TWI609604B - 發光元件、發光裝置、照明裝置、及電子裝置 - Google Patents

發光元件、發光裝置、照明裝置、及電子裝置 Download PDF

Info

Publication number
TWI609604B
TWI609604B TW104120728A TW104120728A TWI609604B TW I609604 B TWI609604 B TW I609604B TW 104120728 A TW104120728 A TW 104120728A TW 104120728 A TW104120728 A TW 104120728A TW I609604 B TWI609604 B TW I609604B
Authority
TW
Taiwan
Prior art keywords
layer
light
emitting element
region
earth metal
Prior art date
Application number
TW104120728A
Other languages
English (en)
Other versions
TW201538032A (zh
Inventor
能渡廣美
瀨尾哲史
大澤信晴
牛窪孝洋
筒井哲夫
Original Assignee
半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 半導體能源研究所股份有限公司 filed Critical 半導體能源研究所股份有限公司
Publication of TW201538032A publication Critical patent/TW201538032A/zh
Application granted granted Critical
Publication of TWI609604B publication Critical patent/TWI609604B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)

Description

發光元件、發光裝置、照明裝置、及電子裝置
以下所揭示的本發明係有關於一種在一對電極之間具有發光層的發光元件。此外,本發明還有關於一種使用該發光元件的發光裝置以及使用該發光裝置的照明裝置及電子裝置。
近年來,對其中使用作為發光材料之有機化合物或無機化合物的發光元件的開發已積極地進行。尤其是稱為電致發光(以下稱為EL)元件的發光元件的結構為在電極之間僅設置有包含發光材料的發光層的簡單結構,並且因為薄而輕、高速反應以及直流低電壓驅動等的特性而作為下一代的平面顯示元件引人注目。此外,使用這種發光元件的顯示器還具有優異的對比度、清晰的影像品質以及廣視角的特徵。再者,由於這些發光元件為面狀光源,因此期望將這些發光元件應用到液晶顯示器的背光燈、照明等的光源。
發光元件藉由對設置在一對電極之間的發光層施加電流,並使包含在發光層中的發光材料激發,可以得到預定的發光顏色。為了提高這種發光元件的發光亮度,可以考慮到對發光層施加大量電流的方法,但是該方法喪失低耗電量化的優點。此外,因對發光層施加大量電流而會加速發光元件的劣化。
於是,提出了藉由層疊多個發光層,並施加與當採用單層時相同的電流密度的電流來提高發光亮度的發光元件(例如專利文獻1)。
〔專利文獻1〕日本專利申請案公告第3933591號公報
在專利文獻1中提出了具有多個發光單元(以下在本說明書中也表示為EL層),並且各發光單元被電荷產生層分隔的發光元件。更具體地揭示了具有如下結構的發光元件:在用作第一發光單元的電子注入層的金屬摻雜層之上具有由五氧化釩所構成的電荷產生層,並隔著該電荷產生層而層疊第二發光單元。然而,在具有這種結構的發光元件中,在金屬摻雜層和由氧化物所構成的電荷產生層的介面之間發生相互作用,且介面具有高的電場,因此,不幸地,為了驅動發光元件而需要高電壓。
鑒於上述問題,本發明的目的之一在於提供呈現出高亮度的發光且能夠以低電壓驅動的發光元件。此外,本發 明的目的之一在於提供使耗電量降低的發光裝置或電子裝置。
本說明書所揭示的發光元件的結構其中之一為:在陽極和陰極之間具有n(n是2以上的自然數)層的EL層,並且在第m(m是自然數,1mn-1)EL層和第(m+1)EL層之間從陽極側按順序具有包含選自鹼金屬、鹼土金屬、稀土金屬、鹼金屬化合物、鹼土金屬化合物或稀土金屬化合物中的任一種的第一層、與第一層相接觸並包含具有高電子傳輸性質之材料的第二層、與第二層相接觸並包含具有高電洞傳輸性質之材料及受體材料的區域。
此外,本說明書所揭示的發光元件的其他結構其中之一為:在陽極和陰極之間具有n(n是2以上的自然數)層的EL層,並且在第m(m是自然數,1mn-1)EL層和第(m+1)EL層之間從陽極側按順序具有包含具有高電子傳輸性質之材料和施體材料的第一層、與第一層相接觸並包含具有高電子傳輸性質之材料的第二層、與第二層相接觸並包含具有高電洞傳輸性質之材料及受體材料的區域。
此外,在上述包含具有高電子傳輸性質之材料和施體材料的第一層中,也可以採用以如下方式來添加施體材料的結構:含有相對於具有高電子傳輸性質之材料的施體材料的質量評比(mass rating)為0.001:1至0.1:1的施體材料。另外,施體材料最好為鹼金屬、鹼土金屬、稀土金屬、鹼金屬化合物、鹼土金屬化合物或稀土金屬化合 物。
此外,在上述結構中,包含具有高電洞傳輸性質之材料及受體材料的區域是以如下方式來添加受體材料的區域:含有相對於具有高電洞傳輸性質之材料的受體材料的質量評比為0.1:1至4.0:1的受體材料。在該區域所產生的載流子中,電洞被注入到第(m+1)EL層中,電子移動到第二層。
此外,在上述結構中,包含具有高電洞傳輸性質之材料及受體材料的區域也可以是層疊包含具有高電洞傳輸性質之材料的層和包含受體材料的層的區域。
此外,在上述結構中,作為包含在第二層中的具有高電子傳輸性質之材料較佳使用具有大於或等於-5.0eV,更佳使用具有大於或等於-5.0eV且小於或等於-3.0eV的LUMO能階的材料。
此外,由於具有上述結構的發光元件可以實現低驅動電壓,因此將其用作發光元件的發光裝置(影像顯示裝置或發光裝置)可以實現低耗電量。從而,將使用具有上述結構的發光元件的發光裝置以及使用該發光裝置的照明裝置及電子裝置也包括在本發明的一個實施例中。
上述結構解決上述問題中的至少其中一個。
注意,本說明書中的發光裝置包括使用發光元件的影像顯示裝置等的電子裝置或照明裝置。此外,如下模組也都包括在發光裝置中:對發光元件安裝有連接器如各向異性導電膜、TAB(捲帶式自動接合)帶或TCP(帶載封 裝)的模組;TAB帶或TCP的前端係設置有印刷佈線板的模組;或藉由COG(玻璃覆晶封裝)方式而將IC(積體電路)直接安裝在發光元件中的模組。
注意,在本說明書中,為了方便起見,附加了第一、第二等序數,而且其並不表示步驟順序或層的堆疊順序。另外,在本說明書中,序數並不表示用來載明發明的特定名稱。
本發明可以提供具有多個發光層並且能夠以低電壓驅動的發光元件。
此外,藉由使用上述發光元件而製造發光裝置,可以提供耗電量少的發光裝置。另外,藉由將這種發光裝置應用於照明裝置或電子裝置,可以提供耗電量少的照明裝置或電子裝置。
10‧‧‧基板
11‧‧‧電晶體
12‧‧‧發光元件
13‧‧‧電極
14‧‧‧電極
15‧‧‧含有機化合物的層
16‧‧‧層間絕緣膜
17‧‧‧佈線
18‧‧‧分隔層
19‧‧‧層間絕緣膜
101‧‧‧陽極
102‧‧‧陰極
103‧‧‧EL層
103-1‧‧‧第一發光層
103-2‧‧‧第二發光層
104‧‧‧電子注入緩衝層
105‧‧‧電子繼電層
106‧‧‧電荷產生區域
107‧‧‧EL層
107-1‧‧‧第三發光層
107-2‧‧‧第四發光層
108‧‧‧電子傳輸層
111‧‧‧陽極的費密能階
112‧‧‧陰極的費密能階
113‧‧‧第一EL層的LUMO能階
114‧‧‧電子繼電層的LUMO能階
115‧‧‧電荷產生區域中受體的受體能階
116‧‧‧第二EL層的LUMO能階
330‧‧‧第一發光
340‧‧‧第二發光
951‧‧‧基板
952‧‧‧電極
953‧‧‧絕緣層
954‧‧‧分隔層
955‧‧‧含有機化合物的層
956‧‧‧電極
2100‧‧‧玻璃基板
2101‧‧‧電極
2102‧‧‧電極
2103‧‧‧EL層
2103a‧‧‧電荷產生區域
2103b‧‧‧電洞傳輸層
2103c‧‧‧發光層
2103d‧‧‧電子傳輸層
2104‧‧‧電子注入緩衝層
2105‧‧‧電子繼電層
2106‧‧‧電荷產生區域
2107‧‧‧EL層
2107a‧‧‧電洞傳輸層
2107b‧‧‧發光層
2107c‧‧‧電子傳輸層
2107d‧‧‧電子注入層
2108‧‧‧EL層
2108a‧‧‧發光層
2108b‧‧‧電子傳輸層
2108c‧‧‧電子注入層
3000‧‧‧光源
3001‧‧‧照明裝置
3002‧‧‧照明裝置
9100‧‧‧移動式電話機
9101‧‧‧殼體
9102‧‧‧殼體
9103‧‧‧連結部
9104‧‧‧顯示部
9106‧‧‧操作鍵
9200‧‧‧可攜式資訊終端裝置
9201‧‧‧殼體
9202‧‧‧顯示部
9203‧‧‧殼體
9205‧‧‧鍵盤
9207‧‧‧連結部
9400‧‧‧電腦
9401‧‧‧殼體
9402‧‧‧顯示部
9403‧‧‧鍵盤
9404‧‧‧殼體
9500‧‧‧數位攝像機
9501‧‧‧殼體
9503‧‧‧顯示部
9600‧‧‧電視裝置
9601‧‧‧殼體
9603‧‧‧顯示部
9605‧‧‧支架
9607‧‧‧顯示部
9609‧‧‧操作鍵
9610‧‧‧遙控器
9703‧‧‧顯示部
在附圖中:圖1A和1B是示出發光元件的元件結構的一例及能帶圖的圖形;圖2A和2B是示出發光元件的元件結構的一例及能帶圖的圖形;圖3A和3B是示出發光元件的元件結構的一例及能帶圖的圖形;圖4A和4B是示出發光元件的元件結構的一例的圖形; 圖5A至5C是示出主動矩陣型發光裝置的剖面圖;圖6A和6B是示出被動矩陣型發光裝置的圖形;圖7A至7E是示出電子裝置的圖形;圖8是示出照明裝置的圖形;圖9A和9B是示出實施例的發光元件及對照發光元件的元件結構的圖形;圖10是示出實施例1的發光元件的特性的圖形;圖11是示出實施例1的發光元件的特性的圖形;圖12A和12B是示出實施例的發光元件及對照發光元件的元件結構的圖形;圖13是示出實施例2的發光元件的特性的圖形;圖14是示出實施例2的發光元件的特性的圖形;圖15是示出實施例3的發光元件的特性的圖形;圖16是示出實施例3的發光元件的特性的圖形;圖17是示出實施例4的發光元件的特性的圖形;圖18是示出實施例4的發光元件的特性的圖形;圖19是示出實施例5的發光元件的特性的圖形;圖20是示出實施例5的發光元件的特性的圖形;圖21是示出實施例6的對照發光元件的元件結構的圖形;圖22是示出實施例6的發光元件的特性的圖形;圖23是示出實施例6的發光元件的特性的圖形;圖24A和24B是示出發光元件的元件結構的一例及發射光譜的圖形; 圖25是示出實施例7的發光元件的特性的圖形;圖26是示出實施例7的發光元件的特性的圖形;圖27是示出實施例8的發光元件的特性的圖形;圖28是示出實施例8的發光元件的特性的圖形;圖29是示出實施例8的發光元件的特性的圖形;圖30是示出實施例9的發光元件的特性的圖形;圖31是示出實施例9的發光元件的特性的圖形;圖32是示出實施例9的發光元件的特性的圖形。
以下參照附圖來詳細說明本發明之實施例模式及實施例。注意,本說明書所揭示的發明並不局限於以下說明,所屬技術領域的普通技術人員可以很容易地理解一個事實就是,本發明的模式和詳細內容可以在不違離其精神及其範圍的情況下被變換為各種各樣的形式。因此,並不限於本說明書的實施例模式及實施例所記載的內容而被解釋。注意,在用來說明本發明之實施例模式及實施例的所有附圖中,使用相同的附圖標記來表示相同的部分或具有相同功能的部分,而省略其重複說明。
實施例模式1
在本實施例模式中使用圖1A和1B來說明發光元件的一個實施例。
圖1A所示的元件結構包括如下結構:在一對電極 (陽極101、陰極102)之間夾住包括發光區域的第一EL 層103及第二EL層107,在第一EL層103和第二EL層107之間從陽極101側按順序層疊電子注入緩衝層104、電子繼電(electron-relay)層105以及電荷產生區域106。
電荷產生區域106是包含具有高電洞傳輸性質之材料和受體材料的區域,以產生發光元件的載流子的電洞和電子。在電荷產生區域106中產生的電洞移動到第二EL層107,並且電子移動到電子繼電層105。此外,由於電子繼電層105的電子傳輸性高,因此可以將電子迅速地傳輸到電子注入緩衝層104。再者,由於電子注入緩衝層104可以緩和將電子注入到第一EL層103時的注入勢壘(injection barrier),因此可以提高對第一EL層103的電子注入效率。
作為電子注入緩衝層104,可以使用鹼金屬、鹼土金屬、稀土金屬以及這些的化合物(鹼金屬化合物(包括氧化鋰等的氧化物、鹵化物、碳酸鋰和碳酸銫等的碳酸鹽)、鹼土金屬化合物(包括氧化物、鹵化物、碳酸鹽)或稀土金屬化合物(包括氧化物、鹵化物、碳酸鹽)等的具有高電子注入性質之材料。或者,電子注入緩衝層104也可以採用包含具有高電子傳輸性質之材料和施體材料的結構。
圖1B是示出圖1A中的元件結構的能帶圖。在圖1B中,附圖標記111表示陽極101的費密能階(Fermi level),附圖標記112表示陰極102的費密能階,附圖標記113表示第一EL層103的最低未佔據分子軌道(LUMO)能階,附圖標記114表示電子繼電層105的LUMO能階,附圖標記115表示電荷產生區域106的受體的受體能階,附圖標記116表示第二EL層107的LUMO能階。
在圖1B中,從陽極101注入的電洞被注入到第一EL層103中。另外,產生在電荷產生區域106中的電子移動到電子繼電層105,然後藉由電子注入緩衝層104而被注入到第一EL層103中,與電洞重新結合而發光。此外,產生在電荷產生區域106中的電洞移動到第二EL層107,在第二EL層107中與從陰極102注入的電子重新結合而發光。
在本實施例模式所示的發光元件中,電子繼電層105用作將在電荷產生區域106中產生的電子高效率地注入到第一EL層103的層,因此作為電子繼電層105,最好使用LUMO能階佔有電荷產生區域106的受體的受體能階和第一EL層103的LUMO能階之間的能階的材料。具體地說,較佳使用LUMO能階大約為-5.0eV以上的材料,更佳使用LUMO能階為-5.0eV以上且-3.0eV以下的材料。
由於包含在電荷產生區域106中的受體材料和包含在電子注入緩衝層104中的具有高電子注入性質之材料或施體材料分別具有高受體性或高施體性,因此當電荷產生區 域106和電子注入緩衝層104相接觸時,在介面處授受電子,並提高發光元件的驅動電壓。此外,在電荷產生區域106和電子注入緩衝層104相接觸的介面處形成PN接面,有可能發光元件的驅動電壓上升。然而,在本實施例模式所示的發光元件中,藉由使用電子繼電層105可以防止電荷產生區域106和電子注入緩衝層104相接觸,並可以防止包含在電荷產生區域106的受體材料和包含在電子緩衝層104中的具有高電子注入性質之材料或施體材料之間發生相互作用。另外,藉由作為電子繼電層105使用具有上述範圍的LUMO能階的材料,可以抑制與電子注入緩衝層104的介面具有高的電場,並可以將產生在電荷產生區域106中的電子高效率地注入到第一EL層103中。
另外,如圖1B的能帶圖所示,從電荷產生區域106遷移到電子繼電層105的電子因由電子注入層104緩和注入勢壘而容易被注入到第一EL層103的LUMO能階113中。另外,在電荷產生區域106中產生的電洞移動到第二EL層107。
以下,具體說明可以用於上述發光元件的材料。
陽極101最好由具有高功函數(具體地說,4.0eV以上是最好的)的金屬、合金、導電化合物和它們的混合物等形成。具體地說,例如,可以舉出氧化銦錫(ITO)、包含矽或氧化矽的氧化銦錫、氧化銦鋅(IZO)、包含氧化鎢和氧化鋅的氧化銦等。
雖然這些導電金屬氧化物膜通常藉由濺射法來予以形 成,但還可以應用溶膠-凝膠法等來予以形成。例如,藉由濺射法,使用相對於氧化銦添加1wt%至20wt%的氧化鋅的靶材,可以形成氧化銦-氧化鋅(IZO)。藉由濺射法,使用相對於氧化銦包含0.5wt%至5wt%的氧化鎢和0.1wt%至1wt%的氧化鋅的靶材,可以形成含有氧化鎢和氧化鋅的氧化銦。
此外,可以使用如下材料來形成陽極101,即金(Au)、鉑(Pt)、鎳(Ni)、鎢(W)、鉻(Cr)、鉬(Mo)、鐵(Fe)、鈷(Co)、銅(Cu)、鈀(Pd)、鈦(Ti)或金屬材料的氮化物(如氮化鈦等)、鉬氧化物、釩氧化物、釕氧化物、鎢氧化物、錳氧化物、鈦氧化物等。另外,還可以使用諸如聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸)(PEDOT/PSS)、以及聚苯胺/聚(苯乙烯磺酸)(PAni/PSS)等導電聚合物。但是,在作為第一EL層103的一部分,接觸陽極101地設置電荷產生區域的情況下,可以使用各種導電材料如Al、Ag作為陽極101,而與功函數的大小無關。
作為陰極102,最好使用功函數小(具體地說,最好為3.8eV以下)的金屬、合金、導電化合物、以及它們的混合物等。作為這種的陰極材料的具體例子,可以舉出屬於元素週期表中第1族或第2族的元素,亦即鋰(Li)或銫(Cs)等鹼金屬,鎂(Mg)、鈣(Ca)、鍶(Sr)等鹼土金屬以及包含它們的合金(MgAg、AlLi),銪(Eu)、鐿(Yb)等稀土金屬和包含它們的合金等。此 外,可以藉由真空蒸鍍法來形成鹼金屬、鹼土金屬、含有它們的合金的膜。另外,包含鹼金屬或鹼土金屬的合金還可以藉由濺射法來形成。另外,還可以使用銀膠等藉由噴墨法等來形成膜。
此外,還可以藉由層疊鹼金屬化合物、鹼土金屬化合物或稀土金屬化合物(例如,氟化鋰(LiF)、氧化鋰(LiOx)、氟化銫(CsF)、氟化鈣(CaF2)、氟化鉺(ErF3)等)的薄膜和鋁等金屬膜,以形成陰極102。但是,在作為第二EL層107的一部分,接觸陰極102地設置電荷產生區域的情況下,作為陰極102可以使用Al、Ag、ITO、含有矽或氧化矽的氧化銦-氧化錫等各種導電材料,而與功函數的大小無關。
另外,在本實施例模式所示的發光元件中,只要陽極及陰極中的至少其中一者具有透光性,即可。透光性可以藉由使用如ITO等透明電極或者藉由減薄電極的膜厚度來確保。
只要第一EL層103以及第二EL層107被形成為至少包括發光層,即可,並且也可以採用還包括發光層以外的層的疊層結構。此外,包括在第一EL層103中的發光層和包括在第二EL層107中的發光層可彼此不同。另外,第一EL層103及第二EL層107也可以分別獨立採用還包括發光層以外的層的疊層結構。作為發光層以外的層,可以舉出由具有高電洞注入性質之材料、具有高電洞傳輸性質之材料或高電子傳輸性質之材料、具有高電子注 入性質之材料、雙極性(具有高電子及電洞傳輸性質之材料)材料等構成的層。具體地說,可以舉出電洞注入層、電洞傳輸層、發光層、電洞阻止層(電洞阻擋層)、電子傳輸層、電子注入層等,這些層可以從陽極側適當地組合而構成。再者,還可以在第一EL層103中的接觸陽極101側設置電荷產生區域。
以下,示出構成上述EL層中含有的各層的材料的具體例子。
電洞注入層是包含具有高電洞注入性質之材料的層。作為具有高電洞注入性質之材料,例如可以使用鉬氧化物、釩氧化物、釕氧化物、鎢氧化物、錳氧化物等。除了上述以外,還可以使用諸如酞菁(簡稱:H2Pc)和銅酞菁(簡稱:CuPc)等的酞菁類化合物或諸如聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸)(PEDOT/PSS)等的高分子等來形成電洞注入層。
電洞傳輸層是包含具有高電洞傳輸性質之材料的層。作為具有高電洞傳輸性質之材料,例如可以舉出4,4’-雙〔N-(1-萘基)-N-苯基氨基〕聯苯(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯)-N,N’-二苯基-〔1,1’-聯苯〕-4,4’-二胺(簡稱:TPD)、4,4’,4”-三(咔唑-9-基)三苯胺(簡稱:TCTA)、4,4’,4”-三(N,N-二苯基氨基)三苯胺(簡稱:TDATA)、4,4’,4”-三〔N-(3-甲基苯)-N-苯基氨基〕三苯胺(簡稱:MTDATA)、4,4’-雙〔N-(螺環-9,9’-雙芴-2-基)-N-苯基氨基〕聯苯(簡稱: BSPB)等芳香胺化合物、3-〔N-(9-苯基咔唑-3-基)-N-苯基氨基〕-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙〔N-(9-苯基咔唑-3-基)-N-苯基氨基〕-9-苯基咔唑(簡稱;PCzPCA2)、3-〔N-(1-萘基)-N-(9-苯基咔唑-3-基)氨基〕-9-苯基咔唑(簡稱:PCzPCN1)等。除了上述以外,還可以使用4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、1,3,5-三〔4-(N-咔唑基)苯基〕苯(簡稱:TCPB)、9-〔4-(10-苯基-9-蒽基)苯基〕-9H-咔唑(簡稱:CzPA)等的咔唑衍生物等。這裏提到的材料主要是電洞遷移率為10-6cm2/Vs以上的材料。但是,只要是具有電洞傳輸性高於電子傳輸性的材料,就可以採用上述以外的材料。另外,包含具有高電洞傳輸性質之材料的層不限於單層,還可以將由上述材料構成的層層疊兩層以上。
除了上述以外,還可以使用聚(N-乙烯咔唑)(簡稱:PVK)、聚(4-乙烯三苯胺)(簡稱:PVTPA)、聚〔N-(4-{N’-〔4-(4-二苯基氨基)苯基〕苯基-N’-苯基氨基}苯基)甲基丙烯醯胺〕(簡稱:PTPDMA)、聚〔N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺〕(簡稱:Poly-TPD)等高分子化合物作為電洞傳輸層。
發光層是含有發光材料的層。作為發光材料,可以使用以下所示的螢光化合物。例如,可以舉出N,N’-雙〔4-(9H-咔唑-9-基)苯基〕-N,N’-二苯基二苯乙烯-4,4’-二胺(簡稱:YGA2S)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(簡稱:YGAPA)、4-(9H-咔唑-9-基)- 4’-(9,10-二苯基-2-蒽基)三苯胺(簡稱:2YGAPPA)、N,9-二苯基-N-〔4-(10-苯基-9-蒽基)苯基〕-9H-咔唑-3-胺(簡稱:PCAPA)、二萘嵌苯、2,5,8,11-四-叔-丁基二萘嵌苯(簡稱:TBP)、4-(10-苯基-9-蒽基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPA)、N,N”-(2-叔-丁基蒽-9,10-二基二-4,1-亞苯基)雙〔N,N’,N’-三苯基-1,4-苯二胺〕(簡稱:DPABPA)、N,9-二苯基-N-〔4-(9,10-二苯基-2-蒽基)苯基〕-9H-咔唑-3-胺(簡稱:2PCAPPA)、N-〔4-(9,10-二苯基-2-蒽基)苯基〕-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPPA)、N,N,N’,N’,N”,N”,N”’,N”’-八苯基二苯並〔g,p〕(chrysene)-2,7,10,15-四胺(簡稱:DBC1)、香豆素30、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCAPA)、N-〔9,10-雙(1,1’-聯苯-2-基)-2-蒽基〕-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCABPhA)、N-(9,10-二苯基-2-蒽基)-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPA)、N-〔9,10-雙(1,1’-聯苯-2-基)-2-蒽基〕-N,N’,N’-三苯基-1,4-亞苯基二胺(簡稱:2DPABPhA)、9,10-雙(1,1’-聯苯-2-基)-N-〔4-(9H-咔唑-9-基)苯基〕-N-苯基蒽-2-胺(簡稱:2YGABPhA)、N,N,9-三苯基蒽-9-胺(簡稱:DPhAPhA)、香豆素545T、N,N’-二苯基喹吖啶酮(簡稱:DPQd)、紅熒烯、5,12-雙(1,1’-聯苯-4-基)-6,11-二苯基並四苯(簡稱:BPT)、2-(2-{2-〔4-(二甲基氨基)苯基〕乙烯基}-6- 甲基-4H-吡喃-4-亞基(ylidene))丙二腈(簡稱:DCM1)、2-{2-甲基-6-〔2-(2,3,6,7-四氫-1H,5H-苯並〔ij〕喹嗪(quinolizine)-9-基)乙烯基〕-4H-吡喃-4-亞基}丙二腈(簡稱:DCM2)、N,N,N’,N’-四(4-甲基苯基)並四苯-5,11-二胺(簡稱:p-mPhTD)、7,14-二苯基-N,N,N’,N’-四(4-甲基苯基)苊並(acenaphtho)〔1,2-a〕熒蒽-3,10-二胺(簡稱:p-mPhAFD)、2-{2-異丙基-6-〔2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯並〔ij〕喹嗪-9-基)乙烯基〕-4H-吡喃-4-亞基}丙二腈(簡稱:DCJTI)、2-{2-叔-丁基-6-〔2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯並〔ij〕喹嗪-9-基)乙烯基〕-4H-吡喃-4-亞基}丙二脂(簡稱:DCJTB)、2-(2,6-雙{2-〔4-(二甲基氨基)苯基〕乙烯基}-4H-吡喃-4-亞基)丙二腈(簡稱:BisDCM)、2-{2,6-雙〔2-(8-甲氧基-1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯並〔ij〕喹嗪-9-基)乙烯基〕-4H-吡喃-4-亞基}丙二腈(簡稱:BisDCJTM)等。
另外,作為發光材料,還可以使用以下所示的磷光化合物。例如,可以舉出雙〔2-(4’,6’-二氟苯基)吡啶醇-N,C2’〕銥(Ⅲ)四(1-吡唑基)硼酸鹽(簡稱:FIr6)、雙〔2-(4’,6’-二氟苯基)吡啶醇-N,C2’〕銥(Ⅲ)吡啶甲酸酯(簡稱:FIrpic)、雙〔2-(3’,5’-雙三氟甲基苯基)吡啶醇-N,C2’〕銥(Ⅲ)吡啶甲酸酯(簡稱:Ir(CF3ppy)2(pic))、雙〔2-(4’,6’-二氟苯基)〕吡啶醇-N,C2’〕銥(Ⅲ)乙醯丙酮(簡稱:FIracac)、三(2-苯 基吡啶醇)銥(Ⅲ)(簡稱:Ir(ppy)3)、雙(2-苯基吡啶醇)銥(Ⅲ)乙醯丙酮(簡稱:Ir(ppy)2(acac))、雙(苯並〔h〕喹啉)銥(Ⅲ)乙醯丙酮(簡稱:Ir(bzq)2(acac))、雙(2,4-二苯基-1,3-噁唑-N,C2’)銥(Ⅲ)乙醯丙酮(簡稱:Ir(dpo)2(acac))、雙〔2-(4’-全氟苯基苯基)吡啶醇〕銥(Ⅲ)乙醯丙酮(簡稱:Ir(p-PF-ph)2(acac))、雙(2-苯基苯並噻唑-N,C2’)銥(Ⅲ)乙醯丙酮(簡稱:Ir(bt)2(acac))、雙〔2-(2’-苯並〔4,5-α〕噻吩基)吡啶醇-N,C3’〕銥(Ⅲ)乙醯丙酮(簡稱:Ir(btp)2(acac))、雙(1-苯基異喹啉-N,C2’)銥(Ⅲ)乙醯丙酮(簡稱:Ir(piq)2(acac))、(乙醯丙酮)雙〔2,3-雙(4-氟苯基)喹喔啉合〕銥(Ⅲ)(簡稱:Ir(Fdpq)2(acac))、(乙醯丙酮)雙(2,3,5-三苯吡啶(triphenylpyrazinato))銥(Ⅲ)(簡稱:Ir(tppr)2(acac))、2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(Ⅱ)(簡稱:PtOEP)、三(乙醯丙酮)(單菲咯啉)鋱(Ⅲ)(簡稱:Tb(acac)3(Phen))、三(1,3-二苯基-1,3-丙二酮)(單菲咯啉)銪(Ⅲ)(簡稱:Eu(DBM)3(Phen))、三〔1-(2-噻吩甲醯基)-3,3,3-三氟丙酮〕(單菲咯啉)銪(Ⅲ)(簡稱:Eu(TTA)3(Phen))等。
另外,最好地是,這些發光材料被分散在主體材料中而使用。作為主體材料,例如可以使用NPB(簡稱)、TPD(簡稱)、TCTA(簡稱)、TDATA(簡稱)、MTDATA(簡稱)、BSPB(簡稱)等芳香胺化合物, PCzPCA1(簡稱)、PCzPCA2(簡稱)、PCzPCN1(簡稱)、CBP(簡稱)、TCPB(簡稱)、CzPA(簡稱)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)-三苯胺(簡稱:PCBANB)等咔唑衍生物,PVK(簡稱)、PVTPA(簡稱)、PTPDMA(簡稱)、Poly-TPD(簡稱)等包含高分子化合物的高電洞傳輸性材料,三(8-羥基喹啉)鋁(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(簡稱:Almq3)、雙(10-羥基苯並〔h〕喹啉(quinolinato))鈹(簡稱:BeBq2)或雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(簡稱:BAlq)等具有喹啉骨架或苯並喹啉骨架的金屬配合物,雙〔2-(2-羥基苯基)苯並噁唑〕鋅(簡稱:Zn(BOX)2)、雙〔2-(2-羥基苯基)苯並噻唑〕鋅(簡稱:Zn(BTZ)2)等具有噁唑類或噻唑類配體的金屬配合物,2-(4-聯苯基)-5-(4-叔-丁基苯基)-1,3,4-噁二唑(簡稱:PBD)、1,3-雙〔5-(p-叔-丁基苯基)-1,3,4-噁二唑-2-基〕苯(簡稱:OXD-7)、9-〔4-(5-苯基-1,3,4-噁二唑-2-基)苯基〕咔唑(簡稱:CO11)、3-(4-聯苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(簡稱:TAZ)、紅菲繞啉(簡稱:BPhen)、浴銅靈(簡稱:BCP)、聚〔(9,9-二已基芴-2,7-二基)-co-(吡啶-3,5-二基)〕(簡稱:PF-Py)、聚〔(9,9-二辛基芴-2,7-二基)-co-(2,2’-聯吡啶-6,6’-二基)〕(簡稱:PF-BPy)等具有高電子傳輸性質之材料。
電子傳輸層是包含具有高電子傳輸性質之材料的層。 作為具有高電子傳輸性質之材料,例如可以使用Alq(簡稱)、Almq3(簡稱)、BeBq2(簡稱)、BAlq(簡稱)等具有喹啉骨架或苯並喹啉骨架的金屬配合物等。除了上述以外,還可以使用Zn(BOX)2(簡稱)、Zn(BTZ)2(簡稱)等具有噁唑類或噻唑類配體的金屬配合物等。除了金屬配合物以外,還可以使用PBD(簡稱)、OXD-7(簡稱)、CO11(簡稱)、TAZ(簡稱)、BPhen(簡稱)、BCP(簡稱)等。這裏提到的材料主要是電子遷移率為10-6cm2/Vs以上的材料。但是,只要是具有電子傳輸性高於電洞傳輸性的材料,就還可以採用上述以外的材料。另外,電子傳輸層不限於單層,還可以將由上述材料所構成的層層疊兩層以上。
除了上述以外,還可以將PF-Py(簡稱)、PF-BPy(簡稱)等高分子化合物用於電子傳輸層。
電子注入層是包含具有高電子注入性質之材料的層。 作為具有高電子注入性質之材料,可以舉出氟化鋰(LiF)、氟化銫(CsF)、氟化鈣(CaF2)等鹼金屬、鹼土金屬或它們的化合物。另外,還可以使用其中含有鹼金屬、鹼土金屬或它們的化合物的具有電子傳輸性質之材料,例如其中含有鎂(Mg)的Alq等。藉由採用這種結構,可以進一步提高從陰極102的電子注入效率。
當在第一EL層103或第二EL層107中設置電荷產生區域時,電荷產生區域是包含具有高電洞傳輸性質之材料和受體材料的區域。另外,電荷產生區域有如下兩種情 況:在同一個膜中含有具有高電洞傳輸性質之材料和受體材料;層疊有包含具有高電洞傳輸性質之材料的層和包含受體材料的層。但是,在採用將電荷產生區域設置在陽極側的疊層結構的情況下,得到包含受體材料的層接觸陽極101的結構,而在採用將電荷產生區域設置在陰極側的疊層結構的情況下,得到包含具有高電洞傳輸性質之材料的層接觸陰極102的結構。
藉由在第一EL層103或第二EL層107中形成電荷產生區域,可以形成陽極101或陰極102,而不考慮形成電極的材料的功函數。
作為用於電荷產生區域的受體材料,可以舉出過渡金屬氧化物或屬於元素週期表中的第四族至第八族的金屬的氧化物。具體地說,氧化鉬是特別最好的。另外,氧化鉬具有吸濕性低的特徵。
作為用於電荷產生區域的具有高電洞傳輸性質之材料,可以使用各種有機化合物諸如芳香胺化合物、咔唑衍生物、芳香烴和高分子化合物(低聚合物、樹枝狀聚合物、聚合物等)。具體地說,最好使用電洞遷移率為10-6cm2/Vs以上的材料。但是,只要是具有電洞傳輸性高於電子傳輸性的材料,就可以採用上述以外的材料。
另外,藉由適當地組合而層疊這些層,可以形成第一EL層103或第二EL層107。作為第一EL層103或第二EL層107的形成方法,可以根據使用的材料適當地選擇各種方法(例如,乾式法或濕式法等)。例如,可以採用 真空蒸鍍法、噴墨法、旋塗法等。另外,還可以對每個層採用不同的方法而形成。
另外,在第一EL層103和第二EL層107之間從陽極101側按順序設置有電子注入緩衝層104、電子繼電層105以及電荷產生區域106。電荷產生區域106是接觸於第二EL層107而被形成的,電子繼電層105是接觸於電荷產生區域106而被形成的,並且電子注入緩衝層104是接觸於電子繼電層105和第一EL層103之間而被形成的。
電荷產生區域106是包含具有高電洞傳輸性質之材料和受體材料的區域。另外,電荷產生區域106可以使用與以上說明的可以形成在第一EL層103或第二EL層107的一部分中的電荷產生區域相同的材料並由相同的結構來予以形成。因此,電荷產生區域106有如下兩種情況:在同一個膜中含有具高電洞傳輸性質之材料和受體材料;層疊有包含具有高電洞傳輸性質之材料的層和包含受體材料的層。但是,在採用疊層結構的情況下,得到包含具有高電洞傳輸性質之材料的層接觸第二EL層107的結構。
另外,最好是,在電荷產生區域106中,以如下方式添加受體材料:使受體材料相對於具有高電洞傳輸性質之材料的質量評比為0.1:1至4.0:1。
電子繼電層105是能夠將在電荷產生區域106中被受體材料抽出的電子快速接收的層。因此,電子繼電層105是包含具有高電子傳輸性質之材料的層,並且最好使用其 LUMO能階佔據電荷產生區域106中的受體的受體能階與第一EL層103的LUMO能階之間的能階的材料而形成。 具體地說,較佳使用具有大約-5.0eV以上的LUMO能階的材料,更佳使用具有大約-5.0eV以上且-3.0eV以下的LUMO能階的材料。作為用於電子繼電層105的材料,例如,可以舉出二萘嵌苯衍生物或含氮稠環芳香化合物。另外,因為含氮稠環芳香化合物是穩定的化合物,所以最好用於電子繼電層105。再者,在含氮稠環芳香化合物中,藉由使用具有氰基或氟基等拉電子基(electron-withdrawing group)的化合物,可以使電子繼電層105中的電子接收變得更容易,因此是最好的。
作為二萘嵌苯衍生物的具體例子,可以舉出3,4,9,10-苝四羧酸二酐(perylenetetracarboxylicdianhydride)(簡稱:PTCDA)、3,4,9,10-苝四羧酸-雙-苯並咪唑(perylenetetracarboxylic-bis-benzimidazole)(簡稱:PTCBI)、N,N’-二辛基-3,4,9,10-苝四羧酸二醯亞胺(perylenetetracarboxylic diimide)(簡稱:PTCDI-C8H)、N,N’-二己基-3,4,9,10-苝四羧酸二醯亞胺(簡稱:HexPTC)等。
另外,作為含氮稠環芳香化合物的具體例子,可以舉出吡嗪並(pirazino)〔2,3-f〕〔1,10〕菲咯啉-2,3-二甲腈(dicarbonitrile)(簡稱:PPDN)、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮三苯並苯(簡稱:HAT(CN)6)、2,3-二苯基吡啶並〔2,3-b〕吡嗪(簡稱:2PYPR)、2,3-雙 (4-氟苯基)吡啶並〔2,3-b〕吡嗪(簡稱:F2PYPR) 等。除了上述以外,電子繼電層105還可以使用如下材料:全氟並五苯、7,7,8,8,-四氰基對醌二甲烷(簡稱:TCNQ)、1,4,5,8-萘四羧酸二酐(簡稱:NTCDA)、十六烷氟代酞菁銅(簡稱:F16CuPc)、N,N’-雙(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8,十五烷氟辛基-1,4,5,8-萘四羧酸二醯亞胺(簡稱:NTCDI-C8F)、3’,4’-二丁基-5,5”-雙(二氰基亞甲基)-5,5”-二氫-2,2’:5’,2”-三聯噻吩)(簡稱:DCMT)、甲醇富勒烯(例如〔6,6〕-苯基C61酪酸甲酯(簡稱:PCBM))等。
電子注入緩衝層104是能夠將被電子繼電層105接收的電子注入到第一EL層103的層。藉由設置電子注入緩衝層104,可以緩和電荷產生區域106與第一EL層103之間的注入勢壘,從而可以將在電荷產生區域106中產生的電子容易被注入到第一EL層103中。
電子注入緩衝層104可以使用如下材料:鹼金屬、鹼土金屬、稀土金屬和它們的化合物(鹼金屬化合物(包括氧化鋰等氧化物、鹵化物、碳酸鋰或碳酸銫等碳酸鹽)、鹼土金屬化合物(包括氧化物、鹵化物、碳酸鹽)或稀土金屬的化合物(包括氧化物、鹵化物、碳酸鹽))等具有高電子注入性質之材料。
另外,在電子注入緩衝層104包含具有高電子傳輸性質之材料和施體材料而形成的情況下,最好是,以如下方式添加施體材料:使施體材料相對於具有高電子傳輸性質 之材料的質量評比為0.001:1至0.1:1。另外,作為施體材料,除了鹼金屬、鹼土金屬、稀土金屬和它們的化合物(鹼金屬化合物(包括氧化鋰等氧化物、鹵化物、碳酸鋰或碳酸銫等碳酸鹽)、鹼土金屬化合物(包括氧化物、鹵化物、碳酸鹽)或稀土金屬的化合物(包括氧化物、鹵化物、碳酸鹽))以外,還可以使用四硫並四苯(tetrathianaphthacene)(簡稱:TTN)、二茂鎳、十甲基二茂鎳等有機化合物。另外,作為具有高電子傳輸性質之材料,可以使用與以上說明的可以形成在第一EL層103的一部分中的電子傳輸層的材料相同的材料而形成。
藉由組合上述材料,可以製造本實施例模式所示的發光元件。從該發光元件可以得到來自上述發光材料的發光,藉由改變用於發光層的發光材料的種類而可以得到各種發光顏色。另外,藉由使用發光顏色不同的多種發光材料作為發光材料,還可以得到寬光譜的發光或白色發光。
注意,在本實施例模式中示出設置有兩層的EL層的發光元件,但是EL層的層數並不局限於兩層,還可以為兩層以上,例如三層。當將n(n是2以上的自然數)層的EL層設置在發光元件中,在第m(m是自然數,1mn-1)EL層和第(m+1)EL層之間從陽極側按順序層疊電子注入緩衝層、電子繼電層以及電荷產生區域,可以抑制發光元件的驅動電壓的上升。
此外,本實施例模式所示的發光元件可以形成在各種基板之上。作為基板,例如可以使用玻璃、塑膠、金屬 板、金屬箔等。當從基板側取得發光元件的發光時,使用具有透光性的基板即可。但是,只要基板是在發光元件的製造程序中用作支撐體的基板,就也可以使用上述以外的基板。
注意,藉由採用本實施例模式所示的發光元件的元件結構可以製造兩個電極以格子狀形成在一個基板之上的被動矩陣型發光裝置。此外,還可以製造具有與用作開關的薄膜電晶體(TFT)等電連接的發光元件,並使用TFT控制發光元件的驅動的主動矩陣型發光裝置。注意,對TFT的結構沒有特別的限制。TFT可以為交錯型或反交錯型。 此外,作為由TFT所構成的驅動電路,可以使用含有N型TFT和P型TFT的電路,也可以使用僅包含N型TFT和P型TFT中的任一種的電路。另外,對用於TFT的半導體膜的結晶性沒有特別的限制。可以使用非晶半導體膜或結晶半導體膜。此外,可以使用單晶半導體膜或微晶半導體(微晶體半導體)。再者,可以使用氧化物半導體,例如包含銦、鎵以及鋅的氧化物半導體。
此外,藉由使用各種方法,不管乾式法程序(例如真空蒸鍍法、濺射法等)還是濕式法程序(例如噴墨法、旋塗法、塗敷法等),可以形成本實施例模式所示的發光元件。
藉由採用本實施例模式所示的元件結構,可以使其驅動電壓不容易受到電荷產生區域106的厚度的影響,因此可以抑制發光元件的驅動電壓的上升,並且藉由光學調整 提高顏色純度。
此外,藉由採用本實施例模式所示的元件結構,形成在電荷產生區域106和電子注入緩衝層104之間夾住電子繼電層105的結構,因此可以得到如下結構:包含在電荷產生區域106中的受體和包含在電子注入緩衝層104中的具有高電子注入性質之材料或施體材料不容易受到相互作用,並且不容易阻礙兩者的功能。從而,可以以低電壓來驅動發光元件。
注意,本實施例模式所示的結構可以與其他實施例模式所示的結構適當地組合而使用。
實施例模式2
在本實施例模式2中,使用圖2A和2B來說明包括在實施例模式1所說明的基本結構的發光元件的一例。具體地說,說明在實施例模式1所示的發光元件中,作為電子注入緩衝層104使用鹼金屬、鹼土金屬、稀土金屬或這些的化合物的單層的情況。
如圖2A所示那樣,本實施例模式所示的發光元件包括如下結構:在一對電極(陽極101及陰極102)之間夾住包括發光區域的第一EL層103及第二EL層107,並且在第一EL層103和第二EL層107之間從陽極101側按順序層疊電子注入緩衝層104、電子繼電層105以及電荷產生區域106。
本實施例模式2中的陽極101、陰極102、第一EL層 103、第二EL層107、電荷產生區域106以及電子繼電層105可以使用與實施例模式1所說明的材料相同的材料。
在本實施例模式中,作為用於電子注入緩衝層104的材料,可以舉出如下具有高電子注入性質之材料:鋰(Li)或銫(Cs)等鹼金屬、鎂(Mg)、鈣(Ca)或鍶(Sr)等鹼土金屬、銪(Eu)或鐿(Yb)等稀土金屬、鹼金屬化合物(包括氧化鋰等的氧化物、鹵化物、碳酸鋰和碳酸銫等的碳酸鹽)、鹼土金屬化合物(包括氧化物、鹵化物、碳酸鹽)或稀土金屬化合物(包括氧化物、鹵化物、碳酸鹽)等。
在本實施例模式所示的發光元件中,作為電子注入緩衝層104,設置有上述金屬或其化合物的單層,並且使其厚度形成得極薄(具體地說,1nm以下),以避免驅動電壓的上升。此外,在本實施例模式中,最好在第一EL層103中與電子注入緩衝層104相接觸地形成電子傳輸層108,並且電子注入緩衝層104緊鄰地位於電子繼電層105和EL層103的一部分的電子傳輸層108的介面處。 注意,當在形成電子傳輸層108之後在電子傳輸層108之上形成電子注入緩衝層104時,形成電子注入緩衝層104的材料的一部分也會存在於EL層103的一部分的電子傳輸層108中。
圖2B示出圖2A中的元件結構的能帶圖。藉由在圖2B中在電子繼電層105和第一EL層103的介面處設置電子注入緩衝層104,可以緩和電荷產生區域106和第一EL 層103之間的注入勢壘,因此可以將在電荷產生區域106中產生的電子容易注入到第一EL層103。此外,在電荷產生區域106中產生的電洞移動到第二EL層107。
藉由採用本實施例模式所示的電子注入緩衝層的結構,與實施例模式3所示的電子注入緩衝層(對具有高電子傳輸性質之材料添加施體材料而形成)相比,可以降低發光元件的驅動電壓。此外,在本實施例模式中,作為電子注入緩衝層104的具有高電子注入性質之材料,最好使用鹼金屬化合物(包括氧化鋰等的氧化物、鹵化物、碳酸鋰和碳酸銫等的碳酸鹽)、鹼土金屬化合物(包括氧化物、鹵化物、碳酸鹽)或稀土金屬化合物(包括氧化物、鹵化物、碳酸鹽)等。由於這些具有高電子注入性質之材料是在空氣中穩定的材料,因此生產率好,並適合於大量生產。
注意,本實施例模式所示的結構可以與其他實施例模式所示的結構適當地組合而使用。
實施例模式3
在本實施例模式3中,使用圖3A和3B說明包括在實施例模式1所說明的基本結構中的發光元件的一例。具體地,說明在實施例模式1所示的發光元件中包含具有高電子傳輸性質之材料和施體材料而形成電子注入緩衝層104的情況。
如圖3A所示那樣,本實施例模式所示的發光元件包 括如下結構:在一對電極(陽極101及陰極102)之間夾住包括發光區域的第一EL層103及第二EL層107,並且在第一EL層103和第二EL層107之間從陽極101側按順序層疊電子注入緩衝層104、電子繼電層105以及電荷產生區域106。此外,電子注入緩衝層104包含具有高電子傳輸性質之材料和施體材料而形成。
此外,在本實施例模式中,最好以如下方式添加施體材料:使施體材料相對於具有高電子傳輸性質之材料的質量評比為0.001:1至0.1:1。由此,可以得到膜品質好且反應性好的電子注入緩衝層104。
本實施例模式3中的陽極101、陰極102、EL層103、電荷產生區域106以及電子繼電層105可以使用與實施例模式1所說明的材料相同的材料。
在本實施例模式中,作為用於電子注入緩衝層104的具有高電子傳輸性質之材料,例如可以使用具有喹啉骨架或苯並喹啉骨架的金屬配合物等,如三(8-羥基喹啉)鋁(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(簡稱:Almq3)、雙(10-羥基苯並〔h〕喹啉)鈹(簡稱:BeBq2)、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(簡稱:BAlq)等。另外,還可以使用具有噁唑類或噻唑類配體的金屬配合物等,如雙〔2-(2-羥基苯基)苯並噁唑〕鋅(簡稱:Zn(BOX)2)、雙〔2-(2-羥基苯基)苯並噻唑〕鋅(簡稱:Zn(BTZ)2)等。再者,除了金屬配合物以外,也可以使用2-(4-聯苯基)-5-(4-叔丁基苯基)- 1,3,4-噁二唑(簡稱:PBD)、1,3-雙〔5-(對-叔丁基苯基)-1,3,4-噁二唑-2-基〕苯(簡稱:OXD-7)、9-〔4-(5-苯基-1,3,4-噁二唑-2-基)苯基〕咔唑(簡稱:CO11)、3-(4-聯苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(簡稱:TAZ)、紅菲繞啉(簡稱:BPhen)、浴銅靈(簡稱:BCP)等。這裏所述的材料主要是電子遷移率為10-6cm2/Vs以上的材料。
除了上述材料以外,還可以使用如下高分子化合物,如聚〔(9,9-二己基芴-2,7-二基)-co-(吡啶-3,5-二基)〕(簡稱:PF-Py)、聚〔(9,9-二辛基芴-2,7-二基)-co-(2,2’-聯吡啶-6,6’-二基)〕(簡稱:PF-BPy)等。
此外,在本實施例模式中,作為用於電子注入緩衝層104的施體材料,可以使用鹼金屬、鹼土金屬、稀土金屬以及這些的化合物(鹼金屬化合物(包括氧化鋰等的氧化物、鹵化物、碳酸鋰和碳酸銫等的碳酸鹽)、鹼土金屬化合物(包括氧化物、鹵化物、碳酸鹽)或稀土金屬化合物(包括氧化物、鹵化物、碳酸鹽)等。另外,也可以使用四硫並四苯(簡稱:TTN)、二茂鎳、十甲基二茂鎳等有機化合物。
此外,在本實施例模式中,在第一EL層103中也可以與電子注入緩衝層104相接觸地形成電子傳輸層108,並且當形成電子傳輸層108時,用於電子注入緩衝層104的具有高電子傳輸性質之材料和用於EL層103的一部分 的電子傳輸層108的具有高電子傳輸性之質材料可以相同或不相同。
本實施例模式所示的發光元件的特徵在於如圖3A所示那樣在EL層103和電子繼電層105之間形成包含具有高電子傳輸性質之材料和施體材料的電子注入緩衝層104。圖3B示出該元件結構的能帶圖。
換言之,藉由形成電子注入緩衝層104,可以緩和電子繼電層105和EL層103之間的注入勢壘,因此可以將產生在電荷產生區域106中的電子容易被注入到EL層103中。此外,將產生在電荷產生區域106中的電洞移動到第二EL層107。
注意,本實施例模式所示的結構可以與其他實施例模式所示的結構適當地組合而使用。
實施例模式4
在本實施例模式4中,使用圖4A和4B來說明電荷產生區域106的結構作為包括在實施例模式1所說明的基本結構的發光元件的一例。
圖4A和4B所示的元件結構包括如下結構:在一對電極(陽極101及陰極102)之間夾住包括發光區域的第一EL層103及第二EL層107,並且在第一EL層103和第二EL層107之間從陽極101側按順序層疊電子注入緩衝層104、電子繼電層105以及電荷產生區域106。在圖4A和4B中,作為陽極101、陰極102、第一EL層103、 電子注入緩衝層104、電子繼電層105以及第二EL層107,可以使用與實施例模式1所說明的材料相同的材料,並可以採用相同的結構。
在圖4A和4B所示的發光元件中,電荷產生區域106是包含具有高電洞傳輸性質之材料和受體材料的區域。此外,在電荷產生區域106中,藉由受體材料從具有高電洞傳輸性質之材料抽出電子,以產生電洞及電子。
圖4A所示的電荷產生區域106具有在同一個膜中包含具有高電洞傳輸性質之材料和受體材料的結構。在此情況下,藉由以如下方式添加受體材料:使受體材料相對於具有高電洞傳輸性質之材料的質量評比為0.1:1至4.0:1,在電荷產生區域106中容易產生載流子,因此是最好的。
由於在圖4A中採用使受體材料摻雜在具有高電洞傳輸性質之材料中的結構,因此在使電荷產生區域106的厚度變厚的情況下也可以抑制驅動電壓的上升。因此,可以抑制發光元件的驅動電壓的上升,並且藉由光學調整提高顏色純度。此外,藉由使電荷產生區域106厚膜化,可以防止發光元件的短路。
另外,圖4B所示的電荷產生區域106具有層疊包含具高電洞傳輸性質之材料的層106a和包含受體材料的層106b的結構。在圖4B所示的發光元件的電荷產生區域106中,具有高電洞傳輸性質之材料和受體材料相接觸,並產生電子的授受而形成的電子轉移複合物(complex) 只形成在包含具有高電洞傳輸性質之材料的層106a和包含受體材料的層106b的介面處。從而,至於圖4B所示的發光元件,在使電荷產生區域106的厚度變厚的情況下也不容易形成可見光的吸收帶,因此是最好的。
此外,藉由將圖4B所示的發光元件和實施例模式2所說明的結構組合,並作為電子注入緩衝層104使用鹼金屬、鹼土金屬、稀土金屬或這些的化合物的單層,可以第一EL層103和第二EL層107之間的層,亦即電子注入緩衝層104、電子繼電層105以及電荷產生區域106不使用摻雜而被製造,並可以將這些層的總厚度設定為約5nm以下而實現薄膜化。
此外,作為用以形成電荷產生區域106的具有高電洞傳輸性質之材料,可以使用各種有機化合物諸如芳香胺化合物、咔唑衍生物、芳烴以及高分子化合物(低聚合物、樹枝狀聚合物、聚合物等)等。具體地說,最好使用電洞遷移率為10-6cm2/Vs以上的材料。但是,只要是電洞傳輸性高於電子傳輸性的材料,就可以使用上述以外的材料。
作為芳香胺化合物的具體例子,可以舉出4,4’-雙〔N-(1-萘基)-N-苯基氨基〕聯苯基(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-〔1,1’-聯苯基〕-4,4’-二胺(簡稱:TPD)、4,4’,4”-三(咔唑-9-基)三苯基胺(簡稱:TCTA)、4,4’,4”-三(N,N-二苯基氨基)三苯基胺(簡稱:TDATA)、4,4’,4”-三〔N-(3- 甲基苯基)-N-苯基氨基〕三苯基胺(簡稱:MTDATA)、N,N’-雙(4-甲基苯基)-N,N’-二苯基-對-苯二胺(簡稱:DTDPPA)、4,4’-雙〔N-(4-二苯基氨基苯基)-N-苯基氨基〕聯苯(簡稱:DPAB)、4,4’-雙〔N-(3-甲基苯基)-N-苯基氨基〕聯苯(簡稱:DNTPD)、1,3,5-三〔N-(4-二苯基氨基苯基)-N-苯基氨基〕苯(簡稱:DPA3B)等。
作為咔唑衍生物的具體例子,可以舉出3-〔N-(9-苯基咔唑-3-基)-N-苯基氨基〕-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙〔N-(9-苯基咔唑-3-基)-N-苯基氨基〕-9-苯基咔唑(簡稱:PCzPCA2)、3-〔N-(1-萘基)-N-(9-苯基咔唑-3-基)氨基〕-9-苯基咔唑(簡稱:PCzPCN1)等。此外,可以舉出4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、1,3,5-三〔4-(N-咔唑基)苯基〕苯(簡稱:TCPB)、9-〔4-(10-苯基-9-蒽基)苯基〕-9H-咔唑(簡稱:CzPA)、1,4-雙〔4-(N-咔唑基)苯基〕-2,3,5,6-四苯基苯等。
作為芳烴的具體例子,可以舉出2-叔丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、2-叔丁基-9,10-二(1-萘基)蒽、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、2-叔丁基-9,10-雙(4-苯基苯基)蒽(簡稱:t-BuDBA)、9,10-二(2-萘基)蒽(簡稱:DNA)、9,10-二苯基蒽(簡稱:DPAnth)、2-叔丁基蒽(簡稱:t-BuAnth)、9,10-雙(4-甲基-1-萘基)蒽(簡稱: DMNA)、9,10-雙〔2-(1-萘基)苯基〕-2-叔丁基-蒽、9,10-雙〔2-(1-萘基)苯基〕蒽、2,3,6,7-四甲基-9,10-二(1-萘基)蒽、2,3,6,7-四甲基-9,10-二(2-萘基)蒽、9,9’-聯蒽、10,10’-二苯基-9,9’-聯蒽、10,10’-雙(2-苯基苯基)-9,9’-聯蒽、10,10’-雙〔(2,3,4,5,6-五苯基)苯基〕-9,9’-聯蒽、蒽、並四苯、紅熒烯、二萘嵌苯、2,5,8,11-四(叔丁基)二萘嵌苯等。此外,也可以使用並五苯、暈苯等。像這樣,更最好使用具有1×10-6cm2/Vs以上的電洞遷移率且碳數為14至42的芳烴。
此外,芳烴也可以具有乙烯基骨架。作為具有乙烯基的芳烴,例如可以舉出4,4’-雙(2,2-二苯基乙烯基)聯苯(簡稱:DPVBi)、9,10-雙〔4-(2,2-二苯基乙烯基)苯基〕蒽(簡稱:DPVPA)等。
另外,也可以使用高分子化合物如聚(N-乙烯基咔唑)(簡稱:PVK)或聚(4-乙烯基三苯基胺)(簡稱:PVTPA)等。
作為用以形成電荷產生區域106的受體材料,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F4-TCNQ)、氯醌等。另外,可以舉出過渡金屬氧化物。另外,還可以使用屬於元素週期表第4族至第8族的金屬的氧化物。具體地,最好使用氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鉬、氧化鎢、氧化錳以及氧化錸,因為它們的電子接受性高。
注意,本實施例模式所示的結構可以與其他實施例模 式所示的結構適當地組合而使用。
實施例模式5
在本實施例模式5中,使用圖24A和24B來說明包括在實施例模式1所說明的基本結構中的發光元件的另一例。
如圖24A所示那樣,本實施例模式所示的發光元件包括如下結構:在一對電極(陽極101及陰極102)之間夾住包括發光區域的第一EL層103及第二EL層107,並且在第一EL層103和第二EL層107之間從陽極101側按順序層疊電子注入緩衝層104、電子繼電層105以及電荷產生區域106。
本實施例模式中的陽極101、陰極102、電子注入緩衝層104、電子繼電層105以及電荷產生區域106可以使用與實施例模式1所說明的材料相同的材料。
在本實施例模式中,第一EL層103具有呈現在藍色至藍綠色的波長範圍具有峰值的發射光譜的第一發光層103-1、呈現在黃色至橙色的波長範圍具有峰值的發射光譜的第二發光層103-2。此外,第二EL層107具有呈現在藍綠色至綠色的波長範圍具有峰值的發射光譜的第三發光層107-1、呈現在橙色至紅色的波長範圍具有峰值的發射光譜的第四發光層107-2。此外,第一發光層103-1和第二發光層103-2也可以反順序層疊。另外,第三發光層107-1和第四發光層107-2也可以反順序層疊。
當對這種發光元件以陽極101側為正且陰極102側為負的方式來施加偏壓時,從陽極101注入的電洞和產生在電荷產生區域106中的藉由電子繼電層105及電子注入緩衝層104注入的電子在第一發光層103-1或第二發光層103-2中重新結合而得到第一發光330。再者,從陰極102注入的電子和產生在電荷產生區域106中的電洞在第三發光層107-1或第四發光層107-2中重新結合而得到第二發光340。
由於第一發光330是將從第一發光層103-1及第二發光層103-2兩者的發光組合的發光,因此如圖24B所示那樣呈現在藍色至藍綠色的波長範圍以及黃色至橙色的波長範圍兩者皆具有峰值的發射光譜。換言之,第一EL層103呈現2波長型的白色或近似白色的顏色的發光。此外,由於第二發光340是將從第三發光層107-1及第四發光層107-2兩者的發光組合的發光,因此如圖24B所示那樣呈現在藍綠色至綠色的波長範圍以及橙色至紅色的波長範圍兩者皆具有峰值的發射光譜。換言之,第二EL層107呈現與第一EL層103不同的2波長型的白色或近似白色的顏色的發光。
從而,在本實施例模式中的發光元件中,第一發光330及第二發光340重疊,其結果可以獲得到涵蓋藍色至藍綠色的波長範圍、藍綠色至綠色的波長範圍、黃色至橙色的波長範圍、橙色至紅色的波長範圍的發光。
在本實施例模式中,例如即使第一發光層103-1(呈 現在藍色至藍綠色的波長範圍具有峰值的發射光譜)的發光亮度隨時間劣化或因電流密度變化,也對於整個光譜的第一發光層103-1的影響為約1/4,因此色度的偏差較小。
注意,上述說明第一EL層103呈現在藍色至藍綠色的波長範圍以及黃色至橙色的波長範圍兩者皆具有峰值的光譜,並且第二EL層107呈現在藍綠色至綠色的波長範圍以及橙色至紅色的波長範圍兩者皆具有峰值的光譜的情況作為例子,但是也可以彼此相反。換言之,也可以採用第二EL層107呈現在藍色至藍綠色的波長範圍以及黃色至橙色的波長範圍兩者皆具有峰值的發射光譜,並且第一EL層103呈現在藍綠色至綠色的波長範圍以及橙色至紅色的波長範圍兩者皆具有峰值的光譜的結構。此外,第一EL層103及第二EL層107也可以分別具有形成有發光層以外的層的疊層結構。
接著,說明可以用於本實施例模式所示的發光元件的EL層的材料作為發光性的有機化合物。注意,可以應用於本實施例模式所示的發光元件的材料並不局限於如下材料。
例如,藉由使用二萘嵌苯、2,5,8,11-四-叔丁基二萘嵌苯(簡稱:TBP)、9,10-二苯蒽等作為客體材料並將該客體(guest)材料分散在合適的主體(host)材料中,可以得到藍色至藍綠色發光。此外,可以從苯乙烯基亞芳香基衍生物如4,4’-雙(2,2-二苯基乙烯基)聯苯(簡稱: DPVBi)等或蒽衍生物如9,10-二-2-萘基蒽(簡稱:DNA)、9,10-雙(2-萘基)-2-叔丁基蒽(簡稱:t-BuDNA)等得到藍色至藍綠色發光。另外,還可以使用聚合物如聚(9,9-二辛基芴)等。此外,作為藍色發光的客體材料,最好使用苯乙烯胺衍生物,可以舉出N,N’-雙〔4-(9H-咔唑-9-基)苯基〕-N,N’-二苯基二苯乙烯-4,4’-二胺(簡稱:YGA2S)、N,N’-二苯基-N,N’-雙(9-苯基-9H-咔唑-3-基)二苯乙烯-4,4’-二胺(簡稱:PCA2S)等。 尤其是,最好使用YGA2S,因為它在450nm附近具有峰值。此外,作為主體材料,最好使用蒽衍生物,並最好使用9,10-雙(2-萘基)-2-叔丁基蒽(簡稱:t-BuDNA)、9-〔4-(10-苯基-9-蒽基)苯基〕-9H-咔唑(簡稱:CzPA)。尤其是,最好使用CzPA,因為它在電化學上穩定。
例如,藉由使用香豆素30、香豆素6等香豆素類色素、雙〔2-(2,4-二氟苯基)吡啶醇〕吡啶甲醯合銥(簡稱:FIrpic)、雙(2-苯基吡啶醇)乙醯丙酮銥(簡稱:Ir(ppy)2(acac))等作為客體材料並將該客體材料分散在合適的主體材料中,可以得到藍綠色至綠色發光。此外,藉由將上述的二萘嵌苯或TBP以5wt%以上的高濃度分散在合適的主體材料中,也可以得到藍綠色至綠色發光。另外,也可以從BAlq、Zn(BTZ)2、雙(2-甲基-8-羥基喹啉)氯鎵(Ga(mq)2Cl)等金屬配合物得到藍綠色至綠色發光。此外,也可以使用聚合物如聚(對-亞苯基亞乙烯 基)等。另外,作為藍綠色至綠色的發光層的客體材料,最好使用蒽衍生物,因為它可以得到高效率的發光。例如藉由使用9,10-雙{4-〔N-(4-二苯基氨基)苯基-N-苯基〕氨基苯基}-2-叔丁基蒽(簡稱:DPABPA)可以得到高效率的藍綠色發光。此外,由於可以得到高效率的綠色發光,所以最好使用其2位由氨基取代的蒽衍生物,其中最好使用N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCAPA),因為它的使用壽命尤其長。作為這些的主體材料,最好使用蒽衍生物,其中最好使用上述的CzPA,因為它在電化學上穩定。另外,在組合綠色發光和藍色發光來製造在藍色至綠色的波長範圍具有兩個峰值的發光元件的情況下,若使用CzPA之類的電子傳輸性蒽衍生物作為藍色發光層的主體並且使用NPB之類的電洞傳輸性芳香胺化合物作為綠色發光層的主體,則可以在藍色發光層和綠色發光層的介面處得到發光,因此是最好的。換言之,在此情況下,作為2PCAPA之類的綠色發光材料的主體,最好使用如NPB之類的芳香胺化合物。
例如,藉由使用紅熒烯、4-(二氰基亞甲基)-2-〔對-(二甲基氨基)苯乙烯基〕-6-甲基-4H-吡喃(簡稱:DCM1)、4-(二氰基亞甲基)-2-甲基-6-(9-久洛尼定(julolidyl))乙炔基-4H-吡喃(簡稱:DCM2)、雙〔2-(2-噻吩基)吡啶醇〕乙醯丙酮銥(Ir(thp)2(acac))、雙-(2-苯基喹啉)乙醯丙酮銥(Ir(pq)2(acac))等作為客體材料並將該客體材料分散在 合適的主體材料中,可以得到黃色至橙色發光。尤其是,最好使用紅熒烯之類的並四苯衍生物,因為它具有高效率並在化學上很穩定。作為在此情況下的主體材料,最好使用NPB之類的芳香胺化合物。作為其他主體材料,還可以使用雙(8-羥基喹啉)鋅(簡稱:Znq2)或雙〔2-肉桂醯-8-羥基喹啉〕鋅(簡稱:Znsq2)等的金屬配合物。此外,也可以使用聚合物如聚(2,5-二烷氧基-1,4-亞苯基乙烯)等。
例如,藉由使用4-(二氰基亞甲基)-2,6-雙〔對-(二甲氨基)苯乙烯基〕-4H-吡喃(簡稱:BisDCM)、2-(2-{2-〔4-(二甲基氨基)苯基〕乙烯基}-6-甲基-4H-吡喃-4-亞基)丙二腈(簡稱:DCM1)、4-(二氰基亞甲基)-2-甲基-6-(9-久洛尼定)乙炔基-4H-吡喃(簡稱:DCM2)、雙〔2-(2-噻吩基)吡啶醇〕乙醯丙酮銥(Ir(thp)2(acac))等作為客體材料並將該客體材料分散在合適的主體材料中,可以得到橙色至紅色發光。也可以從雙(8-羥基喹啉)鋅(簡稱:Znq2)、雙〔2-肉桂醯基-8-羥基喹啉〕鋅(簡稱:Znsq2)等金屬配合物得到橙色至紅色發光。此外,也可以使用聚合物如聚(3-烷基噻吩)等。作為呈現紅色發光的客體材料,最好使用4-(二氰基亞甲基)-2,6-雙〔對-(二甲基氨基)苯乙烯基〕-4H-吡喃(簡稱:BisDCM)、2-(2-{2-〔4-(二甲基氨基)苯基〕乙烯基}-6-甲基-4H-吡喃-4-亞基)丙二腈(簡稱:DCM1)、4-(二氰基亞甲基)-2-甲基-6-(9-久洛尼定) 乙炔基-4H-吡喃(簡稱:DCM2)、{2-異丙基-6-〔2-(2,3,6,7-四氫-1,1,7,7-四甲基-1H,5H-苯並〔ij〕喹嗪-9-基)乙烯基〕-4H-吡喃-4-亞基}丙二腈(簡稱:DCJTI)、{2,6-雙〔2-(2,3,6,7-四氫-8-甲氧基-1,1,7,7-四甲基-1H,5H-苯並〔ij〕喹嗪-9-基)乙烯基〕-4H-吡喃-4-亞基}丙二腈(簡稱:BisDCJTM)之類的4H-吡喃衍生物,因為它的效率高。尤其是,由於DCJTI、BisDCJTM在620nm附近具有發光的峰值,因此是最好的。
注意,可以使用其波長短於發光有機化合物的主體材料或其能隙較大的主體材料作為在上述結構中的合適主體材料。具體地說,主體材料可以從以實施例模式1所示的例子為代表的電洞傳輸材料或電子傳輸材料中適當地選擇。此外,也可以使用4,4’-雙(N-咔唑基)-聯苯(簡稱:CBP)、4,4’,4”-三(N-咔唑基)三苯胺(簡稱:TCTA)、1,3,5-三〔4-(N-咔唑基)苯基〕苯(簡稱:TCPB)等。
在本實施例模式所示的發光元件中,第一EL層的發射光譜及第二EL層的發射光譜重疊,其結果可以得到涵蓋藍色至藍綠色的波長範圍、藍綠色至綠色的波長範圍、黃色至橙色的波長範圍、橙色至紅色的波長範圍的白色發光。
再者,也可以藉由調整各個疊層的膜厚來故意稍微地干涉光,抑制突出的尖銳峰值產生而得到梯形的發射光譜,以將其光接近於具有連續光譜的自然光。另外,也可 以藉由調整各個疊層的膜厚而故意稍微地干涉光,改變發射光譜的峰值的位置。藉由調整各個疊層的膜厚以使在發射光譜中出現的多個峰值的強度大致相同,並且縮短各個峰值的間隔,可以得到具有近於梯形的發射光譜的白色發光。
此外,在本實施例模式中示出在多層的發光層的每一個中重疊彼此處於補色關係的發光顏色而可以得到白色發光的EL層。如下說明因補色關係而呈現白色發光的EL層的具體結構。
設置在本實施例模式所示的發光元件中的EL層例如可以採用如下結構:從陽極101側按順序層疊包含具有高電洞傳輸性質之材料和第一發光材料的第一層、包含具有高電洞傳輸性質之材料和第二發光材料的第二層、包含具有高電子傳輸性質之材料和第二發光材料的第三層。
在本實施例模式所示的發光元件的EL層中,為了得到白色發光,需要第一發光材料和第二發光材料兩者皆發射光。從而,為了調整EL層內的載流子的傳輸性,最好具有高電洞傳輸性質之材料和具影高電子傳輸性質之材料都是主體材料。此外,作為可以用於EL層的具有高電洞傳輸性質之材料或高電子傳輸性質之材料,可以適當地使用實施例模式1所示的材料。
此外,第一發光材料及第二發光材料可以選擇性地使用各個發光顏色處於補色關係的材料。作為補色關係,可以舉出藍色和黃色或藍綠色和紅色等。作為發出藍色光、 黃色光、藍綠色光和紅色光的材料,例如從以上列舉的發光材料中適當地選擇出即可。另外,藉由使第二發光材料的發光波長比第一發光材料的發光波長短,可以將第二發光材料的一部分激發能量傳遞到第一發光材料中,而使第一發光材料發光。因此,在本實施例模式的發光元件中,最好第二發光材料的發光峰值波長比第一發光材料的發光峰值波長短。
在本實施例模式所示的發光元件的結構中,可以得到從第一發光材料的發光和從第二發光材料的發光兩者,並由於第一發光材料和第二發光材料的發光顏色彼此處於補色關係,因此可以獲得到白色發光。此外,藉由採用本實施例模式所示的發光元件的結構,可以得到使用壽命長的發光元件。
注意,本實施例模式所示的結構可以與其他實施例模式所示的結構適當地組合而使用。
實施例模式6
在本實施例模式中,使用圖5A至5C來說明包括上述實施例模式所示的發光元件的發光裝置的一個模式。圖5A至5C是該發光裝置的剖面圖。
在圖5A至5C中,被矩形的虛線所包圍的部分是用來驅動發光元件12而設置的電晶體11。發光元件12在第一電極13和第二電極14之間具有包括有機化合物的層15,該包括有機化合物的層具有n(n是2以上的自然 數)層的EL層,並且在第m(m是自然數,1mn-1)EL層和第(m+1)EL層之間從陽極側按順序包括電子注入緩衝層、電子繼電層以及電荷產生區域。此外,每個EL層至少設置有發光層,並且採用除了發光層以外,適當地設置電洞注入層、電洞傳輸層、電子傳輸層或電子注入層的結構。換言之,發光元件12的結構是實施例模式1至實施例模式4所示的結構。電晶體11的汲極區藉由穿過第一層間絕緣膜16(16a、16b、16c)的佈線17與第一電極13電連接。藉由分隔層18,發光元件12與相鄰地設置的其他發光元件分離。具有這種結構的本實施例模式的發光裝置在本實施例模式中設置在基板10上。
此外,圖5A至5C所示的電晶體11是以半導體層為中心在與基板相反的一側設置有閘極電極的頂閘極型電晶體。注意,電晶體11的結構沒有特別的限制,例如也可以使用底閘極型電晶體。此外,當採用底閘極型時,既可以使用在形成通道的半導體層之上形成保護膜的電晶體(通道保護型),又可以使用形成通道的半導體層的一部分成為凹狀的電晶體(通道蝕刻型)。
此外,構成電晶體11的半導體層可以使用結晶性、非晶性的任一種。另外,也可以使用微晶半導體(微晶體半導體)、氧化物半導體等。
對於氧化物半導體層,可以使用選自銦、鎵、鋁、鋅以及錫中的元素的複合氧化物。例如,作為該例子,可以舉出氧化鋅(ZnO)、含有氧化鋅的氧化銦(IZO)、由 氧化銦、氧化鎵、氧化鋅所構成的氧化物(IGZO)。作為結晶半導體層的具體例子,可以舉出由單晶矽、多晶矽、矽鍺等形成的半導體層。它可以藉由雷射結晶化法來形成,例如,可以藉由使用鎳等的固相生長法而結晶化來形成。
此外,在半導體層由非晶材料例如非晶矽形成的情況下,最好發光裝置具有電路,該電路藉由使電晶體11以及其他電晶體(構成用來驅動發光元件的電路的電晶體)都為N通道電晶體而構成。另外,由於大多數的氧化物半導體例如氧化鋅(ZnO)、含有氧化鋅的氧化銦(IZO)、由氧化銦、氧化鎵、氧化鋅構成的氧化物(IGZO)等為N型半導體,所以將這些化合物用作主動層的電晶體成為N通道型。在除了上述以外的情況下,既可以採用具有由N通道型和P通道型中的任一種電晶體所構成的電路的發光裝置,又可以採用具有由此兩種電晶體所構成的電路的發光裝置。
此外,第一層間絕緣膜16可以為如圖5A和5C所示的多層或單層。此外,層間絕緣膜16a係由無機物如氧化矽或氮化矽來予以形成,層間絕緣膜16b係由丙烯酸樹脂、矽氧烷(由矽(Si)和氧(O)鍵形成骨架結構的作為取代基至少包含氫的有機基)或可以藉由可塗布而形成膜的具有自我平整性材料例如氧化矽來予以形成。再者,層間絕緣膜16c係由含氬(Ar)的氮化矽膜來予以形成。另外,對構成各個層的材料沒有特別的限制,而還可以使 用除了以上材料之外的材料。此外,還可以進一步地組合成由上述材料以外的材料構成的層。如上所述,可以使用無機物和有機物兩者來形成層間絕緣膜16a至16c,或可使用無機膜和有機膜的任一種來形成層間絕緣膜16a至16c。
分隔層18的邊緣部最好具有曲率半徑連續變化的形狀。此外,分隔層18係藉由使用丙烯酸樹脂、矽氧烷、抗蝕劑、氧化矽等來予以形成。另外,分隔層18可以藉由無機膜和有機膜中的任一者或兩者來予以形成。
此外,在圖5A和5C中採用只有第一層間絕緣膜16a至16c係設置在電晶體11和發光元件12之間的結構。但是,如圖5B所示,也可以採用在電晶體11和發光元件12之間除了第一層間絕緣膜16(16a、16b)以外還設置第二層間絕緣膜19(19a、19b)的結構。在圖5B所示的發光裝置中,第一電極13穿過第二層間絕緣膜19而與佈線17連接。
與第一層間絕緣膜16同樣,第二層間絕緣膜19可以為多層或單層。此外,層間絕緣膜19a係由丙烯酸樹脂、矽氧烷(由矽(Si)和氧(O)鍵所形成骨架結構的作為取代基至少包含氫的有機基)或可以藉由可塗布而形成膜的具有自我平整性材料例如氧化矽來予以形成。再者,層間絕緣膜19b係由含氬(Ar)的氮化矽膜來予以形成。另外,對構成各個層的材料沒有特別的限制,而還可以使用除了以上材料之外的材料。此外,還可以進一步地組合成 由上述材料以外的材料所構成的層。如上所述,可以使用無機物和有機物兩者來形成層間絕緣膜19a、19b,或可使用無機膜和有機膜的任一種來形成層間絕緣膜19a、19b。
當在發光元件12中第一電極和第二電極都是由具有透光性的材料所構成時,如圖5A的空心箭頭所示,可以從第一電極13側和第二電極14側兩者取得發光。此外,當只有第二電極14係由具有透光性的材料所構成時,如圖5B的空心箭頭所示,可以只從第二電極14側取得發光。在此情況下,第一電極13最好由具有高反射率的材料所構成或者最好將由具有高反射率的材料所構成的膜(反射膜)設置在第一電極13的下方。當只有第一電極13由具有透光性的材料構成時,如圖5C的空心箭頭所示,可以只從第一電極13側取得發光。在此情況下,第二電極14最好由具有高反射率的材料構成或者最好將反射膜設置在第二電極14的上方。
此外,發光元件12既可以採用當施加電壓以使第二電極14的電位高於第一電極13的電位時操作的方式層疊層15的結構,又可以採用當施加電壓以使第二電極14的電位低於第一電極13的電位時操作的方式層疊層15的結構。在前一情況中,電晶體11是N通道電晶體,在後一情況中,電晶體11是P通道電晶體。
此外,雖然在圖5A至5C所示的剖面圖中只示出一個發光元件,但是在像素部中,以矩陣形狀而設置有多個 發光元件。另外,在進行由R(紅)、G(綠)、B(藍)的彩色成分構成的彩色顯示時,在像素部中分別形成有多個可得到三種(R、G、B)發光的發光元件。此外,彩色成分不局限於三種顏色,既可以使用四種以上的顏色,又可以使用R,G,和B以外的顏色。例如,還可以加上白色來實現R,G,B,和W(W是白色)。
作為彩色成分不同的發光元件的製造方法,可以使用如下方法等:對每個EL層進行分別塗敷的方法;以可得到白色發光的方式形成所有EL層,並與濾色片組合來得到不同彩色成分的發光元件的方法;以可得到藍色發光或與其波長相比短的波長的發光的方式形成所有EL層,並與顏色轉換層組合而得到不同彩色成分的發光元件的方法。
如上所述,在本實施例模式中,說明了使用電晶體來控制發光元件的驅動的主動矩陣型發光裝置,此外,也可以採用被動矩陣型發光裝置,其中,將電晶體等的驅動元件不設置在與發光元件同一基板之上來驅動發光元件。圖6A示出應用實施例模式1至實施例模式4所示的發光元件來製造的被動矩陣型發光裝置的立體圖。另外,圖6B是沿著圖6A的虛線X-Y所取出的剖面圖。
在圖6A和6B中,在基板951之上在電極952和電極956之間設置有含有機化合物的層955。該含有機化合物的層具有n(n是2以上的自然數)層的EL層,並且在第m(m是自然數,1mn-1)EL層和第(m+1)EL層 之間從陽極側按順序包括電子注入緩衝層、電子繼電層以及電荷產生區域。此外,每個EL層至少設置有發光層,並且採用除了發光層以外,適當地設置電洞注入層、電洞傳輸層、電子傳輸層或電子注入層的結構。電極952的端部被絕緣層953所覆蓋。在絕緣層953之上設置分隔層954。分隔層954的側壁具有傾斜,使得其中一者的側壁和另一者的側壁之間的距離越靠近基板表面越變窄。換言之,短邊方向的分隔層954的剖面是梯形,底邊(朝向與絕緣層953的平面方向相同的方向並且與絕緣層953相接觸的側邊)比上側邊(朝向與絕緣層953的平面方向相同的方向並且與絕緣層953不接觸的側邊)短。如上所述,藉由設置分隔層954,可以防止發光元件的起因於靜電等的缺陷。另外,藉由使被動矩陣型發光裝置包括實施例模式1至實施例模式4所示的發光元件,可以獲得到耗電量低的發光裝置。
由於本實施例模式所示的發光裝置使用在上述實施例模式中示出一例的發光元件,因此可以得到亮度高且驅動電壓低,並且耗電量低的發光裝置。
實施例模式7
在本實施例模式中,說明其一部分包括實施例模式6所示的發光裝置的電子裝置。本實施例模式所示的電子裝置包括實施例模式1至實施例模式4所示的發光元件,並且具有亮度高且驅動電壓低,並且耗電量低的顯示部。
作為本實施例模式的電子裝置,可以舉出攝像機、數位相機、護目鏡型顯示器、導航系統、聲音重播裝置(車載音響、身歷聲組合音響等)、電腦、遊戲機、可攜式資訊終端(可攜式電腦、移動式電話、可攜式遊戲機或電子圖書等)、具有記錄媒體的影像重播裝置(具體為重播數位影音光碟(DVD)等記錄媒體並且具有可以顯示其影像的顯示裝置的裝置)等。在圖7A至7E中示出這些電子裝置的具體例子。
圖7A示出可攜式資訊終端裝置9200的一例。可攜式資訊終端裝置9200內置有電腦而可以進行各種資料處理。作為這種可攜式資訊終端裝置9200,可以舉出個人數位助理(PDA)。
可攜式資訊終端裝置9200係由殼體9201及殼體9203的兩個殼體所構成。殼體9201和殼體9203係由連結部9207而被連結為可折疊方式。殼體9201係組裝有顯示部9202,殼體9203係具備有鍵盤9205。當然,可攜式資訊終端裝置9200的結構不局限於如上所述的結構,可以採用適當地設置其他輔助裝置的結構。將與上述實施例模式所說明的發光元件相同的發光元件排列成矩陣形狀以構成顯示部9202。該發光元件具有亮度高、驅動電壓低且耗電量少的特徵。由於由該發光元件構成的顯示部9202也具有相同的特徵,因此該可攜式資訊終端裝置實現低耗電量化。
圖7B示出根據本實施例模式的數位攝像機9500的一 例。數位攝像機9500的殼體9501係組裝有顯示部9503,並且還設置有各種操作部。注意,對數位攝像機9500的結構沒有特別的限制,而可以採用適當地設置其他輔助裝置的結構。
在該數位攝像機中,將與上述實施例模式所說明的發光元件相同的發光元件排列成矩陣形狀以構成顯示部9503。該發光元件具有驅動電壓低、亮度高並且耗電量少的特徵。由於由該發光元件構成的顯示部9503也具有相同的特徵,因此該數位攝像機實現低耗電量化。
圖7C示出根據本實施例模式的移動式電話機9100的一例。移動式電話機9100係由殼體9102及殼體9101的兩個殼體所構成,並且殼體9102和殼體9101係藉由連結部9103而被連結為可折疊方式。殼體9102係組裝有顯示部9104,殼體9101係設置有操作鍵9106。注意,對移動式電話機9100的結構沒有特別的限制,而可以採用適當地設置其他輔助裝置的結構。
在該移動式電話機中,將與上述實施例模式所說明的發光元件相同的發光元件排列成矩陣形狀以構成顯示部9104。該發光元件具有亮度高、驅動電壓低且耗電量少的特徵。由於由該發光元件構成的顯示部9104也具有相同的特徵,因此該移動式電話機實現低耗電量化。此外,也可以使用上述實施例模式所示的發光元件作為設置在移動式電話機等中的顯示器的背光燈。
圖7D示出可攜式電腦9400的一例。電腦9400具備 能夠開閉地連結的殼體9401和殼體9404。殼體9401係組裝有顯示部9402,殼體9404係具備有鍵盤9403等。 注意,對電腦9400的結構沒有特別的限制,而可以採用適當地設置其他輔助裝置的結構。
在該電腦中,將與上述實施例模式所說明的發光元件相同的發光元件排列成矩陣形狀以構成顯示部9402。該發光元件具有亮度高、驅動電壓低並且耗電量少的特徵。 由於由該發光元件構成的顯示部9402也具有相同的特徵,因此該電腦實現低耗電量化。
圖7E示出電視裝置9600的一例。在電視裝置9600中,殼體9601係組裝有顯示部9603。利用顯示部9603可以顯示影像。此外,在此示出利用支架9605來支撐殼體9601的結構。
可以藉由利用殼體9601所具備的操作開關、分開提供的遙控器9610來進行電視裝置9600的操作。藉由利用遙控器9610所具備的操作鍵9609,可以進行頻道及音量的操作,並可以對在顯示部9603上顯示的影像進行操作。此外,也可以採用在遙控器9610中設置顯示從該遙控器9610輸出的資訊的顯示部9607的結構。
此外,電視裝置9600採用具備接收機及數據機等的結構。可以藉由利用接收機來接收一般的電視廣播。再者,藉由數據機而被連接到有線或無線方式的通信網路,也可以進行單向(從發送者到接收者)或雙向(在發送者和接收者之間或在接收者之間等)的資訊通信。
在該電視裝置中,藉由將與上述實施例模式所說明的發光元件相同的發光元件排列成矩陣形狀而構成顯示部9603和顯示部9607的至少其中一者。該發光元件具有亮度高、驅動電壓低並且耗電量少的特徵。由於由該發光元件構成的顯示部也具有相同的特徵。
如上所述,上述實施例模式所示的發光裝置的應用範圍很廣泛,可以將該發光裝置應用於各種領域的電子裝置。藉由使用實施例模式1至實施例模式4所示的發光元件,可以提供具有呈現高亮度的發光的耗電量低的顯示部的電子裝置。
此外,也可以將上述實施例模式所示的發光裝置用作照明裝置。使用圖8對將上述實施例模式所示的發光裝置用作照明裝置的一個實施例來進行說明。
圖8是將在上述實施例模式中示出一例的發光裝置用作照明裝置的臺燈以及室內的照明裝置的例子。圖8所示的臺燈包括光源3000,作為光源3000使用在上述實施例模式中示出一例的發光裝置。從而,可以得到耗電量低的發光裝置。此外,因為該發光裝置可以實現大面積化,所以可以將照明裝置用作大面積照明。另外,由於該發光裝置是薄型且耗電量低,因此可以用作薄型化、低耗電量化的照明裝置。此外,由於該發光裝置可以實現可撓性化,因此例如像照明裝置3002那樣可以得到捲曲型照明裝置(roll-type lighting device)。如上所述,也可以在將本實施例模式所示的發光裝置用作室內照明裝置3001、 3002的房間內設置圖7E所說明的電視裝置。
如上所述,實施例模式6所示的發光裝置的應用範圍很廣泛,可以將該發光裝置應用於各種領域的電子裝置。注意,本實施例模式可以與實施例模式1至實施例模式5適當地組合而使用。
實施例1
在本實施例中使用圖9A和9B來說明本發明的一個實例的發光元件。以下示出在本實施例及實施例2至6中使用的材料的化學式。
以下示出本實施例的發光元件1及對照發光元件1的製造方法。
首先,說明發光元件1(參照圖9A)。在玻璃基板2100之上藉由濺射法形成含氧化矽的銦錫氧化物膜來形成第一電極2101。此外,其膜厚度為110nm,並電極面積為2mm×2mm。
接著,以將形成有第一電極2101的面成為下面的方式將形成有第一電極2101的基板係固定在設置在真空蒸鍍設備內的基板支架上,並減壓到約10-4Pa,然後在第一電極2101上共蒸鍍電洞傳輸性高的4,4’-雙〔N-(1-萘基)-N-苯基氨基〕聯苯(簡稱:NPB)和受體材料的氧化鉬(VI),從而形成包含複合有機化合物和無機化合物而形成的複合材料的第一電荷產生區域2103a。其膜厚度為50nm,並且將NPB和氧化鉬(VI)的重量比調整為4:1(=NPB:氧化鉬)。另外,共蒸鍍法是指在一個處理室中從多個蒸發源同時進行蒸鍍的蒸鍍法。
接著,藉由用電阻加熱的蒸鍍法在第一電荷產生區域 2103a上形成10nm厚的NPB膜,以形成電洞傳輸層2103b。
再者,藉由共蒸鍍9-〔4-(N-咔唑基)〕苯基-10-苯基蒽(簡稱:CzPA)和9,10-雙{4-〔N-(4-二苯基氨基苯基)-N-苯基氨基〕苯基}-2-叔丁基蒽(簡稱:DPABPA),在電洞傳輸性2103b上形成30nm厚的發光層2103c。在此,將CzPA和DPABPA的重量比調整為1:0.1(=CzPA:DPABPA)。此外,CzPA是具有電子傳輸性質的材料,並且客體材料的DPABPA是呈現藍綠色發光的材料。
然後,藉由使用電阻加熱的蒸鍍法在發光層2103c上形成10nm厚的三(8-羥基喹啉)鋁(簡稱:Alq)的膜,以形成電子傳輸層2103d。因此,形成包括第一電荷產生區域2103a、電洞傳輸層2103b、發光層2103c以及電子傳輸層2103d的第一E1層2103。
接著,藉由共蒸鍍紅菲繞啉(簡稱:BPhen)和鋰(Li),在電子傳輸層2103d上形成10nm厚的電子注入緩衝層2104。在此,將BPhen和Li的重量比調整為1:0.02(=BPhen:Li)。
接著,藉由蒸鍍3,4,9,10-苝四羧酸-雙-苯並咪唑(perylenetetracarboxylic-bis-benzimidazole)(簡稱:PTCBI),在電子注入緩衝層2104上形成3nm厚的電子繼電層2105。此外,根據循環伏安法(CV)測量的結果可知PTCBI的LUMO能階約為-4.0eV。
接著,藉由在電子繼電層2105上共蒸鍍具有高電洞傳輸性質之材料的NPB和受體材料的氧化鉬(VI),以形成第二電荷產生區域2106。將其膜厚度設定為20nm,並且將NPB和氧化鉬(VI)的重量比調整為4:1(=NPB:氧化鉬)。
接著,在第二電荷產生區域2106上形成第二EL層2107。其形成方法是如下方法:首先,藉由用電阻加熱的蒸鍍法在第二電荷產生區域2106上形成10nm厚的NPB膜,來形成電洞傳輸層2107a。
然後,藉由共蒸鍍三(8-羥基喹啉)鋁(簡稱:Alq)和4-二氰基亞甲基-2-異丙基-6-〔2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯並〔ij〕喹嗪-9-基)乙烯基〕-4H-吡喃(簡稱:DCJTI),在電洞傳輸層2107a上形成40nm厚的發光層2107b。在此,將Alq和DCJTI的重量比調整為1:0.01(=Alq:DCJTI)。此外,Alq是具有電子傳輸性質的材料,並且客體材料的DCJTI是呈現紅色的發光的材料。
接著,藉由在發光層2107b上蒸鍍10nm厚的Alq,然後蒸鍍20nm厚的BPhen而層疊,形成電子傳輸層2107c。在電子傳輸層2107c上蒸鍍1nm厚的氟化鋰(LiF)來形成電子注入層2107d。因此,形成包括電洞傳輸層2107a、發光層2107b、電子傳輸層2107c以及電子注入層2107d的第二EL層2107。
最後,藉由使用電阻加熱的蒸鍍法在電子注入層 2107d上形成200nm厚的鋁膜形成第二電極2102,以製造發光元件1。
下面,說明對照發光元件1(參照圖9B)。對照發光元件1採用從發光元件1去除電子繼電層2105的結構,並採用與發光元件1相同的製造方法來形成其他層。在對照發光元件1中,在形成電子注入緩衝層2104之後,在電子注入緩衝層2104上形成第二電荷產生區域2106。藉由上述步驟,獲得到本實施例的對照發光元件1。
以下表1示出發光元件1以及對照發光元件1的元件結構。
在氮氣氛圍的手套箱中,以不使各發光元件暴露於大氣的方式對藉由上述方法得到的發光元件1及對照發光元件1進行封裝,然後對這些發光元件的操作特性進行測量。此外,在室溫(保持為25℃的氛圍)下進行測量。
圖10示出發光元件1及對照發光元件1的電壓-亮度特性。在圖10中,橫軸表示所施加的電壓(V),縱軸表示亮度(cd/m2)。此外,圖11示出電流密度-亮度特性。在圖11中,橫軸表示電壓(V),縱軸表示電流密度(mA/cm2)。另外,以下表2示出大約1000cd/m2的各 元件的主要特性初始值。
此外,根據表2的CIE色度座標可知,發光元件1及對照發光元件1都示出白色發光。這是因為得到源自包含在第一EL層2103中的DPABPA的藍綠色發光以及源自包含在第二EL層2107中的DCJTI的紅色發光兩者的緣故。
根據圖10可知當施加相同的電壓時,與對照發光元件1相比,設置有電子繼電層的發光元件1可以得到高亮度。此外,根據圖11可知發光元件1的電流密度高於對照發光元件1的電流密度。
如上所述,可以確認到本實施例的發光元件1可以得到作為發光元件的特性,並且其充分地操作。此外,可以確認到發光元件1是能夠以低電壓來予以驅動的發光元件。
實施例2
在本實施例中,使用圖12A和12B來說明本發明的一個實施例的發光元件。此外,在本實施例所示的發光元件及對照發光元件中,對與上述實施例同一部分或具有相 同功能的部分使用相同附圖標記,並且省略重複說明。
以下示出本實施例的發光元件2及對照發光元件2的製造方法。
首先,說明發光元件2(參照圖12A)。直至電子繼電層2105,本實施例的發光元件2與實施例1所示的發光元件1相同地製造。在本實施例的發光元件2中,藉由在電子繼電層2105上蒸鍍20nm厚的受體材料的氧化鉬(VI),接著蒸鍍10nm厚的具有高電洞傳輸性質之材料的NPB而層疊,以形成第二電荷產生區域2106。
接著,在第二電荷產生區域2106上製造第二EL層2108。其製造方法是如下方法:首先,藉由共蒸鍍Alq和DCJTI,在第二電荷發生區域2106上形成40nm厚的發光層2108a。在此,將Alq和DCJTI的重量比調整為1:0.01(=Alq:DCJTI)。此外,Alq是具有電子傳輸性質的材料,並且客體材料的DCJTI是呈現紅色的發光的材料。
接著,藉由在發光層2108a上蒸鍍10nm厚的Alq,然後蒸鍍20nm厚的BPhen而層疊,以形成電子傳輸層2108b。在電子傳輸層2108b上蒸鍍1nm厚的氟化鋰(LiF)來形成電子注入層2108c。因此,形成包括發光層2108a、電子傳輸層2108b以及電子注入層2108c的第二EL層2108。
最後,藉由使用電阻加熱的蒸鍍法在電子注入層2108c上形成20nm厚的鋁膜形成第二電極2102,以製造 發光元件2。
下面,說明對照發光元件2(參照圖12B)。本實施例的對照發光元件2採用從發光元件2去除電子繼電層2105的結構,並採用與發光元件2相同的製造方法來形成其他層。在對照發光元件2中,在形成電子注入緩衝層2104之後,在電子注入緩衝層2104上形成第二電荷產生區域2106。藉由上述步驟,獲得到本實施例的對照發光元件2。
以下表3示出發光元件2以及對照發光元件2的元件結構。
在氮氣氛圍的手套箱中,以不使各發光元件暴露於大氣的方式對藉由上述方法得到的發光元件2及對照發光元件2進行封裝,然後對這些發光元件的操作特性進行測量。此外,在室溫(保持為25℃的氛圍)下進行測量。
圖13示出發光元件2及對照發光元件2的電壓-亮度特性。在圖13中,橫軸表示所施加的電壓(V),縱軸表示亮度(cd/m2)。此外,圖14示出電流密度-亮度特性。在圖14中,橫軸表示電壓(V),縱軸表示電流密度(mA/cm2)。另外,以下表4示出1000cd/m2附近的各 元件的主要特性初始值。
此外,根據表4的CIE色度座標可知,發光元件2及對照發光元件2都示出白色發光。這是因為獲得到源自包含在第一EL層2103中的DPABPA的藍綠色發光以及源自包含在第二EL層2108中的DCJTI的紅色發光兩者的緣故。
根據圖13可知當施加相同的電壓時,與對照發光元件2相比,設置有電子繼電層的發光元件2可以得到高亮度。此外,根據圖14可知發光元件2的電流密度高於對照發光元件2的電流密度。
如上所述,可以確認到本實施例的發光元件2可以得到作為發光元件的特性,並且其充分地操作。此外,可以確認到發光元件2是能夠以低電壓來予以驅動的發光元件。
實施例3
在本實施例中使用圖9A和9B來說明本發明的一個實施例的發光元件。此外,在本實施例所示的發光元件及對照發光元件中,對與上述實施例同一部分或具有相同功 能的部分使用同一附圖標記,並且省略重複說明。
以下示出本實施例的發光元件3及對照發光元件3的製造方法。
首先,說明發光元件3(參照圖9A)。在本實施例的發光元件3中,第一EL層2103的電子傳輸層2103d以及電子注入緩衝層2104以外與實施例1所示的發光元件1相同地製造。在本實施例的發光元件3中,藉由在發光層2103c上蒸鍍10nm厚的Alq,然後蒸鍍10nm厚的BPhen而層疊,以形成電子傳輸層2103d。
接著,藉由在電子傳輸層2103d上蒸鍍0.1nm厚的氧化鋰(Li2O),以形成電子注入緩衝層2104。藉由上述步驟,獲得到本實施例的發光元件3。
下面,說明對照發光元件3(參照圖9B)。本實施例的對照發光元件3採用從發光元件3去除電子繼電層2105的結構,並採用與發光元件3相同的製造方法來形成其他層。在對照發光元件3中,在形成電子注入緩衝層2104之後,在電子注入緩衝層2104上形成第二電荷產生區域2106。藉由上述步驟,獲得到本實施例的對照發光元件3。
以下表5示出發光元件3以及對照發光元件3的元件結構。
在氮氣氛圍的手套箱中,以不使各發光元件暴露於大氣的方式對藉由上述方法得到的發光元件3及對照發光元件3進行封裝,然後對這些發光元件的操作特性進行測量。此外,在室溫(保持為25℃的氛圍)下進行測量。
圖15示出發光元件3及對照發光元件3的電壓-亮度特性。在圖15中,橫軸表示所施加的電壓(V),縱軸表示亮度(cd/m2)。此外,圖16示出電流密度-亮度特性。在圖16中,橫軸表示電壓(V),縱軸表示電流密度(mA/cm2)。另外,以下表6示出1000cd/m2附近的各元件的主要特性初始值。
此外,根據表6的CIE色度座標可知,發光元件3及對照發光元件3都示出白色發光。這是因為獲得到源自包含在第一EL層2103中的DPABPA的藍綠色發光以及源自包含在第二EL層2107中的DCJTI的紅色發光兩者的 緣故。
根據圖15可知當施加相同的電壓時,與對照發光元件3相比,設置有電子繼電層的發光元件3可以得到高亮度。此外,根據圖16可知發光元件3的電流密度高於對照發光元件3的電流密度。
如上所述,可以確認到本實施例的發光元件3可以得到作為發光元件的特性,並且其充分地操作。此外,可以確認到發光元件3是能夠以低電壓來予以驅動的發光元件。
實施例4
在本實施例中,使用圖12A和12B來說明本發明的一個實施例的發光元件。此外,在本實施例所示的發光元件及對照發光元件中,對與上述實施例同一部分或具有相同功能的部分使用同一附圖標記,並且省略重複說明。
以下示出本實施例的發光元件4及對照發光元件4的製造方法。
首先,說明發光元件4(參照圖12A)。在本實施例的發光元件4中,第一EL層2103的電子傳輸層2103d以及電子注入緩衝層2104以外與實施例2所示的發光元件2相同地製造。在本實施例的發光元件4中,藉由在發光層2103c上蒸鍍10nm厚的Alq,然後蒸鍍10nm厚的BPhen而層疊,以形成電子傳輸層2103d。
接著,藉由在電子傳輸層2103d上蒸鍍0.1nm厚的 氧化鋰(Li2O),以形成電子注入緩衝層2104。藉由上述步驟,獲得到本實施例的發光元件4。
下面,說明對照發光元件4(參照圖12B)。本實施例的對照發光元件4採用從發光元件4去除電子繼電層2105的結構,並採用與發光元件4相同的製造方法來形成其他層。在對照發光元件4中,在形成電子注入緩衝層2104之後,在電子注入緩衝層2104上形成第二電荷產生區域2106。藉由上述步驟,獲得到本實施例的對照發光元件4。
以下表7示出發光元件4以及對照發光元件4的元件結構。
在氮氣氛圍的手套箱中,以不使各發光元件暴露於大氣的方式對藉由上述方法得到的發光元件4及對照發光元件4進行封裝,然後對這些發光元件的操作特性進行測量。此外,在室溫(保持為25℃的氛圍)下進行測量。
圖17示出發光元件4及對照發光元件4的電壓-亮度特性。在圖17中,橫軸表示所施加的電壓(V),縱軸表示亮度(cd/m2)。此外,圖18示出電流密度-亮度特性。在圖18中,橫軸表示電壓(V),縱軸表示電流密度(mA/cm2)。另外,以下表8示出1000cd/m2附近的各 元件的主要特性初始值。
此外,根據表8的CIE色度座標可知,發光元件4及對照發光元件4都示出白色發光。這是因為獲得到源自包含在第一EL層2103中的DPABPA的藍綠色發光以及源自包含在第二EL層2108中的DCJTI的紅色發光兩者的緣故。
根據圖17可知當施加相同的電壓時,與對照發光元件4相比,設置有電子繼電層的發光元件4可以得到高亮度。此外,根據圖18可知發光元件4的電流密度高於對照發光元件4的電流密度。
如上所述,可以確認到本實施例的發光元件4可以獲得到作為發光元件的特性,並且其充分地操作。此外,可以確認到發光元件4是能夠以低電壓來予以驅動的發光元件。
實施例5
在本實施例中使用圖9A來說明本發明的一個實施例的發光元件。此外,在本實施例所示的發光元件及對照發光元件中,對與上述實施例同一部分或具有相同功能的部 分使用同一附圖標記,並且省略重複說明。
以下示出本實施例的發光元件3及對照發光元件5的製造方法。
本實施例的發光元件3與實施例3所示的發光元件3相同地製造(參照圖9A)。此外,在本實施例的對照發光元件5中,第二電荷產生區域2106以外與發光元件3相同地製造。在本實施例的對照發光元件5中,藉由在電子繼電層2105上蒸鍍20nm厚的NPB,形成第二電荷產生區域2106(參照圖9A)。藉由上述步驟,獲得到本實施例的對照發光元件5。
以下表9示出發光元件3以及對照發光元件5的元件結構。
在氮氣氛圍的手套箱中,以不使各發光元件暴露於大氣的方式對藉由上述方法得到的發光元件3及對照發光元件5進行封裝,然後對這些發光元件的操作特性進行測量。此外,在室溫(保持為25℃的氛圍)下進行測量。
圖19示出發光元件3及對照發光元件5的電壓-亮度特性。在圖19中,橫軸表示所施加的電壓(V),縱軸表示亮度(cd/m2)。此外,圖20示出電流密度-亮度特 性。在圖20中,橫軸表示電壓(V),縱軸表示電流密度(mA/cm2)。另外,以下表10示出1000cd/m2附近的各元件的主要特性初始值。
此外,如實施例3所述,發光元件3呈現白色發光,但是對照發光元件5源自DCJTI的紅色的光譜強度較弱,而呈現藍綠色發光(參照表10的色度座標)。據此可知,當第二電荷產生區域2106只由高電洞傳輸性材料(在本實施例中NPB)構成時,電洞不容易被注入到第二EL層2107中。
另一方面,由於發光元件3在第二電荷產生區域2106中包含具有高電洞傳輸性質之材料(在本實施例中NPB)和受體材料(在本實施例中氧化鉬),因此在第二電荷產生區域2106中產生電子的授受,並在第二電荷產生區域2106中產生電洞和電子。所產生的電洞藉由施加電壓容易移動在NPB上,並注入到第二EL層2107。此外,電子藉由施加電壓容易注入到電子繼電層2105,並到達第一EL層2103。從而,如圖19所示發光元件3的亮度高於對照發光元件5的亮度。另外,如圖20所示,與對照發光元件5相比,發光元件3可以以低電壓流過更 多的電流。
如上所述,可以確認到本實施例的發光元件3可以獲得到作為發光元件的特性,並且其充分地操作。此外,可以確認到發光元件3是能夠以低電壓來予以驅動的發光元件。
實施例6
在本實施例中使用圖9A及21來說明本發明的一個實施例的發光元件。此外,在本實施例所示的發光元件及對照發光元件中,對與上述實施例同一部分或具有相同功能的部分使用同一附圖標記,並且省略重複說明。
以下示出本實施例所使用的材料的化學式。注意,省略對於已表示結構式的材料的說明。
以下示出本實施例的發光元件5及對照發光元件6的製造方法。
首先,說明發光元件5(參照圖9A)。在本實施例的發光元件5中,第一EL層2103的發光層2103c以及第二 EL層2107的發光層2107b以外與實施例3所示的發光元件3相同地製造。在本實施例的發光元件5中,藉由共蒸鍍CzPA、香豆素30、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCAPA),在電洞傳輸層2103b上形成30nm厚的發光層2103c。此外,與發光層2103c相同,藉由共蒸鍍CzPA和2PCAPA,在電洞傳輸層2107a上形成30nm厚的發光層2107b。在發光層2103c及發光層2107b中,將CzPA和2PCAPA的重量比控制為1:0.05(=CzPA:2PCAPA)。此外,CzPA是具有電子傳輸性質之材料,並且客體材料的2PCAPA是呈現綠色的發光的材料。藉由上述步驟,獲得到本實施例的發光元件5。
下面,說明對照發光元件6(參照圖21)。本實施例的對照發光元件6採用從發光元件5去除電子繼電層2105、電荷產生區域2106以及第二EL層2107的結構,並採用與發光元件5相同的製造方法來形成其他層。如圖21所示,本實施例的對照發光元件6採用在一對電極之間具有一層EL層的結構。
在對照發光元件6中,在形成電子注入緩衝層2104之後,在電子注入緩衝層2104上形成第二電極2102。藉由上述步驟,獲得到本實施例的對照發光元件6。
以下表11示出發光元件5以及對照發光元件6的元件結構。
在氮氣氛圍的手套箱中,以不使各發光元件暴露於大氣的方式對藉由上述方法得到的發光元件5及對照發光元件6進行封裝,然後對這些發光元件的操作特性進行測量。此外,在室溫(保持為25℃的氛圍)下進行測量。
圖22示出發光元件5及對照發光元件6的電壓-電流密度特性。在圖22中,橫軸表示所施加的電壓(V),縱軸表示電流密度(mA/cm2)。此外,圖23示出電流密度-亮度特性。在圖23中,橫軸表示電流密度(mA/cm2),縱軸表示亮度(cd/cm2)。另外,以下表12示出1000cd/m2附近的各元件的主要特性初始值。
根據圖22可知,具有兩層EL層的本實施例的發光元件5當與具有一層EL層的對照發光元件6相同的電流密度的電流流過時,可以以大致2倍電壓驅動。此外,根據圖23可知,發光元件5當與對照發光元件6相同的電流 密度的電流流過時,呈現大致2倍的亮度(換言之電流效率大致為2倍)。由此可知,在本實施例的發光元件5中,幾乎沒有因在兩層EL層之間引入電子注入緩衝層、電子繼電層以及電荷產生區域而導致的多餘的電壓上升。
如上所述,可以確認到本實施例的發光元件5可以獲得到作為發光元件的特性,並且其充分地操作。此外,可以確認到發光元件5幾乎沒有因在兩層EL層之間引入電子注入緩衝層、電子繼電層以及電荷產生區域而導致的多餘的電壓上升,而是能夠以低電壓驅動的發光元件。
實施例7
在本實施例中使用圖9A及9B來說明本發明的一個實施例的發光元件。此外,在本實施例所示的發光元件及對照發光元件中,對與上述實施例同一部分或具有相同功能的部分使用同一附圖標記,並且省略重複說明。
以下示出本實施例所使用的材料的化學式。注意,省略對於已表示結構式的材料的說明。
以下示出本實施例的發光元件6及對照發光元件7的製造方法。
首先,說明發光元件6(參照圖9A)。在本實施例的 發光元件6中,電子繼電層2105以外與實施例6所示的發光元件5相同地製造。在本實施例的發光元件6中,藉由蒸鍍N,N’-二己基-3,4,9,10-苝四羧酸二醯亞胺(簡稱:HexPTC),在電子注入緩衝層2104上形成3nm厚的電子繼電層2105。藉由上述步驟,獲得到本實施例的發光元件6。
下面,說明對照發光元件7(參照圖9B)。本實施例的對照發光元件7採用從發光元件6去除電子繼電層2105的結構,並採用與發光元件6相同的製造方法來形成其他層。在對照發光元件7中,在形成電子注入緩衝層2104之後,在電子注入緩衝層2104上形成電荷產生區域2106。藉由上述步驟,獲得到本實施例的對照發光元件7。
以下表13示出發光元件6以及對照發光元件7的元件結構。
在氮氣氛圍的手套箱中,以不使各發光元件暴露於大氣的方式對藉由上述方法得到的發光元件6及對照發光元件7進行封裝,然後對這些發光元件的操作特性進行測量。此外,在室溫(保持為25℃的氛圍)下進行測量。
圖25示出發光元件6及對照發光元件7的電壓-亮度特性。在圖25中,橫軸表示所施加的電壓(V),縱軸表示亮度(cd/m2)。此外,圖26示出電壓-電流密度特性。在圖26中,橫軸表示電壓(V),縱軸表示電流密度(mA/cm2)。另外,以下表14示出1000cd/m2附近的各元件的主要特性初始值。
根據圖25可知當施加相同的電壓時,與對照發光元件7相比,設置有電子繼電層的發光元件6可以得到高亮度。此外,根據圖26可知發光元件6的電流密度高於對照發光元件7的電流密度。
如上所述,可以確認到本實施例的發光元件6可以得到作為發光元件的特性,並且其充分地操作。此外,可以確認到發光元件6是能夠以低電壓來予以驅動的發光元件。
實施例8
在本實施例中使用圖9A及9B來說明本發明的一個實施例的發光元件。此外,在本實施例所示的發光元件及對照發光元件中,對與上述實施例同一部分或具有相同功 能的部分使用同一附圖標記,並且省略重複說明。
以下示出本實施例所使用的材料的化學式。注意,省略對於已表示結構式的材料的說明。
以下示出本實施例的發光元件7及對照發光元件8的製造方法。
首先,說明發光元件7(參照圖9A)。在本實施例的發光元件7中,第一EL層2103中的發光層2103c及電子 傳輸層2103d、第二電荷產生區域2106以及第二EL層2107中的發光層2107b及電子傳輸層2107c以外與實施例3的發光元件3相同地製造。
在本實施例的發光元件7中,發光層2103c藉由以20nm的膜厚度共蒸鍍4-(10-苯基-9-蒽基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPA)和4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)-三苯胺(簡稱:PCBANB),然後以30nm的膜厚度共蒸鍍CzPA和SD1(商品名稱:SFC Co.,Ltd製造)層疊來形成。此外,將PCBAPA和PCBANB的重量比調整為1:1(=PCBAPA:PCBANB)。此外,將CzPA和SD1的重量比調整為1:0.05(=CzPA:SD1)。
接著,在發光層2103c上蒸鍍30nm厚的BPhen來形成電子傳輸層2107c。
此外,在發光元件7中,第二電荷產生區域2106藉由在電子繼電層2105上共蒸鍍具有高電洞傳輸性質之材料的NPB和受體材料的氧化鉬(VI)來形成。將其膜厚度設定為40nm,並且將NPB和氧化鉬(VI)的重量比調整為4:1(=NPB:氧化鉬)。
此外,在發光元件7中,發光層2107b藉由以10nm的膜厚度共蒸鍍4-(9H-咔唑-9-基)-4’-(5-苯基-1,3,4-噁二唑-2-基)三苯胺(簡稱:YGAO11)和(乙醯丙酮)雙(2,3,5-三苯吡啶(triphenylpyrazinato))銥(Ⅲ)(簡稱:Ir(tppr)2(acac)),然後以20nm的膜厚度共蒸鍍 YGAO11和雙(2-苯基吡啶醇-N,C2’)銥(乙醯丙酮)(簡稱:Ir(ppy)2(acac))來形成。此外,YGAO11和Ir(tppr)2(acac)的重量比被調整為1:0.03(=YGAO11:Ir(tppr)2(acac))。另外,YGAO11和Ir(ppy)2(acac)的重量比被調整為1:0.06(=YGAO11:Ir(ppy)2(acac))。
接著,藉由在發光層2107b上蒸鍍10nm厚的BAlq,然後蒸鍍20nm厚的BPhen而層疊,以形成電子傳輸層2107c。藉由上述步驟,獲得到本實施例的發光元件7。
下面,說明對照發光元件8(參照圖9B)。本實施例的對照發光元件8採用從發光元件7去除電子繼電層2105的結構。此外,在對照發光元件8中,藉由共蒸鍍BPhen和鋰(Li),形成20nm厚的電子注入緩衝層2104。在此,將BPhen和Li的重量比調整為1:0.02(=BPhen:Li)。採用與發光元件7相同的製造方法來形成其他層。在對照發光元件8中,在形成電子注入緩衝層2104之後,在電子注入緩衝層2104上形成電荷產生區域2106。藉由上述步驟,獲得到本實施例的對照發光元件8。
以下表15示出發光元件7以及對照發光元件8的元件結構。
在氮氣氛圍的手套箱中,以不使各發光元件暴露於大氣的方式對藉由上述方法得到的發光元件7及對照發光元件8進行封裝,然後對這些發光元件的操作特性進行測量。此外,在室溫(保持為25℃的氛圍)下進行測量。
圖27示出發光元件7及對照發光元件8的電壓-亮度特性。在圖27中,橫軸表示所施加的電壓(V),縱軸表示亮度(cd/m2)。此外,圖28示出電壓-電流密度特性。在圖28中,橫軸表示電壓(V),縱軸表示電流密度(mA/cm2)。另外,以下表16示出1000cd/m2附近的各元件的主要特性初始值。
根據圖27可知當施加相同的電壓時,與對照發光元件8相比,設置有電子繼電層的發光元件7可以得到高亮度。此外,根據圖28可知發光元件7的電流密度高於對 照發光元件8的電流密度。
此外,根據表16的CIE色度座標及圖29可知,發光元件7及對照發光元件8都示出白色發光。這是因為獲得到源自包含在第一EL層2103中的PCBAPA及SD1的藍色發光、源自包含在第二EL層2107中的Ir(tppr)2(acac)的紅色發光以及源自Ir(ppy)2(acac)的綠色發光的緣故。
如上所述,可以確認到本實施例的發光元件7可以得到作為發光元件的特性,並且其充分地操作。此外,可以確認到發光元件7是能夠以低電壓來予以驅動的發光元件。此外,當將本發明的結構的一個實施例應用於各EL層呈現不同發射光譜的白色發光元件時也是有效的。
實例9
在本實施例中使用圖9A及9B來說明本發明的一個實施例的發光元件。此外,在本實施例所示的發光元件及對照發光元件中,對與上述實施例同一部分或具有相同功能的部分使用同一附圖標記,並且省略重複說明。
以下示出本實施例所使用的材料的化學式。注意,省略對於已表示結構式的材料的說明。
以下示出本實施例的發光元件8及對照發光元件9的製造方法。
首先,說明發光元件8(參照圖9A)。在本實施例的發光元件8中,第一EL層2103中的發光層2103c、第二電荷產生區域2106以及第二EL層2107中的發光層 2107b及電子傳輸層2107c以外與實施例8的發光元件7相同地製造。
在本實施例的發光元件8中,以10nm的膜厚度共蒸鍍2,3-雙{4-〔N-(4-聯苯基)-N-苯基氨基〕苯基}喹喔啉(簡稱:BPAPQ)和(乙醯丙酮)雙〔2,3-雙(4-氟代苯基)喹喔啉合〕銥(Ⅲ)(簡稱:Ir(Fdpq)2(acac)),然後以5nm的膜厚度共蒸鍍NPB和N,9-二苯基-N-〔4-(9,10-二苯基-2-蒽基)苯基〕-9H-咔唑-3-胺(簡稱:2PCAPPA),然後以30nm的膜厚度共蒸鍍CzPA和2PCAPPA而層疊來形成發光層2103c。
此外,將BPAPQ和Ir(Fdpq)2(acac)的重量比調整為1:0.06(=BPAPQ:Ir(Fdpq)2(acac))。另外,將NPB和2PCAPPA的重量比調整為1:0.1(=NPB:2PCAPPA)。 此外,將CzPA和2PCAPPA的重量比調整為1:0.1(=CzPA:2PCAPPA)。
此外,在發光元件7中,第二電荷產生區域2106藉由在電子繼電層2105上共蒸鍍具有高電洞傳輸性質之材料的NPB和受體材料的氧化鉬(VI)來形成。將其膜厚度設定為70nm,並且將NPB和氧化鉬(VI)的重量比調整為4:1(=NPB:氧化鉬)。
此外,在發光元件7中,以20nm的膜厚度共蒸鍍NPB和紅熒稀,然後以10nm的膜厚度共蒸鍍9-苯基-9’-〔4-(10-苯基-9-蒽基)苯基〕-3,3’-雙(9H-咔唑)(簡稱:PCCPA)和N,N’-雙〔4-(9H-咔唑-9-基)苯基〕- N,N’-二苯基二苯乙烯-4,4’-二胺(簡稱:YGA2S),然後以20nm的膜厚度共蒸鍍CzPA和YGA2S來形成發光層2107b。此外,將NPB和紅熒稀的重量比調整為1:0.015(=NPB:紅熒稀)。另外,將PCCPA和YGA2S的重量比調整為1:0.05(=PCCPA:YGA2S)。此外,將CzPA和YGA2S的重量比調整為1:0.05(=CzPA:YGA2S)。
接著,藉由在發光層2107b上蒸鍍30nm厚的BPhen,形成電子傳輸層2107c。藉由上述步驟,獲得到本實施例的發光元件8。
下面,說明對照發光元件9(參照圖9B)。本實施例的對照發光元件9採用從發光元件8去除電子繼電層2105的結構。此外,在對照發光元件9中,藉由共蒸鍍BPhen和鋰(Li),形成20nm厚的電子注入緩衝層2104。在此,將BPhen和Li的重量比調整為1:0.02(=BPhen:Li)。與發光元件8相同的製造方法形成其他層。在對照發光元件9中,在形成電子注入緩衝層2104之後,在電子注入緩衝層2104上形成電荷產生區域2106。藉由上述步驟,獲得到本實施例的對照發光元件9。
以下表17示出發光元件8以及對照發光元件9的元件結構。
在氮氣氛圍的手套箱中,以不使各發光元件暴露於大氣的方式對藉由上述方法得到的發光元件8及對照發光元件9進行封裝,然後對這些發光元件的操作特性進行測量。此外,在室溫(保持為25℃的氛圍)下進行測量。
圖30示出發光元件8及對照發光元件9的電壓-亮度特性。在圖30中,橫軸表示所施加的電壓(V),縱軸表示亮度(cd/m2)。此外,圖31示出電壓-電流密度特性。在圖31中,橫軸表示電壓(V),縱軸表示電流密度(mA/cm2)。另外,以下表18示出1000cd/m2附近的各元件的主要特性初始值。
根據圖30可知當施加相同的電壓時,與對照發光元件9相比,設置有電子繼電層的發光元件8可以得到高亮度。此外,根據圖31可知發光元件8的電流密度高於對 照發光元件9的電流密度。
此外,根據表18的CIE色度座標及圖32可知,發光元件8及對照發光元件9都示出白色發光。這是因為獲得到源自包含在第一EL層2103中的Ir(Fdpq)2(acac)的紅色發光、源自2PCAPPA的藍綠色發光、源自包含在第二EL層2107中的紅熒稀的黃色發光、源自YGA2S的藍色發光的緣故。另外,藉由組合這些四種發光顏色,可以獲得到顯色指數(CRI)為92的高顯色性。
如上所述,可以確認到本實施例的發光元件8可以得到作為發光元件的特性,並且其充分地操作。此外,可以確認到發光元件8是能夠以低電壓來予以驅動的發光元件。此外,當將本發明的結構的一個實施例模式應用於各EL層呈現不同發射光譜的白色發光元件時也是有效的。
(參考例)
在本參考例中具體地說明上述實施例所使用的材料的合成方法。
《4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)-三苯胺(簡稱:PCBANB)的合成例》
4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)-三苯胺的合成圖解示於下述(A-1)。
將1.2g(3.0mmol)的3-(4-溴苯基)-9-苯基-9H-咔唑、0.9g(3.0mmol)的4-(1-萘基)二苯胺、0.5g(5.0mmol)的叔丁醇鈉、6.0mg(0.01mmol)的雙(二亞苄基丙酮)鈀(O)放在50mL三口燒瓶中,對該混合物添加15mL的脫水二甲苯。將該混合物在減壓下攪拌的同時進行脫氣,然後添加0.06mL(0.03mmol)的三(叔丁基)磷化氫(10wt%己烷溶液)。將該混合物在氮氣氛圍下以120℃加熱攪拌4.5小時,發生反應。
在反應結束後,對該反應混合物添加250mL的甲苯,藉由矽碳鎂載體、矽膠、礬土、矽藻土過濾該懸浮液。在利用水洗滌得到的濾液之後,添加硫酸鎂去除水分。藉由矽碳鎂載體、礬土、矽膠、矽藻土過濾該懸浮液而得到濾液。藉由濃縮得到的濾液,添加丙酮和甲醇施加超聲波,然後重結晶,以82%的良率而獲得到收量為1.5g的目的材料的白色粉末。
藉由矽膠薄層析法(TLC)而獲得到的Rf值(顯影溶劑,乙酸乙酯:己烷=1:10)是如下:目的材料為0.34,3-(4-溴苯基)-9-苯基-9H-咔唑為0.46,並且4- (1-萘基)二苯胺為0.25。
使用核磁共振法(1H NMR)測量在上述步驟中獲得到的化合物。以下示出測量資料。從測量結果可知得到了目的材料的PCBANB(簡稱)。
1H NMR(CDCl3,300MHz):δ(ppm)=7.07(t,J=6.6Hz,1H),7.25-7.67(m,26H),7.84(d,J=7.8Hz,1H),7.89-7.92(m,1H),8.03-8.07(m,1H),8.18(d,J=7.8Hz,1H),8.35(d,J=0.9Hz,1H)。
本說明書根據2008年12月1日在日本專利局受理的日本專利申請編號2008-306425以及2009年5月29日在日本專利局受理的日本專利申請編號2009-131518而製作,所述申請內容包括在本說明書中。
101‧‧‧陽極
102‧‧‧陰極
103‧‧‧EL層
104‧‧‧電子注入緩衝層
105‧‧‧電子繼電層
106‧‧‧電荷產生區域
107‧‧‧EL層

Claims (32)

  1. 一種發光元件,包括:陽極;在該陽極之上的第一EL層,該第一EL層包括具有電子傳輸性質之第一材料;在該第一EL層之上的第一層;在該第一層之上並與該第一層相接觸的第二層;在該第二層之上並與該第二層相接觸的區域;在該區域之上的第二EL層;以及在該第二EL層之上的陰極,其中,該第一層包含選自由鹼金屬、鹼土金屬、稀土金屬、鹼金屬化合物、鹼土金屬化合物以及稀土金屬化合物組成之群組中的至少其中一者,其中,該第二層包含具有電子傳輸性質之第二材料,其中,該區域包含具有電洞傳輸性質之材料和受體材料,該受體材料從具有該電洞傳輸性質之該材料中抽出電子,其中,該第一材料與該第二材料不同,其中,該第一EL層包括電子傳輸層,並且其中,該第二層的LUMO能階係介於該電子傳輸層的LUMO能階與該受體材料的LUMO能階之間。
  2. 一種發光元件,包括:陽極;在該陽極之上的第一EL層; 在該第一EL層之上的第一層;在該第一層之上並與該第一層相接觸的第二層;在該第二層之上並與該第二層相接觸的區域;在該區域之上的第二EL層;以及在該第二EL層之上的陰極,其中,該第一層包含選自由鹼金屬、鹼土金屬、稀土金屬、鹼金屬化合物、鹼土金屬化合物以及稀土金屬化合物組成之群組中的至少其中一者,其中,該第二層能夠將電子從該區域傳輸至該第一層,其中,該區域包含具有電洞傳輸性質之材料和受體材料,該受體材料從具有該電洞傳輸性質之該材料中抽出該電子,其中,該第一EL層包括電子傳輸層,並且其中,該第二層的LUMO能階係介於該電子傳輸層的LUMO能階與該受體材料的LUMO能階之間。
  3. 一種發光元件,包括:陽極;在該陽極之上的第一EL層;在該第一EL層之上的第一層,該第一EL層包括具有電子傳輸性質之第一材料;在該第一層之上並與該第一層相接觸的第二層;在該第二層之上並與該第二層相接觸的第三層;在該第三層之上的第二EL層;以及 在該第二EL層之上的陰極,其中,該第一層包含選自由鹼金屬、鹼土金屬、稀土金屬、鹼金屬化合物、鹼土金屬化合物以及稀土金屬化合物組成之群組中的至少其中一者,其中,該第二層包含具有電子傳輸性質之第二材料,其中,該第三層為其中層疊有包含具有電洞傳輸性質之材料的第一區域和包含受體材料之第二區域的層,該受體材料從具有該電洞傳輸性質之該材料中抽出電子,其中,該第一材料與該第二材料不同,其中,該第一EL層包括電子傳輸層,並且其中,該第二層的LUMO能階係介於該電子傳輸層的LUMO能階與該受體材料的LUMO能階之間。
  4. 一種發光元件,包括:陽極;在該陽極之上的第一EL層;在該第一EL層之上的第一層;在該第一層之上並與該第一層相接觸的第二層;在該第二層之上並與該第二層相接觸的第三層;在該第三層之上的第二EL層;以及在該第二EL層之上的陰極,其中,該第一層包含選自由鹼金屬、鹼土金屬、稀土金屬、鹼金屬化合物、鹼土金屬化合物以及稀土金屬化合物組成之群組中的至少其中一者,其中,該第二層能夠將電子從該第三層傳輸至該第一 層,其中,該第三層為其中層疊有包含具有電洞傳輸性質之材料的第一區域和包含受體材料之第二區域的層,該受體材料從具有該電洞傳輸性質之該材料中抽出該電子,其中,該第一EL層包括電子傳輸層,並且其中,該第二層的LUMO能階係介於該電子傳輸層的LUMO能階與該受體材料的LUMO能階之間。
  5. 一種發光元件,包括:陽極;在該陽極之上的第一EL層;在該第一EL層之上的第一層;在該第一層之上並與該第一層相接觸的第二層;在該第二層之上並與該第二層相接觸的區域;在該區域之上的第二EL層;以及在該第二EL層之上的陰極,其中,該第一層包含鹼金屬、鹼土金屬、稀土金屬、鹼金屬化合物、鹼土金屬化合物以及稀土金屬化合物的其中一者,其中,該第二層包含二萘嵌苯衍生物和具有拉電子基之含氮稠環芳香化合物的其中一者,其中,該區域包含具有高於電子傳輸性質之電洞傳輸性質的材料和受體材料,該受體材料從具有該電洞傳輸性質之該材料中抽出電子,其中,該第一EL層包括電子傳輸層,並且 其中,該第二層的LUMO能階係介於該電子傳輸層的LUMO能階與該受體材料的LUMO能階之間。
  6. 一種發光元件,包括:陽極;在該陽極之上的第一EL層;在該第一EL層之上的第一層;在該第一層之上並與該第一層相接觸的第二層;在該第二層之上並與該第二層相接觸的區域;在該區域之上的第二EL層;以及在該第二EL層之上的陰極,其中,該第一層包含鹼金屬、鹼土金屬、稀土金屬、鹼金屬化合物、鹼土金屬化合物以及稀土金屬化合物的其中一者,其中,該第二層包含二萘嵌苯衍生物和具有拉電子基之含氮稠環芳香化合物的其中一者,其中,該區域包含第一區域和第二區域,該第一區域包含具有高於電子傳輸性質之電洞傳輸性質的材料,該第二區域包含受體材料,該受體材料從具有該電洞傳輸性質之該材料中抽出電子,其中,該第二區域係位於該第一區域與該第二層之間,其中,該第一EL層包括電子傳輸層,並且其中,該第二層的LUMO能階係介於該電子傳輸層的LUMO能階與該受體材料的LUMO能階之間。
  7. 一種發光元件,包括:陽極;在該陽極之上的第一EL層;在該第一EL層之上的第一層;在該第一層之上並與該第一層相接觸的第二層;在該第二層之上並與該第二層相接觸的區域;在該區域之上的第二EL層;以及在該第二EL層之上的陰極,其中,該第一層包含鹼金屬、鹼土金屬、稀土金屬、鹼金屬化合物、鹼土金屬化合物以及稀土金屬化合物的其中一者,其中,該第二層包含具有拉電子基之含氮稠環芳香化合物,其中,該區域包含受體材料及芳香胺化合物和咔唑衍生物的其中一者,其中,該受體材料從該芳香胺化合物或該咔唑衍生物中抽出電子,其中,該第一EL層包括電子傳輸層,並且其中,該第二層的LUMO能階係介於該電子傳輸層的LUMO能階與該受體材料的LUMO能階之間。
  8. 一種發光元件,包括:陽極;在該陽極之上的第一EL層;在該第一EL層之上的第一層; 在該第一層之上並與該第一層相接觸的第二層;在該第二層之上並與該第二層相接觸的區域;在該區域之上的第二EL層;以及在該第二EL層之上的陰極,其中,該第一層包含鹼金屬、鹼土金屬、稀土金屬、鹼金屬化合物、鹼土金屬化合物以及稀土金屬化合物的其中一者,其中,該第二層包含具有拉電子基之含氮稠環芳香化合物,其中,該區域包含第一區域和第二區域,該第一區域包含芳香胺化合物或咔唑衍生物,該第二區域包含受體材料,該受體材料從該芳香胺化合物或該咔唑衍生物中抽出電子,其中,該第二區域係位於該第一區域與該第二層之間,其中,該第一EL層包括電子傳輸層,並且其中,該第二層的LUMO能階係介於該電子傳輸層的LUMO能階與該受體材料的LUMO能階之間。
  9. 如申請專利範圍第1、2及5項中任一項的發光元件,其中,該區域中之該受體材料相對於具有該電洞傳輸性質之該材料的質量比率為0.1:1至4.0:1。
  10. 如申請專利範圍第3或4項的發光元件,其中,該第三層中之該受體材料相對於具有該電洞傳輸性質之該材料的質量比率為0.1:1至4.0:1。
  11. 如申請專利範圍第1至4項中任一項的發光元件,其中,該受體材料為過渡金屬氧化物,該過渡金屬氧化物為屬於元素週期表第4族至第8族之金屬的氧化物。
  12. 如申請專利範圍第11項的發光元件,其中,該過渡金屬氧化物為氧化鉬。
  13. 如申請專利範圍第1或2項的發光元件,其中,該區域另包括7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷及/或氯醌。
  14. 如申請專利範圍第3或4項的發光元件,其中,該第三層另包括7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷及/或氯醌。
  15. 如申請專利範圍第1至8項中任一項的發光元件,其中,該第一EL層的發射光譜與該第二EL層的發射光譜不同。
  16. 如申請專利範圍第1至4項中任一項的發光元件,其中,該第一EL層包含有機發光層。
  17. 一種包含如申請專利範圍第1至4項中任一項之發光元件的發光裝置,該發光裝置係選自由相機、護目鏡型顯示器、導航系統、聲音重播裝置、電腦、遊戲機、可攜式資訊終端裝置、電子圖書、移動式電話、影像重播裝置及電視組成的群組中。
  18. 一種包含如申請專利範圍第1至4項中任一項之發光元件的照明裝置,該照明裝置係選自由相機、護目鏡型顯示器、導航系統、聲音重播裝置、電腦、遊戲機、可 攜式資訊終端裝置、電子圖書、移動式電話、影像重播裝置及電視組成的群組中。
  19. 一種包含如申請專利範圍第1至4項中任一項之發光元件的電子裝置,該電子裝置係選自由相機、護目鏡型顯示器、導航系統、聲音重播裝置、電腦、遊戲機、可攜式資訊終端裝置、電子圖書、移動式電話、影像重播裝置及電視組成的群組中。
  20. 如申請專利範圍第5至8項中任一項的發光元件,其中,該拉電子基為氰基或氟基的至少其中一者。
  21. 如申請專利範圍第5或6項的發光元件,其中,該二萘嵌苯衍生物為3,4,9,10-苝四羧酸二酐、3,4,9,10-苝四羧酸-雙-苯並咪唑、N,N’-二辛基-3,4,9,10-苝四羧酸二醯亞胺、和N,N’-二己基-3,4,9,10-苝四羧酸二醯亞胺的其中一者。
  22. 如申請專利範圍第5或6項的發光元件,其中,該含氮稠環芳香化合物為吡嗪並〔2,3-f〕〔1,10〕菲咯啉-2,3-二甲腈、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮三苯並苯、2,3-二苯基吡啶並〔2,3-b〕吡嗪、及2,3-雙(4-氟苯基)吡啶並〔2,3-b〕吡嗪的其中一者。
  23. 如申請專利範圍第5至8項中任一項的發光元件,其中,該第一EL層包含具有高於電洞傳輸性質之電子傳輸性質的第一材料,並且其中,該第一材料為除了該第二層中所包含之含氮稠 環芳香化合物以外的材料。
  24. 如申請專利範圍第5至8項中任一項的發光元件,其中,該受體材料為氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鉬、氧化鎢、氧化錳以及氧化錸的其中一者。
  25. 如申請專利範圍第5至8項中任一項的發光元件,其中,該受體材料為7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷及氯醌的其中一者。
  26. 一種包括如申請專利範圍第5或6項之發光元件的電子裝置,其中,該電子裝置為選自相機、護目鏡型顯示器、導航系統、聲音重播裝置、電腦、遊戲機、可攜式資訊終端裝置、電子圖書、移動式電話、影像重播裝置及電視組成的其中一者。
  27. 如申請專利範圍第7或8項的發光元件,其中,該含氮稠環芳香化合物為吡嗪並〔2,3-f〕〔1,10〕菲咯啉-2,3-二甲腈、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮三苯並苯、及2,3-雙(4-氟苯基)吡啶並〔2,3-b〕吡嗪的其中一者。
  28. 如申請專利範圍第7或8項的發光元件,其中,該芳香胺化合物為4,4’-雙〔N-(1-萘基)-N-苯基氨基〕聯苯基、N,N’-雙(3-甲基苯基)-N,N’-二苯基-〔1,1’-聯苯基〕-4,4’-二胺、4,4’,4”-三(咔唑-9-基)三苯基胺、4,4’,4”-三(N,N-二苯基氨基)三苯基胺、4,4’,4”-三〔N-(3-甲基苯基)-N-苯基氨基〕三苯基胺、N,N’-雙(4-甲基苯基)-N,N’-二苯基-對-苯二胺、4,4’-雙〔N-(4-二苯 基氨基苯基)-N-苯基氨基〕聯苯、4,4’-雙〔N-(3-甲基苯基)-N-苯基氨基〕聯苯、及1,3,5-三〔N-(4-二苯基氨基苯基)-N-苯基氨基〕苯的其中一者。
  29. 如申請專利範圍第7或8項的發光元件,其中,該咔唑衍生物為3-〔N-(9-苯基咔唑-3-基)-N-苯基氨基〕-9-苯基咔唑、3,6-雙〔N-(9-苯基咔唑-3-基)-N-苯基氨基〕-9-苯基咔唑、3-〔N-(1-萘基)-N-(9-苯基咔唑-3-基)氨基〕-9-苯基咔唑、4,4’-二(N-咔唑基)聯苯、1,3,5-三〔4-(N-咔唑基)苯基〕苯、9-〔4-(10-苯基-9-蒽基)苯基〕-9H-咔唑、及1,4-雙〔4-(N-咔唑基)苯基〕-2,3,5,6-四苯基苯的其中一者。
  30. 如申請專利範圍第7或8項的發光元件,該第一EL層和該第二EL層各自包含電洞傳輸層、發光層、及電子傳輸層。
  31. 一種電子裝置,其包括如申請專利範圍第7或8項之發光元件。
  32. 一種照明裝置,其包括如申請專利範圍第7或8項之發光元件。
TW104120728A 2008-12-01 2009-11-26 發光元件、發光裝置、照明裝置、及電子裝置 TWI609604B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008306425 2008-12-01
JP2009131518 2009-05-29

Publications (2)

Publication Number Publication Date
TW201538032A TW201538032A (zh) 2015-10-01
TWI609604B true TWI609604B (zh) 2017-12-21

Family

ID=41722934

Family Applications (3)

Application Number Title Priority Date Filing Date
TW104120728A TWI609604B (zh) 2008-12-01 2009-11-26 發光元件、發光裝置、照明裝置、及電子裝置
TW100124950A TWI486097B (zh) 2008-12-01 2009-11-26 發光元件、發光裝置、照明裝置、及電子裝置
TW098140370A TWI522007B (zh) 2008-12-01 2009-11-26 發光元件、發光裝置、照明裝置、及電子裝置

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW100124950A TWI486097B (zh) 2008-12-01 2009-11-26 發光元件、發光裝置、照明裝置、及電子裝置
TW098140370A TWI522007B (zh) 2008-12-01 2009-11-26 發光元件、發光裝置、照明裝置、及電子裝置

Country Status (6)

Country Link
US (5) US7985974B2 (zh)
EP (1) EP2192633B1 (zh)
JP (12) JP5690482B2 (zh)
KR (4) KR101719351B1 (zh)
CN (3) CN101752512B (zh)
TW (3) TWI609604B (zh)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1928828B1 (en) * 2005-09-02 2012-03-14 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative
WO2008038607A1 (en) * 2006-09-28 2008-04-03 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, and light emitting element, light emitting device, and electronic device using the anthracene derivative
JP5759669B2 (ja) * 2008-12-01 2015-08-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
TWI609604B (zh) * 2008-12-01 2017-12-21 半導體能源研究所股份有限公司 發光元件、發光裝置、照明裝置、及電子裝置
US8389979B2 (en) * 2009-05-29 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
CN102484922B (zh) 2009-09-07 2015-08-19 株式会社半导体能源研究所 发光元件,发光器件,照明器件和电子器件
EP2365556B1 (en) 2010-03-08 2014-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
CN102201541B (zh) * 2010-03-23 2015-11-25 株式会社半导体能源研究所 发光元件、发光装置、电子设备及照明装置
JP5801579B2 (ja) 2010-03-31 2015-10-28 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、及び照明装置
TWI506121B (zh) 2010-03-31 2015-11-01 Semiconductor Energy Lab 發光元件,發光裝置,電子裝置以及照明裝置
US8852759B2 (en) 2010-06-07 2014-10-07 Hodogaya Chemical Co., Ltd. Compound having acridan ring structure, and organic electroluminescent device
WO2011162105A1 (en) * 2010-06-25 2011-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display, and electronic device
WO2012046560A1 (en) 2010-10-04 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
KR101772662B1 (ko) * 2010-10-22 2017-08-30 삼성디스플레이 주식회사 유기 발광 장치
KR20240090978A (ko) 2011-02-16 2024-06-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
JP2012186092A (ja) * 2011-03-07 2012-09-27 Seiko Epson Corp 発光素子、発光装置、表示装置および電子機器
JP6062636B2 (ja) * 2011-03-10 2017-01-18 ローム株式会社 有機el装置
JP2014509442A (ja) * 2011-03-22 2014-04-17 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー 有機エレクトロルミネセンスデバイス、及び、その導電性基板
DE112012001410T5 (de) * 2011-03-24 2014-01-30 Panasonic Corporation Organisches Elektrolumineszenzelement
JP2012204110A (ja) * 2011-03-24 2012-10-22 Sony Corp 表示素子および表示装置ならびに電子機器
TWI485899B (zh) 2011-03-31 2015-05-21 Panasonic Corp 有機電致發光元件
JP6023461B2 (ja) 2011-05-13 2016-11-09 株式会社半導体エネルギー研究所 発光素子、発光装置
CN103548171B (zh) * 2011-05-20 2016-08-24 国立大学法人山形大学 有机电子器件及其制造方法
JP5858689B2 (ja) * 2011-08-31 2016-02-10 キヤノン株式会社 表示装置
KR102126087B1 (ko) * 2011-10-11 2020-06-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 조명 장치, 및 피렌계 화합물
TWI547208B (zh) * 2012-03-19 2016-08-21 友達光電股份有限公司 有機電致發光裝置
CN102664187B (zh) * 2012-05-29 2016-01-20 南京中电熊猫液晶显示科技有限公司 有机发光二极管显示器及其制造方法
JP5889730B2 (ja) * 2012-06-27 2016-03-22 Lumiotec株式会社 有機エレクトロルミネッセント素子及び照明装置
TWI482287B (zh) 2013-04-24 2015-04-21 Au Optronics Corp 電激發光顯示面板及其製造方法
US9929368B2 (en) * 2014-02-06 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, lighting device, and electronic appliance
US20150243896A1 (en) 2014-02-27 2015-08-27 United State Army Research Laboratory ATTN: RDRL-LOC-I Imidazo derivatives
TWI713447B (zh) 2014-04-30 2020-12-21 日商半導體能源研究所股份有限公司 發光元件、發光裝置、照明裝置、及電子設備
KR102457008B1 (ko) * 2014-05-23 2022-10-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 헤테로고리 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR102424714B1 (ko) * 2014-08-08 2022-07-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 전자 기기, 및 조명 장치
JP2016085969A (ja) * 2014-10-24 2016-05-19 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、及び照明装置
KR102381544B1 (ko) * 2014-12-04 2022-03-31 엘지디스플레이 주식회사 유기전계발광소자 및 이를 구비한 표시소자
CN104466023B (zh) * 2014-12-24 2017-10-17 京东方科技集团股份有限公司 层叠式有机发光二极体及其制备方法和显示装置
JP2016197659A (ja) * 2015-04-03 2016-11-24 株式会社東芝 シリコンゲルマニウムを含むデバイスおよびその製造方法
CN104966789A (zh) * 2015-06-30 2015-10-07 深圳市华星光电技术有限公司 一种电荷连接层及其制造方法、叠层oled器件
US10340470B2 (en) 2016-02-23 2019-07-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting apparatus
WO2017149413A1 (en) * 2016-03-04 2017-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6668455B2 (ja) 2016-04-01 2020-03-18 株式会社半導体エネルギー研究所 酸化物半導体膜の作製方法
KR102611206B1 (ko) * 2016-07-13 2023-12-08 삼성디스플레이 주식회사 유기 발광 소자
TWI833420B (zh) * 2017-04-07 2024-02-21 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置以及照明設備
JP2019046599A (ja) 2017-08-31 2019-03-22 株式会社ジャパンディスプレイ 表示装置
KR102496863B1 (ko) 2017-12-29 2023-02-06 엘지디스플레이 주식회사 유기발광표시장치
CN113646905A (zh) 2019-04-18 2021-11-12 株式会社半导体能源研究所 固态继电器以及半导体装置
CN110931649B (zh) * 2019-11-29 2022-11-15 昆山国显光电有限公司 一种有机电致发光器件及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351398A (ja) * 2005-06-17 2006-12-28 Sony Corp 表示素子
TW200818980A (en) * 2006-07-04 2008-04-16 Semiconductor Energy Lab Light-emitting element, light-emitting device, and electronic device
WO2008102644A1 (ja) * 2007-02-19 2008-08-28 Dai Nippon Printing Co., Ltd. 有機エレクトロルミネッセンス素子

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270171A (ja) * 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
WO2001015244A1 (en) 1999-08-20 2001-03-01 Emagin Corporation Organic light emitting diode device with high work function metal-oxide anode layer and method of fabrication of same
US7560175B2 (en) * 1999-12-31 2009-07-14 Lg Chem, Ltd. Electroluminescent devices with low work function anode
KR100377321B1 (ko) * 1999-12-31 2003-03-26 주식회사 엘지화학 피-형 반도체 성질을 갖는 유기 화합물을 포함하는 전기소자
SG142163A1 (en) * 2001-12-05 2008-05-28 Semiconductor Energy Lab Organic semiconductor element
JP3933591B2 (ja) * 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7053412B2 (en) * 2003-06-27 2006-05-30 The Trustees Of Princeton University And Universal Display Corporation Grey scale bistable display
US7772756B2 (en) * 2003-08-01 2010-08-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device including a dual emission panel
TWI407829B (zh) * 2003-09-26 2013-09-01 Semiconductor Energy Lab 發光元件和其製法
JP4243237B2 (ja) * 2003-11-10 2009-03-25 淳二 城戸 有機素子、有機el素子、有機太陽電池、及び、有機fet構造、並びに、有機素子の製造方法
US7138763B2 (en) 2003-11-14 2006-11-21 Eastman Kodak Company Organic electroluminescent devices having a stability-enhancing layer
CN100551187C (zh) * 2003-12-26 2009-10-14 株式会社半导体能源研究所 发光元件
JP5137292B2 (ja) 2003-12-26 2013-02-06 株式会社半導体エネルギー研究所 発光素子、発光装置および電気器具
JP2005285619A (ja) * 2004-03-30 2005-10-13 Seiko Epson Corp 有機el装置および電子機器
US7192659B2 (en) * 2004-04-14 2007-03-20 Eastman Kodak Company OLED device using reduced drive voltage
US7598670B2 (en) 2004-05-21 2009-10-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
JP4925569B2 (ja) 2004-07-08 2012-04-25 ローム株式会社 有機エレクトロルミネッセント素子
JP2006295104A (ja) * 2004-07-23 2006-10-26 Semiconductor Energy Lab Co Ltd 発光素子およびそれを用いた発光装置
JP4785386B2 (ja) * 2005-01-31 2011-10-05 三洋電機株式会社 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
WO2006013990A1 (en) * 2004-08-03 2006-02-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
EP1624502B1 (en) * 2004-08-04 2015-11-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, and electronic appliance
CN100565963C (zh) * 2004-09-30 2009-12-02 株式会社半导体能源研究所 发光元件
KR101187202B1 (ko) * 2004-09-30 2012-10-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 및 전자 장치
US20060115673A1 (en) * 2004-12-01 2006-06-01 Au Optronics Corporation Organic light emitting device with improved electrode structure
US7494722B2 (en) * 2005-02-23 2009-02-24 Eastman Kodak Company Tandem OLED having an organic intermediate connector
US20090039764A1 (en) * 2005-03-17 2009-02-12 Cho Kyung Sang Quantum Dot Light-Emitting Diode Comprising Inorganic Electron Transport Layer
US8906517B2 (en) 2005-04-04 2014-12-09 Sony Corporation Organic electroluminescence device
US7728517B2 (en) * 2005-05-20 2010-06-01 Lg Display Co., Ltd. Intermediate electrodes for stacked OLEDs
US7960038B2 (en) * 2005-05-20 2011-06-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8017252B2 (en) 2005-06-22 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
JP4999291B2 (ja) * 2005-06-30 2012-08-15 三洋電機株式会社 有機エレクトロルミネッセンス素子およびそれを備える表示装置又は発光装置
KR100806812B1 (ko) 2005-07-25 2008-02-25 엘지.필립스 엘시디 주식회사 유기 el 소자 및 그 제조방법
JP4767059B2 (ja) * 2006-03-27 2011-09-07 三洋電機株式会社 有機エレクトロルミネッセント素子
US20070046189A1 (en) * 2005-08-31 2007-03-01 Eastman Kodak Company Intermediate connector for a tandem OLED device
US8021763B2 (en) * 2005-11-23 2011-09-20 The Trustees Of Princeton University Phosphorescent OLED with interlayer
EP1963346B1 (en) * 2005-12-05 2012-08-22 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex and light-emitting element, light-emitting device and electronic device using the same
KR100730190B1 (ko) * 2005-12-20 2007-06-19 삼성에스디아이 주식회사 유기 발광 표시 소자 및 이의 제조방법
JP2007179933A (ja) * 2005-12-28 2007-07-12 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
KR20080095244A (ko) * 2006-02-07 2008-10-28 스미또모 가가꾸 가부시키가이샤 유기 전계 발광 소자
JP4896544B2 (ja) * 2006-03-06 2012-03-14 富士フイルム株式会社 有機電界発光素子
TWI475737B (zh) 2006-03-08 2015-03-01 Semiconductor Energy Lab 發光元件、發光裝置及電子裝置
US20070215889A1 (en) * 2006-03-20 2007-09-20 Semiconductor Energy Laboratory Co., Ltd. Aromatic amine compound, and light-emitting element, light-emitting device, and electronic appliance using the aromatic amine compound
US9112170B2 (en) 2006-03-21 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
EP2016633A1 (en) 2006-05-08 2009-01-21 Eastman Kodak Company Oled electron-injecting layer
JP5030742B2 (ja) * 2006-11-30 2012-09-19 株式会社半導体エネルギー研究所 発光素子
JP2008192576A (ja) * 2007-02-08 2008-08-21 Sony Corp 有機電界発光素子の製造方法および表示装置の製造方法
KR20080083449A (ko) * 2007-03-12 2008-09-18 삼성전자주식회사 백색 유기 발광 소자
KR101398242B1 (ko) * 2007-09-21 2014-05-23 엘지디스플레이 주식회사 유기전계발광소자
JP5759669B2 (ja) 2008-12-01 2015-08-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
TWI609604B (zh) * 2008-12-01 2017-12-21 半導體能源研究所股份有限公司 發光元件、發光裝置、照明裝置、及電子裝置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351398A (ja) * 2005-06-17 2006-12-28 Sony Corp 表示素子
TW200818980A (en) * 2006-07-04 2008-04-16 Semiconductor Energy Lab Light-emitting element, light-emitting device, and electronic device
WO2008102644A1 (ja) * 2007-02-19 2008-08-28 Dai Nippon Printing Co., Ltd. 有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
EP2192633A3 (en) 2012-10-17
JP2022036300A (ja) 2022-03-04
CN103904229B (zh) 2017-01-04
CN103904229A (zh) 2014-07-02
KR20110095839A (ko) 2011-08-25
KR101719351B1 (ko) 2017-03-23
TW201538032A (zh) 2015-10-01
KR101741490B1 (ko) 2017-05-30
JP6592174B2 (ja) 2019-10-16
TW201208475A (en) 2012-02-16
JP2011009688A (ja) 2011-01-13
JP2023119023A (ja) 2023-08-25
US20110260156A1 (en) 2011-10-27
CN101752512B (zh) 2014-05-07
KR20170059952A (ko) 2017-05-31
JP6069427B2 (ja) 2017-02-01
JP2014078525A (ja) 2014-05-01
TW201038120A (en) 2010-10-16
EP2192633A2 (en) 2010-06-02
US20130228766A1 (en) 2013-09-05
JP2017054832A (ja) 2017-03-16
JP2021101433A (ja) 2021-07-08
US8581266B2 (en) 2013-11-12
TWI522007B (zh) 2016-02-11
CN102255051B (zh) 2015-07-22
JP2019040887A (ja) 2019-03-14
US20100133573A1 (en) 2010-06-03
US7985974B2 (en) 2011-07-26
KR20100062930A (ko) 2010-06-10
CN101752512A (zh) 2010-06-23
JP6067794B2 (ja) 2017-01-25
CN102255051A (zh) 2011-11-23
US8431940B2 (en) 2013-04-30
JP2018170294A (ja) 2018-11-01
US8207540B2 (en) 2012-06-26
US20140070198A1 (en) 2014-03-13
US20120235166A1 (en) 2012-09-20
TWI486097B (zh) 2015-05-21
JP6556933B2 (ja) 2019-08-07
JP2015201462A (ja) 2015-11-12
JP5690482B2 (ja) 2015-03-25
US8952394B2 (en) 2015-02-10
JP6386017B2 (ja) 2018-09-05
JP2015173137A (ja) 2015-10-01
KR20150005489A (ko) 2015-01-14
JP2019040886A (ja) 2019-03-14
KR101328153B1 (ko) 2013-11-13
EP2192633B1 (en) 2021-04-14
JP2020113549A (ja) 2020-07-27

Similar Documents

Publication Publication Date Title
JP6556933B2 (ja) 発光装置、電子機器、テレビジョン装置
TWI585994B (zh) 發光元件,發光裝置,照明裝置,與電子裝置
TWI606613B (zh) 發光元件,發光裝置,電子裝置,和照明裝置