JP2021083276A - モータ制御装置、モータ制御方法、ハイブリッドシステム、昇圧コンバータシステム、電動パワーステアリングシステム - Google Patents

モータ制御装置、モータ制御方法、ハイブリッドシステム、昇圧コンバータシステム、電動パワーステアリングシステム Download PDF

Info

Publication number
JP2021083276A
JP2021083276A JP2019211272A JP2019211272A JP2021083276A JP 2021083276 A JP2021083276 A JP 2021083276A JP 2019211272 A JP2019211272 A JP 2019211272A JP 2019211272 A JP2019211272 A JP 2019211272A JP 2021083276 A JP2021083276 A JP 2021083276A
Authority
JP
Japan
Prior art keywords
motor
power
motor control
control device
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019211272A
Other languages
English (en)
Other versions
JP7280170B2 (ja
Inventor
貴哉 塚越
Takaya Tsukagoshi
貴哉 塚越
崇文 原
Takafumi Hara
崇文 原
勝洋 星野
Katsuhiro Hoshino
勝洋 星野
安島 俊幸
Toshiyuki Yasujima
俊幸 安島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2019211272A priority Critical patent/JP7280170B2/ja
Priority to CN202080080758.4A priority patent/CN114731116A/zh
Priority to PCT/JP2020/041139 priority patent/WO2021100456A1/ja
Priority to DE112020005319.9T priority patent/DE112020005319T5/de
Priority to US17/778,544 priority patent/US11967915B2/en
Publication of JP2021083276A publication Critical patent/JP2021083276A/ja
Application granted granted Critical
Publication of JP7280170B2 publication Critical patent/JP7280170B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】永久磁石同期モータで発生する振動や騒音を効果的に抑制する。【解決手段】モータ制御装置1は、搬送波である三角波信号Trを生成する三角波生成部17と、三角波信号Trの周波数を表す搬送波周波数fcを調整する搬送波周波数調整部16と、三角波信号Trを用いてトルク指令T*に応じた三相電圧指令Vu*、Vv*、Vw*をパルス幅変調し、インバータの動作を制御するためのゲート信号を生成するゲート信号生成部18とを備える。搬送波周波数調整部16は、トルク指令T*と、モータの回転速度ωrとに基づき、三相電圧指令Vu*、Vv*、Vw*と三角波信号Trの位相差を表す電圧位相誤差Δθvを変化させるように、搬送波周波数fcを調整する。【選択図】図2

Description

本発明は、モータ制御装置、モータ制御方法、ハイブリッドシステム、昇圧コンバータシステムおよび電動パワーステアリングシステムに関する。
永久磁石同期モータは、ブラシや整流子といった機械的な電流の整流機構を必要とせず、保守が容易な上、小型軽量で効率、力率ともに高いため、電気自動車の駆動・発電等の用途に広く普及している。一般的に永久磁石同期モータは、電機子コイル等で構成される固定子と、永久磁石や鉄心等で構成される回転子から成る。バッテリ等の直流電源から供給される直流電圧をインバータで交流電圧に変換し、永久磁石同期モータの電機子コイルに交流電流を流すことにより、電機子磁束が発生する。この電機子磁束と永久磁石の磁石磁束との間に生じる吸引力・反発力によって発生するマグネットトルクや、回転子を透過する電機子磁束の磁気抵抗を最小化するために発生するリラクタンストルクにより、永久磁石同期モータが駆動される。
永久磁石同期モータには、モータの回転方向(周方向)と、モータの回転軸に対して垂直な方向(径方向)とで、電機子磁束と磁石磁束による電磁力がそれぞれ発生する。上記のトルクは、周方向の電磁力を積分したものであり、これにはモータの磁気回路の構造に起因するトルクの揺らぎ(トルク脈動)が含まれている。一方、モータの径方向に生じる電磁力は、モータの固定子やケースを変形・振動させる加振力(電磁加振力)として作用する。
モータの低回転時には、他の振動・騒音要因が少ないため、トルク脈動に起因する振動・騒音が顕在化する。特に、電気自動車やハイブリッド自動車のような永久磁石同期モータを使用する環境対応自動車では、低回転時にモータの回転子とタイヤとの2慣性系によって車体共振が発生し、振動・騒音が顕著となる場合がある。一方、低回転時を除いたモータの回転数領域では、径方向の電磁力(電磁加振力)は周方向の電磁力(トルク脈動)と比較して、5〜10倍程度の大きさとなる。そのため、電磁加振力による振動・騒音が支配的となる。
加えてモータに流れる交流電流には、モータの駆動制御に用いられ、モータの回転数に応じて周波数が変換する正弦波等の基本波電流成分と、インバータのスイッチング動作による高調波電流成分とが含まれる。高調波電流の周波数は、基本波電流の周波数と、PWM変調に用いられる搬送波の周波数とによって定まる。そのため、モータの回転数によっては、基本波電流によってモータに生じる電磁加振力またはトルク脈動と、高調波電流によってモータに生じる電磁加振力またはトルク脈動とが重なり合い、大きな振動や騒音が発生してしまうことがある。
本願発明の関連技術として、特許文献1に記載の技術が知られている。特許文献1には、永久磁石モータの回転数に応じた基本波電流と、スイッチング動作による高調波電流とを含み、所定のモータ回転数において、基本波電流によってモータに周期的に生じる加振力の位相である第1位相と、高調波電流によってモータに周期的に生じる加振力の位相である第2位相とが互いに重ならないように、第2位相を制御する方法が開示されている。
国際公開第2018/139295号
前述の通り、モータの低回転時には、他の振動・騒音要因が少ないため、トルク脈動に起因する振動・騒音が顕在化する。一方、低回転時を除いたモータの回転数領域では、電磁加振力による振動・騒音が支配的となる。このように、電気自動車やハイブリッド自動車のような永久磁石同期モータを使用する環境対応自動車では、広い範囲の回転数において振動・騒音が課題となる。しかしながら、特許文献1に開示された方法では、広い範囲の回転数において、こうした点を効果的に改善することができない。
本発明は、上記の課題に鑑みてなされたものであり、永久磁石同期モータで発生する振動や騒音を効果的に抑制することを目的とする。
本発明によるモータ制御装置は、直流電力から交流電力への電力変換を行う電力変換器と接続され、前記交流電力を用いて駆動する交流モータの駆動を制御するものであって、搬送波を生成する搬送波生成部と、前記搬送波の周波数を調整する搬送波周波数調整部と、前記搬送波を用いてトルク指令に応じた電圧指令をパルス幅変調し、前記電力変換器の動作を制御するためのゲート信号を生成するゲート信号生成部と、を備え、前記搬送波周波数調整部は、前記トルク指令と、前記交流モータの回転速度とに基づき、前記電圧指令と前記搬送波の位相差を変化させるように、前記搬送波の周波数を調整する。
本発明によるモータ制御方法は、直流電力から交流電力への電力変換を行う電力変換器と接続され、前記交流電力を用いて駆動する交流モータの駆動を制御するものであって、前記交流モータに対するトルク指令と、前記交流モータの回転速度とに基づき、前記トルク指令に応じた電圧指令と搬送波の位相差を変化させるように、前記搬送波の周波数を調整し、前記調整された周波数で前記搬送波を生成し、前記搬送波を用いて前記電圧指令をパルス幅変調し、前記電力変換器の動作を制御するためのゲート信号を生成する。
本発明によるハイブリッドシステムは、前記モータ制御装置と、前記モータ制御装置から出力される前記ゲート信号に基づいて動作し、直流電力から交流電力への電力変換を行う電力変換器と、前記交流電力を用いて駆動する交流モータと、前記交流モータに接続されたエンジンシステムと、を備える。
本発明による昇圧コンバータシステムは、前記モータ制御装置と、直流電源に接続され、前記モータ制御装置の制御に応じて前記直流電源を昇圧した直流電力を生成する昇圧コンバータと、前記モータ制御装置から出力される前記ゲート信号に基づいて動作し、前記昇圧コンバータにより昇圧された前記直流電力から交流電力への電力変換を行う電力変換器と、を備える。
本発明による電動パワーステアリングシステムは、前記モータ制御装置と、前記モータ制御装置から出力される前記ゲート信号に基づいて動作し、直流電力から交流電力への電力変換をそれぞれ行う複数の電力変換器と、複数の巻線系統を有し、前記複数の電力変換器によりそれぞれ生成された交流電力が前記複数の巻線系統にそれぞれ流れることで駆動する交流モータと、を備え、前記交流モータを用いて車両のステアリングを制御する。
本発明によれば、永久磁石同期モータで発生する振動や騒音を効果的に抑制できる。
本発明の一実施形態に係るモータ制御装置を備えたモータ駆動システムの全体構成図である。 本発明の第1の実施形態に係るモータ制御装置の機能構成を示すブロック図である。 本発明の第1の実施形態に係る搬送波周波数調整部の機能構成を示すブロック図である。 搬送波周波数一定時の音・振動の周波数スペクトル強度の実測データの一例を示す図である。 本発明の第1の実施形態に係る電圧位相誤差演算部の機能構成を示すブロック図である。 基準電圧位相演算の概念図である。 モータにおいて生じる周波数ごとの電磁加振力とトルク脈動による騒音レベルの一例を示す図である。 回転速度ωrごとの基準電圧位相θvbに対するトルク脈動と電磁加振力の基準電圧位相θvbに対する位相差データ例を示す図である。 変調率Hごとの基準電圧位相θvbに対するトルク脈動と電磁加振力の基準電圧位相θvbに対する位相差データ例を示す図である。 本発明による電磁加振力の低減効果を示す図である。 本発明によるトルク脈動の低減効果を示す図である。 本発明の第2の実施形態に係るハイブリッドシステムの構成を示す図である。 本発明の第3の実施形態に係る昇圧コンバータシステムの構成を示す図である。 本発明の第4の実施形態に係る電動パワーステアリングシステムの構成を示す図である。 本発明の第4の実施形態に係る電動パワーステアリングシステムにおける駆動制御システムの構成を示す図である。
以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。本実施形態では、電気自動車やハイブリッド自動車に搭載されて使用されるモータ駆動システムへの適用例について説明する。
(第1の実施形態)
図1は、本発明の一実施形態に係るモータ制御装置を備えたモータ駆動システムの全体構成図である。図1において、モータ駆動システム100は、モータ制御装置1、永久磁石同期モータ(以下、単に「モータ」と称する)2、インバータ3、回転位置検出器41、高圧バッテリ5を備える。
モータ制御装置1は、車両からモータ2に対して要求される目標トルクに応じたトルク指令T*に基づいて、モータ2の駆動を制御するためのゲート信号を生成し、インバータ3に出力する。なお、モータ制御装置1の詳細については後で説明する。
インバータ3は、インバータ回路31、PWM信号駆動回路32および平滑キャパシタ33を有する。PWM信号駆動回路32は、モータ制御装置1から入力されるゲート信号に基づいて、インバータ回路31が有する各スイッチング素子を制御するためのPWM信号を生成し、インバータ回路31に出力する。インバータ回路31は、U相、V相、W相の上アームおよび下アームにそれぞれ対応するスイッチング素子を有している。PWM信号駆動回路32から入力されたPWM信号に従ってこれらのスイッチング素子がそれぞれ制御されることで、高圧バッテリ5から供給される直流電力が交流電力に変換され、モータ2に出力される。平滑キャパシタ33は、高圧バッテリ5からインバータ回路31に供給される直流電力を平滑化する。
モータ2は、インバータ3から供給される交流電力により回転駆動される同期モータであり、固定子および回転子を有する。インバータ3から入力された交流電力が固定子に設けられた電機子コイルLu、Lv、Lwに印加されると、モータ2において三相交流電流Iu、Iv、Iwが導通し、各電機子コイルに電機子磁束が発生する。この各電機子コイルの電機子磁束と、回転子に配置された永久磁石の磁石磁束との間で吸引力・反発力が発生することで、回転子にトルクが発生し、回転子が回転駆動される。
モータ2には、回転子の回転位置θを検出するための回転位置センサ4が取り付けられている。回転位置検出器41は、回転位置センサ4の入力信号から回転位置θを演算する。回転位置検出器41による回転位置θの演算結果はモータ制御装置1に入力され、モータ制御装置1がモータ2の誘起電圧の位相に合わせてゲート信号を生成することで行われる交流電力の位相制御において利用される。
ここで、回転位置センサ4には、鉄心と巻線とから構成されるレゾルバがより好適であるが、GMRセンサなどの磁気抵抗素子や、ホール素子を用いたセンサであっても問題ない。また、回転位置検出器41は、回転位置センサ4からの入力信号を用いず、モータ2に流れる三相交流電流Iu、Iv、Iwや、インバータ3からモータ2に印加される三相交流電圧Vu、Vv、Vwを用いて回転位置θを推定してもよい。
インバータ3とモータ2の間には、電流検出手段7が配置されている。電流検出手段7は、モータ2を通電する三相交流電流Iu、Iv、Iw(U相交流電流Iu、V相交流電流IvおよびW相交流電流Iw)を検出する。電流検出手段7は、例えばホール電流センサ等を用いて構成される。電流検出手段7による三相交流電流Iu、Iv、Iwの検出結果はモータ制御装置1に入力され、モータ制御装置1が行うゲート信号の生成に利用される。なお、図1では電流検出手段7が3つの電流検出器により構成される例を示しているが、電流検出器を2つとし、残る1相の交流電流は、三相交流電流Iu、Iv、Iwの和が零であることから算出してもよい。また、高圧バッテリ5からインバータ3に流入するパルス状の直流電流を、平滑キャパシタ33とインバータ3の間に挿入されたシャント抵抗等により検出し、この直流電流とインバータ3からモータ2に印加される三相交流電圧Vu、Vv、Vwに基づいて三相交流電流Iu、Iv、Iwを求めてもよい。
次に、モータ制御装置1の詳細について説明する。図2は、本発明の第1の実施形態に係るモータ制御装置1の機能構成を示すブロック図である。図2において、モータ制御装置1は、電流指令生成部11、速度算出部12、三相/dq変換電流制御部13、電流制御部14、dq/三相電圧指令変換部15、搬送波周波数調整部16、三角波生成部17、ゲート信号生成部18の各機能ブロックを有する。モータ制御装置1は、例えばマイクロコンピュータにより構成され、マイクロコンピュータにおいて所定のプログラムを実行することにより、これらの機能ブロックを実現することができる。あるいは、これらの機能ブロックの一部または全部をロジックICやFPGA等のハードウェア回路を用いて実現してもよい。
電流指令生成部11は、入力されたトルクT*指令と電源電圧Hvdcに基づき、d軸電流指令Id*およびq軸電流指令Iq*を演算する。ここでは、例えば予め設定された電流指令マップや数式等を用いて、トルク指令T*に応じたd軸電流指令Id*、q軸電流指令Iq*を求める。
速度算出部12は、回転位置θの時間変化から、モータ2の回転速度(回転数)を表すモータ回転速度ωrを演算する。なお、モータ回転速度ωrは、角速度(rad/s)または回転数(rpm)のいずれで表される値であってもよい。また、これらの値を相互に変換して用いてもよい。
三相/dq変換電流制御部13は、電流検出手段7が検出した三相交流電流Iu、Iv、Iwに対して、回転位置検出器41が求めた回転位置θに基づくdq変換を行い、d軸電流値Idおよびq軸電流値Iqを演算する。
電流制御部14は、電流指令生成部11から出力されるd軸電流指令Id*およびq軸電流指令Iq*と、三相/dq変換電流制御部13から出力されるd軸電流値Idおよびq軸電流値Iqとの偏差に基づき、これらの値がそれぞれ一致するように、d軸電圧指令Vd*およびq軸電圧指令Vq*を演算する。ここでは、例えばPI制御等の制御方式により、d軸電流指令Id*とd軸電流値Idの偏差に応じたd軸電圧指令Vd*と、q軸電流指令Iq*とq軸電流値Iqの偏差に応じたq軸電圧指令Vq*とを求める。
dq/三相電圧指令変換部15は、電流制御部14が演算したd軸電圧指令Vd*およびq軸電圧指令Vq*に対して、回転位置検出器41が求めた回転位置θに基づく三相変換を行い、三相電圧指令Vu*、Vv*、Vw*(U相電圧指令値Vu*、V相電圧指令値Vv*およびW相電圧指令値Vw*)を演算する。これにより、トルク指令T*に応じた三相電圧指令Vu*、Vv*、Vw*を生成する。
搬送波周波数調整部16は、電流指令生成部11が生成したd軸電圧指令Vd*およびq軸電圧指令Vq*、回転位置検出器41が求めた回転位置θ、速度算出部12が求めた回転速度ωr、トルク指令T*、電源電圧Hvdcに基づき、ゲート信号の生成に用いられる搬送波の周波数を表す搬送波周波数fcを演算する。この搬送波周波数fcに従って三角波生成部17が搬送波を生成することで、モータ2で発生する振動や騒音を抑制できるように、搬送波の周波数が調整される。なお、搬送波周波数調整部16による搬送波周波数fcの演算方法の詳細については後述する。
三角波生成部17は、搬送波周波数調整部16が演算した搬送波周波数fcに基づき、三角波信号(搬送波信号)Trを生成する。
ゲート信号生成部18は、三角波生成部17から出力される三角波信号Trを用いて、dq/三相電圧指令変換部15から出力される三相電圧指令Vu*、Vv*、Vw*をそれぞれパルス幅変調し、インバータ3の動作を制御するためのゲート信号を生成する。具体的には、dq/三相電圧指令変換部15から出力される三相電圧指令Vu*、Vv*、Vw*と、三角波生成部17から出力される三角波信号Trとの比較結果に基づき、U相、V相、W相の各相に対してパルス状の電圧を生成する。そして、生成したパルス状の電圧に基づき、インバータ3の各相のスイッチング素子に対するゲート信号を生成する。このとき、各相の上アームのゲート信号Gup、Gvp、Gwpをそれぞれ論理反転させ、下アームのゲート信号Gun、Gvn、Gwnを生成する。ゲート信号生成部18が生成したゲート信号は、モータ制御装置1からインバータ3のPWM信号駆動回路32に出力され、PWM信号駆動回路32によってPWM信号に変換される。これにより、インバータ回路31の各スイッチング素子がオン/オフ制御され、インバータ3の出力電圧が調整される。
次に、モータ制御装置1における搬送波周波数調整部16の動作について説明する。搬送波周波数調整部16は前述のように、d軸電圧指令Vd*およびq軸電圧指令Vq*と、回転位置θと、回転速度ωrと、トルク指令T*と、電源電圧Hvdcに基づき、搬送波周波数fcを演算する。この搬送波周波数fcに従って三角波生成部17が生成する三角波信号Trの周波数を逐次的に制御することで、トルク指令T*に応じた三相電圧指令Vu*、Vv*、Vw*の電圧波形に対して、搬送波である三角波信号Trの周期と位相がそれぞれ所望の関係となるように調整する。なお、ここでの所望の関係とは、PWM信号によるインバータ3のスイッチング動作が原因の高調波電流によってモータ2に生じる電磁加振力またはトルク脈動が、電圧指令に応じた基本波電流により生じる電磁加振力またはトルク脈動と同周期かつ逆位相となるような関係のことを指す。
図3は、本発明の第1の実施形態に係る搬送波周波数調整部16のブロック図である。搬送波周波数調整部16は、同期PWM搬送波数選択部161、電圧位相演算部162、変調率演算部163、電圧位相誤差演算部164、同期搬送波周波数演算部165、搬送波周波数設定部166を有する。
同期PWM搬送波数選択部161は、回転速度ωrに基づき、同期PWM制御における電圧波形の1周期に対する搬送波の数を表す同期PWM搬送波数Ncを選択する。同期PWM搬送波数選択部161は例えば、Nc±3やNc×2の値が、電圧指令に応じた基本波電流によりモータ2に生じる電磁加振力やトルク脈動の次数(6の倍数)と一致するように、同期PWM搬送波数Ncを選択する。具体的には、例えば、回転速度ωrが所定の閾値未満であればNc=15とし、閾値以上であればNc=9とする。これにより、モータ2において基本波電流により生じる電磁加振力やトルク脈動の次数に対応する同期PWM搬送波数Ncを、回転速度ωrに応じて最適な値に設定することができる。
なお、同期PWM搬送波数Ncを上記のように設定する理由を以下に説明する。パルス幅変調による高調波電流の脈動(側帯波成分)の次数は、同期PWM搬送波数Ncを用いて、Nc±2、Nc±4、Nc×2±1と表される。これらの側帯波成分によりモータ2に生じる電磁加振力とトルク脈動の次数は、Nc±3、Nc×2となる。そのため、モータ2において基本波電流による電磁加振力やトルク脈動を抑制するためには、上記のように同期PWM搬送波数Ncを設定することで、前述した所望の関係が満たされるように、搬送波である三角波信号Trを調整することが好ましい。これにより、基本波電流による電磁加振力やトルク脈動を、パルス幅変調で用いられる搬送波による電磁加振力やトルク脈動で相殺し、モータ2において生じる振動や騒音を抑制することが可能となる。
図4は、搬送波周波数一定時の音・振動の周波数スペクトル強度の実測データの一例を示す図である。図4では、搬送波である三角波信号Trの周波数を一定として、モータ2の回転数を0rpmから任意の回転数まで上昇させたときに、モータ2において生じた音と振動の周波数スペクトル強度の実測データの一例を示している。図4において、横軸はモータ2の回転を開始してからの経過時間を表し、縦軸は周波数を表している。また、図4では線の濃淡により、音と振動の強度を表している。
図4を見ると、パルス幅変調に用いられる搬送波に起因してモータ2に生じた電磁加振力とトルク脈動が、fc±3f1の周波数において周波数スペクトル上に強く現れていることが分かる。なお、図4では搬送波周波数fcを一定としている。また、f1は電圧指令に応じた基本波電流の周波数を表しており、これはモータ2の回転数(回転速度ωr)と比例している。
同期PWM搬送波数選択部161は、以上を踏まえて、回転速度ωrに基づいて同期PWM搬送波数Ncを前述のような値で選択する。例えば同期PWM搬送波数をNc=9とすると、搬送波に起因した高調波電流によりモータ2において生じる電磁加振力とトルク脈動の次数は、前述の式から9−3=6、9+3=12、9×2=18と計算される。計算されたこれらの次数はいずれも、基本波電流により生じる電磁加振力とトルク脈動の次数である6の倍数と一致する。また、同期PWM搬送波数をNc=15に設定した場合も同様に、基本波電流により生じる電磁加振力とトルク脈動の次数である6の倍数と一致する。そのため、基本波電流による電磁加振力やトルク脈動を、パルス幅変調で用いられる搬送波による電磁加振力やトルク脈動で相殺することが可能となる。
なお、同期PWM搬送波数選択部161は、回転速度ωrだけでなく、トルク指令T*に基づいて、同期PWM搬送波数Ncの選択を行ってもよい。また、例えばヒステリシスを設定するなど、回転速度ωrが上昇するときと下降するときとで、同期PWM搬送波数Ncの選択基準を変化させてもよい。
電圧位相演算部162は、d軸電圧指令Vd*およびq軸電圧指令Vq*と、回転位置θと、回転速度ωrと、搬送波周波数fcに基づいて、以下の式(1)〜(4)により電圧位相θvを演算する。
θv=θ+φv+φdqv+0.5π ・・・(1)
φv=ωr・1.5Tc ・・・(2)
Tc=1/fc ・・・(3)
φdqv=atan(Vq/Vd) ・・・(4)
ここで、φvは電圧位相の演算遅れ補償値を、Tcは搬送波周期を、φdqvはd軸からの電圧位相をそれぞれ表すものとする。演算遅れ補償値φvは、回転位置検出器41が回転位置θを取得してからモータ制御装置1がインバータ3にゲート信号を出力するまでの間に、1.5制御周期分の演算遅れが発生することを補償する値である。なお、本実施形態では、式(1)右辺の第4項で0.5πを加算している。これは、式(1)右辺の第1項〜第3項で演算される電圧位相がcos波であるため、これをsin波に視点変換するための演算である。
変調率演算部163は、以下の式(5)に従い、d軸電圧指令Vd*およびq軸電圧指令Vq*、電源電圧Hvdcに基づいて変調率Hを演算する。なお、変調率Hは、高圧バッテリ5からインバータ3に供給される直流電力と、インバータ3からモータ2に出力される交流電力との電圧振幅比を表している。
H=√(Vd^2+Vq^2)/(Hvdc/2) ・・・(5)
電圧位相誤差演算部164は、同期PWM搬送波数選択部161により選択された同期PWM搬送波数Ncと、電圧位相演算部162により演算された電圧位相θvと、変調率演算部163により演算された変調率Hと、回転速度ωrと、トルク指令T*に基づき、電圧位相誤差Δθvを演算する。電圧位相誤差Δθvは、インバータ3に対する電圧指令である三相電圧指令Vu*、Vv*、Vw*と、パルス幅変調に用いる搬送波である三角波信号Trとの位相差を表している。電圧位相誤差演算部164が所定の演算周期ごとに電圧位相誤差Δθvを演算することで、搬送波周波数調整部16において、インバータ3に対する電圧指令とパルス幅変調に用いる搬送波との位相差を変化させるように、三角波信号Trの周波数調整を行うことができる。
同期搬送波周波数演算部165は、以下の式(6)に従い、電圧位相誤差演算部164により演算された電圧位相誤差Δθvと、回転速度ωrと、同期PWM搬送波数選択部161により選択された同期PWM搬送波数Ncに基づき、同期搬送波周波数fcsを演算する。
fcs=ωr・Nc・(1+Δθv・K)/(2π)・・・(6)
同期搬送波周波数演算部165は、例えばPLL(Phase Locked Loop)制御により、式(6)に基づく同期搬送波周波数fcsを演算することができる。なお、式(6)においてゲインKは一定値としてもよいし、条件により可変としてもよい。
搬送波周波数設定部166は、回転速度ωrに基づいて、同期搬送波周波数演算部165により演算された同期搬送波周波数fcsと、非同期搬送波周波数fcnsとのいずれかを選択し、搬送波周波数fcとして出力する。非同期搬送波周波数fcnsは、搬送波周波数設定部166において予め設定された一定値である。なお、予め非同期搬送波周波数fcnsを複数用意しておき、その中でいずれかを回転速度ωrに応じて選択してもよい。例えば、回転速度ωrの値が大きいほど非同期搬送波周波数fcnsの値が大きくなるように、搬送波周波数設定部166において非同期搬送波周波数fcnsを選択し、搬送波周波数fcとして出力することができる。
次に、搬送波周波数調整部16のうち、電圧位相誤差演算部164における電圧位相誤差Δθvの演算方法の詳細について説明する。
図5は、本発明の第1の実施形態に係る電圧位相誤差演算部164のブロック図である。電圧位相誤差演算部164は、基準電圧位相演算部1641、脈動周波数変換部1642、脈動寄与度選択部1643、電磁加振力低減位相差テーブル1644a、トルク脈動低減位相差テーブル1644b、電圧位相差変換部1645、加算部1646、減算部1647を有する。
基準電圧位相演算部1641は、同期PWM搬送波数Ncと電圧位相θvに基づき、同期PWM制御における搬送波の位相を固定するための基準電圧位相θvbを演算する。基準電圧位相演算部1641により基準電圧位相θvbの演算が行われることで、電圧位相θvに対する搬送波の周期と、基本波電流によってモータ2に発生する電磁加振力やトルク脈動の周期とを、互いに一致させることができる。
図6は、基準電圧位相演算部1641が実施する基準電圧位相演算の概念図である。基準電圧位相演算部1641は、例えば図6に示すように、0から2πの間で同期PWM搬送波数Ncに応じた段数で階段状に変化する基準電圧位相θvbを演算する。なお、図6では説明を分かりやすくするため、同期PWM搬送波数Ncが3であるときの例を示しているが、実際には同期PWM搬送波数Ncは、前述のようにNc=9またはNc=15とすることが好ましい。
本実施形態では処理負荷低減のため、例えば図6に示すように、三角搬送波が最小値(谷)から最大値(山)まで上昇する区間である谷割り区間でのみ、搬送波周波数調整部16が搬送波の周波数を調整可能とする。この場合、同期搬送波周波数演算部165では後述するように、搬送波の谷割り区間において、電圧位相誤差Δθvから同期搬送波周波数fcsを逐次的に演算することで、同期PWM制御を実施する。基準電圧位相演算部1641は、この電圧位相誤差Δθvの演算に用いられる基準電圧位相θvbを、図6に示すようにπ/3間隔で変化する離散値として算出する。なお、この基準電圧位相θvbの間隔は、同期PWM搬送波数Ncに応じて変化する。同期PWM搬送波数Ncが大きくなるほど、基準電圧位相θvbの間隔が小さくなる。
具体的には、基準電圧位相演算部1641は、以下の式(7)〜(8)に従い、電圧位相θv、同期PWM搬送波数Ncに基づいて基準電圧位相θvbを演算する。
θvb=int(θv/θs)・θs+0.5θs ・・・(7)
θs=2π/Nc ・・・(8)
ここで、θsは搬送波1つあたりの電圧位相θvの変化幅を表し、intは小数点以下の切り捨て演算を表すものとする。
なお、本実施形態では、三角搬送波が最大値(山)から最小値(谷)まで下降する区間である山割り区間で基準電圧位相θvbが0radとなるように、基準電圧位相演算部1641において式(7)〜(8)に従い基準電圧位相θvbを演算している。しかしながら、基準電圧位相θvbが0radとなる期間は山割り区間に限らない。電圧位相θvを用いて、0から2πの間で同期PWM搬送波数Ncに応じた段数で階段状に変化する基準電圧位相θvbを演算できれば、式(7)〜(8)以外の演算方法により、基準電圧位相演算部1641が基準電圧位相θvbの演算を行ってもよい。
脈動周波数変換部1642は、以下の式(9)に従い、回転速度ωrを脈動周波数frに変換する。
fr=ωr・4・Nr/(2π) ・・・(9)
ここで、Nrは基本波電流により生じる電磁加振力やトルク脈動の次数を表しており、これは前述のように6の倍数(6、12、18、24...)である。脈動周波数変換部1642では、抑制対象とする電磁加振力やトルク脈動の次数に合わせて、Nrの値を設定することができる。
脈動寄与度選択部1643は、脈動周波数変換部1642により求められた脈動周波数frに基づいて、モータ2の径方向に生じる電磁加振力と、モータ2の周方向に生じるトルク脈動とのうち、モータ2において発生する振動や騒音への寄与度が大きい方を選択する。
図7は、モータ2において生じる周波数ごとの電磁加振力とトルク脈動による騒音レベルの一例を示す図である。図7では、横軸に周波数を示し、縦軸に騒音レベルの大きさを示している。図7から、区間a、cにおいては周方向のトルク脈動による騒音レベルの方が高く、区間bでは径方向の電磁加振力による騒音レベルの方が高いことが分かる。このような騒音レベルの周波数特性は、モータ2の構造によって定まるため、モータ2の仕様ごとに固有である。そのため、図7に示すような周波数ごとの騒音レベルの関係をシミュレーションや実測により予め取得しておくことで、脈動寄与度選択部1643により、回転速度ωrに応じた脈動周波数frに基づき、電磁加振力とトルク脈動の一方を、モータ2において発生する振動や騒音への寄与度が大きい方として選択することができる。
電磁加振力低減位相差テーブル1644aは、モータ2の電磁加振力を低減するための位相差を表すテーブルであり、トルク脈動低減位相差テーブル1644bは、モータ2のトルク脈動を低減するための位相差を表すテーブルである。ここでの位相差とは、基準電圧位相θvbに対する位相差を意味している。これらのテーブルは、回転速度ωr、トルク指令T*および変調率Hの複数の値に対してそれぞれ設定されている。電圧位相誤差演算部164では、回転速度ωr、トルク指令T*、変調率Hに基づいてこれらのテーブルをそれぞれ参照することで、電磁加振力の低減に適した位相差と、トルク脈動の低減に適した位相差とを、それぞれ特定することができる。
例えばシミュレーションや実測などにより、電磁加振力やトルク脈動が低減される基準電圧位相θvbに対する位相差データを、回転速度ωr、トルク指令T*、変調率Hごとに予め取得しておく。電磁加振力低減位相差テーブル1644aおよびトルク脈動低減位相差テーブル1644bは、予め取得したこれらの位相差データに基づいてそれぞれ設定される。ここで、変調率Hごとに電磁加振力低減位相差テーブル1644aやトルク脈動低減位相差テーブル1644bが設定される理由は、高調波電流によって生じる電磁加振力やトルク脈動の支配的な次数が変調率Hに応じて変化することを補償するためである。なお、これらのテーブルに基づいて出力される位相差は、電流位相差と電圧位相差のいずれであってもよい。本実施形態では、電磁加振力低減位相差テーブル1644aおよびトルク脈動低減位相差テーブル1644bからそれぞれ出力される位相差が電流位相差であり、後段の電圧位相差変換部1645において、電流位相差から電圧位相差への変換を行うものとする。
図8は、回転速度ωrごとの基準電圧位相θvbに対するトルク脈動と電磁加振力の基準電圧位相θvbに対する位相差データ例を示す図である。図9は、変調率Hごとの基準電圧位相θvbに対するトルク脈動と電磁加振力の基準電圧位相θvbに対する位相差データ例を示す図である。なお、回転速度ωrに応じてトルク指令T*も変化するため、図8では、トルク指令T*ごとの基準電圧位相θvbに対するトルク脈動と電磁加振力の基準電圧位相θvbに対する位相差データも示されている。
図8、図9では、基準電圧位相θvbに対する位相差が−180°から+180°の範囲について、前述のように電圧指令に応じた基本波電流によりモータ2に生じるトルク脈動と電磁加振力として、6の倍数である6次、12次、18次、24次の各次数におけるトルク脈動と電磁加振力の大きさと、これらを合計したトルク脈動の和と電磁加振力の和をそれぞれ示している。電圧位相誤差演算部164では、これらの位相差データに基づき、例えばトルク脈動の和が最も小さくなる位相差と、電磁加振力の和が最も小さくなる位相差をそれぞれテーブル化することで、トルク脈動低減位相差テーブル1644bおよび電磁加振力低減位相差テーブル1644aを設定することができる。あるいは、共振周波数の回避などを目的として、特定の次数、例えば12次のトルク脈動または電磁加振力を効果的に低減できる位相差をテーブル化し、トルク脈動低減位相差テーブル1644bおよび電磁加振力低減位相差テーブル1644aを設定してもよい。
脈動寄与度選択部1643により、モータ2において発生する振動や騒音への寄与度が大きい方として電磁加振力が選択された場合は、回転速度ωr、トルク指令T*、変調率Hに基づいて電磁加振力低減位相差テーブル1644aで特定された電流位相差が、電圧位相差変換部1645に入力される。一方、脈動寄与度選択部1643により、モータ2において発生する振動や騒音への寄与度が大きい方としてトルク脈動が選択された場合は、回転速度ωr、トルク指令T*、変調率Hに基づいてトルク脈動低減位相差テーブル1644bで特定された電流位相差が、電圧位相差変換部1645に入力される。
電圧位相差変換部1645は、電磁加振力低減位相差テーブル1644aまたはトルク脈動低減位相差テーブル1644bから入力された電流位相差に0.5πを加算することで、電流位相差を電圧位相差に変換する。ここで0.5πを加算する理由は、高調波電流は基本波電流と比較して抵抗の影響を受けにくいため、主にモータ2のインダクタンス成分に流れる高調波電流の微分値(0.5π進み)が、モータ2の電圧に影響するためである。なお前述のように、電磁加振力低減位相差テーブル1644aおよびトルク脈動低減位相差テーブル1644bからそれぞれ出力される位相差を電圧位相差とした場合は、電圧位相差変換部1645を設ける必要がない。
加算部1646は、基準電圧位相演算部1641にて演算した基準電圧位相θvbに、電圧位相差変換部1645にて演算した電圧位相差を加算し、高調波電流により生じる電磁加振力またはトルク脈動を低減するための補正基準電圧位相θvb2を演算する。
減算部1647は、電圧位相θvから補正基準電圧位相θvb2を減算し、電圧位相誤差Δθvを演算する。
電圧位相誤差演算部164では、以上説明したようにして、電圧位相誤差Δθvが演算される。これにより、回転速度ωr、トルク指令T*、変調率Hに基づき、三相電圧指令Vu*、Vv*、Vw*に応じた基本波電流によるトルク脈動や電磁加振力、すなわち基本波電流の高調波成分のうち、6の倍数を次数とする各高調波成分のトルク脈動や電磁加振力が、パルス幅変調で用いられる搬送波によるトルク脈動や電磁加振力で相殺されるように、電圧位相誤差Δθvを決定することができる。その結果、モータ2において生じるトルク脈動または電磁加振力を低減させるように、インバータ3に対する電圧指令とパルス幅変調に用いる搬送波との位相差を変化させて、搬送波周波数fcを設定することができる。
図10は、本発明による電磁加振力の低減効果を示す図である。図10では、本発明を適用しない場合に基本波電流によって生じる電磁加振力の例を破線で示すとともに(従来技術)、本発明を適用した場合に基本波電流によって生じる電磁加振力の例を実線で示している(本発明)。なお、本発明を適用しない場合とは、電圧位相θvと基準電圧位相θvbとの差分により電圧位相誤差Δθvを演算し、これを用いて同期PWM制御を行った場合に相当する。一方、本発明を適用した場合とは、上記で説明したように、電磁加振力低減位相差テーブル1644aから求めた位相差、すなわちモータ2の電磁加振力を低減する位相差を基準電圧位相θvbに加算した補正基準電圧位相θvb2に基づいて電圧位相誤差Δθvを演算し、これを用いて同期PWM制御を行った場合である。図10から、本発明を適用した場合は適用していない場合と比較して、電磁加振力を低減できており、本発明が有効であることが確認できる。
図11は、本発明によるトルク脈動の低減効果を示す図である。図11では、本発明を適用しない場合に基本波電流によって生じるトルク脈動の例を破線で示すとともに(従来技術)、本発明を適用した場合に基本波電流によって生じるトルク脈動の例を実線で示している(本発明)。なお、本発明を適用しない場合とは、電圧位相θvと基準電圧位相θvbとの差分により電圧位相誤差Δθvを演算し、これを用いて同期PWM制御を行った場合に相当する。一方、本発明を適用した場合とは、上記で説明したように、トルク脈動低減位相差テーブル1644bから求めた位相差、すなわちモータ2のトルク脈動を低減する位相差を基準電圧位相θvbに加算した補正基準電圧位相θvb2に基づいて電圧位相誤差Δθvを演算し、これを用いて同期PWM制御を行った場合である。図11から、本発明を適用した場合は適用していない場合と比較して、トルク脈動を低減できており、本発明が有効であることが確認できる。
なお、搬送波周波数調整部16において、上記の処理はモータ2の力行駆動時、回生駆動時のどちらで行ってもよい。力行駆動時はトルク指令T*が正の値となり、回生駆動時にはトルク指令T*が負の値となる。したがって、搬送波周波数調整部16では、トルク指令T*の値よりモータ2が力行駆動または回生駆動のいずれであるかの判断を実施し、その判断の結果に基づいて上述のような演算処理を電圧位相誤差演算部164において行うことにより、モータ2において生じるトルク脈動または電磁加振力を低減させるように、電圧位相誤差Δθvを変化させて搬送波周波数fcを設定することができる。
以上説明した本発明の一実施形態によれば、以下の作用効果を奏する。
(1)モータ制御装置1は、直流電力から交流電力への電力変換を行うインバータ3と接続され、その交流電力を用いて駆動するモータ2の駆動を制御するものであって、搬送波である三角波信号Trを生成する三角波生成部17と、三角波信号Trの周波数を表す搬送波周波数fcを調整する搬送波周波数調整部16と、三角波信号Trを用いてトルク指令T*に応じた三相電圧指令Vu*、Vv*、Vw*をパルス幅変調し、インバータ3の動作を制御するためのゲート信号を生成するゲート信号生成部18とを備える。搬送波周波数調整部16は、トルク指令T*と、モータ2の回転速度ωrとに基づき、三相電圧指令Vu*、Vv*、Vw*と三角波信号Trの位相差を表す電圧位相誤差Δθvを変化させるように、搬送波周波数fcを調整する。このようにしたので、モータ2で発生する振動や騒音を効果的に抑制できる。
(2)搬送波周波数調整部16は、同期PWM搬送波数選択部161により同期PWM搬送波数Ncを所定の整数値に選択することで、搬送波周波数fcが三相電圧指令Vu*、Vv*、Vw*の周波数の整数倍となるように、搬送波周波数fcを調整する。このようにしたので、三相電圧指令Vu*、Vv*、Vw*の電圧波形に対して、搬送波である三角波信号Trの周期と位相がそれぞれ所望の関係となるように調整し、同期PWM制御を確実に行うことができる。
(3)搬送波周波数調整部16は、脈動寄与度選択部1643により、モータ2の回転速度ωrに基づいて、モータ2の周方向に生じるトルク脈動と、モータ2の径方向に生じる電磁加振力との一方を選択する。そして、電圧位相誤差演算部164により、選択したトルク脈動または電磁加振力を低減させるように、電圧位相誤差Δθvを変化させる。このようにしたので、トルク脈動による騒音レベルと電磁加振力による騒音レベルがそれぞれ図7に示すような周波数特性を有するモータ2に対して、任意の回転数で振動や騒音を効果的に抑制できる。
(4)搬送波周波数調整部16は、トルク指令T*と、回転速度ωrと、変調率演算部163により演算され、インバータ3に供給される直流電力とインバータ3から出力される交流電力との電圧振幅比を表す変調率Hとに基づき、電圧位相誤差Δθvを変化させる。このようにしたので、高調波電流によって生じる電磁加振力やトルク脈動の支配的な次数が変調率Hに応じて変化し、これによりモータ2の振動や騒音が変調率Hに応じて変化するような場合でも、その変化を確実に補償して、モータ2で発生する振動や騒音を効果的に抑制できる。
(5)搬送波周波数調整部16は、電磁加振力低減位相差テーブル1644aおよびトルク脈動低減位相差テーブル1644bを参照することで、三相電圧指令Vu*、Vv*、Vw*に応じた基本波電流の高調波成分のうち、6の倍数を次数とする各高調波成分に基づき、電圧位相誤差Δθvを変化させる。このようにしたので、基本波電流による電磁加振力やトルク脈動を、パルス幅変調で用いられる搬送波による電磁加振力やトルク脈動で相殺して、モータ2で発生する振動や騒音を効果的に抑制できる。
(6)搬送波周波数調整部16は、トルク指令T*に基づいてモータ2が力行駆動または回生駆動のいずれであるかの判断を実施し、その判断の結果に基づいて電圧位相誤差Δθvを変化させてもよい。このようにすれば、モータ2の駆動状態に応じて最適な制御を実現できる。
(第2の実施形態)(シリーズハイブリッドシステム)
次に、本発明の第2の実施の形態について説明する。本実施形態では、モータとエンジンを組み合わせたハイブリッドシステムへの適用例を説明する。
図12は、本発明の第2の実施形態に係るハイブリッドシステムの構成を示す図である。ハイブリッドシステム72は、第1の実施形態で説明したモータ制御装置1、モータ2、インバータ3、回転位置検出器41および高圧バッテリ5を有するとともに、モータ2、インバータ3、回転位置検出器41とそれぞれ対応するモータ2a、インバータ3aおよび回転位置検出器41aを有する。
モータ2aには、回転子の回転位置θaを検出するための回転位置センサ4aが取り付けられている。回転位置検出器41aは、回転位置センサ4aの入力信号から回転位置θaを演算し、モータ制御装置1に出力する。インバータ3aとモータ2aの間には、電流検出手段7aが配置されている。
インバータ3aは、インバータ回路31a、PWM信号駆動回路32aおよび平滑キャパシタ33aを有する。PWM信号駆動回路32aは、インバータ3のPWM信号駆動回路32と共通のモータ制御装置1に接続されており、モータ制御装置1から入力されるゲート信号に基づいて、インバータ回路31aが有する各スイッチング素子を制御するためのPWM信号を生成し、インバータ回路31aに出力する。インバータ回路31aおよび平滑キャパシタ33aは、インバータ回路31および平滑キャパシタ33と共通の高圧バッテリ5に接続されている。
モータ制御装置1には、モータ2に対するトルク指令T*と、モータ2aに対するトルク指令Ta*とが入力される。モータ制御装置1は、これらのトルク指令に基づき、第1の実施形態で説明したような方法でモータ2,2aの駆動を制御するためのゲート信号をそれぞれ生成し、インバータ3,3aにそれぞれ出力する。すなわち、電圧位相誤差演算部164により、モータ2,2aで発生する振動や騒音をそれぞれ抑制できるように、電圧位相誤差を演算して搬送波の周波数を調整する。なお、この演算において参照される電磁加振力低減位相差テーブル1644aおよびトルク脈動低減位相差テーブル1644bは、例えば、モータ2,2aそれぞれで電磁加振力またはトルク脈動が最も効果的に低減できる値とすればよい。もしくは、それぞれでは電磁加振力またはトルク脈動が最も効果的に低減できる値ではないが、モータ2,2aの脈動を総和すると、最も効果的に低減できる値としてもよい。
モータ2には、エンジンシステム721と制御手段722が接続されている。エンジンシステム721は、制御手段722の制御により駆動し、モータ2を回転駆動させる。モータ2は、エンジンシステム721により回転駆動されることで発電機として動作し、交流電力を発生する。モータ2が発生した交流電力は、インバータ3により直流電力に変換され、高圧バッテリ5に充電される。これにより、ハイブリッドシステム72をシリーズハイブリッドシステムとして機能させることができる。なお、エンジンシステム721と制御手段722は、モータ2aに接続可能としてもよい。
(第3の実施形態)(昇圧コンバータシステム)
次に、本発明の第3の実施の形態について説明する。本実施形態では、昇圧コンバータシステムへの適用例を説明する。
図13は、本発明の第3の実施形態に係る昇圧コンバータシステムの構成を示す図である。昇圧コンバータシステム73は、第1の実施形態で説明したモータ制御装置1、モータ2、インバータ3、回転位置検出器41および高圧バッテリ5を有するとともに、昇圧コンバータ74を有する。
昇圧コンバータ74は、スイッチング素子743、744を直列に接続し、直列に接続されたスイッチング素子743、744の中間接続点にリアクトル742を介して高圧バッテリ5が接続される。また、高圧バッテリ5と並列にコンデンサ741が接続される。
昇圧コンバータ74は、モータ制御装置1によって指令が与えられ、スイッチング素子743、744がそれぞれスイッチング動作することで、高圧バッテリ5から供給される直流電圧を、昇圧コンバータシステム73の最も効率が良い直流電圧まで昇圧する。これにより、高圧バッテリ5を昇圧した直流電力を生成し、インバータ3に供給する。インバータ3は、モータ制御装置1から出力されるゲート信号に基づいて動作し、昇圧コンバータ74によって昇圧された直流電力から交流電力への電力変換を行う。
本実施形態では、昇圧コンバータ74により直流電圧が昇圧されるため、モータ制御装置1において変調率演算部163は、以下の式(10)に従い、d軸電圧指令Vd*およびq軸電圧指令Vq*、昇圧後直流電圧Hvdc’に基づいて、昇圧後変調率H’を演算する。
H’=√(Vd^2+Vq^2)/(Hvdc’/2) ・・・(10)
本実施形態では、電圧位相誤差演算部164において、回転速度ωr、トルク指令T*、昇圧後変調率H’に基づいて、電磁加振力低減位相差テーブル1644aおよびトルク脈動低減位相差テーブル1644bを参照することで、電磁加振力の低減に適した位相差と、トルク脈動の低減に適した位相差とをそれぞれ特定する。
(第4の実施形態)
次に、本発明の第4の実施の形態について説明する。本実施形態では、電動パワーステアリングシステムへの適用例を説明する。
図14は、本発明の第4の実施形態に係る電動パワーステアリングシステムの構成を示す図である。電動パワーステアリングシステム61は、第1の実施形態で説明したモータ制御装置1と、冗長化された駆動系統102A,102Bとを含む駆動制御システム75を有している。電動パワーステアリングシステム61は、ステアリングホイール62の回転トルクをトルクセンサ63により検知し、その回転トルクに基づいて駆動制御システム75を動作させる。これにより、ステアリングホイール62の入力に応じたアシストトルクを発生し、ステアリングアシスト機構64を介してステアリング機構65へ出力することで、操舵力をアシストする。その結果、ステアリング機構65によってタイヤ66が転舵され、車両の進行方向が制御される。
一般的に車両の電動パワーステアリングシステムは、ステアリングホイールを介してドライバに直結しているため、振動や騒音がドライバに伝わりやすく、振動や騒音に対する要求仕様が高い。特に、ドライバがステアリングホイールを高速で回転している状態では、他の発生要因と比較して、モータの動作が振動や騒音の原因として支配的となる。これに対して、本実施形態の電動パワーステアリングシステム61は、ドライバがステアリングホイール62を高速で回転している状態での振動を効果的に低減できるため、低振動かつ低騒音な電動パワーステアリングシステムを実現できる。
図15は、本発明の第4の実施形態に係る電動パワーステアリングシステム61における駆動制御システム75の構成を示す図である。駆動制御システム75において、冗長化された駆動系統102A,102Bには、モータ制御装置1、モータ2および高圧バッテリ5が共通に接続されている。本実施形態では、モータ2が2つの巻線系統21,22を有しており、一方の巻線系統21が駆動系統102Aを構成し、もう一方の巻線系統22が駆動系統102Bを構成する。
駆動系統102Aは、インバータ3および回転位置検出器41を有しており、巻線系統21に対応する回転子の回転位置θを検出するための回転位置センサ4がモータ2に取り付けられている。インバータ3により生成された交流電力は、モータ2の巻線系統21に流れてモータ2を回転駆動させる。駆動系統102Aにおいて、インバータ3とモータ2の間には、電流検出手段7が配置されている。
駆動系統102Bは、インバータ3aおよび回転位置検出器41aを有しており、巻線系統22に対応する回転子の回転位置θaを検出するための回転位置センサ4aがモータ2に取り付けられている。インバータ3aにより生成された交流電力は、モータ2の巻線系統22に流れてモータ2を回転駆動させる。駆動系統102Bにおいて、インバータ3aとモータ2の間には、電流検出手段7aが配置されている。なお、インバータ3a、回転位置検出器41a、回転位置センサ4aおよび電流検出手段7aは、第2の実施形態で説明した図12のものとそれぞれ同様である。
モータ制御装置1には、モータ2に対するトルク指令T*が入力される。モータ制御装置1は、入力されたトルク指令T*に基づき、第1の実施形態で説明したような方法でモータ2の駆動を制御するためのゲート信号を生成し、インバータ3,3aにそれぞれ出力する。すなわち、電圧位相誤差演算部164により、駆動系統102A,102Bで発生する振動や騒音をそれぞれ抑制できるように、電圧位相誤差を演算して搬送波の周波数を調整する。なお、この演算において参照される電磁加振力低減位相差テーブル1644aおよびトルク脈動低減位相差テーブル1644bは、例えば、駆動系統102A,102Bそれぞれで電磁加振力またはトルク脈動が最も効果的に低減できる値とすればよい。もしくは、それぞれでは電磁加振力またはトルク脈動が最も効果的に低減できる値ではないが、駆動系統102A,102Bの脈動を総和すると、最も効果的に低減できる値としてもよい。
なお、以上説明した実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1…モータ制御装置、2,2a…永久磁石同期モータ(モータ)、3,3a…インバータ、4,4a…回転位置センサ、5…高圧バッテリ、7,7a…電流検出手段、11…電流指令生成部、12…速度算出部、13…三相/dq変換電流制御部、14…電流制御部、15…dq/三相電圧指令変換部、16…搬送波周波数調整部、17…三角波生成部、18…ゲート信号生成部、31,31a…インバータ回路、32,32a…PWM信号駆動回路、33,33a…平滑キャパシタ、41,41a…回転位置検出器、61…電動パワーステアリングシステム、72…シリーズハイブリッドシステム、73…昇圧コンバータシステム、74…昇圧コンバータ、75…駆動制御システム、100…モータ駆動システム、102A,102B…駆動系統、161…同期PWM搬送波数選択部、162…電圧位相演算部、163…変調率演算部、164…電圧位相誤差演算部、165…同期搬送波周波数演算部、166…搬送波周波数設定部、721…エンジンシステム、722…制御手段、1641…基準電圧位相演算部、1642…脈動周波数変換部、1643…脈動寄与度選択部、1644a…電磁加振力低減位相差テーブル、1644b…トルク脈動低減位相差テーブル、1645…電圧位相差変換部、1646…加算部、1647…減算部

Claims (15)

  1. 直流電力から交流電力への電力変換を行う電力変換器と接続され、前記交流電力を用いて駆動する交流モータの駆動を制御するモータ制御装置であって、
    搬送波を生成する搬送波生成部と、
    前記搬送波の周波数を調整する搬送波周波数調整部と、
    前記搬送波を用いてトルク指令に応じた電圧指令をパルス幅変調し、前記電力変換器の動作を制御するためのゲート信号を生成するゲート信号生成部と、を備え、
    前記搬送波周波数調整部は、前記トルク指令と、前記交流モータの回転速度とに基づき、前記電圧指令と前記搬送波の位相差を変化させるように、前記搬送波の周波数を調整するモータ制御装置。
  2. 請求項1に記載のモータ制御装置において、
    前記搬送波周波数調整部は、前記搬送波の周波数が前記電圧指令の周波数の整数倍となるように、前記搬送波の周波数を調整するモータ制御装置。
  3. 請求項1に記載のモータ制御装置において、
    前記搬送波周波数調整部は、前記交流モータの回転速度に基づいて、前記交流モータの周方向に生じるトルク脈動と、前記交流モータの径方向に生じる電磁加振力との一方を選択し、選択した前記トルク脈動または前記電磁加振力を低減させるように、前記位相差を変化させるモータ制御装置。
  4. 請求項1に記載のモータ制御装置において、
    前記搬送波周波数調整部は、前記トルク指令と、前記回転速度と、前記直流電力と前記交流電力との電圧振幅比とに基づき、前記位相差を変化させるモータ制御装置。
  5. 請求項1に記載のモータ制御装置において、
    前記搬送波周波数調整部は、前記電圧指令に応じた基本波電流の高調波成分のうち、6の倍数を次数とする各高調波成分に基づき、前記位相差を変化させるモータ制御装置。
  6. 請求項1に記載のモータ制御装置において、
    前記搬送波周波数調整部は、前記トルク指令に基づいて前記交流モータが力行駆動または回生駆動のいずれであるかの判断を実施し、前記判断の結果に基づいて前記位相差を変化させるモータ制御装置。
  7. 直流電力から交流電力への電力変換を行う電力変換器と接続され、前記交流電力を用いて駆動する交流モータの駆動を制御するモータ制御方法であって、
    前記交流モータに対するトルク指令と、前記交流モータの回転速度とに基づき、前記トルク指令に応じた電圧指令と搬送波の位相差を変化させるように、前記搬送波の周波数を調整し、
    前記調整された周波数で前記搬送波を生成し、
    前記搬送波を用いて前記電圧指令をパルス幅変調し、前記電力変換器の動作を制御するためのゲート信号を生成するモータ制御方法。
  8. 請求項7に記載のモータ制御方法において、
    前記搬送波の周波数が前記電圧指令の周波数の整数倍となるように、前記搬送波の周波数を調整するモータ制御方法。
  9. 請求項7に記載のモータ制御方法において、
    前記交流モータの回転速度に基づいて、前記交流モータの周方向に生じるトルク脈動と、前記交流モータの径方向に生じる電磁加振力との一方を選択し、選択した前記トルク脈動または前記電磁加振力を低減させるように、前記位相差を変化させるモータ制御方法。
  10. 請求項7に記載のモータ制御方法において、
    前記トルク指令と、前記回転速度と、前記直流電力と前記交流電力との電圧振幅比とに基づき、前記位相差を変化させるモータ制御方法。
  11. 請求項7に記載のモータ制御方法において、
    前記電圧指令に応じた基本波電流の高調波成分のうち、6の倍数を次数とする各高調波成分に基づき、前記位相差を変化させるモータ制御方法。
  12. 請求項7に記載のモータ制御方法において、
    前記トルク指令に基づいて前記交流モータが力行駆動または回生駆動のいずれであるかの判断を実施し、前記判断の結果に基づいて前記位相差を変化させるモータ制御方法。
  13. 請求項1から請求項6のいずれか一項に記載のモータ制御装置と、
    前記モータ制御装置から出力される前記ゲート信号に基づいて動作し、直流電力から交流電力への電力変換を行う電力変換器と、
    前記交流電力を用いて駆動する交流モータと、
    前記交流モータに接続されたエンジンシステムと、を備えるハイブリッドシステム。
  14. 請求項1から請求項6のいずれか一項に記載のモータ制御装置と、
    直流電源に接続され、前記モータ制御装置の制御に応じて前記直流電源を昇圧した直流電力を生成する昇圧コンバータと、
    前記モータ制御装置から出力される前記ゲート信号に基づいて動作し、前記昇圧コンバータにより昇圧された前記直流電力から交流電力への電力変換を行う電力変換器と、を備える昇圧コンバータシステム。
  15. 請求項1から請求項6のいずれか一項に記載のモータ制御装置と、
    前記モータ制御装置から出力される前記ゲート信号に基づいて動作し、直流電力から交流電力への電力変換をそれぞれ行う複数の電力変換器と、
    複数の巻線系統を有し、前記複数の電力変換器によりそれぞれ生成された交流電力が前記複数の巻線系統にそれぞれ流れることで駆動する交流モータと、を備え、
    前記交流モータを用いて車両のステアリングを制御する電動パワーステアリングシステム。
JP2019211272A 2019-11-22 2019-11-22 モータ制御装置、モータ制御方法、ハイブリッドシステム、昇圧コンバータシステム、電動パワーステアリングシステム Active JP7280170B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019211272A JP7280170B2 (ja) 2019-11-22 2019-11-22 モータ制御装置、モータ制御方法、ハイブリッドシステム、昇圧コンバータシステム、電動パワーステアリングシステム
CN202080080758.4A CN114731116A (zh) 2019-11-22 2020-11-04 马达控制装置、马达控制方法、混合动力系统、升压变换器系统、电动助力转向系统
PCT/JP2020/041139 WO2021100456A1 (ja) 2019-11-22 2020-11-04 モータ制御装置、モータ制御方法、ハイブリッドシステム、昇圧コンバータシステム、電動パワーステアリングシステム
DE112020005319.9T DE112020005319T5 (de) 2019-11-22 2020-11-04 Motorsteuervorrichtung, motorsteuerverfahren, hybridsystem, aufwärtsumsetzersystem und elektrisches servolenkungssystem
US17/778,544 US11967915B2 (en) 2019-11-22 2020-11-04 Motor control device, motor control method, hybrid system, boost converter system and electric power steering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019211272A JP7280170B2 (ja) 2019-11-22 2019-11-22 モータ制御装置、モータ制御方法、ハイブリッドシステム、昇圧コンバータシステム、電動パワーステアリングシステム

Publications (2)

Publication Number Publication Date
JP2021083276A true JP2021083276A (ja) 2021-05-27
JP7280170B2 JP7280170B2 (ja) 2023-05-23

Family

ID=75966177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019211272A Active JP7280170B2 (ja) 2019-11-22 2019-11-22 モータ制御装置、モータ制御方法、ハイブリッドシステム、昇圧コンバータシステム、電動パワーステアリングシステム

Country Status (5)

Country Link
US (1) US11967915B2 (ja)
JP (1) JP7280170B2 (ja)
CN (1) CN114731116A (ja)
DE (1) DE112020005319T5 (ja)
WO (1) WO2021100456A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281794A1 (ja) * 2021-07-08 2023-01-12 日立Astemo株式会社 モータ制御装置、モータ制御方法、ステアリングシステム、および車両駆動システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300651A (zh) * 2021-06-18 2021-08-24 合肥巨一动力系统有限公司 一种电机控制器直流母线电压优化控制方法
WO2023073816A1 (ja) * 2021-10-26 2023-05-04 日立Astemo株式会社 モータ制御装置、モータ制御方法、ハイブリッドシステム、昇圧コンバータシステム、電動パワーステアリングシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291019A (ja) * 2008-05-30 2009-12-10 Toyota Motor Corp 交流モータ用インバータの制御装置
JP2012235619A (ja) * 2011-05-02 2012-11-29 Toyota Motor Corp 回転電機の制御装置
JP2018099003A (ja) * 2016-12-16 2018-06-21 アイシン精機株式会社 電動機制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520336B2 (ja) * 2015-04-15 2019-05-29 富士電機株式会社 電力変換装置の制御装置
WO2018139295A1 (ja) 2017-01-30 2018-08-02 日立オートモティブシステムズ株式会社 インバータ制御装置
JP6777008B2 (ja) * 2017-05-19 2020-10-28 株式会社デンソー 駆動装置
CN114270695B (zh) * 2019-08-23 2024-05-14 三菱电机株式会社 推测装置以及交流电动机的驱动装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291019A (ja) * 2008-05-30 2009-12-10 Toyota Motor Corp 交流モータ用インバータの制御装置
JP2012235619A (ja) * 2011-05-02 2012-11-29 Toyota Motor Corp 回転電機の制御装置
JP2018099003A (ja) * 2016-12-16 2018-06-21 アイシン精機株式会社 電動機制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281794A1 (ja) * 2021-07-08 2023-01-12 日立Astemo株式会社 モータ制御装置、モータ制御方法、ステアリングシステム、および車両駆動システム

Also Published As

Publication number Publication date
US20230008549A1 (en) 2023-01-12
JP7280170B2 (ja) 2023-05-23
WO2021100456A1 (ja) 2021-05-27
CN114731116A (zh) 2022-07-08
DE112020005319T5 (de) 2022-08-25
US11967915B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
JP4205157B1 (ja) 電動機の制御装置
WO2021100456A1 (ja) モータ制御装置、モータ制御方法、ハイブリッドシステム、昇圧コンバータシステム、電動パワーステアリングシステム
CN110235357B (zh) 逆变器控制装置
JP6062327B2 (ja) インバータ装置および電動車両
WO2016006386A1 (ja) 車両用回転電機の制御装置、及び制御方法
JPWO2018131093A1 (ja) モータ制御装置
JP6742393B2 (ja) 電力変換装置、発電電動機の制御装置、および、電動パワーステアリング装置
US8749184B2 (en) Control apparatus for electric motor
JP2009273302A (ja) 電動モータの制御装置
JP7494393B2 (ja) モータ制御装置、機電一体ユニット、ハイブリッドシステム、電動パワーステアリングシステム、およびモータ制御方法
WO2023073816A1 (ja) モータ制御装置、モータ制御方法、ハイブリッドシステム、昇圧コンバータシステム、電動パワーステアリングシステム
WO2023053490A1 (ja) インバータ制御装置、ハイブリッドシステム、機電一体ユニット、電動車両システム、インバータ制御方法
WO2022085351A1 (ja) モータ制御装置、機電一体ユニット、ハイブリッドシステム、および電動パワーステアリングシステム
US20230155533A1 (en) Motor control device, electric vehicle, and motor control method
WO2022244343A1 (ja) モータ制御装置、機電一体ユニット、ハイブリッドシステム、電動パワーステアリングシステム、およびモータ制御方法
JP7372871B2 (ja) モータ制御装置、機電一体ユニット、電動車両システム、モータ制御方法
JP7493429B2 (ja) モータ制御装置、機電一体ユニット、昇圧コンバータシステム、ハイブリッドシステム、電動車両システム、および電気鉄道車両
WO2023281794A1 (ja) モータ制御装置、モータ制御方法、ステアリングシステム、および車両駆動システム
WO2023195172A1 (ja) モータ制御装置、モータ制御方法
JP2019017209A (ja) モータ制御装置および電動車両
CN118120146A (zh) 电动机控制装置和电动机控制方法
JP2022067929A (ja) モータ制御装置、機電一体ユニット、昇圧コンバータシステム、ハイブリッドシステム、電動車両システム、および電気鉄道車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230511

R150 Certificate of patent or registration of utility model

Ref document number: 7280170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150