ビス[4−(9H−カルバゾール−9−イル)フ
ェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)
、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)
トリフェニルアミン(略称:YGAPA)、4−(9H−カルバゾール−9−イル)−4
’−(9,10−ジフェニル−2−アントリル)トリフェニルアミン(略称:2YGAP
PA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル
]−9H−カルバゾール−3−アミン(略称:PCAPA)、ペリレン、2,5,8,1
1−テトラ−tert−ブチルペリレン(略称:TBP)、4−(10−フェニル−9−
アントリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルア
ミン(略称:PCBAPA)、N,N’’−(2−tert−ブチルアントラセン−9,
10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’−トリフェニル−1,4−
フェニレンジアミン](略称:DPABPA)、N,9−ジフェニル−N−[4−(9,
10−ジフェニル−2−アントリル)フェニル]−9H−カルバゾール−3−アミン(略
称:2PCAPPA)、N−[4−(9,10−ジフェニル−2−アントリル)フェニル
]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPP
A)、N,N,N’,N’,N’’,N’’,N’’’,N’’’−オクタフェニルジベ
ンゾ[g,p]クリセン−2,7,10,15−テトラアミン(略称:DBC1)、クマ
リン30、N−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H
−カルバゾール−3−アミン(略称:2PCAPA)、N−[9,10−ビス(1,1’
−ビフェニル−2−イル)−2−アントリル]−N,9−ジフェニル−9H−カルバゾー
ル−3−アミン(略称:2PCABPhA)、N−(9,10−ジフェニル−2−アント
リル)−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPA
PA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]
−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPABPh
A)、9,10−ビス(1,1’−ビフェニル−2−イル)−N−[4−(9H−カルバ
ゾール−9−イル)フェニル]−N−フェニルアントラセン−2−アミン(略称:2YG
ABPhA)、N,N,9−トリフェニルアントラセン−9−アミン(略称:DPhAP
hA)クマリン545T、N,N’−ジフェニルキナクリドン、(略称:DPQd)、ル
ブレン、5,12−ビス(1,1’−ビフェニル−4−イル)−6,11−ジフェニルテ
トラセン(略称:BPT)、2−(2−{2−[4−(ジメチルアミノ)フェニル]エテ
ニル}−6−メチル−4H−ピラン−4−イリデン)プロパンジニトリル(略称:DCM
1)、2−{2−メチル−6−[2−(2,3,6,7−テトラヒドロ−1H,5H−ベ
ンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパ
ンジニトリル(略称:DCM2)、N,N,N’,N’−テトラキス(4−メチルフェニ
ル)テトラセン−5,11−ジアミン(略称:p−mPhTD)、7,14−ジフェニル
−N,N,N’,N’−テトラキス(4−メチルフェニル)アセナフト[1,2−a]フ
ルオランテン−3,10−ジアミン(略称:p−mPhAFD)、2−{2−イソプロピ
ル−6−[2−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H
,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデ
ン}プロパンジニトリル(略称:DCJTI)、2−{2−tert−ブチル−6−[2
−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベン
ゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパン
ジニトリル(略称:DCJTB)、2−(2,6−ビス{2−[4−(ジメチルアミノ)
フェニル]エテニル}−4H−ピラン−4−イリデン)プロパンジニトリル(略称:Bi
sDCM)、2−{2,6−ビス[2−(8−メトキシ−1,1,7,7−テトラメチル
−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)
エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:BisDCJT
M)などが挙げられる。
また、発光物質としては、以下に示す燐光性化合物を用いることもできる。例えば、ビ
ス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(I
II)テトラキス(1−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,
6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナー
ト(略称:FIrpic)、ビス[2−(3’,5’−ビストリフルオロメチルフェニル
)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:Ir(CF
py)(pic))、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N
,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)、トリ
ス(2−フェニルピリジナト)イリジウム(III)(略称:Ir(ppy))、ビス
(2−フェニルピリジナト)イリジウム(III)アセチルアセトナート(略称:Ir(
ppy)(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセ
チルアセトナート(略称:Ir(bzq)(acac))、ビス(2,4−ジフェニル
−1,3−オキサゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略
称:Ir(dpo)(acac))、ビス[2−(4’−パーフルオロフェニルフェニ
ル)ピリジナト]イリジウム(III)アセチルアセトナート(略称:Ir(p−PF−
ph)(acac))、ビス(2−フェニルベンゾチアゾラト−N,C2’)イリジウ
ム(III)アセチルアセトナート(略称:Ir(bt)(acac))、ビス[2−
(2’−ベンゾ[4,5−α]チエニル)ピリジナト−N,C3’]イリジウム(III
)アセチルアセトナート(略称:Ir(btp)(acac))、ビス(1−フェニル
イソキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir
(piq)(acac))、(アセチルアセトナト)ビス[2,3−ビス(4−フルオ
ロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)(ac
ac))、(アセチルアセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジ
ウム(III)(略称:Ir(tppr)(acac))、2,3,7,8,12,1
3,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:P
tOEP)、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(II
I)(略称:Tb(acac)(Phen))、トリス(1,3−ジフェニル−1,3
−プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(
DBM)(Phen))、トリス[1−(2−テノイル)−3,3,3−トリフルオロ
アセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)
(Phen))などが挙げられる。
なお、これらの発光物質は、ホスト材料に分散させて用いるのが好ましい。ホスト材料
としては、例えば、NPB(略称)、TPD(略称)、TCTA(略称)、TDATA(
略称)、MTDATA(略称)、BSPB(略称)などの芳香族アミン化合物、PCzP
CA1(略称)、PCzPCA2(略称)、PCzPCN1(略称)、CBP(略称)、
TCPB(略称)、CzPA(略称)、4−(1−ナフチル)−4’−(9−フェニル−
9H−カルバゾール−3−イル)−トリフェニルアミン(略称;PCBANB)などのカ
ルバゾール誘導体、PVK(略称)、PVTPA(略称)、PTPDMA(略称)、Po
ly−TPD(略称)などの高分子化合物を含む正孔輸送性の高い物質や、トリス(8−
キノリノラト)アルミニウム(略称:Alq)、トリス(4−メチル−8−キノリノラト
)アルミニウム(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト
)ベリリウム(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェ
ニルフェノラト)アルミニウム(略称:BAlq)など、キノリン骨格またはベンゾキノ
リン骨格を有する金属錯体、ビス[2−(2−ヒドロキシフェニル)ベンズオキサゾラト
]亜鉛(略称:Zn(BOX))、ビス[2−(2−ヒドロキシフェニル)ベンゾチア
ゾラト]亜鉛(略称:Zn(BTZ))などのオキサゾール系、チアゾール系配位子を
有する金属錯体2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1
,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブ
チルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−
7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル
]カルバゾール(略称:CO11)、3−(4−ビフェニリル)−4−フェニル−5−(
4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)、バソフ
ェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、ポリ[(9
,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)
](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−
co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)などの電
子輸送性の高い物質を用いることができる。
電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送性の高い物質としては
、例えば、Alq(略称)、Almq(略称)、BeBq(略称)、BAlq(略称
)など、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等を用いることができ
る。また、この他、Zn(BOX)(略称)、Zn(BTZ)(略称)などのオキサ
ゾール系、チアゾール系配位子を有する金属錯体なども用いることができる。さらに、金
属錯体以外にも、PBD(略称)や、OXD−7(略称)、CO11(略称)、TAZ(
略称))、BPhen(略称)、BCP(略称)なども用いることができる。ここに述べ
た物質は、主に10−6cm/Vs以上の電子移動度を有する物質である。なお、正孔
よりも電子の輸送性の高い物質であれば、これら以外のものを用いてもよい。また、電子
輸送層は、単層のものだけでなく、上記物質からなる層を二層以上積層したものを用いて
もよい。
これ以外にも、PF−Py(略称)、PF−BPy(略称)などの高分子化合物を電子
輸送層に用いることができる。
電子注入層は、電子注入性の高い物質を含む層である。電子注入性の高い物質としては
、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF
)等のアルカリ金属、アルカリ土類金属、またはこれらの化合物が挙げられる。また、電
子輸送性を有する物質中にアルカリ金属又はアルカリ土類金属又はそれらの化合物を含有
させたもの、例えばAlq中にマグネシウム(Mg)を含有させたもの等を用いることも
できる。この様な構造とすることにより、陰極102からの電子注入効率をより高めるこ
とができる。
第1のEL層103または第2のEL層107に電荷発生領域を設ける場合、電荷発生
領域は、正孔輸送性の高い物質とアクセプター性物質を含む領域とする。なお、電荷発生
領域は、同一膜中に正孔輸送性の高い物質とアクセプター性物質を含有する場合だけでな
く、正孔輸送性の高い物質を含む層とアクセプター性物質を含む層とが積層されていても
良い。但し、陽極側に設ける積層構造の場合には、アクセプター性物質を含む層が陽極1
01と接する構造となり、陰極側に設ける積層構造の場合には、正孔輸送性の高い物質を
含む層が陰極102と接する構造となる。
第1のEL層103または第2のEL層107に電荷発生領域を形成することにより、
電極を形成する材料の仕事関数を考慮せずに陽極101または陰極102を形成すること
ができる。
電荷発生領域に用いるアクセプター性物質としては、遷移金属酸化物や元素周期表にお
ける第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、酸化モ
リブデンが特に好ましい。なお、酸化モリブデンは、吸湿性が低いという特徴を有してい
る。
また、電荷発生領域に用いる正孔輸送性の高い物質としては、芳香族アミン化合物、カ
ルバゾール誘導体、芳香族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマ
ー等)など、種々の有機化合物を用いることができる。具体的には、10−6cm/V
s以上の正孔移動度を有する物質であることが好ましい。但し、電子よりも正孔の輸送性
の高い物質であれば、これら以外のものを用いてもよい。
なお、これらの層を適宜組み合わせて積層することにより、第1のEL層103または
第2のEL層107を形成することができる。また、第1のEL層103または第2のE
L層107の形成方法としては、用いる材料に応じて種々の方法(例えば、乾式法や湿式
法等)適宜選択することができる。例えば、真空蒸着法、インクジェット法またはスピン
コート法などを用いることができる。また、各層で異なる方法を用いて形成してもよい。
また、第1のEL層103と第2のEL層107との間には、陽極101側から順に電
子注入バッファー104、電子リレー層105および電荷発生領域106が設けられてい
る。第2のEL層107と接して形成されるのは電荷発生領域106であり、電荷発生領
域106と接して形成されるのは、電子リレー層105であり、電子リレー層105と第
1のEL層103の間に接して形成されるのは、電子注入バッファー104である。
電荷発生領域106は、正孔輸送性の高い物質とアクセプター性物質を含む領域である
。なお、電荷発生領域106は、先に説明した第1のEL層103または第2のEL層1
07の一部に形成することができる電荷発生領域と同様の材料を用いて、同様の構造で形
成することができる。従って、電荷発生領域106は、同一膜中に正孔輸送性の高い物質
とアクセプター性物質を含有する場合だけでなく、正孔輸送性の高い物質を含む層とアク
セプター性物質を含む層とが積層された構造とすることも可能である。但し、積層構造の
場合には、正孔輸送性の高い物質を含む層が第2のEL層107と接する構造となる。
なお、電荷発生領域106において、正孔輸送性の高い物質に対して質量比で、0.1
以上4.0以下の比率でアクセプター性物質を添加することが好ましい。
電子リレー層105は、電荷発生領域106においてアクセプター性物質がひき抜いた
電子を速やかに受け取ることができる層である。従って、電子リレー層105には、電子
輸送性の高い物質を含む層であり、またそのLUMO準位は、電荷発生領域106におけ
るアクセプターのアクセプター準位と、第1のEL層103のLUMO準位との間の準位
を占めるような材料を用いて形成するのが好ましい。具体的には、およそ−5.0eV以
上のLUMO準位を有する材料を用いるのが好ましく、およそ−5.0eV以上−3.0
eV以下のLUMO準位を有する材料を用いるのがより好ましい。電子リレー層105に
用いる物質としては、例えば、ペリレン誘導体や、含窒素縮合芳香族化合物が挙げられる
。なお、含窒素縮合芳香族化合物は、安定な化合物であるため電子リレー層105に用い
る物質として好ましい。さらに、含窒素縮合芳香族化合物のうち、シアノ基やフルオロ基
などの電子吸引基を有する化合物を用いることにより、電子リレー層105における電子
の受け取りがさらに容易になるため、好ましい。
ペリレン誘導体の具体例としては、3,4,9,10−ペリレンテトラカルボン酸二無
水物(略称:PTCDA)、3,4,9,10−ペリレンテトラカルボキシリックビスベ
ンゾイミダゾール(略称:PTCBI)、N,N’−ジオクチルー3,4,9,10−ペ
リレンテトラカルボン酸ジイミド(略称:PTCDI−C8H)、N,N’−ジヘキシル
−3,4,9,10−ペリレンテトラカルボン酸ジイミド(略称:HexPTC)等が挙
げられる。
また、含窒素縮合芳香族化合物の具体例としては、ピラジノ[2,3−f][1,10]
フェナントロリン−2,3−ジカルボニトリル(略称:PPDN)、2,3,6,7,1
0,11−ヘキサシアノ−1,4,5,8,9,12−ヘキサアザトリフェニレン(略称
:HAT(CN))、2,3−ジフェニルピリド[2,3−b]ピラジン(略称:2P
YPR)2,3−ビス(4−フルオロフェニル)ピリド[2,3−b]ピラジン(略称:
F2PYPR)等が挙げられる。その他にも、パーフルオロペンタセン、7,7,8,8
,−テトラシアノキノジメタン(略称:TCNQ)、1,4,5,8,−ナフタレンテト
ラカルボン酸二無水物(略称:NTCDA)、銅ヘキサデカフルオロフタロシアニン(略
称:F16CuPc)、N,N’−ビス(2,2,3,3,4,4,5,5,6,6,7
,7,8,8,8,ペンタデカフルオロオクチル−1、4、5、8−ナフタレンテトラカ
ルボン酸ジイミド(略称:NTCDI−C8F)、3’,4’−ジブチル−5,5’’−
ビス(ジシアノメチレン)−5,5’’−ジヒドロ−2,2’:5’,2’’−テルチオ
フェン)(略称:DCMT)、メタノフラーレン(例えば[6,6]−フェニルC61
酸メチルエステル(略称:PCBM))等を電子リレー層105に用いることができる。
電子注入バッファー104は、電子リレー層105が受け取った電子を第1のEL層1
03に注入することができる層である。電子注入バッファー104を設けることにより、
電荷発生領域106と第1のEL層103との間の注入障壁を緩和することができるため
、電荷発生領域106で生じた電子を、第1のEL層103に容易に注入することができ
る。
電子注入バッファー104には、アルカリ金属、アルカリ土類金属、希土類金属、およ
びこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸
リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲ
ン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を
含む)等の電子注入性の高い物質を用いることが可能である。
また、電子注入バッファー104が、電子輸送性の高い物質とドナー性物質を含んで形
成される場合には、電子輸送性の高い物質に対して質量比で、0.001以上0.1以下
の比率でドナー性物質を添加することが好ましい。なお、ドナー性物質としては、アルカ
リ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(
酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む
)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金
属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))の他、テトラチアナフタセン(略
称:TTN)、ニッケロセン、デカメチルニッケロセン等の有機化合物を用いることもで
きる。なお、電子輸送性の高い物質としては、先に説明した第1のEL層103の一部に
形成することができる電子輸送層の材料と同様の材料を用いて形成することができる。
以上のような材料を組み合わせることにより、本実施の形態に示す発光素子を作製する
ことができる。この発光素子からは、上述した発光物質からの発光が得られるが、発光層
に用いる発光物質の種類を変えることにより様々な発光色を得ることができる。また、発
光物質として発光色の異なる複数の発光物質を用いることにより、ブロードなスペクトル
の発光や白色発光を得ることもできる。
なお、本実施の形態では、2層のEL層が設けられた発光素子について記載しているが
、EL層の層数は2層に限定されるものでは無く、2層以上、例えば3層あってもよい。
発光素子にn(nは2以上の自然数)層のEL層を設ける場合、m(mは自然数、1≦m
≦n−1)番目のEL層と(m+1)番目のEL層の間に、陽極側から順に電子注入バッ
ファー、電子リレー層、及び電荷発生領域を積層することで、発光素子の駆動電圧の上昇
を抑制することができる。
また、本実施の形態に示す発光素子は、各種基板の上に形成することができる。基板と
しては、例えばガラス、プラスチック、金属板、金属箔などを用いることができる。発光
素子の発光を基板側から取り出す場合は、透光性を有する基板を用いればよい。ただし基
板は、発光素子の作製工程において支持体として機能するものであれば、これら以外のも
のでもよい。
なお、本実施の形態に示す発光素子の素子構造は、両電極が一基板上に格子状に形成さ
れたパッシブマトリクス型の発光装置を作製することができる。また、スイッチの役割を
果たす薄膜トランジスタ(TFT)等と電気的に接続された発光素子を有し、TFTによ
って発光素子の駆動が制御されたアクティブマトリクス型の発光装置を作製することもで
きる。なお、TFTの構造は、特に限定されない。スタガ型のTFTでもよいし、逆スタ
ガ型のTFTでもよい。また、TFTで構成される駆動用回路についても、N型およびP
型のTFTからなるものでもよいし、若しくはN型のTFTまたはP型のTFTのいずれ
か一方からのみなるものであってもよい。また、TFTに用いられる半導体膜の結晶性に
ついても特に限定されない。非晶質半導体膜を用いてもよいし、結晶性半導体膜を用いて
もよい。また、単結晶半導体膜または微結晶半導体(マイクロクリスタル半導体)を用い
てもよい。さらには、酸化物半導体、例えばインジウム、ガリウム、及び亜鉛を含む酸化
物半導体を用いることができる。
また、本実施の形態に示す発光素子の作製方法としては、ドライプロセス(例えば、真
空蒸着法、スパッタリング法等)、ウェットプロセス(例えば、インクジェット法、スピ
ンコート法、塗布法等)を問わず、種々の方法を用いて形成することができる。
本実施の形態に示す素子構造とすることにより、その駆動電圧が電荷発生領域106の
膜厚に影響を受けにくくすることが可能であるため、発光素子における駆動電圧の上昇を
抑制し、かつ光学調整による色純度の向上を図ることができる。
また、本実施の形態に示す素子構造とすることにより、電荷発生領域106と電子注入
バッファー104との間に電子リレー層105が挟まれた構造となるため、電荷発生領域
106に含まれるアクセプターと、電子注入バッファー104に含まれる電子注入性の高
い物質またはドナー性物質とが相互作用を受けにくく、互いの機能を阻害しにくい構造と
することができる。従って、発光素子を低電圧で駆動することが可能となる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用
いることができることとする。
(実施の形態2)
本実施の形態2では、実施の形態1で説明した基本構成に含まれる発光素子の一例につ
いて、図2(A)(B)を用いて説明する。具体的には、実施の形態1で示した発光素子
のうち、電子注入バッファー104をアルカリ金属、アルカリ土類金属、希土類金属、ま
たはその化合物の単層とした場合について説明する。
本実施の形態で示す発光素子は、図2(A)に示すように一対の電極(陽極101、陰
極102)間に発光領域を含む第1のEL層103及び第2のEL層107が挟まれてお
り、第1のEL層103と第2のEL層107との間には陽極101側から電子注入バッ
ファー104、電子リレー層105、及び電荷発生領域106が順次積層された構造を有
する。
本実施の形態2における陽極101、陰極102、第1のEL層103、第2のEL層
107、電荷発生領域106、および電子リレー層105には、実施の形態1で説明した
ものと同様の材料を用いることができる。
本実施の形態において、電子注入バッファー104に用いる物質としては、リチウム(
Li)やセシウム(Cs)等のアルカリ金属、マグネシウム(Mg)やカルシウム(Ca
)やストロンチウム(Sr)等のアルカリ土類金属、ユウロピウム(Eu)やイッテルビ
ウム(Yb)等の希土類金属、アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン
化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化
物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物
、炭酸塩を含む)等の電子注入性の高い物質が挙げられる。
本実施の形態で示す発光素子は、電子注入バッファー104として、上記の金属または
その化合物の単層が設けられており、その膜厚は、駆動電圧の上昇を避ける為に非常に薄
い膜厚(具体的には、1nm以下)で形成される。なお、本実施の形態において、第1の
EL層103には電子注入バッファー104と接して電子輸送層108を形成するのが好
ましく、電子注入バッファー104は、電子リレー層105とEL層103の一部である
電子輸送層108とのほぼ界面に存在する。但し、電子輸送層108を形成した後、電子
輸送層108上に電子注入バッファー104を形成する場合には、電子注入バッファー1
04を形成する物質の一部は、EL層103の一部である電子輸送層108にも存在しう
る。
図2(B)には、図2(A)の素子構造におけるバンド図を示す。図2(B)において
電子リレー層105と第1のEL層103との界面に電子注入バッファー104を設ける
ことにより、電荷発生領域106と第1のEL層103との間の注入障壁を緩和すること
ができるため、電荷発生領域106で生じた電子を第1のEL層103へと容易に注入す
ることができる。また、電荷発生領域106において発生した正孔は、第2のEL層10
7に移動する。
本実施の形態で示す電子注入バッファーの構造とすることにより、実施の形態3で示す
電子注入バッファー(電子輸送性の高い物質にドナー性物質を添加して形成される)に比
べて発光素子の駆動電圧を低減させることができる。なお、本実施の形態において、電子
注入バッファー104における電子注入性の高い物質としては、アルカリ金属化合物(酸
化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)
、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属
の化合物(酸化物、ハロゲン化物、炭酸塩を含む)等を用いることが好ましい。これらの
電子注入性の高い物質は、空気中で安定な物質であるため、生産性が良く、量産に適する
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用
いることができることとする。
(実施の形態3)
本実施の形態3では、実施の形態1で説明した基本構成に含まれる発光素子の一例につ
いて図3(A)(B)を用いて説明する。具体的には、実施の形態1で示した発光素子の
うち、電子注入バッファー104を電子輸送性の高い物質とドナー性物質を含んで形成し
た場合について説明する。
本実施の形態で示す発光素子は、図3(A)に示すように一対の電極(陽極101、陰
極102)間に発光領域を含む第1のEL層103及び第2のEL層107が挟まれてお
り、第1のEL層103と第2のEL層107との間には陽極101側から電子注入バッ
ファー104、電子リレー層105、及び電荷発生領域106が順次積層された構造を有
する。また、電子注入バッファー104は、電子輸送性の高い物質とドナー性物質を含ん
で形成される。
なお、本実施の形態では、電子輸送性の高い物質に対して質量比で、0.001以上0
.1以下の比率でドナー性物質を添加することが好ましい。これにより、膜質の良い電子
注入バッファー104が得られ、また、反応性の良い電子注入バッファー104とするこ
とができる。
本実施の形態3における陽極101、陰極102、EL層103、電荷発生領域106
、および電子リレー層105には、実施の形態1で説明したものと同様の材料を用いるこ
とができる。
本実施の形態において、電子注入バッファー104に用いる電子輸送性の高い物質とし
ては、例えば、トリス(8−キノリノラト)アルミニウム(略称:Alq)、トリス(4
−メチル−8−キノリノラト)アルミニウム(略称:Almq)、ビス(10−ヒドロ
キシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、ビス(2−メチル−8
−キノリノラト)(4−フェニルフェノラト)アルミニウム(略称:BAlq)など、キ
ノリン骨格またはベンゾキノリン骨格を有する金属錯体等を用いることができる。また、
この他ビス[2−(2−ヒドロキシフェニル)ベンズオキサゾラト]亜鉛(略称:Zn(
BOX))、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(略称:
Zn(BTZ))などのオキサゾール系、チアゾール系配位子を有する金属錯体なども
用いることができる。さらに、金属錯体以外にも、2−(4−ビフェニリル)−5−(4
−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)や、1
,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−
2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オ
キサジアゾール−2−イル)フェニル]カルバゾール(略称:CO11)、3−(4−ビ
フェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−ト
リアゾール(略称:TAZ)、バソフェナントロリン(略称:BPhen)、バソキュプ
ロイン(略称:BCP)なども用いることができる。ここに述べた物質は、主に10−6
cm/Vs以上の電子移動度を有する物質である。
これ以外にも、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(
ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフル
オレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略
称:PF−BPy)などの高分子化合物を用いることができる。
また、本実施の形態において、電子注入バッファー104に用いるドナー性物質として
は、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金
属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭
酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、また
は希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む)等と用いることができる
。また、テトラチアナフタセン(略称:TTN)、ニッケロセン、デカメチルニッケロセ
ン等の有機化合物を用いることもできる。
なお、本実施の形態において、第1のEL層103には電子注入バッファー104と接
して電子輸送層108を形成してもよく、電子輸送層108を形成した場合、電子注入バ
ッファー104に用いる電子輸送性の高い物質と、EL層103の一部である電子輸送層
108に用いる電子輸送性の高い物質とは、同じであっても異なっていても良い。
本実施の形態で示す発光素子は、図3(A)に示すようにEL層103と電子リレー層
105との間に電子輸送性の高い物質とドナー性物質とを含む電子注入バッファー104
が形成されることが特徴である。この素子構造に対するバンド図を図3(B)に示す。
すなわち、電子注入バッファー104が形成されることにより、電子リレー層105と
EL層103との間の注入障壁を緩和することができるため、電荷発生領域106で生じ
た電子を、EL層103へと容易に注入することができる。また、電荷発生領域106に
おいて発生した正孔は、第2のEL層107に移動する。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用
いることができることとする。
(実施の形態4)
本実施の形態4では、実施の形態1で説明した基本構成に含まれる発光素子の一例とし
て、電荷発生領域106の構成について図4(A)(B)を用いて説明する。
図4(A)(B)に示す素子構造は、一対の電極(陽極101、陰極102)間に発光
領域を含む第1のEL層103及び第2のEL層107が挟まれており、第1のEL層1
03と第2のEL層107との間には陽極101側から電子注入バッファー104、電子
リレー層105、及び電荷発生領域106が順次積層された構造を有する。図4(A)(
B)において、陽極101、陰極102、第1のEL層103、電子注入バッファー10
4、電子リレー層105、及び第2のEL層107には、実施の形態1で説明したものと
同様の材料を用い、同様の構成とすることができる。
図4(A)(B)に示す発光素子において、電荷発生領域106は、正孔輸送性の高い
物質とアクセプター性物質を含む領域である。なお、電荷発生領域106では、正孔輸送
性の高い物質からアクセプター性物質が電子を引き抜くことにより、正孔及び電子が発生
する。
図4(A)に示す電荷発生領域106は、同一膜中に正孔輸送性の高い物質とアクセプ
ター性物質を含有させた構造を有する。この場合、正孔輸送性の高い物質に対して質量比
で、0.1以上4.0以下の比率でアクセプター性物質を添加することにより、電荷発生
領域106におけるキャリアの発生が容易となるため好ましい。
図4(A)ではアクセプター性物質が正孔輸送性の高い物質にドーピングされた構成で
あるため、電荷発生領域106を厚膜化した場合でも駆動電圧の上昇を抑制することがで
きる。よって、発光素子の駆動電圧の上昇を抑制し、かつ、光学調整による色純度の向上
を実現することができる。また、電荷発生領域106を厚膜化することで、発光素子の短
絡を防止することができる。
一方、図4(B)に示す電荷発生領域106は、正孔輸送性の高い物質を含む層106
aとアクセプター性物質を含む層106bとが積層された構造を有する。図4(B)に示
す発光素子の電荷発生領域106において、正孔輸送性の高い物質とアクセプター性物質
とが接し、電子の授受が起こることによって形成される電子移動錯体は、正孔輸送性の高
い物質を含む層106aとアクセプター性物質を含む層106bとの界面にのみ形成され
る。したがって、図4(B)に示す発光素子は、電荷発生領域106の膜厚を厚くした場
合にも、可視光の吸収帯が形成されにくいため、好ましい。
また、図4(B)に示した発光素子と、実施の形態2で説明した構成を組合せて、電子
注入バッファー104をアルカリ金属、アルカリ土類金属、希土類金属、またはその化合
物の単層とすることで、第1のEL層103と第2のEL層107との間の層、すなわち
電子注入バッファー104、電子リレー層105、及び電荷発生領域106を、ドーピン
グを用いることなく作製することができ、これらの層の合計の膜厚を5nm以下程度に薄
膜化することができる。
なお、電荷発生領域106の形成に用いる正孔輸送性の高い物質としては、芳香族アミ
ン化合物、カルバゾール誘導体、芳香族炭化水素、高分子化合物(オリゴマー、デンドリ
マー、ポリマー等)など、種々の有機化合物を用いることができる。具体的には、10
cm/Vs以上の正孔移動度を有する物質であることが好ましい。但し、電子よりも
正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。
芳香族アミン化合物の具体例としては、4,4’−ビス[N−(1−ナフチル)−N−
フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)やN,N’−ビス(3−
メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジア
ミン(略称:TPD)、4,4’,4’’−トリス(カルバゾール−9−イル)トリフェ
ニルアミン(略称:TCTA)、4,4’,4’’−トリス(N,N−ジフェニルアミノ
)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メ
チルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、N
,N’−ビス(4−メチルフェニル)−N,N’−ジフェニル−p−フェニレンジアミン
(略称:DTDPPA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N
−フェニルアミノ]ビフェニル(略称:DPAB)、4,4’−ビス[N−(3−メチル
フェニル)−N−フェニルアミノ]ビフェニル(略称:DNTPD)、1,3,5−トリ
ス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:D
PA3B)等が挙げられる。
カルバゾール誘導体の具体例としては、3−[N−(9−フェニルカルバゾール−3−
イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、
3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−
9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N
−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称
:PCzPCN1)等が挙げられる。その他、4,4’−ジ(N−カルバゾリル)ビフェ
ニル(略称:CBP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベン
ゼン(略称:TCPB)、9−[4−(10−フェニル−9−アントラセニル)フェニル
]−9H−カルバゾール(略称:CzPA)、1,4−ビス[4−(N−カルバゾリル)
フェニル]−2,3,5,6−テトラフェニルベンゼン等が挙げられる。
芳香族炭化水素の具体例としては、2−tert−ブチル−9,10−ジ(2−ナフチ
ル)アントラセン(略称:t−BuDNA)、2−tert−ブチル−9,10−ジ(1
−ナフチル)アントラセン、9,10−ビス(3,5−ジフェニルフェニル)アントラセ
ン(略称:DPPA)、2−tert−ブチル−9,10−ビス(4−フェニルフェニル
)アントラセン(略称:t−BuDBA)、9,10−ジ(2−ナフチル)アントラセン
(略称:DNA)、9,10−ジフェニルアントラセン(略称:DPAnth)、2−t
ert−ブチルアントラセン(略称:t−BuAnth)、9,10−ビス(4−メチル
−1−ナフチル)アントラセン(略称:DMNA)、9,10−ビス[2−(1−ナフチ
ル)フェニル]−2−tert−ブチルアントラセン、9,10−ビス[2−(1−ナフ
チル)フェニル]アントラセン、2,3,6,7−テトラメチル−9,10−ジ(1−ナ
フチル)アントラセン、2,3,6,7−テトラメチル−9,10−ジ(2−ナフチル)
アントラセン、9,9’−ビアントリル、10,10’−ジフェニル−9,9’−ビアン
トリル、10,10’−ビス(2−フェニルフェニル)−9,9’−ビアントリル、10
,10’−ビス[(2,3,4,5,6−ペンタフェニル)フェニル]−9,9’−ビア
ントリル、アントラセン、テトラセン、ルブレン、ペリレン、2,5,8,11−テトラ
(tert−ブチル)ペリレン等が挙げられる。また、この他、ペンタセン、コロネン等
も用いることができる。このように、1×10−6cm/Vs以上の正孔移動度を有し
、炭素数14〜42である芳香族炭化水素を用いることがより好ましい。
また、芳香族炭化水素は、ビニル骨格を有していてもよい。ビニル基を有している芳香
族炭化水素としては、例えば、4,4’−ビス(2,2−ジフェニルビニル)ビフェニル
(略称:DPVBi)、9,10−ビス[4−(2,2−ジフェニルビニル)フェニル]
アントラセン(略称:DPVPA)等が挙げられる。
さらに、ポリ(N−ビニルカルバゾール)(略称:PVK)やポリ(4−ビニルトリフ
ェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
電荷発生領域106の形成に用いるアクセプター性物質としては、7,7,8,8−テ
トラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、
クロラニル等を挙げることができる。また、遷移金属酸化物を挙げることができる。また
元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体
的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸
化タングステン、酸化マンガン、酸化レニウムは電子受容性が高いため好ましい。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用
いることができることとする。
(実施の形態5)
本実施の形態5では、実施の形態1で説明した基本構成に含まれる発光素子の別の一例に
ついて、図24を用いて説明する。
本実施の形態で示す発光素子は、図24(A)に示すように一対の電極(陽極101、
陰極102)間に発光領域を含む第1のEL層103及び第2のEL層107が挟まれて
おり、第1のEL層103と第2のEL層107との間には陽極101側から電子注入バ
ッファー104、電子リレー層105、及び電荷発生領域106が順次積層された構造を
有する。
本実施の形態における陽極101、陰極102、電子注入バッファー104、電子リレ
ー層105、及び電荷発生領域106には、実施の形態1で説明したものと同様の材料を
用いることができる。
本実施の形態において、第1のEL層103は、青色〜青緑色の波長領域にピークを有
する発光スペクトルを示す第1の発光層103−1と、黄色〜橙色の波長領域にピークを
有する発光スペクトルを示す第2の発光層103−2とを有する。また、第2のEL層1
07は、青緑色〜緑色の波長領域にピークを有する発光スペクトルを示す第3の発光層1
07−1と、橙色〜赤色の波長領域にピークを有する発光スペクトルを示す第4の発光層
107−2とを有する。なお、第1の発光層103−1と第2の発光層103−2は逆の
積層順であっても良い。また、第3の発光層107−1と第4の発光層107−2は逆の
積層順であっても良い。
このような発光素子に対し、陽極101側をプラスに、陰極102側をマイナスにバイ
アスを印加すると、陽極101から注入された正孔と、電荷発生領域106で生じ、電子
リレー層105及び電子注入バッファー104を介して注入された電子とが第1の発光層
103−1または第2の発光層103−2において再結合して第1の発光330が得られ
る。さらに、陰極102から注入された電子と電荷発生領域106で生じた正孔が第3の
発光層107−1または第4の発光層107−2において再結合して第2の発光340が
得られる。
第1の発光330は、第1の発光層103−1および第2の発光層103−2の両方から
の発光を合わせたものであるので、図24(B)に示す通り、青色〜青緑色の波長領域お
よび黄色〜橙色の波長領域の両方にピークを有する発光スペクトルを示す。すなわち、第
1のEL層103は2波長型の白色または白色に近い色の発光を呈するものである。また
、第2の発光340は、第3の発光層107−1および第4の発光層107−2の両方か
らの発光を合わせたものであるので、図24(B)に示す通り、青緑色〜緑色の波長領域
および橙色〜赤色の波長領域の両方にピークを有する発光スペクトルを示す。すなわち、
第2のEL層107は、第1のEL層103とは異なる2波長型の白色または白色に近い
色の発光を呈するものである。
したがって、本実施形態における発光素子は、第1の発光330および第2の発光34
0が重ね合わさる結果、青色〜青緑色の波長領域、青緑色〜緑色の波長領域、黄色〜橙色
の波長領域、橙色〜赤色の波長領域をカバーする発光が得られる。
本実施の形態において、例えば、第1の発光層103−1(青色〜青緑色の波長領域に
ピークを有する発光スペクトルを示す)の発光輝度が、経時劣化あるいは電流密度により
変化したとしても、スペクトル全体に対する第1の発光層103−1の寄与は1/4程度
であるため、色度のずれは比較的小さくて済む。
なお、上述の説明では、第1のEL層103が青色〜青緑色の波長領域および黄色〜橙
色の波長領域の両方にピークを有するスペクトルを示し、第2のEL層107は青緑色〜
緑色の波長領域および橙色〜赤色の波長領域の両方にピークを有するスペクトルを示す場
合を例に説明したが、それぞれ逆の関係であっても良い。すなわち、第2のEL層107
が青色〜青緑色の波長領域および黄色〜橙色の波長領域の両方にピークを有するスペクト
ルを示し、第1のEL層103が青緑色〜緑色の波長領域および橙色〜赤色の波長領域の
両方にピークを有するスペクトルを示す構成であっても良い。また、第1のEL層103
及び第2のEL層107はそれぞれ、発光層以外の層が形成された積層構造であっても良
い。
次に、本実施の形態で示す発光素子のEL層に発光性の有機化合物として用いることので
きる材料を説明する。ただし、本実施の形態で示す発光素子に適用できる材料は、これら
に限定されるものではない。
青色〜青緑色の発光は、例えば、ペリレン、2,5,8,11−テトラ−t−ブチルペ
リレン(略称:TBP)、9,10−ジフェニルアントラセンなどをゲスト材料として用
い、適当なホスト材料に分散させることによって得られる。また、4,4’−ビス(2,
2−ジフェニルビニル)ビフェニル(略称:DPVBi)などのスチリルアリーレン誘導
体や、9,10−ジ−2−ナフチルアントラセン(略称:DNA)、9,10−ビス(2
−ナフチル)−2−t−ブチルアントラセン(略称:t−BuDNA)などのアントラセ
ン誘導体から得ることができる。また、ポリ(9,9−ジオクチルフルオレン)等のポリ
マーを用いても良い。また、青色発光のゲスト材料としては、スチリルアミン誘導体が好
ましく、N,N’−ビス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’
−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)や、N,N’−ジフ
ェニル−N,N’−ビス(9−フェニル−9H−カルバゾール−3−イル)スチルベン−
4,4’−ジアミン(略称:PCA2S)などが挙げられる。特にYGA2Sは、450
nm付近にピークを有しており好ましい。また、ホスト材料としては、アントラセン誘導
体が好ましく、9,10−ビス(2−ナフチル)−2−t−ブチルアントラセン(略称:
t−BuDNA)や、9−[4−(10−フェニル−9−アントリル)フェニル]−9H
−カルバゾール(略称:CzPA)が好適である。特に、CzPAは電気化学的に安定で
あるため好ましい。
青緑色〜緑色の発光は、例えば、クマリン30、クマリン6などのクマリン系色素や、
ビス[2−(2,4−ジフルオロフェニル)ピリジナト]ピコリナトイリジウム(略称:
FIrpic)、ビス(2−フェニルピリジナト)アセチルアセトナトイリジウム(略称
:Ir(ppy)(acac))などをゲスト材料として用い、適当なホスト材料に分
散させることによって得られる。また、上述のペリレンやTBPを5wt%以上の高濃度
で適当なホスト材料に分散させることによっても得られる。また、BAlq、Zn(BT
Z)、ビス(2−メチル−8−キノリノラト)クロロガリウム(Ga(mq)Cl)
などの金属錯体からも得ることができる。また、ポリ(p−フェニレンビニレン)等のポ
リマーを用いても良い。また、青緑色〜緑色の発光層のゲスト材料としては、アントラセ
ン誘導体が効率の高い発光が得られるため好ましい。例えば、9,10−ビス{4−[N
−(4−ジフェニルアミノ)フェニル−N−フェニル]アミノフェニル}−2−tert
−ブチルアントラセン(略称:DPABPA)を用いることにより、高効率な青緑色発光
が得られる。また、2位にアミノ基が置換されたアントラセン誘導体は高効率な緑色発光
が得られるため好ましく、N−(9,10−ジフェニル−2−アントリル)−N,9−ジ
フェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)が特に長寿命であり
好適である。これらのホスト材料としてはアントラセン誘導体が好ましく、先に述べたC
zPAが電気化学的に安定であるため好ましい。また、緑色発光と青色発光を組み合わせ
、青色から緑色の波長領域に2つのピークを持つ発光素子を作製する場合、青色発光層の
ホストにCzPAのような電子輸送性のアントラセン誘導体を用い、緑色発光層のホスト
にNPBのようなホール輸送性の芳香族アミン化合物を用いると、青色発光層と緑色発光
層との界面で発光が得られるため好ましい。すなわちこの場合、2PCAPAのような緑
色発光材料のホストとしては、NPBの如き芳香族アミン化合物が好ましい。
黄色〜橙色の発光は、例えば、ルブレン、4−(ジシアノメチレン)−2−[p−(ジ
メチルアミノ)スチリル]−6−メチル−4H−ピラン(略称:DCM1)、4−(ジシ
アノメチレン)−2−メチル−6−(9−ジュロリジル)エチニル−4H−ピラン(略称
:DCM2)、ビス[2−(2−チエニル)ピリジナト]アセチルアセトナトイリジウム
(Ir(thp)(acac))、ビス(2−フェニルキノリナト)アセチルアセトナ
トイリジウム(Ir(pq)(acac))などをゲスト材料として用い、適当なホス
ト材料に分散させることによって得られる。特に、ゲスト材料としてルブレンのようなテ
トラセン誘導体が、高効率かつ化学的に安定であるため好ましい。この場合のホスト材料
としては、NPBのような芳香族アミン化合物が好ましい。他のホスト材料としては、ビ
ス(8−キノリノラト)亜鉛(略称:Znq)やビス[2−シンナモイル−8−キノリ
ノラト]亜鉛(略称:Znsq)などの金属錯体を用いることができる。また、ポリ(
2,5−ジアルコキシ−1,4−フェニレンビニレン)等のポリマーを用いても良い。
橙色〜赤色の発光は、例えば、4−(ジシアノメチレン)−2,6−ビス[p−(ジメ
チルアミノ)スチリル]−4H−ピラン(略称:BisDCM)、2−(2−{2−[4
−(ジメチルアミノ)フェニル]エテニル}−6−メチル−4H−ピラン−4−イリデン
)プロパンジニトリル(略称:DCM1)、4−(ジシアノメチレン)−2−メチル−6
−(9−ジュロリジル)エチニル−4H−ピラン(略称:DCM2)、ビス[2−(2−
チエニル)ピリジナト]アセチルアセトナトイリジウム(Ir(thp)(acac)
)、などをゲスト材料として用い、適当なホスト材料に分散させることによって得られる
。ビス(8−キノリノラト)亜鉛(略称:Znq)やビス[2−シンナモイル−8−キ
ノリノラト]亜鉛(略称:Znsq)などの金属錯体からも得ることができる。また、
ポリ(3−アルキルチオフェン)等のポリマーを用いても良い。赤色発光を示すゲスト材
料としては、4−(ジシアノメチレン)−2,6−ビス[p−(ジメチルアミノ)スチリ
ル]−4H−ピラン(略称:BisDCM)、2−(2−{2−[4−(ジメチルアミノ
)フェニル]エテニル}−6−メチル−4H−ピラン−4−イリデン)プロパンジニトリ
ル(略称:DCM1)、4−(ジシアノメチレン)−2−メチル−6−(9−ジュロリジ
ル)エチニル−4H−ピラン(略称:DCM2)、{2−イソプロピル−6−[2−(2
,3,6,7−テトラヒドロ−1,1,7,7−テトラメチル−1H,5H−ベンゾ[i
j]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニト
リル(略称:DCJTI)、{2,6−ビス[2−(2,3,6,7−テトラヒドロ−8
−メトキシ−1,1,7,7−テトラメチル−1H,5H−ベンゾ[ij]キノリジン−
9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:Bi
sDCJTM)のような4H−ピラン誘導体が高効率であり、好ましい。特に、DCJT
I、BisDCJTMは、620nm付近に発光ピークを有するため好ましい。
なお、上記の構成において、適当なホスト材料としては、発光性の有機化合物よりも発
光色が短波長のものであるか、またはエネルギーギャップの大きいものであればよい。具
体的には、実施の形態1で示した例に代表される正孔輸送材料や電子輸送材料から適宜選
択することができる。また、4,4’−ビス(N−カルバゾリル)ビフェニル(略称:C
BP)、4,4’,4’’−トリス(N−カルバゾリル)トリフェニルアミン(略称:T
CTA)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:
TCPB)などを使用しても良い。
本実施の形態で示した発光素子は、第1のEL層の発光スペクトルおよび第2のEL層の
発光スペクトルが重ね合わさる結果、青色〜青緑色の波長領域、青緑色〜緑色の波長領域
、黄色〜橙色の波長領域、橙色〜赤色の波長領域を幅広くカバーする白色発光が得られる
なお、各積層の膜厚を調節し、意図的に光を僅かに干渉させることで、突出した鋭いピ
ークの発生を抑え、台形の発光スペクトルとなるようにして、連続的なスペクトルを有す
る自然光に近づけてもよい。また、各積層の膜厚を調節し、意図的に光を僅かに干渉させ
ることで、発光スペクトルのピークの位置も変化させることもできる。発光スペクトルに
現れる複数のピーク強度をほぼ同じになるように各積層の膜厚を調節し、さらに、互いの
ピークの間隔を狭くすることによってより台形に近い発光スペクトルを有する白色発光を
得ることができる。
なお、本実施の形態においては、複数層の発光層のそれぞれにおいて、互いに補色とな
る発光色を重ね合わせることによって白色発光が得られるEL層を示した。以下において
、補色の関係によって白色発光を呈するEL層の具体的な構成を説明する。
本実施の形態で示す発光素子に設けられたEL層は、例えば、正孔輸送性の高い物質と
第1の発光物質とを含む第1の層と、正孔輸送性の高い物質と第2の発光物質とを含む第
2の層と、電子輸送性の高い物質と第2の発光物質とを含む第3の層と、が陽極101か
ら順に積層された構成とすることができる。
本実施の形態で示す発光素子のEL層において、白色発光を得るためには、第1の発光
物質と第2の発光物質の両方が発光する必要がある。したがって、EL層内でのキャリア
の輸送性を調節するためは、正孔輸送性の高い物質および電子輸送性の高い物質は、いず
れもホスト材料とすることが好ましい。なお、EL層に用いることのできる正孔輸送性の
高い物質、または電子輸送性の高い物質としては、実施の形態1で例示した物質を適宜用
いることができる。
また、第1の発光物質および第2の発光物質は、それぞれの発光色が補色の関係となる
物質を選択して用いることができる。補色の関係としては、青色と黄色、あるいは青緑色
と赤色などが挙げられる。青色、黄色、青緑色、赤色に発光する物質としては、例えば、
先に列挙した発光物質の中から適宜選択すればよい。なお、第2の発光物質の発光波長を
第1の発光物質の発光波長よりも短波長とすることで、第2の発光物質の励起エネルギー
の一部を第1の発光物質にエネルギー移動させ、第1の発光物質を発光させることができ
る。したがって、本実施の形態の発光素子においては、第2の発光物質の発光ピーク波長
が、第1の発光物質の発光ピーク波長よりも短波長であることが好ましい。
本実施の形態で示す発光素子の構成は、第1の発光物質からの発光と第2の発光物質か
らの発光の両方が得られ、且つ、第1の発光物質と第2の発光物質の発光色が互いに補色
の関係であるため白色発光が得られる。また、本実施の形態で示す発光素子の構成とする
ことで、長寿命な発光素子とすることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用
いることができることとする。
(実施の形態6)
本実施の形態では、上記実施の形態で示した発光素子を含む発光装置の一態様について
、図5を用いて説明する。図5は、該発光装置の断面図である。
図5において、四角の点線で囲まれているのは、発光素子12を駆動するために設けら
れているトランジスタ11である。発光素子12は、第1の電極13と第2の電極14と
の間に有機化合物を含む層15を有し、該有機化合物を含む層はn(nは2以上の自然数
)層のEL層を有し、m(mは自然数、1≦m≦n−1)番目のEL層と、(m+1)番
目のEL層との間には、陽極側から順に、電子注入バッファーと、電子リレー層と、電荷
発生領域と、を含む層である。また、それぞれのEL層は、少なくとも発光層が設けられ
ており、発光層の他に正孔注入層、正孔輸送層、電子輸送層又は電子注入層を適宜設ける
構成とする。すなわち、発光素子12は、実施の形態1乃至実施の形態4で示したような
構成である。トランジスタ11のドレイン領域と第1の電極13とは、第1層間絶縁膜1
6(16a、16b、16c)を貫通している配線17によって電気的に接続されている
。また、発光素子12は、隔壁層18によって、隣接して設けられている別の発光素子と
分離されている。このような構成を有する本実施の形態の発光装置は、本実施の形態にお
いて、基板10上に設けられている。
なお、図5に示されたトランジスタ11は、半導体層を中心として基板と逆側にゲート
電極が設けられたトップゲート型のものである。但し、トランジスタ11の構造について
は、特に限定はなく、例えばボトムゲート型のものでもよい。またボトムゲートの場合に
は、チャネルを形成する半導体層の上に保護膜が形成されたもの(チャネル保護型)でも
よいし、或いはチャネルを形成する半導体層の一部が凹状になったもの(チャネルエッチ
型)でもよい。
また、トランジスタ11を構成する半導体層は、結晶性、非結晶性のいずれのものでも
よい。また、微結晶半導体(マイクロクリスタル半導体)、酸化物半導体等を用いてもよ
い。
酸化物半導体層としては、インジウム、ガリウム、アルミニウム、亜鉛及びスズから選
んだ元素の複合酸化物を用いることができる。例えば、酸化亜鉛(ZnO)、酸化亜鉛を
含む酸化インジウム(IZO)や酸化インジウムと酸化ガリウムと酸化亜鉛からなる酸化
物(IGZO)をその例に挙げることができる。また、半導体層が結晶性のものの具体例
としては、単結晶または多結晶性の珪素、或いはシリコンゲルマニウム等から成るものが
挙げられる。これらはレーザー結晶化によって形成されたものでもよいし、例えばニッケ
ル等を用いた固相成長法による結晶化によって形成されたものでもよい。
なお、半導体層が非晶質の物質、例えばアモルファスシリコンで形成される場合には、
トランジスタ11およびその他のトランジスタ(発光素子を駆動するための回路を構成す
るトランジスタ)は全てNチャネル型トランジスタで構成された回路を有する発光装置で
あることが好ましい。また、多くの酸化物半導体、例えば酸化亜鉛(ZnO)、酸化亜鉛
を含む酸化インジウム(IZO)や酸化インジウムと酸化ガリウムと酸化亜鉛からなる酸
化物(IGZO)などはN型の半導体であるため、これらの化合物を活性層にもつトラン
ジスタはNチャネル型となる。それ以外については、Nチャネル型またはPチャネル型の
いずれか一のトランジスタで構成された回路を有する発光装置でもよいし、両方のトラン
ジスタで構成された回路を有する発光装置でもよい。
さらに、第1層間絶縁膜16は、図5(A)、(C)に示すように多層でもよいし、ま
たは単層でもよい。なお、16aは酸化珪素や窒化珪素のような無機物から成り、16b
はアクリルやシロキサン(シリコン(Si)と酸素(O)との結合で骨格構造が構成され
、置換基に少なくとも水素を含む有機基)、塗布成膜可能な酸化珪素等の自己平坦性を有
する物質から成る。さらに、16cはアルゴン(Ar)を含む窒化珪素膜から成る。なお
、各層を構成する物質については、特に限定はなく、ここに述べたもの以外のものを用い
てもよい。また、これら以外の物質から成る層をさらに組み合わせてもよい。このように
、第1層間絶縁膜16a〜16cは、無機物または有機物の両方を用いて形成されたもの
でもよいし、または無機膜と有機膜のいずれか一で形成されたものでもよい。
隔壁層18は、エッジ部において、曲率半径が連続的に変化する形状であることが好ま
しい。また隔壁層18は、アクリルやシロキサン、レジスト、酸化珪素等を用いて形成さ
れる。なお隔壁層18は、無機膜と有機膜のいずれか一で形成されたものでもよいし、ま
たは両方を用いて形成されたものでもよい。
なお、図5(A)、(C)では、第1層間絶縁膜16a〜16cのみがトランジスタ1
1と発光素子12の間に設けられた構成であるが、図5(B)のように、第1層間絶縁膜
16(16a、16b)の他、第2層間絶縁膜19(19a、19b)が設けられた構成
のものであってもよい。図5(B)に示す発光装置においては、第1の電極13は第2層
間絶縁膜19を貫通し、配線17と接続している。
第2層間絶縁膜19は、第1層間絶縁膜16と同様に、多層でもよいし、または単層で
もよい。19aはアクリルやシロキサン(シリコン(Si)と酸素(O)との結合で骨格
構造が構成され、置換基に少なくとも水素を含む有機基)、塗布成膜可能な酸化珪素等の
自己平坦性を有する物質から成る。さらに、19bはアルゴン(Ar)を含む窒化珪素膜
から成る。なお、各層を構成する物質については、特に限定はなく、ここに述べたもの以
外のものを用いてもよい。また、これら以外の物質から成る層をさらに組み合わせてもよ
い。このように、第2層間絶縁膜19a、19bは、無機物または有機物の両方を用いて
形成されたものでもよいし、または無機膜と有機膜のいずれか一で形成されたものでもよ
い。
発光素子12において、第1の電極および第2の電極がいずれも透光性を有する物質で
構成されている場合、図5(A)の白抜きの矢印で表されるように、第1の電極13側と
第2の電極14側の両方から発光を取り出すことができる。また、第2の電極14のみが
透光性を有する物質で構成されている場合、図5(B)の白抜きの矢印で表されるように
、第2の電極14側のみから発光を取り出すことができる。この場合、第1の電極13は
反射率の高い材料で構成されているか、または反射率の高い材料から成る膜(反射膜)が
第1の電極13の下方に設けられていることが好ましい。また、第1の電極13のみが透
光性を有する物質で構成されている場合、図5(C)の白抜きの矢印で表されるように、
第1の電極13側のみから発光を取り出すことができる。この場合、第2の電極14は反
射率の高い材料で構成されているか、または反射膜が第2の電極14の上方に設けられて
いることが好ましい。
また、発光素子12は、第1の電極13の電位よりも第2の電極14の電位が高くなる
ように電圧を印加したときに動作するように層15が積層されたものであってもよいし、
或いは、第1の電極13の電位よりも第2の電極14の電位が低くなるように電圧を印加
したときに動作するように層15が積層されたものであってもよい。前者の場合、トラン
ジスタ11はNチャネル型トランジスタであり、後者の場合、トランジスタ11はPチャ
ネル型トランジスタである。
なお、図5に示す断面図では発光素子を1つのみ図示しているが、画素部において、複数
の発光素子がマトリクス状に配置されているものとする。また、R(赤)G(緑)B(青
)の色要素からなるカラー表示を行う場合、画素部には、3種類(R、G、B)の発光が
得られる発光素子がそれぞれ複数形成される。また、色要素は、3色に限定されず、4色
以上を用いても良いし、RGB以外の色を用いても良い。例えば、白色を加えて、RGB
W(Wは白)とすることも可能である。
色要素の異なる発光素子の作製方法としては、それぞれのEL層ごとに塗り分けをする
方法、全てのEL層を白色発光が得られる様に形成し、カラーフィルタと組み合わせるこ
とによって異なる色要素の発光素子を得る方法、全てのEL層を青色発光もしくはそれよ
り短波長の発光が得られる様に形成し色変換層と組み合わせることによって異なる色要素
の発光素子を得る方法等を用いることができる。
以上のように、本実施の形態では、トランジスタによって発光素子の駆動を制御するア
クティブマトリクス型の発光装置について説明したが、この他、トランジスタ等の駆動用
の素子を発光素子と同一基板上に設けずに発光素子を駆動させるパッシブマトリクス型の
発光装置であってもよい。図6(A)には実施の形態1乃至実施の形態4で示した発光素
子を適用して作製したパッシブマトリクス型の発光装置の斜視図を示す。また、図6(B
)は図6(A)の破線X−Yにおける断面図である。
図6において、基板951上には、電極952と電極956との間には有機化合物を含
む層955が設けられている。該有機化合物を含む層はn(nは2以上の自然数)層のE
L層を有し、m(mは自然数、1≦m≦n−1)番目のEL層と、(m+1)番目のEL
層との間には、陽極側から順に、電子注入バッファーと、電子リレー層と、電荷発生領域
と、を含む層である。また、それぞれのEL層は、少なくとも発光層が設けられており、
発光層の他に正孔注入層、正孔輸送層、電子輸送層又は電子注入層を適宜設ける構成とす
る。電極952の端部は絶縁層953で覆われている。そして、絶縁層953上には隔壁
層954が設けられている。隔壁層954の側壁は、基板面に近くなるに伴って、一方の
側壁と他方の側壁との間隔が狭くなっていくような傾斜を有するのが好ましい。つまり、
隔壁層954の短辺方向の断面は、台形状であり、底辺(絶縁層953の面方向と同様の
方向を向き、絶縁層953と接する辺)の方が上辺(絶縁層953の面方向と同様の方向
を向き、絶縁層953と接しない辺)よりも短い。このように、隔壁層954を設けるこ
とで、静電気等に起因した発光素子の不良を防ぐことが出来る。パッシブマトリクス型の
発光装置においても、実施の形態1乃至実施の形態4で示した発光素子を含むことによっ
て、低消費電力の発光装置を得ることができる。
本実施の形態で示した発光装置は、上記実施の形態で一例を示した発光素子を用いてい
るため、高輝度且つ低駆動電圧であり、ひいては消費電力が低い発光装置とすることがで
きる。
(実施の形態7)
本実施の形態では、実施の形態6に示す発光装置をその一部に含む電子機器について説
明する。本実施の形態で示す電子機器は、実施の形態1乃至実施の形態4に示した発光素
子を含み、高輝度で駆動電圧が低く、消費電力が低減された表示部を有する。
本実施の形態の電子機器として、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプ
レイ、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)
、コンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型
ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDigita
l Versatile Disc(DVD)等の記録媒体を再生し、その画像を表示し
うる表示装置を備えた装置)などが挙げられる。これらの電子機器の具体例を図7に示す
図7(A)携帯情報端末機器9200の一例を示している。携帯情報端末機器9200
は、コンピュータを内蔵しており、様々なデータ処理を行うことが可能である。このよう
な携帯情報端末機器9200としては、PDA(Personal Digital A
ssistance)が挙げられる。
携帯情報端末機器9200は、筐体9201および筐体9203の2つの筐体で構成さ
れている。筐体9201と筐体9203は、連結部9207で折りたたみ可能に連結され
ている。筐体9201には表示部9202が組み込まれており、筐体9203はキーボー
ド9205を備えている。もちろん、携帯情報端末機器9200の構成は上述のものに限
定されず、その他付属設備が適宜設けられた構成とすることができる。表示部9202は
、上記実施の形態で説明したものと同様の発光素子をマトリクス状に配列して構成されて
いる。当該発光素子は、高輝度で駆動電圧が低く、消費電力が小さいという特徴を有して
いる。その発光素子で構成される表示部9202も同様の特徴を有するため、この携帯情
報端末機器は低消費電力化が図られている。
図7(B)は本実施の形態に係るデジタルビデオカメラ9500の一例を示している。
デジタルビデオカメラ9500は、筐体9501に表示部9503が組み込まれ、その他
に各種操作部が設けられている。なお、デジタルビデオカメラ9500の構成は特に限定
されず、その他付属設備が適宜設けられた構成とすることができる。
このデジタルビデオカメラにおいて表示部9503は、上記実施の形態で説明したものと
同様の発光素子をマトリクス状に配列して構成されている。当該発光素子は、駆動電圧が
低く、高輝度で消費電力が小さいという特徴を有している。その発光素子で構成される表
示部9503も同様の特徴を有するため、このデジタルビデオカメラは低消費電力化が図
られている。
図7(C)は本実施の形態に係る携帯電話機9100の一例を示している。携帯電話機
9100は、筐体9102および筐体9101の2つの筐体で構成されており、連結部9
103により折りたたみ可能に連結されている。筐体9102には表示部9104が組み
込まれており、筐体9101には操作キー9106が設けられている。なお、携帯電話機
9100の構成は特に限定されず、その他付属設備が適宜設けられた構成とすることがで
きる。
この携帯電話機において、表示部9104は、上記実施の形態で説明したものと同様の発
光素子をマトリクス状に配列して構成されている。当該発光素子は、高輝度で駆動電圧が
低く、消費電力が小さいという特徴を有している。その発光素子で構成される表示部91
04も同様の特徴を有するため、この携帯電話は低消費電力化が図られている。また、携
帯電話機などに設けられたディスプレイのバックライトとして、上記実施の形態で示した
発光素子を用いても構わない。
図7(D)は携帯可能なコンピュータ9400の一例を示している。コンピュータ94
00は、開閉可能に連結された筐体9401と筐体9404を備えている。筐体9401
には表示部9402が組み込まれ、筐体9404はキーボード9403などを備えている
。なお、コンピュータ9400の構成は特に限定されず、その他付属設備が適宜設けられ
た構成とすることができる。
このコンピュータにおいて、表示部9402は、上記実施の形態で説明したものと同様の
発光素子をマトリクス状に配列して構成されている。当該発光素子は、高輝度で駆動電圧
が低く、消費電力が小さいという特徴を有している。その発光素子で構成される表示部9
402も同様の特徴を有するため、このコンピュータは低消費電力化が図られている。
図7(E)は、テレビジョン装置9600の一例を示している。テレビジョン装置960
0は、筐体9601に表示部9603が組み込まれている。表示部9603により、映像
を表示することが可能である。また、ここでは、スタンド9605により筐体9601を
支持した構成を示している。
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリモ
コン操作機9610により行うことができる。リモコン操作機9610が備える操作キー
9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示され
る映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作機
9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機に
より一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線に
よる通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向
(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
このテレビジョン装置において、表示部9607、表示部9603の少なくとも一方は、
上記実施の形態で説明したものと同様の発光素子をマトリクス状に配列して構成されてい
る。当該発光素子は、高輝度で駆動電圧が低く、消費電力が小さいという特徴を有してい
る。その発光素子で構成される表示部も同様の特徴を有する。
以上の様に、上記実施の形態で示した発光装置の適用範囲は極めて広く、この発光装置
をあらゆる分野の電子機器に適用することが可能である。実施の形態1乃至実施の形態4
で示した発光素子を用いることにより、高輝度の発光を呈し、低消費電力な表示部を有す
る電子機器を提供することが可能となる。
また、上記実施の形態で示した発光装置は、照明装置として用いることもできる。上記
実施の形態で示した発光装置を照明装置として用いる一態様を、図8を用いて説明する。
図8は、上記実施の形態で一例を示した発光装置を、照明装置である電気スタンド、及
び室内の照明装置として用いた例である。図8に示す電気スタンドは、光源3000を有
し、光源3000として、上記実施の形態で一例を示した発光装置が用いられている。従
って、消費電力の低い発光装置とすることができる。また、この発光装置は大面積化が可
能であるため、照明装置を大面積の照明として用いることができる。また、この発光装置
は、薄型で低消費電力であるため、薄型化、低消費電力化の照明装置として用いることが
可能となる。また、この発光装置は、フレキシブル化が可能であるため、例えば、照明装
置3002のように、ロール型の照明とすることが可能である。このように、本実施の形
態で示す発光装置を、室内の照明装置3001、3002として用いた部屋に、図7(E
)で説明したような、テレビジョン装置を設置することもできる。
以上の様に、実施の形態6で示した発光装置の適用範囲は極めて広く、あらゆる分野の
電子機器に用いることが可能である。なお、本実施の形態は、実施の形態1乃至実施の形
態5と適宜組み合わせて用いることができる。
本実施例では、本発明の一態様である発光素子について、図9を用いて説明する。本実
施例及び実施例2〜6で用いた材料の化学式を以下に示す。
Figure 2021101433
以下に、本実施例の発光素子1及び比較発光素子1の作製方法を示す。
まず、発光素子1について説明する(図9(A)参照)。ガラス基板2100上に、酸化
珪素を含むインジウム錫酸化物をスパッタリング法にて成膜し、第1の電極2101を形
成した。なお、その膜厚は110nmとし、電極面積は2mm×2mmとした。
次に、第1の電極2101が形成された面が下方となるように、第1の電極2101が
形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、10−4Pa程度
まで減圧した後、第1の電極2101上に、正孔輸送性の高い物質である4,4’−ビス
[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)と、アクセ
プター性物質である酸化モリブデン(VI)とを共蒸着することにより、有機化合物と無
機化合物とを複合してなる複合材料を含む、第1の電荷発生領域2103aを形成した。
その膜厚は50nmとし、NPBと酸化モリブデン(VI)との比率は、重量比で4:1
(=NPB:酸化モリブデン)となるように調節した。なお、共蒸着法とは、一つの処理
室内で複数の蒸発源から同時に蒸着を行う蒸着法である。
次に、抵抗加熱を用いた蒸着法により、第1の電荷発生領域2103a上にNPBを1
0nmの膜厚となるように成膜し、正孔輸送層2103bを形成した。
さらに、9−[4−(N−カルバゾリル)]フェニル−10−フェニルアントラセン(
略称:CzPA)と、9,10−ビス{4−[N−(4−ジフェニルアミノフェニル)−
N−フェニルアミノ]フェニル}−2−tert−ブチルアントラセン(略称:DPAB
PA)と、を共蒸着することにより、正孔輸送層2103b上に30nmの膜厚の発光層
2103cを形成した。ここで、CzPAとDPABPAとの重量比は、1:0.1(=
CzPA:DPABPA)となるように調節した。なお、CzPAは電子輸送性を有する
物質であり、ゲスト材料であるDPABPAは青緑色の発光を示す物質である。
その後抵抗加熱による蒸着法を用いて、発光層2103c上にトリス(8−キノリノラ
ト)アルミニウム(略称:Alq)を10nmの膜厚となるように成膜し、電子輸送層2
103dを形成した。これによって、第1の電荷発生領域2103a、正孔輸送層210
3b、発光層2103c、及び電子輸送層2103dを含む第1のEL層2103を形成
した。
次いで、バソフェナントロリン(略称:BPhen)とリチウム(Li)とを共蒸着す
ることにより、電子輸送層2103d上に10nmの膜厚の電子注入バッファー2104
を形成した。ここで、BPhenとLiとの重量比は、1:0.02(=BPhen:L
i)となるように調整した。
次いで、3,4,9,10−ペリレンテトラカルボキシリックビスベンゾイミダゾール
(略称:PTCBI)を蒸着することにより、電子注入バッファー2104上に、3nm
の膜厚の電子リレー層2105を形成した。なお、PTCBIのLUMO準位はサイクリ
ックボルタンメトリ(CV)測定の結果から−4.0eV程度である。
次に、電子リレー層2105上に、正孔輸送性の高い物質であるNPBと、アクセプタ
ー性物質である酸化モリブデン(VI)とを共蒸着することにより、第2の電荷発生領域
2106を形成した。その膜厚は20nmとし、NPBと酸化モリブデン(VI)との比
率は、重量比で4:1(=NPB:酸化モリブデン)となるように調節した。
次いで、第2の電荷発生領域2106上に、第2のEL層2107を作製した。その作
製方法は、まず、抵抗加熱を用いた蒸着法により、第2の電荷発生領域2106上にNP
Bを10nmの膜厚となるように成膜し、正孔輸送層2107aを形成した。
その後、トリス(8−キノリノラト)アルミニウム(略称:Alq)と、4−ジシアノ
メチレン−2−イソプロピル−6−[2−(1,1,7,7−テトラメチル−2,3,6
,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−
4H−ピラン(略称:DCJTI)と、を共蒸着することにより、正孔輸送層2107a
上に40nmの膜厚の発光層2107bを形成した。ここで、AlqとDCJTIとの重
量比は、1:0.01(=Alq:DCJTI)となるように調節した。なお、Alqは
電子輸送性を有する物質であり、ゲスト材料であるDCJTIは赤色の発光を示す物質で
ある。
次いで、発光層2107b上に、Alqを膜厚10nm、次いでBPhenを20nm
蒸着して積層することにより、電子輸送層2107cを形成した。電子輸送層2107c
上に、フッ化リチウム(LiF)を膜厚1nmで蒸着することにより電子注入層2107
dを形成した。これによって、正孔輸送層2107a、発光層2107b、電子輸送層2
107c、電子注入層2107dを含む第2のEL層2107を形成した。
最後に、抵抗加熱による蒸着法を用い、電子注入層2107d上にアルミニウムを20
0nmの膜厚となるように成膜することにより、第2の電極2102を形成することで、
発光素子1を作製した。
次に、比較発光素子1について説明する(図9(B)参照)。比較発光素子1は、発光
素子1から電子リレー層2105を削除した構造であり、その他の層については、発光素
子1と同様の作製方法にて形成した。比較発光素子1においては、電子注入バッファー2
104を形成した後、電子注入バッファー2104上に、第2の電荷発生領域2106を
形成した。以上により、本実施例の比較発光素子1を得た。
以下の表1に発光素子1、および比較発光素子1の素子構造を示す。
Figure 2021101433
以上により得られた発光素子1及び比較発光素子1を窒素雰囲気のグローブボックス内
において、各発光素子が大気に曝されないように封止する作業を行った後、これらの発光
素子の動作特性について測定を行った。なお、測定は、室温(25℃に保たれた雰囲気)
で行った。
発光素子1及び比較発光素子1の電圧―輝度特性を図10に示す。図10において、横
軸は印加した電圧(V)、縦軸は輝度(cd/m)を表している。また、電流密度―輝
度特性を図11に示す。図11において、横軸は電圧(V)を、縦軸は電流密度(mA/
cm)を表す。また、1000cd/m付近における各素子の主な初期特性値を以下
の表2にまとめた。
Figure 2021101433
なお、表2のCIE色度座標からわかるように、発光素子1及び比較発光素子1は共に
白色発光を示している。これは、第1のEL層2103に含まれるDPABPAに由来す
る青緑色の発光と、第2のEL層2107に含まれるDCJTIに由来する赤色の発光の
両方が得られたためである。
図10より、発光素子1は、電子リレー層を設けることにより、電圧に対して高い輝度
が得られることがわかる。また、図11より、発光素子1は、比較発光素子1に比べて、
高い電流密度を有することが分かる。
以上により、本実施例の発光素子1が、発光素子として特性が得られ、十分機能すること
が確認できた。また、発光素子1は、低電圧で駆動可能な発光素子であることが確認でき
た。
本実施例では、本発明の一態様である発光素子について、図12を用いて説明する。な
お、本実施例で示す発光素子及び比較発光素子において、先に述べた実施例と同一部分又
は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
以下に、本実施例の発光素子2及び比較発光素子2の作製方法を示す。
まず、発光素子2について説明する(図12(A)参照)。本実施例の発光素子2は、電
子リレー層2105までは、実施例1で示した発光素子1と同様に作製した。本実施例の
発光素子2においては、電子リレー層2105上に、アクセプター物質である酸化モリブ
デン(VI)を20nm、次いで正孔輸送性の高い物質であるNPBを10nm蒸着して
積層することにより、第2の電荷発生領域2106を形成した。
次いで、第2の電荷発生領域2106上に、第2のEL層2108を作製した。その作
製方法は、まず、Alqと、DCJTIと、を共蒸着することにより、第2の電荷発生領
域2106上に40nmの膜厚の発光層2108aを形成した。ここで、AlqとDCJ
TIとの重量比は、1:0.01(=Alq:DCJTI)となるように調節した。なお
、Alqは電子輸送性を有する物質であり、ゲスト材料であるDCJTIは赤色の発光を
示す物質である。
次いで、発光層2108a上に、Alqを膜厚10nm、次いでBPhenを20nm
蒸着して積層することにより、電子輸送層2108bを形成した。電子輸送層2108b
上に、フッ化リチウム(LiF)を膜厚1nmで蒸着することにより電子注入層2108
cを形成した。これによって、発光層2108a、電子輸送層2108b、電子注入層2
108cを含む第2のEL層2108を形成した。
最後に、抵抗加熱による蒸着法を用い、電子注入層2108c上にアルミニウムを20
0nmの膜厚となるように成膜することにより、第2の電極2102を形成することで、
発光素子2を作製した。
次に、比較発光素子2について説明する(図12(B)参照)。本実施例の比較発光素
子2は、発光素子2から電子リレー層2105を削除した構造であり、その他の層につい
ては、発光素子2と同様の作製方法にて形成した。比較発光素子2においては、電子注入
バッファー2104を形成した後、電子注入バッファー2104上に、第2の電荷発生領
域2106を形成した。以上により、本実施例の比較発光素子2を得た。
以下の表3に発光素子2、および比較発光素子2の素子構造を示す。
Figure 2021101433
以上により得られた発光素子2及び比較発光素子2を窒素雰囲気のグローブボックス内
において、各発光素子が大気に曝されないように封止する作業を行った後、これらの発光
素子の動作特性について測定を行った。なお、測定は、室温(25℃に保たれた雰囲気)
で行った。
発光素子2及び比較発光素子2の電圧―輝度特性を図13に示す。図13において、横
軸は印加した電圧(V)、縦軸は輝度(cd/m)を表している。また、電流密度―輝
度特性を図14に示す。図14において、横軸は電圧(V)を、縦軸は電流密度(mA/
cm)を表す。また、1000cd/m付近における各素子の主な初期特性値を以下
の表4にまとめた。
Figure 2021101433
なお、表4のCIE色度座標からわかるように、発光素子2及び比較発光素子2は共に
白色発光を示している。これは、第1のEL層2103に含まれるDPABPAに由来す
る青緑色の発光と、第2のEL層2108に含まれるDCJTIに由来する赤色の発光の
両方が得られたためである。
図13より、発光素子2は、電子リレー層を設けることにより、電圧に対して高い輝度
が得られることがわかる。また、図14より、発光素子2は、比較発光素子2に比べて、
高い電流密度を有することが分かる。
以上により、本実施例の発光素子2が、発光素子として特性が得られ、十分機能すること
が確認できた。また、発光素子2は、低電圧で駆動可能な発光素子であることが確認でき
た。
本実施例では、本発明の一態様である発光素子について、図9を用いて説明する。なお
、本実施例で示す発光素子及び比較発光素子において、先に述べた実施例と同一部分又は
同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
以下に、本実施例の発光素子3及び比較発光素子3の作製方法を示す。
まず、発光素子3について説明する(図9(A)参照)。本実施例の発光素子3は、第1
のEL層2103の電子輸送層2103d、及び電子注入バッファー2104以外は、実
施例1で示した発光素子1と同様に作製した。本実施例の発光素子3においては、発光層
2103c上に、Alqを膜厚10nm、次いでBPhenを10nm蒸着して積層する
ことにより、電子輸送層2103dを形成した。
次いで、電子輸送層2103d上に、酸化リチウム(LiO)を0.1nm蒸着する
ことにより、電子注入バッファー2104を形成した。以上により、本実施例の発光素子
3を得た。
次に、比較発光素子3について説明する(図9(B)参照)。本実施例の比較発光素子
3は、発光素子3から電子リレー層2105を削除した構造であり、その他の層について
は、発光素子3と同様の作製方法にて形成した。比較発光素子3においては、電子注入バ
ッファー2104を形成した後、電子注入バッファー2104上に、第2の電荷発生領域
2106を形成した。以上により、本実施例の比較発光素子3を得た。
以下の表5に発光素子3、および比較発光素子3の素子構造を示す。
Figure 2021101433
以上により得られた発光素子3及び比較発光素子3を窒素雰囲気のグローブボックス内
において、各発光素子が大気に曝されないように封止する作業を行った後、これらの発光
素子の動作特性について測定を行った。なお、測定は、室温(25℃に保たれた雰囲気)
で行った。
発光素子3及び比較発光素子3の電圧―輝度特性を図15に示す。図15において、横
軸は印加した電圧(V)、縦軸は輝度(cd/m)を表している。また、電流密度―輝
度特性を図16に示す。図16において、横軸は電圧(V)を、縦軸は電流密度(mA/
cm)を表す。また、1000cd/m付近における各素子の主な初期特性値を以下
の表6にまとめた。
Figure 2021101433
なお、表6のCIE色度座標からわかるように、発光素子3及び比較発光素子3は共に
白色発光を示している。これは、第1のEL層2103に含まれるDPABPAに由来す
る青緑色の発光と、第2のEL層2107に含まれるDCJTIに由来する赤色の発光の
両方が得られたためである。
図15より、発光素子3は、電子リレー層を設けることにより、電圧に対して高い輝度
が得られることがわかる。また、図16より、発光素子3は、比較発光素子3に比べて、
高い電流密度を有することが分かる。
以上により、本実施例の発光素子3が、発光素子として特性が得られ、十分機能すること
が確認できた。また、発光素子3は、低電圧で駆動可能な発光素子であることが確認でき
た。
本実施例では、本発明の一態様である発光素子について、図12を用いて説明する。な
お、本実施例で示す発光素子及び比較発光素子において、先に述べた実施例と同一部分又
は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
以下に、本実施例の発光素子4及び比較発光素子4の作製方法を示す。
まず、発光素子4について説明する(図12(A)参照)。本実施例の発光素子4は、第
1のEL層2103の電子輸送層2103d、及び電子注入バッファー2104以外は、
実施例2で示した発光素子2と同様に作製した。本実施例の発光素子4においては、発光
層2103c上に、Alqを膜厚10nm、次いでBPhenを10nm蒸着して積層す
ることにより、電子輸送層2103dを形成した。
次いで、電子輸送層2103d上に、酸化リチウム(LiO)を0.1nm蒸着する
ことにより、電子注入バッファー2104を形成した。以上により、本実施例の発光素子
4を得た。
次に、比較発光素子4について説明する(図12(B)参照)。本実施例の比較発光素
子4は、発光素子4から電子リレー層2105を削除した構造であり、その他の層につい
ては、発光素子4と同様の作製方法にて形成した。比較発光素子4においては、電子注入
バッファー2104を形成した後、電子注入バッファー2104上に、第2の電荷発生領
域2106を形成した。以上により、本実施例の比較発光素子4を得た。
以下の表7に発光素子4、および比較発光素子4の素子構造を示す。
Figure 2021101433
以上により得られた発光素子4及び比較発光素子4を窒素雰囲気のグローブボックス内
において、各発光素子が大気に曝されないように封止する作業を行った後、これらの発光
素子の動作特性について測定を行った。なお、測定は、室温(25℃に保たれた雰囲気)
で行った。
発光素子4及び比較発光素子4の電圧―輝度特性を図17に示す。図17において、横
軸は印加した電圧(V)、縦軸は輝度(cd/m)を表している。また、電流密度―輝
度特性を図18に示す。図18において、横軸は電圧(V)を、縦軸は電流密度(mA/
cm)を表す。また、1000cd/m付近における各素子の主な初期特性値を以下
の表8にまとめた。
Figure 2021101433
なお、表8のCIE色度座標からわかるように、発光素子4及び比較発光素子4は共に
白色発光を示している。これは、第1のEL層2103に含まれるDPABPAに由来す
る青緑色の発光と、第2のEL層2108に含まれるDCJTIに由来する赤色の発光の
両方が得られたためである。
図17より、発光素子4は、電子リレー層を設けることにより、電圧に対して高い輝度
が得られることがわかる。また、図18より、発光素子4は、比較発光素子4に比べて、
高い電流密度を有することが分かる。
以上により、本実施例の発光素子4が、発光素子として特性が得られ、十分機能すること
が確認できた。また、発光素子4は、低電圧で駆動可能な発光素子であることが確認でき
た。
本実施例では、本発明の一態様である発光素子について、図9(A)を用いて説明する
。なお、本実施例で示す発光素子及び比較発光素子において、先に述べた実施例と同一部
分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
以下に、本実施例の発光素子3及び比較発光素子5の作製方法を示す。
本実施例の発光素子3は、実施例3で示した発光素子3と同様に作製した(図9(A)
参照)。また、本実施例の比較発光素子5は、第2の電荷発生領域2106以外は、発光
素子3と同様に作製した。本実施例の比較発光素子5においては、電子リレー層2105
上に、NPBを膜厚20nm蒸着することにより、第2の電荷発生領域2106を形成し
た(図9(A)参照)。以上により、本実施例の比較発光素子5を得た。
以下の表9に発光素子3、および比較発光素子5の素子構造を示す。
Figure 2021101433
以上により得られた発光素子3及び比較発光素子5を窒素雰囲気のグローブボックス内
において、各発光素子が大気に曝されないように封止する作業を行った後、これらの発光
素子の動作特性について測定を行った。なお、測定は、室温(25℃に保たれた雰囲気)
で行った。
発光素子3及び比較発光素子5の電圧―輝度特性を図19に示す。図19において、横
軸は印加した電圧(V)、縦軸は輝度(cd/m)を表している。また、電流密度―輝
度特性を図20に示す。図20において、横軸は電圧(V)を、縦軸は電流密度(mA/
cm)を表す。また、1000cd/m付近における各素子の主な初期特性値を以下
の表10にまとめた。
Figure 2021101433
なお、発光素子3は、実施例3で述べたように、白色の発光を呈したが、比較発光素子
5はDCJTIに由来する赤色のスペクトル強度が弱く、青緑色の発光を呈した(表10
の色度座標参照)。このことから、第2の電荷発生領域2106が正孔輸送性の高い物質
(本実施例においてはNPB)のみからなる場合は、正孔が第2のEL層2107へ注入
されにくいことが示唆される。
一方、発光素子3は、第2の電荷発生領域2106に正孔輸送性の高い物質(本実施例
においてはNPB)と、アクセプター性物質(本実施例においては酸化モリブデン)を含
むため、第2の電荷発生領域2106において電子の授受が起こっており、第2の電荷発
生領域2106において正孔及び電子が発生している。発生した正孔は電圧印加により容
易にNPB上を移動し、第2のEL層2107へ注入される。また、電子は、電圧印加に
より容易に電子リレー層2105へ注入され、第1のEL層2103に到達する。従って
、図19に示すように、発光素子3は比較発光素子5に比べて、高い輝度が得られる。ま
た、図20に示すように、発光素子3は比較発光素子5に比べて、低い電圧でより多くの
電流を流すことが可能となる。
以上により、本実施例の発光素子3が、発光素子として特性が得られ、十分機能すること
が確認できた。また、発光素子3は、低電圧で駆動可能な発光素子であることが確認でき
た。
本実施例では、本発明の一態様である発光素子について、図9(A)及び図21を用い
て説明する。なお、本実施例で示す発光素子及び比較発光素子において、先に述べた実施
例と同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は
省略する。
本実施例で用いた材料の化学式を以下に示す。なお、既に構造式を示した材料については
省略する。
Figure 2021101433
以下に、本実施例の発光素子5及び比較発光素子6の作製方法を示す。
まず、発光素子5について説明する(図9(A)参照)。本実施例の発光素子5は、第1
のEL層2103の発光層2103c、及び第2のEL層2107の発光層2107b以
外は、実施例3で示した発光素子3と同様に作製した。本実施例の発光素子5においては
、CzPAと、クマリン30、N−(9,10−ジフェニル−2−アントリル)−N,9
−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)と、を共蒸着す
ることにより、正孔輸送層2103b上に30nmの膜厚の発光層2103cを形成した
。また、発光層2103cと同様に、CzPAと2PCAPAとを共蒸着することにより
、正孔輸送層2107a上に30nmの膜厚の発光層2107bを形成した。発光層21
03c及び発光層2107bにおいて、CzPAと2PCAPAとの重量比は、1:0.
05(=CzPA:2PCAPA)となるように調節した。なお、CzPAは電子輸送性
を有する物質であり、ゲスト材料である2PCAPAは緑色の発光を示す物質である。以
上により、本実施例の発光素子5を得た。
次に、比較発光素子6について説明する(図21参照)。本実施例の比較発光素子6は
、発光素子5から電子リレー層2105、電荷発生領域2106、及び第2のEL層21
07を削除した構造であり、その他の層については、発光素子5と同様の作製方法にて形
成した。図21に示すように、本実施例の比較発光素子6は、一対の電極間に1層のEL
層を有する構造である。
比較発光素子6においては、電子注入バッファー2104を形成した後、電子注入バッフ
ァー2104上に、第2の電極2102を形成した。以上により、本実施例の比較発光素
子6を得た。
以下の表11に発光素子5、および比較発光素子6の素子構造を示す。
Figure 2021101433
以上により得られた発光素子5及び比較発光素子6を窒素雰囲気のグローブボックス内
において、各発光素子が大気に曝されないように封止する作業を行った後、これらの発光
素子の動作特性について測定を行った。なお、測定は、室温(25℃に保たれた雰囲気)
で行った。
発光素子5及び比較発光素子6の電圧―電流密度特性を図22に示す。図22において
、横軸は印加した電圧(V)、縦軸は電流密度(mA/cm)を表している。また、電
流密度―輝度特性を図23に示す。図23において、横軸は電流密度(mA/cm)を
、縦軸は輝度(cd/m)を表す。また、1000cd/m付近における各素子の主
な初期特性値を以下の表12にまとめた。
Figure 2021101433
図22より、2層のEL層を有する本実施例の発光素子5は、EL層が1層の比較発光
素子6と同じ電流密度の電流を流したときに、ほぼ2倍の電圧で駆動可能なことがわかる
。また、図23より、発光素子5は、比較発光素子6と同じ電流密度の電流を流したとき
に、ほぼ2倍の輝度を呈する(すなわち電流効率がほぼ2倍である)ことがわかる。この
ことから、本実施例の発光素子5において、2層のEL層の間に電子注入バッファー、電
子リレー層、及び電荷発生領域を導入することによる余分な電圧上昇が殆どないことが示
唆される。
以上により、本実施例の発光素子5が、発光素子として特性が得られ、十分機能すること
が確認できた。また、発光素子5は、2層のEL層の間に電子注入バッファー、電子リレ
ー層、及び電荷発生領域を導入することによる余分な電圧上昇が殆どなく、低電圧で駆動
可能な発光素子であることが確認できた。
本実施例では、本発明の一態様である発光素子について、図9(A)及び図9(B)を用
いて説明する。なお、本実施例で示す発光素子及び比較発光素子において、先に述べた実
施例と同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明
は省略する。
本実施例で用いた材料の化学式を以下に示す。なお、既に構造式を示した材料については
省略する。
Figure 2021101433
以下に、本実施例の発光素子6及び比較発光素子7の作製方法を示す。
まず、発光素子6について説明する(図9(A)参照)。本実施例の発光素子6は、電子
リレー層2105以外は、実施例6で示した発光素子5と同様に作製した。本実施例の発
光素子6においては、N,N’−ジヘキシルー3,4,9,10−ペリレンテトラカルボ
ン酸ジイミド(略称:HexPTC)を蒸着することにより、電子注入バッファー210
4上に3nmの膜厚の電子リレー層2105を形成した。以上により、本実施例の発光素
子6を得た。
次に、比較発光素子7について説明する(図9(B)参照)。本実施例の比較発光素子7
は、発光素子6から電子リレー層2105を削除した構造であり、その他の層については
、発光素子6と同様の作製方法にて形成した。比較発光素子7においては、電子注入バッ
ファー2104を形成した後、電子注入バッファー2104上に、電荷発生領域2106
を形成した。以上により、本実施例の比較発光素子7を得た。
以下の表13に発光素子6、および比較発光素子7の素子構造を示す。
Figure 2021101433
以上により得られた発光素子6及び比較発光素子7を窒素雰囲気のグローブボックス内
において、各発光素子が大気に曝されないように封止する作業を行った後、これらの発光
素子の動作特性について測定を行った。なお、測定は、室温(25℃に保たれた雰囲気)
で行った。
発光素子6及び比較発光素子7の電圧―輝度特性を図25に示す。図25において、横
軸は印加した電圧(V)、縦軸は輝度(cd/m)を表している。また、電圧―電流密
度特性を図26に示す。図26において、横軸は電圧(V)を、縦軸は電流密度(mA/
cm)を表す。また、1000cd/m付近における各素子の主な初期特性値を以下
の表14にまとめた。
Figure 2021101433
図25より、発光素子6は、電子リレー層を設けることにより比較発光素子7より電圧に
対して高い輝度が得られることがわかる。また、図26より、発光素子6は、比較発光素
子7に比べて、高い電流密度を有することが分かる。
以上により、本実施例の発光素子6が、発光素子として特性が得られ、十分機能すること
が確認できた。また、発光素子6は、低電圧で駆動可能な発光素子であることが確認でき
た。
本実施例では、本発明の一態様である発光素子について、図9(A)及び図9(B)を用
いて説明する。なお、本実施例で示す発光素子及び比較発光素子において、先に述べた実
施例と同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明
は省略する。
本実施例で用いた材料の化学式を以下に示す。なお、既に構造式を示した材料については
省略する。
Figure 2021101433
以下に、本実施例の発光素子7及び比較発光素子8の作製方法を示す。
まず、発光素子7について説明する(図9(A)参照)。本実施例の発光素子7は、第1
のEL層2103における発光層2103c及び電子輸送層2103d、第2の電荷発生
領域2106、並びに、第2のEL層2107における発光層2107b及び電子輸送層
2107c以外は、実施例3における発光素子3と同様に作製した。
本実施例の発光素子7において、発光層2103cは、4−(10−フェニル−9−アン
トリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン
(略称:PCBAPA)と4(1−ナフチル)−4’(9−フェニル−9H−カルバゾー
ル−3−イル)−トリフェニルアミン(略称;PCBANB)と、を20nmの膜厚で共
蒸着した後、さらに、CzPAとSD1(商品名;SFC Co., Ltd製)を30
nmの膜厚で共蒸着して積層することにより形成した。なお、PCBAPAとPCBAN
Bとの重量比は、1:1(=PCBAPA:PCBANB)となるように調節した。また
、CzPAとSD1との重量比は、1:0.05(=CzPA:SD1)となるように調
整した。
次いで、発光層2103c上に、BPhenを30nm蒸着することにより、電子輸送
層2107cを形成した。
また、発光素子7において、第2の電荷発生領域2106は、電子リレー層2105上に
、正孔輸送性の高い物質であるNPBと、アクセプター性物質である酸化モリブデン(V
I)とを共蒸着することにより形成した。その膜厚は40nmとし、NPBと酸化モリブ
デン(VI)との比率は、重量比で4:1(=NPB:酸化モリブデン)となるように調
節した。
また、発光素子7において、発光層2107bは、4−(9H−カルバゾール−9−イル
)−4’−(5−フェニル−1,3,4−オキサジアゾール−2−イル)トリフェニルア
ミン(略称:YGAO11)と、(アセチルアセトナート)ビス(2,3,5−トリフェ
ニルピラジナト)イリジウム(III)(略称:Ir(tppr)(acac))とを
10nmの膜厚で共蒸着した後、さらにYGAO11とビス(2−フェニルピリジナト−
N,C2’)イリジウム(アセチルアセトナート)(略称:Ir(ppy)(acac
))とを20nmの膜厚で共蒸着することにより形成した。なお、YGAO11とIr(
tppr)(acac)との重量比は、1:0.03(=YGAO11:Ir(tpp
r)(acac))となるように調節した。また、YGAO11とIr(ppy)
acac)との重量比は、1:0.06(=YGAO11:Ir(ppy)(acac
))となるように調節した。
次いで、発光層2107b上にBAlqを膜厚10nm、次いでBPhenを20nm蒸
着して積層することにより、電子輸送層2107cを形成した。以上により、本実施例の
発光素子7を得た。
次に、比較発光素子8について説明する(図9(B)参照)。本実施例の比較発光素子8
は、発光素子7から電子リレー層2105を削除した構造である。また、比較発光素子8
において、電子注入バッファー2104は、BPhenとリチウム(Li)とを共蒸着す
ることにより、20nmの膜厚で形成した。ここで、BPhenとLiとの重量比は、1
:0.02(=BPhen:Li)となるように調整した。その他の層については、発光
素子7と同様の作製方法にて形成した。比較発光素子8においては、電子注入バッファー
2104を形成した後、電子注入バッファー2104上に、電荷発生領域2106を形成
した。以上により、本実施例の比較発光素子8を得た。
以下の表15に発光素子7、および比較発光素子8の素子構造を示す。
Figure 2021101433
以上により得られた発光素子7及び比較発光素子8を窒素雰囲気のグローブボックス内に
おいて、各発光素子が大気に曝されないように封止する作業を行った後、これらの発光素
子の動作特性について測定を行った。なお、測定は、室温(25℃に保たれた雰囲気)で
行った。
発光素子7及び比較発光素子8の電圧―輝度特性を図27に示す。図27において、横
軸は印加した電圧(V)、縦軸は輝度(cd/m)を表している。また、電圧―電流密
度特性を図28に示す。図28において、横軸は電圧(V)を、縦軸は電流密度(mA/
cm)を表す。また、1000cd/m付近における各素子の主な初期特性値を以下
の表16にまとめた。
Figure 2021101433
図27より、発光素子7は、電子リレー層を設けることにより比較発光素子8より電圧に
対して高い輝度が得られることがわかる。また、図28より、発光素子7は、比較発光素
子8に比べて、高い電流密度を有することが分かる。
なお、表16のCIE色度座標及び図29からわかるように、発光素子7及び比較発光
素子8は共に白色発光を示している。これは、第1のEL層2103に含まれるPCBA
PAおよびSD1に由来する青色の発光と、第2のEL層2107に含まれるIr(tp
pr)(acac)に由来する赤色の発光と、Ir(ppy)(acac)に由来す
る緑色の発光が得られたためである。
以上により、本実施例の発光素子7が、発光素子として特性が得られ、十分機能すること
が確認できた。また、発光素子7は、低電圧で駆動可能な発光素子であることが確認でき
た。また、本発明の構成の一形態は、各EL層が異なる発光スペクトルを示す白色発光素
子に適用した場合であっても、有効であることがわかった。
本実施例では、本発明の一態様である発光素子について、図9(A)及び図9(B)を用
いて説明する。なお、本実施例で示す発光素子及び比較発光素子において、先に述べた実
施例と同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明
は省略する。
本実施例で用いた材料の化学式を以下に示す。なお、既に構造式を示した材料については
省略する。
Figure 2021101433
以下に、本実施例の発光素子8及び比較発光素子9の作製方法を示す。
まず、発光素子8について説明する(図9(A)参照)。本実施例の発光素子8は、第1
のEL層2103における発光層2103c、第2の電荷発生領域2106、第2のEL
層2107における発光層2107b及び電子輸送層2107c以外は、実施例8におけ
る発光素子7と同様に作製した。
本実施例の発光素子8において、発光層2103cは、2,3−ビス{4−[N−(4−
ビフェニリル)−N−フェニルアミノ]フェニル}キノキサリン(略称:BPAPQ)と
、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト
]イリジウム(III)(略称:Ir(Fdpq)(acac))を10nmの膜厚で
共蒸着した後、NPBとN,9−ジフェニル−N−[4−(9,10−ジフェニル−2−
アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:2PCAPPA)を
5nmの膜厚で共蒸着し、さらに、CzPAと2PCAPPAとを30nmの膜厚で共蒸
着して積層することにより形成した。
なお、BPAPQとIr(Fdpq)(acac)との重量比は、1:0.06(=B
PAPQ:Ir(Fdpq)(acac))となるように調節した。また、NPBと2
PCAPPAとの重量比は、1:0.1(=NPB:2PCAPPA)となるように調節
した。また、CzPAと2PCAPPAとの重量比は、1:0.1(=CzPA:2PC
APPA)となるように調整した。
また、発光素子7において、第2の電荷発生領域2106は、電子リレー層2105上に
、正孔輸送性の高い物質であるNPBと、アクセプター性物質である酸化モリブデン(V
I)とを共蒸着することにより形成した。その膜厚は70nmとし、NPBと酸化モリブ
デン(VI)との比率は、重量比で4:1(=NPB:酸化モリブデン)となるように調
節した。
また、発光素子7において、発光層2107bは、NPBと、ルブレンとを20nmの膜
厚で共蒸着した後、9−フェニル−9’−[4−(10−フェニル−9−アントリル)フ
ェニル]−3,3’−ビ(9H−カルバゾール)(略称:PCCPA)と、N,N’−ビ
ス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベ
ン−4,4’−ジアミン(略称:YGA2S)とを10nmの膜厚で共蒸着し、さらにC
zPAとYGA2Sとを20nmの膜厚で共蒸着することにより形成した。なお、NPB
とルブレンとの重量比は、1:0.015(=NPB:ルブレン)となるように調節した
。また、PCCPAとYGA2Sとの重量比は、1:0.05(=PCCPA:YGA2
S)となるように調節した。また、CzPAとYGA2Sとの重量比は、1:0.05(
=CzPA:YGA2S)となるように調整した。
次いで、発光層2107b上にBPhenを30nm蒸着して積層することにより、電子
輸送層2107cを形成した。以上により、本実施例の発光素子8を得た。
次に、比較発光素子9について説明する(図9(B)参照)。本実施例の比較発光素子9
は、発光素子8から電子リレー層2105を削除した構造である。また、比較発光素子9
において、電子注入バッファー2104は、BPhenとリチウム(Li)とを共蒸着す
ることにより、20nmの膜厚で形成した。ここで、BPhenとLiとの重量比は、1
:0.02(=BPhen:Li)となるように調整した。その他の層については、発光
素子8と同様の作製方法にて形成した。比較発光素子9においては、電子注入バッファー
2104を形成した後、電子注入バッファー2104上に、電荷発生領域2106を形成
した。以上により、本実施例の比較発光素子9を得た。
以下の表17に発光素子8、および比較発光素子9の素子構造を示す。
Figure 2021101433
以上により得られた発光素子8及び比較発光素子9を窒素雰囲気のグローブボックス内に
おいて、各発光素子が大気に曝されないように封止する作業を行った後、これらの発光素
子の動作特性について測定を行った。なお、測定は、室温(25℃に保たれた雰囲気)で
行った。
発光素子8及び比較発光素子9の電圧―輝度特性を図30に示す。図30において、横
軸は印加した電圧(V)、縦軸は輝度(cd/m)を表している。また、電圧―電流密
度特性を図31に示す。図31において、横軸は電圧(V)を、縦軸は電流密度(mA/
cm)を表す。また、1000cd/m付近における各素子の主な初期特性値を以下
の表18にまとめた。
Figure 2021101433
図30より、発光素子8は、電子リレー層を設けることにより比較発光素子9より電圧に
対して高い輝度が得られることがわかる。また、図31より、発光素子8は、比較発光素
子9に比べて、高い電流密度を有することが分かる。
なお、表18のCIE色度座標及び図32からわかるように、発光素子8及び比較発光
素子9は共に白色発光を示している。これは、第1のEL層2103に含まれるIr(F
dpq)(acac)に由来する赤色の発光と、2PCAPPAに由来する青緑色の発
光と、第2のEL層2107に含まれるルブレンに由来する黄色の発光と、YGA2Sに
由来する青色の発光が得られたためである。また、これら4種の発光色を組み合わせるこ
とで、演色指数(CRI)が92という高い演色性が得られた。
以上により、本実施例の発光素子8が、発光素子として特性が得られ、十分機能すること
が確認できた。また、発光素子8は、低電圧で駆動可能な発光素子であることが確認でき
た。また、本発明の構成の一形態は、各EL層が異なる発光スペクトルを示す白色発光素
子に適用した場合であっても、有効であることがわかった。
(参考例)
本参考例では、上記実施例で用いた材料の合成方法について具体的に説明する。
≪4(1−ナフチル)−4’(9−フェニル−9H−カルバゾール−3−イル)−トリフ
ェニルアミン(略称;PCBANB)の合成例≫
4(1−ナフチル)−4’(9−フェニル−9H−カルバゾール−3−イル)−トリフェ
ニルアミンの合成スキームを下記(A−1)に示す。
Figure 2021101433
3−(4−ブロモフェニル)−9−フェニル−9H−カルバゾールを1.2g(3.0
mmol)、4−(1−ナフチル)ジフェニルアミンを0.9g(3.0mmol)、ナ
トリウム tert−ブトキシドを0.5g(5.0mmol)、ビス(ジベンジリデン
アセトン)パラジウム(0)を6.0mg(0.01mmol)、50mL三口フラスコ
へ入れ、この混合物へ、脱水キシレン15mLを加えた。この混合物を、減圧下で攪拌し
ながら脱気し、脱気後、トリ(tert−ブチル)ホスフィン(10wt%ヘキサン溶液
)0.06mL(0.03mmol)を加えた。この混合物を、窒素雰囲気下、120℃
で4.5時間加熱撹拌し、反応させた。
反応後、この反応混合物にトルエン250mLを加え、この懸濁液をフロリジール、シ
リカゲル、アルミナ、セライトを通してろ過した。得られたろ液を水で洗浄し、硫酸マグ
ネシウムを加えて水分を取り除いた。この懸濁液をフロリジール、アルミナ、シリカゲル
、セライトを通してろ過してろ液を得た。得られたろ液を濃縮し、アセトンとメタノール
を加えて超音波をかけたのち、再結晶したところ、目的物の白色粉末を収量1.5g、収
率82%で得た。
シリカゲル薄層クロマトグラフィー(TLC)でのRf値(展開溶媒 酢酸エチル:ヘ
キサン=1:10)は、目的物は0.34、3−(4−ブロモフェニル)−9−フェニル
−9H−カルバゾールは0.46、4−(1−ナフチル)ジフェニルアミンは0.25だ
った。
上記ステップで得られた化合物を核磁気共鳴法(H NMR)により測定した。以下
に測定データを示す。測定結果から、目的物であるPCBANB(略称)が得られたこと
がわかった。
H NMR(CDCl,300MHz):δ(ppm)=7.07 (t, J=6
.6Hz, 1H), 7.25−7.67 (m, 26H), 7.84 (d,
J=7.8Hz, 1H), 7.89−7.92 (m, 1H), 8.03−8.
07 (m, 1H), 8.18 (d, J=7.8Hz, 1H), 8.35
(d, J=0.9Hz, 1H)。
10 基板
11 トランジスタ
12 発光素子
13 電極
14 電極
15 有機化合物を含む層
16 層間絶縁膜
17 配線
18 隔壁層
19 層間絶縁膜
101 陽極
102 陰極
103 EL層
103−1 第1の発光層
103−2 第2の発光層
104 電子注入バッファー
105 電子リレー層
106 電荷発生領域
107 EL層
107−1 第3の発光層
107−2 第4の発光層
108 電子輸送層
111 陽極のフェルミ準位
112 陰極のフェルミ準位
113 第1のEL層のLUMO準位
114 電子リレー層のLUMO準位
115 電荷発生領域におけるアクセプターのアクセプター準位
116 第2のEL層のLUMO準位
330 第1の発光
340 第2の発光
951 基板
952 電極
953 絶縁層
954 隔壁層
955 有機化合物を含む層
956 電極
2100 ガラス基板
2101 電極
2102 電極
2103 EL層
2103a 電荷発生領域
2103b 正孔輸送層
2103c 発光層
2103d 電子輸送層
2104 電子注入バッファー
2105 電子リレー層
2106 電荷発生領域
2107 EL層
2107a 正孔輸送層
2107b 発光層
2107c 電子輸送層
2107d 電子注入層
2108 EL層
2108a 発光層
2108b 電子輸送層
2108c 電子注入層
3000 光源
3001 照明装置
3002 照明装置
9100 携帯電話機
9101 筐体
9102 筐体
9103 連結部
9104 表示部
9106 操作キー
9200 携帯情報端末機器
9201 筐体
9202 表示部
9203 筐体
9205 キーボード
9207 連結部
9400 コンピュータ
9401 筐体
9402 表示部
9403 キーボード
9404 筐体
9500 デジタルビデオカメラ
9501 筐体
9503 表示部
9600 テレビジョン装置
9601 筐体
9603 表示部
9605 スタンド
9607 表示部
9609 操作キー
9610 リモコン操作機
9703 表示部

Claims (14)

  1. 陽極と陰極との間に、第1の発光物質を含む第1の発光層と、第2の発光物質を含む第2の発光層と、を有し、
    前記第1の発光層と、前記第2の発光層との間には、前記陽極側から順に、第1の層と、第2の層と、第1の領域と、を有し、
    前記第2の層は、前記第1の層と接し、
    前記第1の領域は、前記第2の層と接し、
    前記第1の層は、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、またはアルカリ金属の炭酸塩のいずれかを含み、
    前記第2の層は、−5.0eV以上−3.0eV以下のLUMO準位を有する材料を有し、
    前記第1の領域は、正孔輸送性物質と、アクセプター性物質とを含む、発光素子。
  2. 陽極と陰極との間に、第1の発光物質を含む第1の発光層と、第2の発光物質を含む第2の発光層と、を有し、
    前記第1の発光層と、前記第2の発光層との間には、前記陽極側から順に、第1の層と、第2の層と、第1の領域と、を有し、
    前記第2の層は、前記第1の層と接し、
    前記第1の領域は、前記第2の層と接し、
    前記第1の層は、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、またはアルカリ金属の炭酸塩のいずれかを含み、
    前記第2の層は、−5.0eV以上−3.0eV以下のLUMO準位を有する材料を有し、
    前記第1の領域は、芳香族アミン化合物、カルバゾール誘導体、または芳香族炭化水素のいずれかと、アクセプター性物質とを含む、発光素子。
  3. 陽極と陰極との間に、第1の発光物質を含む第1の発光層と、第2の発光物質を含む第2の発光層と、を有し、
    前記第1の発光層と、前記第2の発光層との間には、前記陽極側から順に、第3の層、第1の層と、第2の層と、第1の領域と、を有し、
    前記第1の層は、前記第3の層と接し、
    前記第2の層は、前記第1の層と接し、
    前記第1の領域は、前記第2の層と接し、
    前記第1の層は、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、またはアルカリ金属の炭酸塩のいずれかを含み、
    前記第1の領域は、正孔輸送性物質と、アクセプター性物質とを含み、
    前記第2の層は、前記アクセプター性物質のアクセプター準位と前記第3の層に含まれる材料のLUMO準位との間に、LUMO準位が位置する材料を有する、発光素子。
  4. 陽極と陰極との間に、第1の発光物質を含む第1の発光層と、第2の発光物質を含む第2の発光層と、を有し、
    前記第1の発光層と、前記第2の発光層との間には、前記陽極側から順に、第3の層、第1の層と、第2の層と、第1の領域と、を有し、
    前記第1の層は、前記第3の層と接し、
    前記第2の層は、前記第1の層と接し、
    前記第1の領域は、前記第2の層と接し、
    前記第1の層は、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、またはアルカリ金属の炭酸塩のいずれかを含み、
    前記第1の領域は、芳香族アミン化合物、カルバゾール誘導体、または芳香族炭化水素のいずれかと、アクセプター性物質とを含み、
    前記第2の層は、前記アクセプター性物質のアクセプター準位と前記第3の層に含まれる材料のLUMO準位との間に、LUMO準位が位置する材料を有する、発光素子。
  5. 陽極と陰極との間に、第1の発光物質を含む第1の発光層と、第2の発光物質を含む第2の発光層と、を有し、
    前記第1の発光層と、前記第2の発光層との間には、前記陽極側から順に、第1の層と、第2の層と、第1の領域と、を有し、
    前記第2の層は、前記第1の層と接し、
    前記第1の領域は、前記第2の層と接し、
    前記第1の層は、酸化リチウムを含み、
    前記第2の層は、−5.0eV以上−3.0eV以下のLUMO準位を有する材料を有し、
    前記第1の領域は、正孔輸送性物質と、アクセプター性物質とを含む、発光素子。
  6. 陽極と陰極との間に、第1の発光物質を含む第1の発光層と、第2の発光物質を含む第2の発光層と、を有し、
    前記第1の発光層と、前記第2の発光層との間には、前記陽極側から順に、第1の層と、第2の層と、第1の領域と、を有し、
    前記第2の層は、前記第1の層と接し、
    前記第1の領域は、前記第2の層と接し、
    前記第1の層は、酸化リチウムを含み、
    前記第2の層は、−5.0eV以上−3.0eV以下のLUMO準位を有する材料を有し、
    前記第1の領域は、芳香族アミン化合物、カルバゾール誘導体、または芳香族炭化水素のいずれかと、アクセプター性物質とを含む、発光素子。
  7. 陽極と陰極との間に、第1の発光物質を含む第1の発光層と、第2の発光物質を含む第2の発光層と、を有し、
    前記第1の発光層と、前記第2の発光層との間には、前記陽極側から順に、第3の層、第1の層と、第2の層と、第1の領域と、を有し、
    前記第1の層は、前記第3の層と接し、
    前記第2の層は、前記第1の層と接し、
    前記第1の領域は、前記第2の層と接し、
    前記第1の層は、酸化リチウムを含み、
    前記第1の領域は、正孔輸送性物質と、アクセプター性物質とを含み、
    前記第2の層は、前記アクセプター性物質のアクセプター準位と前記第3の層に含まれる材料のLUMO準位との間に、LUMO準位が位置する材料を有する、発光素子。
  8. 陽極と陰極との間に、第1の発光物質を含む第1の発光層と、第2の発光物質を含む第2の発光層と、を有し、
    前記第1の発光層と、前記第2の発光層との間には、前記陽極側から順に、第3の層、第1の層と、第2の層と、第1の領域と、を有し、
    前記第1の層は、前記第3の層と接し、
    前記第2の層は、前記第1の層と接し、
    前記第1の領域は、前記第2の層と接し、
    前記第1の層は、酸化リチウムを含み、
    前記第1の領域は、芳香族アミン化合物、カルバゾール誘導体、または芳香族炭化水素のいずれかと、アクセプター性物質とを含み、
    前記第2の層は、前記アクセプター性物質のアクセプター準位と前記第3の層に含まれる材料のLUMO準位との間に、LUMO準位が位置する材料を有する、発光素子。
  9. 請求項1乃至請求項8のいずれか一において、
    前記アクセプター性物質は、シアノ基及びフッ素の少なくとも一を有する、発光素子。
  10. 請求項1乃至請求項9のいずれか一において、
    白色発光を示す、発光素子。
  11. 請求項1乃至請求項10のいずれか一において、
    前記第1の発光物質と前記第2の発光物質とは、同じ物質である、発光素子。
  12. 請求項1乃至請求項11のいずれか一に記載の発光素子を含む発光装置。
  13. 請求項12に記載の発光装置を含む照明装置。
  14. 請求項12に記載の発光装置を含む電子機器。
JP2021063363A 2008-12-01 2021-04-02 発光素子、発光装置、照明装置、及び電子機器 Withdrawn JP2021101433A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008306425 2008-12-01
JP2008306425 2008-12-01
JP2009131518 2009-05-29
JP2009131518 2009-05-29
JP2020068537A JP2020113549A (ja) 2008-12-01 2020-04-06 発光装置、電子機器、テレビジョン装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020068537A Division JP2020113549A (ja) 2008-12-01 2020-04-06 発光装置、電子機器、テレビジョン装置

Publications (1)

Publication Number Publication Date
JP2021101433A true JP2021101433A (ja) 2021-07-08

Family

ID=41722934

Family Applications (12)

Application Number Title Priority Date Filing Date
JP2009268839A Active JP5690482B2 (ja) 2008-12-01 2009-11-26 発光素子、発光装置および照明装置
JP2013265298A Withdrawn JP2014078525A (ja) 2008-12-01 2013-12-24 発光素子、発光装置および照明装置
JP2015138499A Active JP6067794B2 (ja) 2008-12-01 2015-07-10 発光素子、発光装置、照明装置および電子機器
JP2015138500A Active JP6069427B2 (ja) 2008-12-01 2015-07-10 発光素子、発光装置、照明装置および電子機器
JP2016247396A Active JP6386017B2 (ja) 2008-12-01 2016-12-21 発光素子、発光装置、照明装置及び電子機器
JP2018149016A Withdrawn JP2018170294A (ja) 2008-12-01 2018-08-08 発光素子および発光装置
JP2018233154A Active JP6592174B2 (ja) 2008-12-01 2018-12-13 発光装置、電子機器、テレビジョン装置
JP2018233155A Active JP6556933B2 (ja) 2008-12-01 2018-12-13 発光装置、電子機器、テレビジョン装置
JP2020068537A Withdrawn JP2020113549A (ja) 2008-12-01 2020-04-06 発光装置、電子機器、テレビジョン装置
JP2021063363A Withdrawn JP2021101433A (ja) 2008-12-01 2021-04-02 発光素子、発光装置、照明装置、及び電子機器
JP2022005040A Withdrawn JP2022036300A (ja) 2008-12-01 2022-01-17 発光装置、電子機器及びテレビジョン装置
JP2023112804A Pending JP2023119023A (ja) 2008-12-01 2023-07-10 発光装置及び電子機器

Family Applications Before (9)

Application Number Title Priority Date Filing Date
JP2009268839A Active JP5690482B2 (ja) 2008-12-01 2009-11-26 発光素子、発光装置および照明装置
JP2013265298A Withdrawn JP2014078525A (ja) 2008-12-01 2013-12-24 発光素子、発光装置および照明装置
JP2015138499A Active JP6067794B2 (ja) 2008-12-01 2015-07-10 発光素子、発光装置、照明装置および電子機器
JP2015138500A Active JP6069427B2 (ja) 2008-12-01 2015-07-10 発光素子、発光装置、照明装置および電子機器
JP2016247396A Active JP6386017B2 (ja) 2008-12-01 2016-12-21 発光素子、発光装置、照明装置及び電子機器
JP2018149016A Withdrawn JP2018170294A (ja) 2008-12-01 2018-08-08 発光素子および発光装置
JP2018233154A Active JP6592174B2 (ja) 2008-12-01 2018-12-13 発光装置、電子機器、テレビジョン装置
JP2018233155A Active JP6556933B2 (ja) 2008-12-01 2018-12-13 発光装置、電子機器、テレビジョン装置
JP2020068537A Withdrawn JP2020113549A (ja) 2008-12-01 2020-04-06 発光装置、電子機器、テレビジョン装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022005040A Withdrawn JP2022036300A (ja) 2008-12-01 2022-01-17 発光装置、電子機器及びテレビジョン装置
JP2023112804A Pending JP2023119023A (ja) 2008-12-01 2023-07-10 発光装置及び電子機器

Country Status (6)

Country Link
US (5) US7985974B2 (ja)
EP (1) EP2192633B1 (ja)
JP (12) JP5690482B2 (ja)
KR (4) KR101719351B1 (ja)
CN (3) CN102255051B (ja)
TW (3) TWI522007B (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253150B (zh) * 2005-09-02 2012-06-06 株式会社半导体能源研究所 蒽衍生物
WO2008038607A1 (en) * 2006-09-28 2008-04-03 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, and light emitting element, light emitting device, and electronic device using the anthracene derivative
JP5759669B2 (ja) 2008-12-01 2015-08-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
JP5690482B2 (ja) 2008-12-01 2015-03-25 株式会社半導体エネルギー研究所 発光素子、発光装置および照明装置
US8389979B2 (en) * 2009-05-29 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
WO2011027657A1 (en) * 2009-09-07 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, lighting device, and electronic device
EP2365556B1 (en) 2010-03-08 2014-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
CN102201541B (zh) * 2010-03-23 2015-11-25 株式会社半导体能源研究所 发光元件、发光装置、电子设备及照明装置
JP5801579B2 (ja) 2010-03-31 2015-10-28 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、及び照明装置
TWI506121B (zh) 2010-03-31 2015-11-01 Semiconductor Energy Lab 發光元件,發光裝置,電子裝置以及照明裝置
KR20130112850A (ko) 2010-06-07 2013-10-14 호도가야 가가쿠 고교 가부시키가이샤 아크리단환 구조를 가지는 화합물 및 유기 일렉트로 루미네센스 소자
KR102098563B1 (ko) * 2010-06-25 2020-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 디스플레이 및 전자 기기
WO2012046560A1 (en) 2010-10-04 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
KR101772662B1 (ko) * 2010-10-22 2017-08-30 삼성디스플레이 주식회사 유기 발광 장치
KR102134951B1 (ko) 2011-02-16 2020-07-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
JP2012186092A (ja) * 2011-03-07 2012-09-27 Seiko Epson Corp 発光素子、発光装置、表示装置および電子機器
JP6062636B2 (ja) * 2011-03-10 2017-01-18 ローム株式会社 有機el装置
EP2690682A4 (en) * 2011-03-22 2014-10-01 Oceans King Lighting Science ORGANIC ELECTROLUMINESCENT DEVICE AND CORRESPONDING CONDUCTIVE BASE
WO2012128081A1 (ja) 2011-03-24 2012-09-27 パナソニック株式会社 有機エレクトロルミネッセンス素子
JP2012204110A (ja) * 2011-03-24 2012-10-22 Sony Corp 表示素子および表示装置ならびに電子機器
US9012902B2 (en) 2011-03-31 2015-04-21 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescent element
JP6023461B2 (ja) 2011-05-13 2016-11-09 株式会社半導体エネルギー研究所 発光素子、発光装置
CN103548171B (zh) * 2011-05-20 2016-08-24 国立大学法人山形大学 有机电子器件及其制造方法
JP5858689B2 (ja) * 2011-08-31 2016-02-10 キヤノン株式会社 表示装置
KR102126087B1 (ko) * 2011-10-11 2020-06-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 조명 장치, 및 피렌계 화합물
TWI547208B (zh) * 2012-03-19 2016-08-21 友達光電股份有限公司 有機電致發光裝置
CN102664187B (zh) * 2012-05-29 2016-01-20 南京中电熊猫液晶显示科技有限公司 有机发光二极管显示器及其制造方法
JP5889730B2 (ja) * 2012-06-27 2016-03-22 Lumiotec株式会社 有機エレクトロルミネッセント素子及び照明装置
TWI482287B (zh) 2013-04-24 2015-04-21 Au Optronics Corp 電激發光顯示面板及其製造方法
WO2015118426A2 (en) * 2014-02-06 2015-08-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, lighting device, and electronic appliance
US20150243896A1 (en) 2014-02-27 2015-08-27 United State Army Research Laboratory ATTN: RDRL-LOC-I Imidazo derivatives
TWI713447B (zh) 2014-04-30 2020-12-21 日商半導體能源研究所股份有限公司 發光元件、發光裝置、照明裝置、及電子設備
KR102457008B1 (ko) * 2014-05-23 2022-10-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 헤테로고리 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
DE112015003690B4 (de) 2014-08-08 2021-11-04 Semiconductor Energy Laboratory Co., Ltd. Licht emittierende Bottom-Emission-Vorrichtung
JP2016085969A (ja) * 2014-10-24 2016-05-19 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、及び照明装置
KR102381544B1 (ko) * 2014-12-04 2022-03-31 엘지디스플레이 주식회사 유기전계발광소자 및 이를 구비한 표시소자
CN104466023B (zh) * 2014-12-24 2017-10-17 京东方科技集团股份有限公司 层叠式有机发光二极体及其制备方法和显示装置
JP2016197659A (ja) * 2015-04-03 2016-11-24 株式会社東芝 シリコンゲルマニウムを含むデバイスおよびその製造方法
CN104966789A (zh) * 2015-06-30 2015-10-07 深圳市华星光电技术有限公司 一种电荷连接层及其制造方法、叠层oled器件
US10340470B2 (en) 2016-02-23 2019-07-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting apparatus
WO2017149413A1 (en) * 2016-03-04 2017-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2017168283A1 (ja) 2016-04-01 2017-10-05 株式会社半導体エネルギー研究所 複合酸化物半導体、当該複合酸化物半導体を用いた半導体装置、当該半導体装置を有する表示装置
KR102611206B1 (ko) * 2016-07-13 2023-12-08 삼성디스플레이 주식회사 유기 발광 소자
CN110476267B (zh) 2017-04-07 2023-04-18 株式会社半导体能源研究所 发光元件、显示装置、电子设备以及照明装置
JP2019046599A (ja) 2017-08-31 2019-03-22 株式会社ジャパンディスプレイ 表示装置
KR102496863B1 (ko) * 2017-12-29 2023-02-06 엘지디스플레이 주식회사 유기발광표시장치
WO2020212800A1 (ja) 2019-04-18 2020-10-22 株式会社半導体エネルギー研究所 半導体リレー、および半導体装置
CN110931649B (zh) * 2019-11-29 2022-11-15 昆山国显光电有限公司 一种有机电致发光器件及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272860A (ja) * 2002-03-26 2003-09-26 Junji Kido 有機エレクトロルミネッセント素子
JP2005285619A (ja) * 2004-03-30 2005-10-13 Seiko Epson Corp 有機el装置および電子機器
JP2006351398A (ja) * 2005-06-17 2006-12-28 Sony Corp 表示素子
JP2007173779A (ja) * 2005-12-20 2007-07-05 Samsung Sdi Co Ltd 有機電界発光表示素子およびその製造方法
JP2007179933A (ja) * 2005-12-28 2007-07-12 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
JP2008532229A (ja) * 2005-02-23 2008-08-14 イーストマン コダック カンパニー 有機中間接続層を備えるタンデム式oled

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
WO2001015244A1 (en) 1999-08-20 2001-03-01 Emagin Corporation Organic light emitting diode device with high work function metal-oxide anode layer and method of fabrication of same
US7560175B2 (en) * 1999-12-31 2009-07-14 Lg Chem, Ltd. Electroluminescent devices with low work function anode
KR100377321B1 (ko) * 1999-12-31 2003-03-26 주식회사 엘지화학 피-형 반도체 성질을 갖는 유기 화합물을 포함하는 전기소자
SG176316A1 (en) 2001-12-05 2011-12-29 Semiconductor Energy Lab Organic semiconductor element
US7053412B2 (en) * 2003-06-27 2006-05-30 The Trustees Of Princeton University And Universal Display Corporation Grey scale bistable display
US7772756B2 (en) * 2003-08-01 2010-08-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device including a dual emission panel
KR101286219B1 (ko) 2003-09-26 2013-07-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광소자의 제조방법
JP4243237B2 (ja) 2003-11-10 2009-03-25 淳二 城戸 有機素子、有機el素子、有機太陽電池、及び、有機fet構造、並びに、有機素子の製造方法
US7138763B2 (en) 2003-11-14 2006-11-21 Eastman Kodak Company Organic electroluminescent devices having a stability-enhancing layer
CN101673808B (zh) 2003-12-26 2012-05-23 株式会社半导体能源研究所 发光元件
JP5137292B2 (ja) 2003-12-26 2013-02-06 株式会社半導体エネルギー研究所 発光素子、発光装置および電気器具
US7192659B2 (en) * 2004-04-14 2007-03-20 Eastman Kodak Company OLED device using reduced drive voltage
WO2005115060A1 (en) 2004-05-21 2005-12-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
JP4925569B2 (ja) 2004-07-08 2012-04-25 ローム株式会社 有機エレクトロルミネッセント素子
JP2006295104A (ja) 2004-07-23 2006-10-26 Semiconductor Energy Lab Co Ltd 発光素子およびそれを用いた発光装置
JP4785386B2 (ja) * 2005-01-31 2011-10-05 三洋電機株式会社 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
EP1782487B1 (en) 2004-08-03 2013-03-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
EP1624502B1 (en) 2004-08-04 2015-11-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, and electronic appliance
WO2006035973A1 (en) 2004-09-30 2006-04-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
WO2006035958A1 (en) 2004-09-30 2006-04-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting element
US20060115673A1 (en) * 2004-12-01 2006-06-01 Au Optronics Corporation Organic light emitting device with improved electrode structure
US20090039764A1 (en) * 2005-03-17 2009-02-12 Cho Kyung Sang Quantum Dot Light-Emitting Diode Comprising Inorganic Electron Transport Layer
US8906517B2 (en) 2005-04-04 2014-12-09 Sony Corporation Organic electroluminescence device
US7728517B2 (en) * 2005-05-20 2010-06-01 Lg Display Co., Ltd. Intermediate electrodes for stacked OLEDs
US7960038B2 (en) * 2005-05-20 2011-06-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8017252B2 (en) 2005-06-22 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
JP4999291B2 (ja) * 2005-06-30 2012-08-15 三洋電機株式会社 有機エレクトロルミネッセンス素子およびそれを備える表示装置又は発光装置
KR100806812B1 (ko) 2005-07-25 2008-02-25 엘지.필립스 엘시디 주식회사 유기 el 소자 및 그 제조방법
JP4767059B2 (ja) * 2006-03-27 2011-09-07 三洋電機株式会社 有機エレクトロルミネッセント素子
US20070046189A1 (en) * 2005-08-31 2007-03-01 Eastman Kodak Company Intermediate connector for a tandem OLED device
US8021763B2 (en) * 2005-11-23 2011-09-20 The Trustees Of Princeton University Phosphorescent OLED with interlayer
CN101321773B (zh) * 2005-12-05 2015-02-25 株式会社半导体能源研究所 有机金属配合物和使用它的发光元件、发光设备和电子设备
CN101379884A (zh) * 2006-02-07 2009-03-04 住友化学株式会社 有机电致发光元件
JP4896544B2 (ja) * 2006-03-06 2012-03-14 富士フイルム株式会社 有機電界発光素子
TWI475737B (zh) 2006-03-08 2015-03-01 Semiconductor Energy Lab 發光元件、發光裝置及電子裝置
US20070215889A1 (en) * 2006-03-20 2007-09-20 Semiconductor Energy Laboratory Co., Ltd. Aromatic amine compound, and light-emitting element, light-emitting device, and electronic appliance using the aromatic amine compound
US9112170B2 (en) 2006-03-21 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
EP2355198B1 (en) 2006-05-08 2015-09-09 Global OLED Technology LLC OLED electron-injecting layer
US7902742B2 (en) 2006-07-04 2011-03-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP5030742B2 (ja) * 2006-11-30 2012-09-19 株式会社半導体エネルギー研究所 発光素子
JP2008192576A (ja) * 2007-02-08 2008-08-21 Sony Corp 有機電界発光素子の製造方法および表示装置の製造方法
KR101445418B1 (ko) * 2007-02-19 2014-09-26 다이니폰 인사츠 가부시키가이샤 유기 전계발광 소자
KR20080083449A (ko) * 2007-03-12 2008-09-18 삼성전자주식회사 백색 유기 발광 소자
KR101398242B1 (ko) * 2007-09-21 2014-05-23 엘지디스플레이 주식회사 유기전계발광소자
JP5690482B2 (ja) * 2008-12-01 2015-03-25 株式会社半導体エネルギー研究所 発光素子、発光装置および照明装置
JP5759669B2 (ja) 2008-12-01 2015-08-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272860A (ja) * 2002-03-26 2003-09-26 Junji Kido 有機エレクトロルミネッセント素子
JP2005285619A (ja) * 2004-03-30 2005-10-13 Seiko Epson Corp 有機el装置および電子機器
JP2008532229A (ja) * 2005-02-23 2008-08-14 イーストマン コダック カンパニー 有機中間接続層を備えるタンデム式oled
JP2006351398A (ja) * 2005-06-17 2006-12-28 Sony Corp 表示素子
JP2007173779A (ja) * 2005-12-20 2007-07-05 Samsung Sdi Co Ltd 有機電界発光表示素子およびその製造方法
JP2007179933A (ja) * 2005-12-28 2007-07-12 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置

Also Published As

Publication number Publication date
JP6386017B2 (ja) 2018-09-05
TW201038120A (en) 2010-10-16
EP2192633A2 (en) 2010-06-02
JP6069427B2 (ja) 2017-02-01
US20100133573A1 (en) 2010-06-03
CN103904229A (zh) 2014-07-02
US20110260156A1 (en) 2011-10-27
JP2019040887A (ja) 2019-03-14
CN102255051B (zh) 2015-07-22
US20130228766A1 (en) 2013-09-05
KR20170059952A (ko) 2017-05-31
JP2014078525A (ja) 2014-05-01
JP2020113549A (ja) 2020-07-27
JP2015173137A (ja) 2015-10-01
US8952394B2 (en) 2015-02-10
CN101752512A (zh) 2010-06-23
US7985974B2 (en) 2011-07-26
TWI609604B (zh) 2017-12-21
KR20100062930A (ko) 2010-06-10
JP2022036300A (ja) 2022-03-04
US8207540B2 (en) 2012-06-26
CN102255051A (zh) 2011-11-23
KR101719351B1 (ko) 2017-03-23
JP6067794B2 (ja) 2017-01-25
JP2017054832A (ja) 2017-03-16
US20120235166A1 (en) 2012-09-20
US8581266B2 (en) 2013-11-12
JP6556933B2 (ja) 2019-08-07
TW201208475A (en) 2012-02-16
JP2011009688A (ja) 2011-01-13
US20140070198A1 (en) 2014-03-13
KR20110095839A (ko) 2011-08-25
JP2015201462A (ja) 2015-11-12
TWI486097B (zh) 2015-05-21
US8431940B2 (en) 2013-04-30
KR101741490B1 (ko) 2017-05-30
CN101752512B (zh) 2014-05-07
JP2023119023A (ja) 2023-08-25
EP2192633A3 (en) 2012-10-17
JP6592174B2 (ja) 2019-10-16
CN103904229B (zh) 2017-01-04
JP5690482B2 (ja) 2015-03-25
JP2018170294A (ja) 2018-11-01
KR101328153B1 (ko) 2013-11-13
KR20150005489A (ko) 2015-01-14
EP2192633B1 (en) 2021-04-14
TWI522007B (zh) 2016-02-11
JP2019040886A (ja) 2019-03-14
TW201538032A (zh) 2015-10-01

Similar Documents

Publication Publication Date Title
JP6556933B2 (ja) 発光装置、電子機器、テレビジョン装置
US9917259B2 (en) Light-emitting element, light-emitting device, lighting device, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210427

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20220530