JP2021003703A - スラリーの製造に用いる分散混合ポンプを備えた分散混合システム - Google Patents

スラリーの製造に用いる分散混合ポンプを備えた分散混合システム Download PDF

Info

Publication number
JP2021003703A
JP2021003703A JP2020164150A JP2020164150A JP2021003703A JP 2021003703 A JP2021003703 A JP 2021003703A JP 2020164150 A JP2020164150 A JP 2020164150A JP 2020164150 A JP2020164150 A JP 2020164150A JP 2021003703 A JP2021003703 A JP 2021003703A
Authority
JP
Japan
Prior art keywords
slurry
dispersion
dispersion mixing
powder
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020164150A
Other languages
English (en)
Inventor
太地 坂本
Taichi Sakamoto
太地 坂本
向井 孝志
Takashi Mukai
孝志 向井
勇太 池内
Yuta IKEUCHI
勇太 池内
昌宏 柳田
Masahiro Yanagida
昌宏 柳田
浅見 圭一
Keiichi Asami
圭一 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Spindle Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nihon Spindle Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Spindle Manufacturing Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nihon Spindle Manufacturing Co Ltd
Publication of JP2021003703A publication Critical patent/JP2021003703A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】効率的な分散混合ができるとともに、高品質のスラリーを製造することができ、さらに、スラリーの回収率を向上することができる分散混合システムを提供すること。【解決手段】ケーシングの内部に回転翼を備えたロータを回転駆動することにより、固形分の分散、混合を行う工程を備えるスラリーの製造に用いる分散混合機構を備えた分散混合システムであって、前記分散混合システムが、分散混合機構から吐出された液体を、前記分散混合機構に循環させる循環流路を備え、該循環流路を形成する管部材の内周面を、撥液性材料でコーティング処理してなり、前記撥液性材料は、変性フッ素樹脂であることを特徴とする分散混合システム。【選択図】図1

Description

本発明は、スラリーの製造に用いる分散混合ポンプを備えた分散混合システムに関し、例えば、非水電解質二次電池用電極の製造に用いられるカーボンを含有したスラリー等の各種スラリーの製造に用いる分散混合ポンプを備えた分散混合システムに関するものである。
従来、非水電解質二次電池として、リチウムイオン二次電池が、パソコンやモバイル機器等の各種電子機器に広く用いられていたが、その用途が自動車や航空機等に広がるに連れ、電池性能の高度化、具体的には、高密度化や大容量化が要請されていた。
ところで、電池性能を左右する重要な要因の1つとして、非水電解質二次電池用電極の製造に用いられるスラリーの特性を挙げることができる。
このスラリーは、溶質としての正極活性物質又は負極活性物質、導電物質、バインダ等の固形分を、水等の溶媒に分散、混合することにより得られるもので、このスラリーが、電極の基材となるアルミニウム箔又は銅箔に塗布した後、加熱乾燥することにより、正極及び負極を得るようにしている。
ところで、上記スラリーは、正極活性物質又は負極活性物質、導電物質、バインダ等の固形分と、水等の溶媒とを、図11に示すようなバッチ式多軸ミキサに投入して、固形分の分散、混合(可溶の固形分の溶解を含む。)を行うことにより得るようにしているが、導電物質として用いられるカーボン、特に、アスペクト比(長さ/径)が大きな繊維状炭素粉末や、バインダとして用いられるCMC(カルボキシメチルセルロース)のように、分散性や溶解性が悪い物質の場合には、均質なスラリーを得ることが難しかったり、固形分が分散、混合した状態を維持することが難しかったり、固形分の分散、混合に時間を要するという問題があった。
また、上記バッチ式多軸ミキサを用いた場合、気泡がスラリーに混入、残留しやすく、このような気泡が混入したスラリーを、電極の基材に塗布、加熱乾燥すると、塗布形成層に空隙が形成されるという問題があった。
ところで、本件出願人らは、先に、上記従来の非水電解質二次電池用電極の製造に用いられるスラリーの製造に関する問題点に鑑み、カーボン等の分散性や溶解性が悪い物質を含有する場合でも、均質なスラリーを、短時間で得ることができ、また、固形分が分散、混合した状態を長時間維持することができ、さらに、スラリーへの気泡の混入、残留を少なくできる、カーボンを含有したスラリーの製造に用いる分散混合ポンプを備えた分散混合システムを提案した(特許文献1参照。)。
特開2015−35344号公報
この特許文献1で提案した発明は、上記の作用効果を奏することができるものであるが、本件出願人らは、このシステムを改善することによって、より効率的な分散混合ができるとともに、高品質のスラリーを製造することができ、さらに、スラリーの回収率を向上することができるスラリーの製造に用いる分散混合ポンプを備えた分散混合システムを提供することを目的とする。
上記目的を達成するため、本発明のスラリーの製造に用いる分散混合ポンプを備えた分散混合システム液体にキャビテーションを生じさせることによって、固形分の分散、混合を行う工程を備えるスラリーの製造に用いる分散混合ポンプを備え、該分散混合ポンプが、円筒状のケーシングの内部に、回転翼を備えたロータ及び絞り流路を形成したステータを同心状に配設し、該回転翼を備えたロータを回転駆動することにより、固形分及び溶媒を円筒状のケーシングの内部に吸入し、ステータに形成した絞り流路を通過させた後、回転翼によって撹拌するものからなるスラリーの製造に用いる分散混合ポンプを備えた分散混合システムであって、前記分散混合ポンプの液体が接する表面のうちの少なくとも一部分を、撥液性材料でコーティング処理をするようにしたことを特徴とする。
この場合において、前記分散混合ポンプの回転駆動される部分を撥液性材料でコーティング処理をするようにすることができる。
また、前記分散混合ポンプから吐出された液体を、分散混合ポンプに循環させる循環流路を備えてなるようにすることができる。
また、前記循環流路に備えた部材の液体が接する表面のうちの少なくとも一部分を、撥液性材料でコーティング処理をするようにしてなるようにすることができる。
また、撥液性材料が、フッ素系樹脂からなるようにすることができる。
また、撥液性材料が、変性フッ素樹脂からなるようにすることができる。
本発明のスラリーの製造に用いる分散混合ポンプを備えた分散混合システムによれば、カーボン等の分散性や溶解性が悪い物質を含有する場合でも、均質なスラリーを、短時間で得ることができ、また、固形分が分散、混合した状態を長時間維持することができ、さらに、スラリーへの気泡の混入、残留を少なくできるという引用文献1で提案した発明が奏する作用効果に加え、以下の作用効果を奏する。
(1)液体に剪断力を生じさせる分散混合システムにおいて、液体が接する装置の内部表面を、撥液性材料でコーティング処理をすることは、液体に付与する剪断力が弱まり、効率的な分散混合ができなくなるため行われていなかったが、この分散混合ポンプを備えた分散混合システムにおいては、撥液性材料でコーティング処理をすることによって、液体の流動抵抗が低減し、キャビテーションの発生を促すことができ、より効率的な分散混合ができる。
(2)液体の流動抵抗が低減し、低回転数で分散混合ができるため、消費電力を低減することができるとともに、液体の発熱を抑えることができ、熱履歴のない高品質のスラリーを製造することができる。
(3)撥液性によりスラリーの回収率を向上することができる。
また、循環流路に循環ポンプを介在させることにより、液体の分散混合ポンプの第2の供給部から第2の導入室への吸入を補助して、カーボン等の分散性や溶解性が悪い物質の分散混合性能を向上することができる。
また、撥液性材料に、フッ素系樹脂、その中でも、変性フッ素樹脂を用いることにより、表面硬度が高まるため摩耗が少なく、コンタミネーションを防止することができ、特に、変性フッ素樹脂の構成材料であるポリイミド樹脂は、次世代電池の負極の構成材料であるため、コンタミネーションの問題が生じないようにすることができる。
本発明のスラリーの製造に用いる分散混合ポンプを備えた分散混合システムの一実施例を示す説明図である。 定量供給装置の要部を示す縦断面図である。 図2のIII−III方向視での断面図である。 分散混合ポンプの分散混合機構の内部構造を示す説明図である。 図4のV−V方向視での断面図である。 分散混合ポンプの分散混合機構の内部構造を示す分解斜視図である。 仕切板の概略構成図である。 再循環機構部の分離部の内部構造を示す説明図である。 SUS304に変性フッ素樹脂をコーティング処理をしたものと、SUS304のままのものとで、スラリーの撹拌槽からの排出状況を比較した実験結果を示す写真である。 SUSの表面処理による各種スラリーの撥水・撥油性を比較した実験結果を示す写真である。 従来のスラリーの製造に用いられるバッチ式多軸ミキサの一例を示す平面図である。
以下、本発明のスラリーの製造に用いる分散混合ポンプを備えた分散混合システムの実施の形態を、図面に基づいて説明する。
図1〜図8に、本発明のスラリーの製造に用いる分散混合ポンプを備えた分散混合システムの一実施例を示す。
図1に、遠心式の分散混合ポンプYを備えた分散混合システム100を示す。
この分散混合システム100は、分散質として粉体P(固形分)を用い、液相分散媒として溶媒Rを用いて、粉体Pを溶媒Rに分散、混合(可溶の固形分の溶解を含む。以下、同じ。)して、スラリーFを生成するものである。
本実施形態においては、例えば、粉体Pとして、非水電解質二次電池用電極の製造に用いられるスラリー材料である、アルカリ金属イオンを吸蔵、放出する材料、カーボン及びCMC(カルボキシルメチルセルロース)を用い、溶媒Rとして水を用いた。
図1に示すように、分散混合システム100は、粉体Pを定量供給する定量供給装置Xと、溶媒Rを定量供給する溶媒供給部50と、定量供給装置Xから定量供給される粉体Pと溶媒供給部50から定量供給される溶媒Rとを負圧吸引して分散混合する分散混合ポンプYと、分散混合ポンプYから吐出されたスラリーFから、完全に分散、混合していない粉体Pを含む溶媒R(以下、「未分散スラリーFr」という。)を分散混合ポンプYに循環供給する再循環機構部70等を備えて構成されている。
〔定量供給装置〕
図1に示すように、定量供給装置Xは、上部開口部31aから受け入れた粉体Pを下部開口部31bから排出させるホッパ31と、ホッパ31内の粉体Pを撹拌する撹拌機構32と、ホッパ31の上部開口部31aが大気開放された状態で、下部開口部31bの下流側に接続された分散混合ポンプYの吸引により下部開口部31bに作用する負圧吸引力によって、下部開口部31bから排出された粉体Pを分散混合ポンプYに定量供給する容積式の定量供給部40とを備えて構成されている。
ホッパ31は、上部から下部へ向かうに連れて縮径する逆円錐形状に構成され、その中心軸A1が鉛直方向に沿う姿勢で配設されている。そのホッパ31の上部開口部31a及び下部開口部31b夫々の横断面形状は、図1の上下方向視で、中心軸A1を中心とする円形状とされ、また、ホッパ31における逆円錐形状の内側壁面の傾斜角度は、水平面に対して略60度とされる。
撹拌機構32は、ホッパ31内に配設されて、ホッパ31内の粉体Pを撹拌する撹拌羽根32Aと、当該撹拌羽根32Aをホッパ31の中心軸A1周りに回転させる羽根駆動モータM1と、羽根駆動モータM1をホッパ31の上部開口部31aの上方に位置させて支持する取付部材32Bと、羽根駆動モータM1の回転駆動力を撹拌羽根32Aに伝動させる伝動部材32Cとを備えて構成される。
撹拌羽根32Aは、棒状部材を概略V字形状に屈曲して構成され、その一方の辺部がホッパ31の内側壁面に沿う状態で、他方の辺部の端部がホッパ31の中心軸A1と同軸で回転自在に枢支されて配設されている。また、当該撹拌羽根32Aは、横断面形状が三角形に形成されており、三角形の一辺を形成する面がホッパ31の内側壁面と略平行となるように配設されている。これにより、撹拌羽根32Aは、ホッパ31の内側壁面に沿って中心軸A1周りに回転可能に配設されている。
図1〜図3に示すように、容積式の定量供給部40は、ホッパ31の下部開口部31bから供給される粉体Pを下流側の分散混合ポンプYに所定量ずつ定量供給する機構である。
具体的には、ホッパ31の下部開口部31bに接続される導入部41と、供給口43a及び排出口43bを備えたケーシング43と、ケーシング43内に回転可能に配設された計量回転体44と、計量回転体44を回転駆動する計量回転体駆動モータM2とを備えて構成される。
導入部41は、ホッパ31の下部開口部31bとケーシング43の上部に形成された供給口43aとを連通する筒状に形成され、最下端には、ケーシング43の供給口43aと同形状のスリット状の開口が形成されている。この導入部41は、ケーシング43の供給口43a側ほど細くなる先細り状に形成されている。当該スリット状の開口の形状は、ホッパ31の大きさ、粉体Pの供給量、粉体Pの特性等に応じて適宜設定することができるが、例えば、スリット状の開口の長さ方向の寸法を20〜100mm程度、幅方向の寸法を1〜5mm程度に設定するようにする。
ケーシング43は、概略直方体形状に形成され、水平方向(図1の左右方向)に対して45度傾斜した姿勢で、導入部41を介してホッパ31に接続されている。
図2及び図3に示すように、ケーシング43の上面には、導入部41のスリット状の開口に対応したスリット状の供給口43aが設けられ、ホッパ31の下部開口部31bからの粉体Pをケーシング43内に供給可能に構成されている。傾斜状に配置されたケーシング43の下方側の側面(図2において右側面)の下部には、計量回転体44にて定量供給された粉体Pを膨張室47を介して下流側の分散混合ポンプYに排出する排出口43bが設けられ、その排出口43bには、粉体排出管45が接続されている。当該膨張室47は、供給口43aから計量回転体44の粉体収容室44bに供給された粉体Pが定量供給されるケーシング43内の位置に設けられ、排出口43bから作用する負圧吸引力によって、供給口43aよりも低圧に維持される。すなわち、排出口43bは、分散混合ポンプYの一次側に接続されることによって、負圧吸引力が膨張室47に作用し排出口43bよりも低圧状態に維持されるようにしている。計量回転体44の回転に伴って、各粉体収容室44bの状態が負圧状態と当該負圧状態よりも高圧の状態に変化するように構成されている。
計量回転体44は、計量回転体駆動モータM2の駆動軸48に配設した円盤部材49に、複数(例えば、8枚)の板状隔壁44aを円盤部材49の中心部を除いて放射状に等間隔に取り付けて構成され、周方向で等間隔に粉体収容室44bを複数に区画(例えば、8室。)形成するように構成されている。粉体収容室44bは、計量回転体44の外周面及び中心部において開口するように構成されている。計量回転体44の中心部には、開口閉鎖部材42が周方向に偏在して固定状に配設され、各粉体収容室44bの中心部側の開口をその回転位相に応じて閉塞或いは開放可能に構成されている。なお、粉体Pの供給量は、計量回転体44を回転駆動する計量回転体駆動モータM2による計量回転体44の回転数を変化させることで、調整できる。
計量回転体44の回転に伴って、各粉体収容室44bが、膨張室47に開放される膨張室開放状態、膨張室47及び供給口43aと連通しない第1密閉状態、供給口43aに開放される供給口開放状態、供給口43a及び膨張室47と連通しない第2密閉状態の順で、その状態が繰り返して変化するように構成されている。なお、計量回転体44の外周面側の開口が第1密閉状態及び第2密閉状態において閉鎖されるようにケーシング43が形成されるとともに、計量回転体44の中心部側の開口が第1密閉状態、供給口開放状態及び第2密閉状態において閉鎖されるように、開口閉鎖部材42がケーシング43に固定して配設される。
したがって、定量供給装置Xにおいては、ホッパ31内に貯留された粉体Pが撹拌羽根32Aにより撹拌されながら定量供給部40に供給され、定量供給部40により、粉体Pが排出口43bから粉体排出管45を通して分散混合ポンプYに定量供給される。
具体的に説明すると、定量供給部40の排出口43bの下流側に接続された分散混合ポンプYからの負圧吸引力により、ケーシング43内における膨張室47の圧力が負圧状態となる。一方で、ホッパ31の上部開口部31aは大気開放されているので、ホッパ31内は大気圧程度の状態となる。膨張室47と計量回転体44の隙間を介して連通する導入部41の内部及び下部開口部31bの近傍は、上記負圧状態と大気圧状態との間の圧力状態となる。
この状態で、ホッパ31の内壁面及び下部開口部31bの近傍の粉体Pが、撹拌機構32の撹拌羽根32Aにより撹拌されることで、撹拌羽根32Aによる剪断作用によりホッパ31内の粉体Pが解砕され、一方、計量回転体44は計量回転体駆動モータM2により回転させられることで、空の粉体収容室44bが次々と供給口43aに連通する状態となる。そして、ホッパ31内の粉体Pは下部開口部31bから導入部41を流下し、次々と供給口43aに連通する状態となる計量回転体44の粉体収容室44bに所定量ずつ収容されて、その粉体収容室44bに収容された粉体Pは膨張室47に流下し、排出口43bから排出される。したがって、定量供給装置Xにより、粉体Pを粉体排出管45を通して所定量ずつ連続して分散混合ポンプYの第1の供給部11に定量供給することができる。
図1に示すように、粉体排出管45には、分散混合ポンプYの第1の供給部11への粉体Pの供給を停止可能なシャッタバルブ46が配設されている。
〔溶媒供給部〕
図1に示すように、溶媒供給部50は、貯留混合タンク51に貯留された溶媒Rを、設定流量で分散混合ポンプYの第1の供給部11に連続的に供給するように構成されている。
具体的には、溶媒供給部50は、溶媒供給管51Rを介して供給される溶媒Rを貯留し、送出する貯留混合タンク51と、貯留混合タンク51から溶媒Rが送出される送出ポンプ52Pを介在させた供給管52と、貯留混合タンク51から供給管52に送出される溶媒Rの流量を設定流量に調整する流量調整バルブ(図示せず)と、設定流量に調整された溶媒Rを定量供給部40から定量供給される粉体Pに混合して第1の供給部11に供給するミキシング機構60とを備えて構成されている。
ここで、貯留混合タンク51は、後述するように、排出路22から粉体Pが分散、混合した状態のスラリーFが、スラリーFに含まれる気泡と共に、導入されるように構成されている。
このため、貯留混合タンク51には、撹拌機構51Kを配設するとともに、空気(気体)Gの放出管51G及び製造されたスラリーFの排出路53を接続するようにする。
図4に示すように、ミキシング機構60は、粉体排出管45と供給管52とを第1の供給部11に連通接続するミキシング部材61を備えて構成されている。
このミキシング部材61は、円筒状の第1の供給部11よりも小径に構成されて、第1の供給部11との間に環状のスリット63を形成すべく第1の供給部11に挿入状態で配設される筒状部62及び環状のスリット63に全周に亘って連通する状態で第1の供給部11の外周部に環状流路64を形成する環状流路形成部65を備えて構成されている。
ミキシング部材61には、粉体排出管45が筒状部62に連通する状態で接続されるとともに、供給管52が環状流路64に対して溶媒Rを接線方向に供給するように接続される。
粉体排出管45、ミキシング部材61の筒状部62及び第1の供給部11は、それらの軸心A2を供給方向が下向きとなる傾斜姿勢(水平面(図1の左右方向)に対する角度が45度程度)となるように傾斜させて配置されている。
つまり、定量供給部40の排出口43bから粉体排出管45に排出された粉体Pは、ミキシング部材61の筒状部62を通して軸心A2に沿って第1の供給部11に導入される。一方、溶媒Rは、環状流路64に接線方向から供給されるので、環状流路64の内周側に形成される環状のスリット63を介して、切れ目のない中空円筒状の渦流の状態で第1の供給部11に供給される。
したがって、円筒状の第1の供給部11により、粉体Pと溶媒Rとが均等に予備混合され、その予備混合物Fpが分散混合ポンプYの第1の導入室13内に吸引導入される。
〔分散混合ポンプ〕
図1及び図4〜図8に基づいて、分散混合ポンプYについて説明する。
図4に示すように、分散混合ポンプYは、両端開口が前壁部2と後壁部3とで閉じられた円筒状の外周壁部4を備えたケーシング1を備え、そのケーシング1の内部に同心状で回転駆動自在に設けられたロータ5と、そのケーシング1の内部に同心状で前壁部2に固定配設された円筒状のステータ7と、ロータ5を回転駆動するポンプ駆動モータM3等を備えて構成されている。
図5に示すように、ロータ5の径方向の外方側には、複数の回転翼6が、前壁部2側である前方側(図4の左側)に突出し、かつ、周方向に等間隔で並ぶ状態でロータ5と一体的に備えられている。
円筒状のステータ7には、絞り流路となる複数の透孔7a、7bが周方向に夫々並べて備えられ、そのステータ7が、ロータ5の前方側(図4の左側)で、かつ、回転翼6の径方向の内側に位置させて前壁部2に固定配設されて、そのステータ7とケーシング1の外周壁部4との間に、排出室を兼ねた、回転翼6が周回する環状の翼室8が形成されている。
図4〜図6に示すように、ミキシング機構60にて粉体Pと溶媒Rとが予備混合された予備混合物Fpを回転翼6の回転によりケーシング1の内部に吸引導入する第1の供給部11が、前壁部2の中心軸(ケーシング1の軸心A3)よりも外周側に偏移した位置に設けられている。
図4及び図6に示すように、ケーシング1の前壁部2の内面に環状溝10が形成され、環状溝10と連通する状態で第1の供給部11が設けられている。
図4及び図5に示すように、粉体Pと溶媒Rとが混合されて生成されたスラリーFを吐出する円筒状の吐出部12が、ケーシング1の円筒状の外周壁部4の周方向における1箇所に、その外周壁部4の接線方向に延びて翼室8に連通する状態で設けられている。
図1、図4及び図8に示すように、この実施形態では、吐出部12から吐出されたスラリーFは、吐出路18を通して再循環機構部70に供給され、その再循環機構部70の分離部としての円筒状容器71にて気泡が分離された未分散スラリーFrを、ポンプ駆動モータM4により回転駆動される循環ポンプ16Pを介在させた循環流路16を介して、ケーシング1内に循環供給する第2の供給部17がケーシング1の前壁部2の中央部(軸心A3と同心状)に設けられている。
また、図4〜図6に示すように、ステータ7の内周側を前壁部2側の第1の導入室13とロータ5側の第2の導入室14とに区画する仕切板15が、ロータ5の前方側に当該ロータ5と一体回転する状態で設けられるとともに、仕切板15の前壁部2側に掻出翼9が設けられている。掻出翼9は、同心状に、周方向において均等間隔で複数(図6では、4つ)備えられ、各掻出翼9がその先端部9Tを環状溝10内に進入した状態でロータ5と一体的に周回可能に配設されている。
第1の導入室13及び第2の導入室14は、ステータ7の複数の透孔7a、7bを介して翼室8と連通されるように構成され、第1の供給部11が第1の導入室13に連通し、第2の供給部17が第2の導入室14に連通するように構成されている。
具体的には、第1の導入室13と翼室8とは、ステータ7における第1の導入室13に臨む部分に周方向に等間隔で配設された複数の第1の導入室13側の透孔7aにて連通され、第2の導入室14と翼室8とは、ステータ7における第2の導入室14に臨む部分に周方向に等間隔で配設された複数の第2の導入室14側の透孔7bにて連通されている。
分散混合ポンプYの各部について説明する。
図4に示すように、ロータ5は、その前面が概ね円錐台状に膨出する形状に構成されるとともに、その外周側に、複数の回転翼6が前方に突出する状態で等間隔に並べて設けられている。なお、図5では、周方向に等間隔に10個の回転翼6が配設されている。また、この回転翼6は、内周側から外周側に向かうに連れて、回転方向後方に傾斜するようにロータ5の外周側から内周側に突出形成されており、回転翼6の先端部の内径は、ステータ7の外径よりも若干大径に形成されている。
このロータ5が、ケーシング1内においてケーシング1と同心状に位置する状態で、後壁部3を貫通してケーシング1内に挿入されたポンプ駆動モータM3の駆動軸19に連結されて、そのポンプ駆動モータM3により回転駆動される。
そして、ロータ5が、その軸心方向視(図5に示すような図4のV−V方向視)において回転翼6の先端部が前側となる向きに回転駆動されることにより、回転翼6の回転方向の後側となる面(背面)6aには、いわゆる局所沸騰(キャビテーション)が発生するように構成されている。
図4、図6及び図7に示すように、仕切板15は、ステータ7の内径よりも僅かに小さい外径を有する概ね漏斗状に構成されている。この漏斗状の仕切板15は、具体的には、その中央部に、頂部が円筒状に突出する筒状摺接部15aにて開口された漏斗状部15bを備えるとともに、その漏斗状部15bの外周部に、前面及び後面共にケーシング1の軸心A3に直交する状態となる環状平板部15cを備える形状に構成されている。
そして、図4及び図5に示すように、この仕切板15が、頂部の筒状摺接部15aがケーシング1の前壁部2側を向く姿勢で、周方向に等間隔を隔てた複数箇所(この実施形態では、4箇所)に配設された間隔保持部材20を介して、ロータ5の前面の取付部5aに取り付けられる。
図5及び図7(c)に示すように、仕切板15を複数箇所夫々で間隔保持部材20を介してロータ5に取り付ける際には、撹拌羽根21が、ケーシング1の後壁部3側に向く姿勢で仕切板15に一体的に組み付けられ、ロータ5が回転駆動されると、4枚の撹拌羽根21がロータ5と一体的に回転するように構成されている。
図4及び図6に示すように、この実施形態では、円筒状の第2の供給部17が、ケーシング1と同心状で、そのケーシング1の前壁部2の中心部に設けられている。この第2の供給部17には、循環流路16の内径よりも小径で、仕切板15の筒状摺接部15aよりも小径となり流路面積が小さな絞り部14aが形成されている。ロータ5の回転翼6が回転することにより、吐出部12を介してスラリーFが吐出され、第2の供給部17の絞り部14aを介して未分散スラリーFrが導入されることになるので、分散混合ポンプY内が減圧される。
図4〜図6に示すように、第1の供給部11は、そのケーシング1内に開口する開口部(入口部)が、環状溝10における周方向の一部を内部に含む状態で、ケーシング1内に対する第2の供給部17の開口部の横側方に位置するように、前壁部2に設けられている。また、第1の供給部11は、平面視(図1及び図4の上下方向視)において軸心A2がケーシング1の軸心A3と平行となり、かつ、ケーシング1の軸心A3に直交する水平方向視(図1及び図4の紙面表裏方向視)において、軸心A2がケーシング1の前壁部2に近づくほどケーシング1の軸心A3に近づく下向きの傾斜姿勢で、ケーシング1の前壁部2に設けられている。ちなみに、第1の供給部11の水平方向(図1及び図4の左右方向)に対する下向きの傾斜角度は、上述したように45度程度である。
図4及び図6に示すように、ステータ7は、ケーシング1の前壁部2の内面(ロータ5に対向する面)に取り付けられて、ケーシング1の前壁部2とステータ7とが一体となるように固定されている。ステータ7において、第1の導入室13に臨む部分に配設された複数の第1の導入室13側の透孔7aは、概略円形状に形成され、第1の導入室13の流路面積よりも複数の第1の導入室13側の透孔7aの合計流路面積が小さくなるように設定されており、また、第2の導入室14に臨む部分に配設された複数の第2の導入室14側の透孔7bは、概略楕円形状に形成され、第2の導入室14の流路面積よりも複数の第2の導入室14側の透孔7bの合計流路面積が小さくなるように設定されている。ロータ5の回転翼6が回転することにより、吐出部12を介してスラリーFが吐出され、第1の導入室13室側の透孔7aを介して予備混合物Fpが供給されるとともに、第2の供給部17を介して未分散スラリーFrが導入されることになるので、分散混合ポンプY内が減圧される。
図6及び図7に示すように、この実施形態では、各掻出翼9が棒状に形成され、ロータ5の径方向視(図7(b)の紙面表裏方向視)で、当該棒状の掻出翼9の先端側ほど前壁部2側に位置し、かつ、ロータ5の軸心方向視(図7(a)の紙面表裏方向視)で、当該棒状の掻出翼9の先端側ほどロータ5の径方向内方側に位置する傾斜姿勢で、当該棒状の掻出翼9の基端部9Bがロータ5と一体回転するように固定され、ロータ5が、その軸心方向視(図7(a)の紙面表裏方向視)において掻出翼9の先端が前側となる向き(図4〜図7において矢印にて示す向き)に回転駆動される。
図5〜図7に基づいて、掻出翼9について説明する。
掻出翼9は、仕切板15に固定される基端部9B、第1の導入室13に露呈する状態となる中間部9M、環状溝10に嵌め込まれる(すなわち、進入する)状態となる先端部9Tを基端から先端に向けて一連に備えた棒状に構成されている。
図5、図6及び図7(b)に示すように、掻出翼9の基端部9Bは、概ね矩形板状に構成されている。
図5、図6、図7(a)及び(b)に示すように、掻出翼9の中間部9Mは、横断面形状が概ね三角形状になる概ね三角柱状に構成されている(特に、図5参照)。そして、掻出翼9が上述の如き傾斜姿勢で設けられることにより、三角柱状の中間部9Mの三側面のうちのロータ5の回転方向前側を向く一側面9m(以下、「放散面」と記載する場合がある。)は、ロータ5の回転方向前側に向けて傾斜する前下がり状で、しかも、ロータ5の径方向に対して径方向外方側に向く(以下、「斜め外向き」と記載する場合がある。)ように構成されている(特に、図6、図7参照)。
つまり、棒状の掻出翼9が、上述の如き傾斜姿勢で設けられることにより、掻出翼9のうち第1の導入室13に露呈する中間部9Mが環状溝10に嵌め込まれる先端部9Tよりもロータ5の径方向外方に位置し、しかも、その中間部9Mの回転方向前側を向く放散面9mが、ロータ5の回転方向前側に向けて傾斜する前下がり状で、しかも、ロータ5の径方向に対して斜め外向きに傾斜している。これにより、掻出翼9の先端部9Tにより環状溝10から掻き出された予備混合物Fpは、掻出翼9の中間部9Mの放散面9mにより、第1の導入室13内においてロータ5の径方向外方側に向けて流動するように案内される。
図6、図7(a)及び(b)に示すように、掻出翼9の先端部9Tは、横断面形状が概ね矩形状になる概ね四角柱状であり、ロータ5の軸心方向視(図7(a)の紙面表裏方向視)において、四側面のうちのロータ5の径方向外方側に向く外向き側面9oが環状溝10の内面における径方向内方側を向く内向き内面に沿い、かつ、四側面のうちのロータ5の径方向内方側に内向き側面9iが環状溝10の内面における径方向外方側を向く外向き内面に沿う状態となる弧状に構成されている。
また、四角柱状の先端部9Tの四側面のうちの、ロータ5の回転方向前側を向く掻き出し面9fは、ロータ5の回転方向前側に向けて傾斜する前下がり状で、しかも、ロータ5の径方向に対して径方向外方側に向く(以下、「斜め外向き」と記載する場合がある。)になるように構成されている。
これにより、掻出翼9の先端部9Tにより環状溝10から掻き出された予備混合物Fpは、掻出翼9の先端部9Tの掻き出し面9fにより、ロータ5の径方向外方側に向けて第1の導入室13内に放出されることになる。
さらに、掻出翼9の先端部9Tの先端面9tは、その先端部9Tが環状溝10に嵌め込まれた状態で環状溝10の底面と平行になるように構成されている。
また、ロータ5が、その軸心方向視(図7(a)の紙面表裏方向視)において掻出翼9の先端が前側となる向きに回転駆動されると、掻出翼9の基端部9B、中間部9M、先端部9Tそれぞれに、回転方向の後側となる面(背面)9aが形成される。この背面9aには、掻出翼9が回転することにより、いわゆる局所沸騰(キャビテーション)が発生するように構成されている。
上述のような形状に構成された4個の掻出翼9が、上述の如き傾斜姿勢で、中心角で90度ずつ間隔を隔てて周方向に並べた形態で、夫々、基端部9Bを仕切板15の環状平板部15cに固定して設けられている。
図4に示すように、掻出翼9が設けられた仕切板15が、間隔保持部材20によりロータ5の前面と間隔を隔てた状態でロータ5の前面の取付部5aに取り付けられ、このロータ5が、仕切板15の筒状摺接部15aが第2の供給部17に摺接回転可能に嵌め込まれた状態でケーシング1内に配設される。
これにより、ロータ5の膨出状の前面と仕切板15の後面との間に、ケーシング1の前壁部2側ほど小径となる先細り状の第2の導入室14が形成され、第2の供給部17が仕切板15の筒状摺接部15aを介して第2の導入室14に連通するように構成されている。
また、ケーシング1の前壁部2と仕切板15の前面との間に、第1の供給部11に連通する環状の第1の導入室13が形成される。
そして、ロータ5が回転駆動されると、筒状摺接部15aが第2の供給部17に摺接する状態で、仕切板15がロータ5と一体的に回転することになり、ロータ5及び仕切板15が回転する状態でも、第2の供給部17が仕切板15の筒状摺接部15aを介して第2の導入室14に連通する状態が維持されるように構成されている。
〔再循環機構部〕
再循環機構部(分離部の一例)70は、円筒状容器71内において比重によって溶解液を分離するように構成され、図1に示すように、分散混合ポンプYの吐出部12から吐出路18を通して供給されるスラリーFから、完全に分散、混合していない粉体Pを含む可能性がある状態の未分散スラリーFrを循環流路16に、粉体Pが略完全に分散、混合した状態のスラリーFを、スラリーFに含まれる気泡と共に、排出路22にそれぞれ分離するように構成されている。吐出路18及び循環流路16は、夫々、円筒状容器71の下部に接続され、排出路22は、円筒状容器71の上部に形成された排出部73から貯留混合タンク51に接続される。
ここで、再循環機構部70は、図8に示すように、吐出路18が接続される導入パイプ72を円筒状容器71の底面から内部に突出して配設し、円筒状容器71の上部に排出路22に接続される排出部73を備えるとともに、下部に循環流路16に接続される循環部74を備え、導入パイプ72の吐出上端に、導入パイプ72から吐出されるスラリーFの流れを旋回させる捻り板75を配設して構成されている。これにより、スラリーF内から溶媒Rの気泡を分離して、循環流路16に循環供給される未分散スラリーFrから溶媒Rの気泡を分離した状態で第2の導入室14内に供給することができる。
〔制御部〕
分散混合システム100に備えられる制御部は、図示しないが、CPUや記憶部等を備えた公知の演算処理装置からなり、分散混合システム100を構成する定量供給装置X、分散混合ポンプY、溶媒供給部50等の各機器の運転を制御可能に構成されている。
特に、制御部は、回転翼6の周速度(ロータ5の回転数)を制御可能に構成され、第1の導入室13及び第2の導入室14内の圧力が所定の負圧状態となるように、回転翼6の周速度(ロータ5の回転数)を設定し、当該設定された周速度(ロータ5の回転数)で回転翼6を回転することで、少なくとも、ステータ7の第1の導入室13側の透孔7a及び第2の導入室14側の透孔7bを通過した直後の翼室8内の領域を、翼室8内の全周に亘って連続して、溶媒Rの微細気泡(マイクロバブル)が多数発生した微細気泡領域として形成させることができるように構成されている。
ここで、第1の導入室13及び第2の導入室14内の圧力(本実施形態においては、第1の導入室13内の圧力(ここで、第1の導入室13と第2の導入室14とは、シャッタバルブ46を閉じた状態ではほぼ同圧となる。)。)を測定するための圧力計80を設けるようにしている。
〔撥液性材料によるコーティング〕
ところで、この分散混合システム100においては、分散混合ポンプYの液体が接する表面の全部又はそのうちの少なくとも一部分、例えば、分散混合ポンプYの回転駆動される部分、さらには、分散混合ポンプYから吐出された液体を、分散混合ポンプYに循環させる循環流路16に備えた部材の液体が接する表面の全部又はそのうちの少なくとも一部分を、撥液性材料でコーティング処理をするようにしている。
この場合、撥液性材料としては、フッ素系樹脂、特に、変性フッ素樹脂を好適に用いることができる。
撥液性材料、例えば、変性フッ素樹脂をコーティング処理をすることによる作用効果を、図9の写真に示す。
図9の写真は、SUS304に変性フッ素樹脂をコーティング処理をしたものと、SUS304のままのものとで、スラリーの撹拌槽からの排出状況を比較した実験結果を示すもので、SUS304に変性フッ素樹脂をコーティング処理をすることにより、SUS304のままのものと比較して、残量が少なくなる(0になる)とともに、排出時間が短縮できることを確認した。
また、図10の写真及び表1は、SUSの表面処理(PTFE(四フッ化エチレン樹脂)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、変性フッ素樹脂、ETFE(テトラフルオロエチレン・エチレン共重合体)及びSUS(表面処理なし)並びに比較例(PP(ポリプロピレン)、PE(ポリエチレン)、ガラス))による、各種スラリー(アクリル系バインダ(HC負極用)(水系)、CMC−SBR(カルボキシメチルセルロース−スチレンプタジェンコポリマ)バインダ(SiO−HC負極用)(水系)、アクリル系バインダ(LTO負極用)(水系)、PVdF(ポリフッ化ビニリデン)バインダ(SiO−HC負極用)(溶媒系))の撥水・撥油性を比較した実験結果を示したものである。
ここで、表1の付着性(撥水・撥油性)の評価は、スラリー毎の粘度の違いによる影響を排除するために、図10の写真における、(1)スタート位置からの液(スラリー)の流れた長さ、(2)スタート位置から最上位の液滴の跡までの距離、(3)液跡の濡れている幅の3項目を相対的に評価することにより行った。
図10の写真及び表1に示す実験結果から、以下のことが確認できた。
(1)SUS材に変性フッ素樹脂をコーティング処理を行ったものは、スラリーが付着しにくく、洗浄も容易である。
(2)泡を多量に含んだスラリーでは、有意差は認められない。
(3)SUS材は、スラリーの種類によっては付着しやすいものがある。
次に、表2に示すCMC溶液の作成条件で、SUS304に変性フッ素樹脂をコーティング処理をしたもの(コーティング処理をした箇所:掻出翼9、仕切板15、貯留混合タンク51及び円筒状容器(分離部)71のスラリー(液体)が接する表面)(テスト1(実施例))と、SUS304のままのもの(テスト2(比較例))とで、分散混合システム100を構成して、CMC溶液の作成を行った実験結果を表3に示す。
表3において、減圧度(MPa)は、圧力計80により測定した第1の導入室13内の圧力(ここで、第1の導入室13と第2の導入室14とは、シャッタバルブ46を閉じた状態ではほぼ同圧となる。)の測定値である。
表3に示す実験結果から、SUS304に変性フッ素樹脂をコーティング処理をしたもの(コーティング処理をした箇所:掻出翼9、仕切板15並びに貯留混合タンク51及び円筒状容器(分離部)71のスラリー(液体)が接する表面)は、SUS304のままのものと比較して、以下の作用効果を奏することが確認できた。
(1)液体に剪断力を生じさせる分散混合システムにおいて、液体が接する装置の内部表面を、撥液性材料でコーティング処理をすることは、液体に付与する剪断力が弱まり、効率的な分散混合ができなくなるため行われていなかったが、この分散混合ポンプYを備えた分散混合システム100においては、撥液性材料でコーティング処理をすることによって、液体の流動抵抗が低減し、第1の導入室13内(ここで、第1の導入室13と第2の導入室14とは、シャッタバルブ46を閉じた状態ではほぼ同圧となる。)の減圧度(MPa)が高まることによって、負圧状態で発生する局所沸騰(キャビテーション)の発生を促すことができ、より効率的な分散混合ができる。すなわち、負圧状態で掻出翼9の背面9aに発生する局所沸騰(キャビテーション)による気泡(キャビティー)が、ステータ7の第2の導入室14側の透孔7bを通過した直後に、翼室8内において高速回転する回転翼6によってさらに微細な気泡に粉砕されることによって、スラリーFは泡状となり、凝集状態の粉体Pは、解され、分散が促進される。
(2)液体の流動抵抗が低減し、低回転数で分散混合ができるため、消費電力を低減することができるとともに、液体の発熱を抑えることができ、熱履歴のない高品質のスラリーを製造することができる。
(3)撥液性によりスラリーの回収率を向上することができる。
(4)撥液性材料に、フッ素系樹脂、その中でも、変性フッ素樹脂を用いることにより、表面硬度が高まるため摩耗が少なく、コンタミネーションを防止することができ、特に、変性フッ素樹脂の構成材料であるポリイミド樹脂は、次世代電池の負極の構成材料であるため、コンタミネーションの問題が生じないようにすることができる。
〔分散混合システムの動作〕
次に、この分散混合システム100の動作について説明する。
まず、定量供給装置Xを停止し、シャッタバルブ46を閉止して粉体排出管45を介する粉体Pの吸引を停止した状態で、溶媒供給部50の貯留混合タンク51から溶媒Rのみを供給しながらロータ5を回転させ、分散混合ポンプYの運転を開始する。所定の運転時間が経過して、分散混合ポンプY内が、負圧状態となると、シャッタバルブ46を開放する。これによって、定量供給装置Xの膨張室47を負圧状態とし、導入部41の内部及びホッパ31の下部開口部31b近傍を当該負圧状態と大気圧状態との間の圧力状態にする。
そして、定量供給装置Xを作動させ、ホッパ31内に貯留された粉体Pを、撹拌羽根32Aの撹拌作用及び分散混合ポンプYの負圧吸引力により、ホッパ31の下部開口部31bから定量供給部40の膨張室47を介してミキシング機構60のミキシング部材61に所定量ずつ連続的に定量供給する。並行して、溶媒供給部50の送出ポンプ52Pを作動させ、分散混合ポンプYの負圧吸引力により、溶媒Rをミキシング機構60のミキシング部材61に所定量ずつ連続的に定量供給する。
ミキシング機構60のミキシング部材61からは、粉体Pがミキシング部材61の筒状部62を通して第1の供給部11に供給されるとともに、溶媒Rが、環状のスリット63を通して切れ目のない中空円筒状の渦流の状態で第1の供給部11に供給され、第1の供給部11により、粉体Pと溶媒Rとが予備混合され、その予備混合物Fpが環状溝10に導入される。
ロータ5が回転駆動されて、そのロータ5と一体的に仕切板15が回転すると、その仕切板15に同心状に設けられた掻出翼9が、環状溝10に先端部9Tが嵌め込まれた状態で周回する。
これにより、図4及び図5において実線矢印にて示すように、第1の供給部11を流動して環状溝10に導入された予備混合物Fpは、環状溝10に嵌め込まれて周回する掻出翼9の先端部9Tにより掻き出され、その掻き出された予備混合物Fpは、概略的には、第1の導入室13内を仕切板15における漏斗状部15bの前面と環状平板部15cの前面とに沿いながらロータ5の回転方向に流動し、さらに、ステータ7の第1の導入室13側の透孔7aを通過して翼室8に流入し、その翼室8内をロータ5の回転方向に流動して、吐出部12から吐出される。
環状溝10に導入された予備混合物Fpは、掻出翼9の先端部9Tにより掻き出されるときに、剪断作用を受ける。この場合、掻出翼9の先端部9Tの外向き側面9oと内側の環状溝10の内向き内面との間、及び、掻出翼9の先端部9Tの内向き側面9iと内側の環状溝10の外向き内面との間において剪断作用が働く。同時に、掻出翼9の回転方向背面側の背面9aにおいては、掻出翼9が回転することにより、いわゆる局所沸騰(キャビテーション)が発生する。また、ステータ7の第1の導入室13側の透孔7aを通過する際に、剪断作用が働く。
つまり、第1の導入室13内の予備混合物Fpに剪断力を作用させるとともに、局所沸騰を発生させることができるので、掻き出される予備混合物Fpは、掻出翼9及び第1の導入室13側の透孔7aから剪断作用を受けて混合されるとともに、掻出翼9の背面9aに発生する局所沸騰(キャビテーション)により、溶媒Rに対する粉体Pの分散がより良好に行われることとなる。よって、このような予備混合物Fpを供給することができ、翼室8内において溶媒Rに対する粉体Pの良好な分散を期待することができる。
吐出部12から吐出されたスラリーFは、吐出路18を通して再循環機構部70に供給され、再循環機構部70において、完全に分散、混合していない粉体Pを含む状態の未分散スラリーFrと、粉体Pが略完全に分散、混合した状態のスラリーFとに分離されるとともに、溶媒Rの気泡が分離されて、未分散スラリーFrは、ポンプ駆動モータM4により回転駆動される循環ポンプ16Pを介在させた循環流路16を介して、再び分散混合ポンプYの第2の供給部17に供給され、スラリーFは排出路22を通して貯留混合タンク51に供給される。
未分散スラリーFrは、第2の供給部17の絞り部14aを介して流量が制限された状態で第2の導入室14内に導入される。その第2の導入室14内においては、回転する複数の撹拌羽根21により剪断作用を受けて、さらに細かく解砕され、さらに、第2の導入室14側の透孔7bの通過の際にも剪断作用を受けて解砕される。この際には、第2の導入室14側の透孔7bを介して流量が制限された状態で翼室8に導入される。そして、翼室8内において、高速で回転する回転翼6により剪断作用を受けて解砕され、粉体Pの凝集物(ダマ)がさらに少なくなったスラリーFが第1の導入室13からのスラリーFと混合されて吐出部12から吐出される。
ここで、制御部は、回転翼6の周速度(ロータ5の回転数)を制御可能に構成され、第1の導入室13及び第2の導入室14内の圧力が所定の負圧状態となるように、回転翼6の周速度(ロータ5の回転数)を設定し、当該設定された周速度(ロータ5の回転数)で回転翼6を回転することで、少なくとも、ステータ7の第1の導入室13側の透孔7a及び第2の導入室14側の透孔7bを通過した直後の翼室8内の領域を、翼室8内の全周に亘って連続して、溶媒Rの微細気泡(マイクロバブル)が多数発生した微細気泡領域として形成させることができる。
これによって、翼室8内の全周に亘って、粉体Pの凝集物(いわゆるダマ)に浸透した溶媒Rが発泡することで当該凝集物の解砕が促進され、さらに、その発生した微細気泡が翼室8において加圧され消滅する際の衝撃力によりさらに粉体Pの分散が促進されることになり、結果、翼室8内の全周に存在するスラリーFのほぼ全体に亘って、溶媒R中での粉体Pの分散が良好な高品質のスラリーFを生成することができる。
そして、定量供給装置Xのホッパ31からの所定量の粉体Pの供給が終わると、定量供給装置Xを停止し、粉体排出管45に配設されたシャッタバルブ46を閉止して粉体排出管45を介する粉体Pの吸引を停止させる。
これにより、粉体Pの非供給時に、シャッタバルブ46より上流側の粉体排出管45の内部が湿潤して、閉塞することを防止することができ、併せて、分散混合ポンプYの第1の供給部11から空気が吸引されることを防止することができる。
この状態で分散混合ポンプYの運転を所定時間継続する。
このとき、溶媒供給部50の貯留混合タンク51からは、溶媒Rと置き換わったスラリーFが供給される。
そして、この粉体Pの非供給時においては、第1の供給部11から空気が吸引されることがないため、分散混合ポンプY内、すなわち、第1の導入室13と第2の導入室14の真空度が高まるため(ここで、第1の導入室13と第2の導入室14とは、シャッタバルブ46を閉じた状態ではほぼ同圧となる。)、設定された周速度(ロータ5の回転数)で回転翼6を回転することで、少なくとも、ステータ7の第1の導入室13側の透孔7a及び第2の導入室14側の透孔7bを通過した直後の翼室8内の領域を、翼室8内の全周に亘って連続して、溶媒Rの微細気泡(マイクロバブル)が多数発生した微細気泡領域として形成させることができる。
これによって、翼室8内の全周に亘って、粉体Pの凝集物(いわゆるダマ)に浸透した溶媒Rが発泡することで当該凝集物の解砕が促進され、さらに、その発生した微細気泡が翼室8において加圧され消滅する際の衝撃力によりさらに粉体Pの分散が促進されることになり、結果、翼室8内の全周に存在するスラリーFのほぼ全体に亘って、より確実に、溶媒R中での粉体Pの分散が良好な高品質のスラリーFを生成することができる。
生成された高品質のスラリーFは、貯留混合タンク51に貯留される。
その後、分散混合ポンプYの運転を停止する。
貯留混合タンク51に貯留されている生成された高品質のスラリーFは、スラリーFの排出路53を介して、後続の工程に供給される。
〔カーボンを含有したスラリーの製造〕
次に、この分散混合ポンプYを備えた分散混合システム100を用いたカーボンを含有したスラリーの製造方法について説明する。
このカーボンを含有したスラリーの製造方法は、カーボンを固形分として含有する液体、具体的には、粉体P(固形分)として、非水電解質二次電池用電極の製造に用いられるスラリー材料である、アルカリ金属イオンを吸蔵、放出する材料(例えば、LiFePO4)、カーボン(例えば、カーボンブラックや繊維状炭素粉末を含み、該繊維状炭素粉末のアスペクト比が10〜1000、平均繊維径が1〜500nmであるカーボン(カーボンナノチューブ))及び水系バインダ(例えば、CMC(カルボキシルメチルセルロース))を用い、溶媒Rとして水を用い、当該液体に剪断力を付与することによって、固形分の分散、混合を行う工程を備えるカーボンを含有したスラリーの製造方法であって、前記剪断力を、−0.025〜−0.10MPaの範囲の負圧状態で付与することを特徴とするものである。
ここで、前記負圧状態は、圧力計80により測定した第1の導入室13及び第2の導入室14内の圧力(本実施形態においては、第1の導入室13内の圧力(ここで、第1の導入室13と第2の導入室14とは、シャッタバルブ46を閉じた状態ではほぼ同圧となる。)。)をいう。
すなわち、本実施例においては、定量供給装置Xを停止し、粉体排出管45に配設されたシャッタバルブ46を閉止して粉体排出管45を介する粉体Pの吸引を停止した状態で分散混合ポンプYを運転しているとき(粉体Pの非供給時)に、第1の導入室13及び第2の導入室14内の圧力が、−0.01〜−0.10MPa、好ましくは、−0.03〜−0.09MPa、より好ましくは、−0.04〜−0.08MPaの範囲の負圧状態となるように、分散混合ポンプYの回転翼6の周速度(ロータ5の回転数)を、6〜80m/s、好ましくは、15〜50m/sに設定するようにする。
これによって、翼室8内の全周に亘って、粉体Pの凝集物(いわゆるダマ)に浸透した溶媒Rが発泡することで当該凝集物の解砕が促進され、さらに、その発生した微細気泡が翼室8において加圧され消滅する際の衝撃力によりさらに粉体Pの分散が促進されることになり、結果、翼室8内の全周に存在するスラリーFのほぼ全体に亘って、より確実に、溶媒R中での粉体Pの分散が良好な高品質のスラリーFを生成することができる。
すなわち、負圧状態で掻出翼9の背面9aに発生する局所沸騰(キャビテーション)による気泡(キャビティー)が、ステータ7の第2の導入室14側の透孔7bを通過した直後に、翼室8内において高速回転する回転翼6によってさらに微細な気泡に粉砕されることによって、スラリーFは泡状となり、凝集状態の粉体P(繊維状炭素粉末)は、解され、分散が促進される。
そして、泡状のスラリーFは、このように、翼室8内において高速で回転する回転翼6により剪断作用を受けて解砕されながら、遠心力によって翼室8の外周部へ移動し、吐出部12から吐出されるが、この間に、泡状のスラリーFが液状に戻る際に生じる衝撃によって、スラリーFに含まれる凝集状態の粉体P(繊維状炭素粉末)は、さらに分散が促進され、粉体P(繊維状炭素粉末)が1次粒子になるまで分散された高品質のスラリーFを生成することができる。
このようにしてカーボンを含有したスラリーを得ることができるが、このスラリーは、非水電解質二次電池用電極の製造に用いることができる。
以上、本発明のスラリーの製造に用いる分散混合ポンプを備えた分散混合システムについて、その実施の形態に基づいて説明したが、本発明は上記実施の形態の記載に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。
本発明のスラリーの製造に用いる分散混合ポンプを備えた分散混合システムは、カーボン等の分散性や溶解性が悪い物質を含有する場合でも、均質なスラリーを、短時間で得ることができ、また、固形分が分散、混合した状態を長時間維持することができ、さらに、スラリーへの気泡の混入、残留を少なくできることから、非水電解質二次電池用電極の製造に用いられるスラリーの製造を始めとする各種スラリーの製造の用途に好適に用いることができる。
1 ケーシング
5 ロータ
6 回転翼
6a 背面部
7 ステータ
7a 絞り流路(透孔)
7b 絞り流路(透孔)
8 翼室(排出室)
9 掻出翼
10 環状溝
11 第1の供給部
12 吐出部
13 第1の導入室
14 第2の導入室
14a 絞り部
15 仕切板
16 循環流路
16P 循環ポンプ
17 第2の供給部
22 排出路
50 溶媒供給部
51 貯留混合タンク
52 供給管
52P 送出ポンプ
60 ミキシング機構(供給機構部)
70 再循環機構部
71 円筒状容器(分離部)
80 圧力計
100 分散混合システム
Y 分散混合ポンプ
F スラリー
Fp 予備混合物
Fr 未分散スラリー
P 粉体(固形分)
R 溶媒(液相分散媒)
G 空気(気体)

Claims (5)

  1. ケーシングの内部に回転翼を備えたロータを回転駆動することにより、固形分の分散、混合を行う工程を備えるスラリーの製造に用いる分散混合機構を備えた分散混合システムであって、前記分散混合システムが、分散混合機構から吐出された液体を、前記分散混合機構に循環させる循環流路を備え、該循環流路を形成する管部材の内周面を、撥液性材料でコーティング処理してなり、前記撥液性材料は、変性フッ素樹脂であることを特徴とする分散混合システム。
  2. 前記分散混合システムには、スラリーを貯留するための貯留混合タンクが設けられており、少なくとも前記貯留混合タンクのスラリーが接する表面に、前記撥液性材料でコーティング処理してなることを特徴とする請求項1に記載の分散混合システム。
  3. 前記分散混合システムには、前記ケーシングの液体が接する表面に、前記撥液性材料でコーティング処理してなることを特徴とする請求項1に記載の分散混合システム。
  4. 前記分散混合機構の回転駆動される部分を、撥液性材料でコーティング処理してなることを特徴とする請求項1に記載の分散混合システム。
  5. 前記分散混合機構の回転駆動される部分が、前記分散混合機構の回転翼であることを特徴とする請求項4に記載の分散混合システム。

JP2020164150A 2015-11-19 2020-09-29 スラリーの製造に用いる分散混合ポンプを備えた分散混合システム Pending JP2021003703A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015226852 2015-11-19
JP2015226852 2015-11-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016043997A Division JP2017100117A (ja) 2015-11-19 2016-03-08 スラリーの製造に用いる分散混合ポンプを備えた分散混合システム

Publications (1)

Publication Number Publication Date
JP2021003703A true JP2021003703A (ja) 2021-01-14

Family

ID=59017111

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016043997A Pending JP2017100117A (ja) 2015-11-19 2016-03-08 スラリーの製造に用いる分散混合ポンプを備えた分散混合システム
JP2020164150A Pending JP2021003703A (ja) 2015-11-19 2020-09-29 スラリーの製造に用いる分散混合ポンプを備えた分散混合システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016043997A Pending JP2017100117A (ja) 2015-11-19 2016-03-08 スラリーの製造に用いる分散混合ポンプを備えた分散混合システム

Country Status (1)

Country Link
JP (2) JP2017100117A (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643875B1 (en) * 2017-06-21 2022-08-31 Biodryingtech SpA High-speed dewatering and pulverising turbine
WO2019017152A1 (ja) * 2017-07-19 2019-01-24 日本スピンドル製造株式会社 非水電解質二次電池の正極用スラリーの製造方法及びその装置
DE102019102583A1 (de) * 2019-02-01 2020-08-06 Ystral Gmbh Maschinenbau + Processtechnik Rotor für eine Vorrichtung zum Mischen von Pulver und Flüssigkeit und Vorrichtung zum Mischen von Pulver und Flüssigkeit
JP7334049B2 (ja) * 2019-03-25 2023-08-28 日本スピンドル製造株式会社 スラリー製造装置
CN115445516A (zh) * 2022-09-23 2022-12-09 深圳市尚水智能设备有限公司 一种连续制浆设备
CN116532019B (zh) * 2023-06-21 2024-03-29 广东华汇智能装备股份有限公司 一种高效粉液混合结构
CN116943500B (zh) * 2023-09-18 2024-01-09 招商局深海装备研究院(三亚)有限公司 一种用于超细玻璃纤维复合材料制备的前驱液分散装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082133A (ja) * 1973-10-30 1975-07-03
JPS63176894A (ja) * 1987-01-16 1988-07-21 住友金属工業株式会社 高温耐食性と非粘着性に優れた内面被覆鋼管
JPS6421297A (en) * 1987-07-14 1989-01-24 Hitachi Cable Internal resin covered pipe
JPH02206638A (ja) * 1989-02-07 1990-08-16 Asahi Chem Ind Co Ltd 潤滑性樹脂組成物
JPH052735U (ja) * 1991-06-25 1993-01-19 三菱マテリアル株式会社 付着防止混合撹拌機
JPH09249781A (ja) * 1996-03-14 1997-09-22 Nippon Pillar Packing Co Ltd フッ素系樹脂組成物
JPH10120980A (ja) * 1996-10-18 1998-05-12 Ntn Corp 耐摩耗性・非粘着性コーティング剤および摺動部材
JPH11333272A (ja) * 1998-05-26 1999-12-07 Maeda Corp ジェットミキサー
JP2008038151A (ja) * 2006-08-03 2008-02-21 Wacker Chemie Ag 架橋可能なオルガノポリシロキサン材料を製造する連続的方法
DE102011005076A1 (de) * 2011-03-03 2011-07-21 Wacker Chemie AG, 81737 Kontinuierliches Verfahren zur Herstellung von vernetzbaren Organopolysiloxanmassen
JP2012086176A (ja) * 2010-10-20 2012-05-10 Panasonic Corp 微細気泡生成ノズルの製造方法
JP2012210621A (ja) * 2011-03-23 2012-11-01 Funken Pautekkusu:Kk 連続混練装置
JP2012250145A (ja) * 2011-05-31 2012-12-20 Izumi Food Machinery Co Ltd 分散方法及び分散システム
JP2013209258A (ja) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp シリカスラリーの製造方法
JP2015035344A (ja) * 2013-08-09 2015-02-19 独立行政法人産業技術総合研究所 カーボンを含有したペーストの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11192422A (ja) * 1997-10-29 1999-07-21 Uni Chemical Kk 撹拌用回転子及びそれに用いる耐薬品性永久磁石の製造方法
US20100282099A1 (en) * 2009-05-08 2010-11-11 Lahav Gil Magnetic Homogenizer Apparatus

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082133A (ja) * 1973-10-30 1975-07-03
JPS63176894A (ja) * 1987-01-16 1988-07-21 住友金属工業株式会社 高温耐食性と非粘着性に優れた内面被覆鋼管
JPS6421297A (en) * 1987-07-14 1989-01-24 Hitachi Cable Internal resin covered pipe
JPH02206638A (ja) * 1989-02-07 1990-08-16 Asahi Chem Ind Co Ltd 潤滑性樹脂組成物
JPH052735U (ja) * 1991-06-25 1993-01-19 三菱マテリアル株式会社 付着防止混合撹拌機
JPH09249781A (ja) * 1996-03-14 1997-09-22 Nippon Pillar Packing Co Ltd フッ素系樹脂組成物
JPH10120980A (ja) * 1996-10-18 1998-05-12 Ntn Corp 耐摩耗性・非粘着性コーティング剤および摺動部材
JPH11333272A (ja) * 1998-05-26 1999-12-07 Maeda Corp ジェットミキサー
JP2008038151A (ja) * 2006-08-03 2008-02-21 Wacker Chemie Ag 架橋可能なオルガノポリシロキサン材料を製造する連続的方法
JP2012086176A (ja) * 2010-10-20 2012-05-10 Panasonic Corp 微細気泡生成ノズルの製造方法
DE102011005076A1 (de) * 2011-03-03 2011-07-21 Wacker Chemie AG, 81737 Kontinuierliches Verfahren zur Herstellung von vernetzbaren Organopolysiloxanmassen
JP2012210621A (ja) * 2011-03-23 2012-11-01 Funken Pautekkusu:Kk 連続混練装置
JP2012250145A (ja) * 2011-05-31 2012-12-20 Izumi Food Machinery Co Ltd 分散方法及び分散システム
JP2013209258A (ja) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp シリカスラリーの製造方法
JP2015035344A (ja) * 2013-08-09 2015-02-19 独立行政法人産業技術総合研究所 カーボンを含有したペーストの製造方法

Also Published As

Publication number Publication date
JP2017100117A (ja) 2017-06-08

Similar Documents

Publication Publication Date Title
JP2021003703A (ja) スラリーの製造に用いる分散混合ポンプを備えた分散混合システム
JP2015037009A (ja) カーボンを含有したスラリーの製造に用いる分散混合ポンプを備えた分散混合システム
TWI444226B (zh) Dispersion method and dispersion system
JP2017100117A5 (ja)
US11547974B2 (en) Slurry manufacturing device and operating method for slurry manufacturing device
US6431742B2 (en) Continuous mixing apparatus with upper and lower disk impellers each having scrapers
JP2015213877A (ja) 泡破壊翼付きミキサー
CN109482102B (zh) 造粒体的制造方法及制造装置
JP6687422B2 (ja) 分散システム
US11433364B2 (en) Slurry production apparatus
JP2017035679A5 (ja)
JP5636590B2 (ja) 粉体溶解装置
US11925909B2 (en) Slurry manufacturing apparatus and method for manufacturing slurry
JP6874245B2 (ja) 撹拌システム及びその運転方法
JP5678375B2 (ja) 定量供給装置及びそれを備えた溶質溶解装置
JP5678381B2 (ja) 遠心式の分散装置
JP6817719B2 (ja) 分散混合装置及びその運転方法
JP2014083528A (ja) 分散システム及びその運転方法
KR20160042716A (ko) 연속식 분말 혼합기
JP6744569B2 (ja) 非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリー
JP2017147081A5 (ja)
JP5779810B2 (ja) 分散システム
WO2018211610A1 (ja) 非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリー
JP6856484B2 (ja) 粉体吸引方法および粉体吸引溶解ポンプ
JP2016153109A (ja) 混合方法及び装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220628