JP6744569B2 - 非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリー - Google Patents

非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリー Download PDF

Info

Publication number
JP6744569B2
JP6744569B2 JP2016027115A JP2016027115A JP6744569B2 JP 6744569 B2 JP6744569 B2 JP 6744569B2 JP 2016027115 A JP2016027115 A JP 2016027115A JP 2016027115 A JP2016027115 A JP 2016027115A JP 6744569 B2 JP6744569 B2 JP 6744569B2
Authority
JP
Japan
Prior art keywords
slurry
secondary battery
aqueous electrolyte
electrolyte secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016027115A
Other languages
English (en)
Other versions
JP2017147081A (ja
JP2017147081A5 (ja
Inventor
太地 坂本
太地 坂本
向井 孝志
孝志 向井
勇太 池内
勇太 池内
昌宏 柳田
昌宏 柳田
浅見 圭一
圭一 浅見
慶一郎 大西
慶一郎 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Spindle Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nihon Spindle Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Spindle Manufacturing Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nihon Spindle Manufacturing Co Ltd
Priority to JP2016027115A priority Critical patent/JP6744569B2/ja
Publication of JP2017147081A publication Critical patent/JP2017147081A/ja
Publication of JP2017147081A5 publication Critical patent/JP2017147081A5/ja
Application granted granted Critical
Publication of JP6744569B2 publication Critical patent/JP6744569B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリーに関するものである。
非水電解質二次電池の負極は、活物質及びバインダ、さらに、必要に応じて、導電助剤が添加されたスラリーを集電体上に塗工、乾燥(硬化)することによって作製される。
ところで、EV(Electric Vehicle)、PHEV (Plug-in Hybrid Electric Vehicle)に用いられる高容量電池開発のために、活物質として現在汎用されている黒鉛に対して、電気容量が黒鉛の10倍程度あるケイ素系材料(SiOやSi)が注目されている。
しかしながら、ケイ素系材料を活物質として用いた場合、ケイ素系材料が充放電に際して大きく膨張収縮(4〜5倍)し、このため、充放電を繰り返すと電極構造に歪みが生じ、サイクル寿命が低下するという問題があった。
この問題に対処するため、すなわち、ケイ素系材料の膨張収縮を抑制するために、バインダに熱硬化性樹脂であるポリイミドを用いてケイ素系材料の表面をコーティングするようにし、このスラリーを集電体上に塗工、乾燥(硬化)させることで、ケイ素系材料の表面を拘束するようにした上で負極として使用することが提案されている(例えば、非特許文献1参照。)。
プライミックス株式会社外、「薄膜旋回ミキサー『フィルミックス』を用いたシリコン系負極スラリー調整法と大型電極作製技術の検討」、電池討論会、2015年11月13日、p.325
しかしながら、上記の非特許文献に記載のケイ素系材料の膨張収縮を抑制する方法は、スラリーを製造するに当たり、ケイ素系材料を含み、バインダ成分としての熱硬化性樹脂であるポリイミド含有する非水電解質二次電池の負極用材料の分散、混合を、フィルミックス(登録商標)という通常の撹拌ミキサ(プラネタリーミキサ、自公転ミキサも同様。)を用いて行うようにしているため、多量(例えば、固形分比で15重量%)のポリイミドを添加する必要があり、このため、電池性能に寄与しない多量のバインダ成分によって、電極性能が低下するとともに、高コストになるという問題があった。
本発明は、上記の非特許文献に記載のケイ素系材料の膨張収縮を抑制する方法が有する問題点に鑑み、電池性能に寄与しないバインダ成分を低減しながら、ケイ素系材料の膨張収縮を抑制し、電極性能を向上させるとともに、製造コストを低減することができる非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリーを提供することを目的とする。
上記目的を達成するため、本発明の非水電解質二次電池の負極用スラリーの製造方法は、ケイ素系材料を含んだ非水電解質二次電池の負極用スラリーの製造方法であって、平均粒度が5μmのケイ素系材料をスラリー中の全固形分を1とした固形分比で85〜93重量%含み、バインダ成分としての熱硬化性樹脂をスラリー中の全固形分を1とした固形分比で4〜1重量%含有する非水電解質二次電池の負極用材料に対して、キャビテーションを生じる条件下でスラリーの分散、混合を行うことで、スラリーを集電体上に塗工、乾燥させたときにイオンの脱入経路を有するバインダでコーティングされたケイ素系材料を得るようにしたことを特微とする。
この場合において、熱硬化性樹脂に、ポリイミドを用いることができる。
また、本発明の非水電解質二次電池の負極用スラリーは、ケイ素系材料を含んだ非水電解質二次電池の負極用スラリーであって、平均粒度が5μmのケイ素系材料をスラリー中の全固形分を1とした固形分比で85〜93重量%含み、バインダ成分としての熱硬化性樹脂をスラリー中の全固形分を1とした固形分比で4〜1重量%含有してなることを特徴とする。
この場合において、熱硬化性樹脂に、ポリイミドを用いることができる。
また、本発明の非水電解質二次電池の負極用スラリーは、これを塗工、乾燥してなることで、イオンの脱入経路を有するバインダでコーティングされたケイ素系材料が塗工されてなる非水電解質二次電池の負極を製造することができ、この負極を用いて非水電解質二次電池を製造することができ、さらに、この非水電解質二次電池は、電子機器に好適に用いることができる。
本発明の非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリーによれば、電池性能に寄与しないバインダ成分を低減しながら、ケイ素系材料の膨張収縮を抑制し、電極性能を向上させるとともに、製造コストを低減することができる。
本発明のスラリーの製造に用いる分散混合ポンプを備えた分散、混合装置の一実施例を示す説明図である。 定量供給装置の要部を示す縦断面図である。 図2のIII−III方向視での断面図である。 分散混合ポンプの分散混合機構の内部構造を示す説明図である。 図4のV−V方向視での断面図である。 分散混合ポンプの分散混合機構の内部構造を示す分解斜視図である。 仕切板の概略構成図である。 再循環機構部の分離部の内部構造を示す説明図である。 本発明の非水電解質二次電池の負極用スラリーを用いて製造した非水電解質二次電池のサイクル数と容量の関係を示すグラフである。 ケイ素系材料の表面をポリイミドによりコーティングした状態を示す概念図で、(a)は多量のポリイミドを添加して通常の撹拌ミキサを用いて分散、混合を行った場合を、(b)は多量のポリイミドを添加してキャビテーションを生じさせる分散、混合装置を用いて分散、混合を行った場合を、(c)は少量のポリイミドを添加してキャビテーションを生じさせる分散、混合装置を用いて分散、混合を行った場合を、それぞれ示す。
以下、本発明の非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリーの実施の形態を説明する。
[非水電解質二次電池の負極用スラリーの製造方法]
本発明の非水電解質二次電池の負極用スラリーの製造方法は、活物質として現在汎用されている黒鉛に対して、電気容量が黒鉛の10倍程度あるケイ素系材料を含んだ非水電解質二次電池の負極用スラリーの製造方法であって、ケイ素系材料を含み、バインダ成分としての熱硬化性樹脂を固形分比で4〜1重量%含有する非水電解質二次電池の負極用材料に対して、キャビテーションを生じさせる分散、混合装置を用いて分散、混合を行うことを特微とする。
負極用スラリーには、固形分として、活物質及びバインダが含まれ、必要に応じて、導電助剤が添加される。
この場合において、非水電解質二次電池の負極用材料の活物質として用いるケイ素系材料には、アモルファスタイプの一酸化ケイ素(SiO)やシリコン(Si)を、バインダ成分としての熱硬化性樹脂には、ポリイミド(PI)やポリアミドイミド(PAI)を、それぞれ好適に用いることができる。
導電助剤は、特に制限はなく、金属、炭素材料、導電性高分子、導電性ガラスなどが挙げられるが、このうち炭素材料が好ましく、具体的には、アセチレンブラック(AB)、ケッチェンブラック(KB)、気相成長炭素繊維(VGCF)、カーボンナノチューブ(CNT)、グラファイト、ハードカーボン、ソフトカーボン、ファーネスブラック、グラフェン、グラッシーカーボン、カーボンナノホーンなどが挙げられ、これらの1種又は2種以上を用いても何ら問題ない。
また、負極用材料をスラリー化するための溶媒としては、特に制限はなく、有機溶剤系溶媒及び非有機溶剤系溶媒(例えば、水系溶媒)を用いることができ、特に、N−メチルピロリドン(NMP)などの有機溶剤系溶媒を好適に用いることができる。
そして、本発明の非水電解質二次電池の負極用スラリーの製造方法によって得られた非水電解質二次電池の負極用スラリーは、これを用いて非水電解質二次電池の負極、具体的には、炭酸リチウムによって被覆された非水電解質二次電池の負極を製造することができ、この負極を用いて非水電解質二次電池を製造することができ、さらに、この非水電解質二次電池は、電子機器に好適に用いることができる。
[分散、混合工程(分散、混合装置)]
以下、本発明の非水電解質二次電池の負極用スラリーの製造方法の分散、混合工程に用いる分散混合ポンプを備えた分散、混合装置について、図1〜図8に基づいて説明する。
図1に、遠心式の分散混合ポンプYを備えた分散、混合装置100を示す。
この分散、混合装置100は、分散質として粉体P(固形分)を用い、液相分散媒として溶媒Rを用いて、粉体Pを溶媒Rに分散、混合して、スラリーFを生成するものである。
本実施形態においては、例えば、粉体Pとして、活物質としてのアモルファスタイプの一酸化ケイ素(SiO)及び導電助剤としての気相成長炭素繊維(VGCF)を用い、溶媒Rとして、N−メチルピロリドン(NMP)(可溶の固形分であるバインダ成分としてのポリイミド(PI)を含む。)を用いた。
図1に示すように、分散、混合装置100は、粉体Pを定量供給する定量供給装置Xと、溶媒Rを定量供給する溶媒供給部50と、定量供給装置Xから定量供給される粉体Pと溶媒供給部50から定量供給される溶媒Rとを負圧吸引して分散混合する分散混合ポンプYと、分散混合ポンプYから吐出されたスラリーFから、完全に分散、混合していない粉体Pを含む溶媒R(以下、「未分散スラリーFr」という。)を分散混合ポンプYに循環供給する再循環機構部70等を備えて構成されている。
〔定量供給装置〕
図1に示すように、定量供給装置Xは、上部開口部31aから受け入れた粉体Pを下部開口部31bから排出させるホッパ31と、ホッパ31内の粉体Pを撹拌する撹拌機構32と、ホッパ31の上部開口部31aが大気開放された状態で、下部開口部31bの下流側に接続された分散混合ポンプYの吸引により下部開口部31bに作用する負圧吸引力によって、下部開口部31bから排出された粉体Pを分散混合ポンプYに定量供給する容積式の定量供給部40とを備えて構成されている。
ホッパ31は、上部から下部へ向かうに連れて縮径する逆円錐形状に構成され、その中心軸A1が鉛直方向に沿う姿勢で配設されている。そのホッパ31の上部開口部31a及び下部開口部31b夫々の横断面形状は、図1の上下方向視で、中心軸A1を中心とする円形状とされ、また、ホッパ31における逆円錐形状の内側壁面の傾斜角度は、水平面に対して略60度とされる。
撹拌機構32は、ホッパ31内に配設されて、ホッパ31内の粉体Pを撹拌する撹拌羽根32Aと、当該撹拌羽根32Aをホッパ31の中心軸A1周りに回転させる羽根駆動モータM1と、羽根駆動モータM1をホッパ31の上部開口部31aの上方に位置させて支持する取付部材32Bと、羽根駆動モータM1の回転駆動力を撹拌羽根32Aに伝動させる伝動部材32Cとを備えて構成される。
撹拌羽根32Aは、棒状部材を概略V字形状に屈曲して構成され、その一方の辺部がホッパ31の内側壁面に沿う状態で、他方の辺部の端部がホッパ31の中心軸A1と同軸で回転自在に枢支されて配設されている。また、当該撹拌羽根32Aは、横断面形状が三角形に形成されており、三角形の一辺を形成する面がホッパ31の内側壁面と略平行となるように配設されている。これにより、撹拌羽根32Aは、ホッパ31の内側壁面に沿って中心軸A1周りに回転可能に配設されている。
図1〜図3に示すように、容積式の定量供給部40は、ホッパ31の下部開口部31bから供給される粉体Pを下流側の分散混合ポンプYに所定量ずつ定量供給する機構である。
具体的には、ホッパ31の下部開口部31bに接続される導入部41と、供給口43a及び排出口43bを備えたケーシング43と、ケーシング43内に回転可能に配設された計量回転体44と、計量回転体44を回転駆動する計量回転体駆動モータM2とを備えて構成される。
導入部41は、ホッパ31の下部開口部31bとケーシング43の上部に形成された供給口43aとを連通する筒状に形成され、最下端には、ケーシング43の供給口43aと同形状のスリット状の開口が形成されている。この導入部41は、ケーシング43の供給口43a側ほど細くなる先細り状に形成されている。当該スリット状の開口の形状は、ホッパ31の大きさ、粉体Pの供給量、粉体Pの特性等に応じて適宜設定することができるが、例えば、スリット状の開口の長さ方向の寸法を20〜100mm程度、幅方向の寸法を1〜5mm程度に設定するようにする。
ケーシング43は、概略直方体形状に形成され、水平方向(図1の左右方向)に対して45度傾斜した姿勢で、導入部41を介してホッパ31に接続されている。
図2及び図3に示すように、ケーシング43の上面には、導入部41のスリット状の開口に対応したスリット状の供給口43aが設けられ、ホッパ31の下部開口部31bからの粉体Pをケーシング43内に供給可能に構成されている。傾斜状に配置されたケーシング43の下方側の側面(図2において右側面)の下部には、計量回転体44にて定量供給された粉体Pを膨張室47を介して下流側の分散混合ポンプYに排出する排出口43bが設けられ、その排出口43bには、粉体排出管45が接続されている。当該膨張室47は、供給口43aから計量回転体44の粉体収容室44bに供給された粉体Pが定量供給されるケーシング43内の位置に設けられ、排出口43bから作用する負圧吸引力によって、供給口43aよりも低圧に維持される。すなわち、排出口43bは、分散混合ポンプYの一次側に接続されることによって、負圧吸引力が膨張室47に作用し排出口43bよりも低圧状態に維持されるようにしている。計量回転体44の回転に伴って、各粉体収容室44bの状態が負圧状態と当該負圧状態よりも高圧の状態に変化するように構成されている。
計量回転体44は、計量回転体駆動モータM2の駆動軸48に配設した円盤部材49に、複数(例えば、8枚)の板状隔壁44aを円盤部材49の中心部を除いて放射状に等間隔に取り付けて構成され、周方向で等間隔に粉体収容室44bを複数に区画(例えば、8室。)形成するように構成されている。粉体収容室44bは、計量回転体44の外周面及び中心部において開口するように構成されている。計量回転体44の中心部には、開口閉鎖部材42が周方向に偏在して固定状に配設され、各粉体収容室44bの中心部側の開口をその回転位相に応じて閉塞あるいは開放可能に構成されている。なお、粉体Pの供給量は、計量回転体44を回転駆動する計量回転体駆動モータM2による計量回転体44の回転数を変化させることで、調整できる。
計量回転体44の回転に伴って、各粉体収容室44bが、膨張室47に開放される膨張室開放状態、膨張室47及び供給口43aと連通しない第1密閉状態、供給口43aに開放される供給口開放状態、供給口43a及び膨張室47と連通しない第2密閉状態の順で、その状態が繰り返して変化するように構成されている。なお、計量回転体44の外周面側の開口が第1密閉状態及び第2密閉状態において閉鎖されるようにケーシング43が形成されるとともに、計量回転体44の中心部側の開口が第1密閉状態、供給口開放状態及び第2密閉状態において閉鎖されるように、開口閉鎖部材42がケーシング43に固定して配設される。
したがって、定量供給装置Xにおいては、ホッパ31内に貯留された粉体Pが撹拌羽根32Aにより撹拌されながら定量供給部40に供給され、定量供給部40により、粉体Pが排出口43bから粉体排出管45を通して分散混合ポンプYに定量供給される。
具体的に説明すると、定量供給部40の排出口43bの下流側に接続された分散混合ポンプYからの負圧吸引力により、ケーシング43内における膨張室47の圧力が負圧状態となる。一方で、ホッパ31の上部開口部31aは大気開放されているので、ホッパ31内は大気圧程度の状態となる。膨張室47と計量回転体44の隙間を介して連通する導入部41の内部及び下部開口部31bの近傍は、上記負圧状態と大気圧状態との間の圧力状態となる。
この状態で、ホッパ31の内壁面及び下部開口部31bの近傍の粉体Pが、撹拌機構32の撹拌羽根32Aにより撹拌されることで、撹拌羽根32Aによる剪断作用によりホッパ31内の粉体Pが解砕され、一方、計量回転体44は計量回転体駆動モータM2により回転させられることで、空の粉体収容室44bが次々と供給口43aに連通する状態となる。そして、ホッパ31内の粉体Pは下部開口部31bから導入部41を流下し、次々と供給口43aに連通する状態となる計量回転体44の粉体収容室44bに所定量ずつ収容されて、その粉体収容室44bに収容された粉体Pは膨張室47に流下し、排出口43bから排出される。したがって、定量供給装置Xにより、粉体Pを粉体排出管45を通して所定量ずつ連続して分散混合ポンプYの第1の供給部11に定量供給することができる。
図1に示すように、粉体排出管45には、分散混合ポンプYの第1の供給部11への粉体Pの供給を停止可能なシャッタバルブ46が配設されている。
〔溶媒供給部〕
図1に示すように、溶媒供給部50は、貯留混合タンク51に貯留された溶媒Rを、設定流量で分散混合ポンプYの第1の供給部11に連続的に供給するように構成されている。
具体的には、溶媒供給部50は、溶媒供給管51Rを介して供給される溶媒Rを貯留し、送出する貯留混合タンク51と、貯留混合タンク51から溶媒Rが送出される送出ポンプ52Pを介在させた供給管52と、貯留混合タンク51から供給管52に送出される溶媒Rの流量を設定流量に調整する流量調整バルブ(図示せず)と、設定流量に調整された溶媒Rを定量供給部40から定量供給される粉体Pに混合して第1の供給部11に供給するミキシング機構60とを備えて構成されている。
ここで、貯留混合タンク51は、後述するように、排出路22から粉体Pが分散、混合した状態のスラリーFが、スラリーFに含まれる気泡と共に、導入されるように構成されている。
このため、貯留混合タンク51には、撹拌機構51Kを配設するとともに、空気(気体)Gの放出管51G及び製造されたスラリーFの排出路53を接続するようにする。
図4に示すように、ミキシング機構60は、粉体排出管45と供給管52とを第1の供給部11に連通接続するミキシング部材61を備えて構成されている。
このミキシング部材61は、円筒状の第1の供給部11よりも小径に構成されて、第1の供給部11との間に環状のスリット63を形成すべく第1の供給部11に挿入状態で配設される筒状部62及び環状のスリット63に全周に亘って連通する状態で第1の供給部11の外周部に環状流路64を形成する環状流路形成部65を備えて構成されている。
ミキシング部材61には、粉体排出管45が筒状部62に連通する状態で接続されるとともに、供給管52が環状流路64に対して溶媒Rを接線方向に供給するように接続される。
粉体排出管45、ミキシング部材61の筒状部62及び第1の供給部11は、それらの軸心A2を供給方向が下向きとなる傾斜姿勢(水平面(図1の左右方向)に対する角度が45度程度)となるように傾斜させて配置されている。
つまり、定量供給部40の排出口43bから粉体排出管45に排出された粉体Pは、ミキシング部材61の筒状部62を通して軸心A2に沿って第1の供給部11に導入される。一方、溶媒Rは、環状流路64に接線方向から供給されるので、環状流路64の内周側に形成される環状のスリット63を介して、切れ目のない中空円筒状の渦流の状態で第1の供給部11に供給される。
したがって、円筒状の第1の供給部11により、粉体Pと溶媒Rとが均等に予備混合され、その予備混合物Fpが分散混合ポンプYの第1の導入室13内に吸引導入される。
〔分散混合ポンプ〕
図1及び図4〜図8に基づいて、分散混合ポンプYについて説明する。
図4に示すように、分散混合ポンプYは、両端開口が前壁部2と後壁部3とで閉じられた円筒状の外周壁部4を備えたケーシング1を備え、そのケーシング1の内部に同心状で回転駆動自在に設けられたロータ5と、そのケーシング1の内部に同心状で前壁部2に固定配設された円筒状のステータ7と、ロータ5を回転駆動するポンプ駆動モータM3等を備えて構成されている。
図5に示すように、ロータ5の径方向の外方側には、複数の回転翼6が、前壁部2側である前方側(図4の左側)に突出し、かつ、周方向に等間隔で並ぶ状態でロータ5と一体的に備えられている。
円筒状のステータ7には、絞り流路となる複数の透孔7a、7bが周方向に夫々並べて備えられ、そのステータ7が、ロータ5の前方側(図4の左側)で、かつ、回転翼6の径方向の内側に位置させて前壁部2に固定配設されて、そのステータ7とケーシング1の外周壁部4との間に、排出室を兼ねた、回転翼6が周回する環状の翼室8が形成されている。
図4〜図6に示すように、ミキシング機構60にて粉体Pと溶媒Rとが予備混合された予備混合物Fpを回転翼6の回転によりケーシング1の内部に吸引導入する第1の供給部11が、前壁部2の中心軸(ケーシング1の軸心A3)よりも外周側に偏移した位置に設けられている。
図4及び図6に示すように、ケーシング1の前壁部2の内面に環状溝10が形成され、環状溝10と連通する状態で第1の供給部11が設けられている。
図4及び図5に示すように、粉体Pと溶媒Rとが混合されて生成されたスラリーFを吐出する円筒状の吐出部12が、ケーシング1の円筒状の外周壁部4の周方向における1箇所に、その外周壁部4の接線方向に延びて翼室8に連通する状態で設けられている。
図1、図4及び図8に示すように、この実施形態では、吐出部12から吐出されたスラリーFは、吐出路18を通して再循環機構部70に供給され、その再循環機構部70の分離部としての円筒状容器71にて気泡が分離された未分散スラリーFrを、ポンプ駆動モータM4により回転駆動される循環ポンプ16Pを介在させた循環流路16を介して、ケーシング1内に循環供給する第2の供給部17がケーシング1の前壁部2の中央部(軸心A3と同心状)に設けられている。
また、図4〜図6に示すように、ステータ7の内周側を前壁部2側の第1の導入室13とロータ5側の第2の導入室14とに区画する仕切板15が、ロータ5の前方側に当該ロータ5と一体回転する状態で設けられるとともに、仕切板15の前壁部2側に掻出翼9が設けられている。掻出翼9は、同心状に、周方向において均等間隔で複数(図6では、4つ)備えられ、各掻出翼9がその先端部9Tを環状溝10内に進入した状態でロータ5と一体的に周回可能に配設されている。
第1の導入室13及び第2の導入室14は、ステータ7の複数の透孔7a、7bを介して翼室8と連通されるように構成され、第1の供給部11が第1の導入室13に連通し、第2の供給部17が第2の導入室14に連通するように構成されている。
具体的には、第1の導入室13と翼室8とは、ステータ7における第1の導入室13に臨む部分に周方向に等間隔で配設された複数の第1の導入室13側の透孔7aにて連通され、第2の導入室14と翼室8とは、ステータ7における第2の導入室14に臨む部分に周方向に等間隔で配設された複数の第2の導入室14側の透孔7bにて連通されている。
分散混合ポンプYの各部について説明する。
図4に示すように、ロータ5は、その前面が概ね円錐台状に膨出する形状に構成されるとともに、その外周側に、複数の回転翼6が前方に突出する状態で等間隔に並べて設けられている。なお、図5では、周方向に等間隔に10個の回転翼6が配設されている。また、この回転翼6は、内周側から外周側に向かうに連れて、回転方向後方に傾斜するようにロータ5の外周側から内周側に突出形成されており、回転翼6の先端部の内径は、ステータ7の外径よりも若干大径に形成されている。
このロータ5が、ケーシング1内においてケーシング1と同心状に位置する状態で、後壁部3を貫通してケーシング1内に挿入されたポンプ駆動モータM3の駆動軸19に連結されて、そのポンプ駆動モータM3により回転駆動される。
そして、ロータ5が、その軸心方向視(図5に示すような図4のV−V方向視)において回転翼6の先端部が前側となる向きに回転駆動されることにより、回転翼6の回転方向の後側となる面(背面)6aには、いわゆるキャビテーション(局所沸騰)が発生するように構成されている。
図4、図6及び図7に示すように、仕切板15は、ステータ7の内径よりも僅かに小さい外径を有する概ね漏斗状に構成されている。この漏斗状の仕切板15は、具体的には、その中央部に、頂部が円筒状に突出する筒状摺接部15aにて開口された漏斗状部15bを備えるとともに、その漏斗状部15bの外周部に、前面及び後面共にケーシング1の軸心A3に直交する状態となる環状平板部15cを備える形状に構成されている。
そして、図4及び図5に示すように、この仕切板15が、頂部の筒状摺接部15aがケーシング1の前壁部2側を向く姿勢で、周方向に等間隔を隔てた複数箇所(この実施形態では、4箇所)に配設された間隔保持部材20を介して、ロータ5の前面の取付部5aに取り付けられる。
図5及び図7(c)に示すように、仕切板15を複数箇所夫々で間隔保持部材20を介してロータ5に取り付ける際には、撹拌羽根21が、ケーシング1の後壁部3側に向く姿勢で仕切板15に一体的に組み付けられ、ロータ5が回転駆動されると、4枚の撹拌羽根21がロータ5と一体的に回転するように構成されている。
図4及び図6に示すように、この実施形態では、円筒状の第2の供給部17が、ケーシング1と同心状で、そのケーシング1の前壁部2の中心部に設けられている。この第2の供給部17には、循環流路16の内径よりも小径で、仕切板15の筒状摺接部15aよりも小径となり流路面積が小さな絞り部14aが形成されている。ロータ5の回転翼6が回転することにより、吐出部12を介してスラリーFが吐出され、第2の供給部17の絞り部14aを介して未分散スラリーFrが導入されることになるので、分散混合ポンプY内が減圧される。
図4〜図6に示すように、第1の供給部11は、そのケーシング1内に開口する開口部(入口部)が、環状溝10における周方向の一部を内部に含む状態で、ケーシング1内に対する第2の供給部17の開口部の横側方に位置するように、前壁部2に設けられている。また、第1の供給部11は、平面視(図1及び図4の上下方向視)において軸心A2がケーシング1の軸心A3と平行となり、かつ、ケーシング1の軸心A3に直交する水平方向視(図1及び図4の紙面表裏方向視)において、軸心A2がケーシング1の前壁部2に近づくほどケーシング1の軸心A3に近づく下向きの傾斜姿勢で、ケーシング1の前壁部2に設けられている。ちなみに、第1の供給部11の水平方向(図1及び図4の左右方向)に対する下向きの傾斜角度は、上述したように45度程度である。
図4及び図6に示すように、ステータ7は、ケーシング1の前壁部2の内面(ロータ5に対向する面)に取り付けられて、ケーシング1の前壁部2とステータ7とが一体となるように固定されている。ステータ7において、第1の導入室13に臨む部分に配設された複数の第1の導入室13側の透孔7aは、概略円形状に形成され、第1の導入室13の流路面積よりも複数の第1の導入室13側の透孔7aの合計流路面積が小さくなるように設定されており、また、第2の導入室14に臨む部分に配設された複数の第2の導入室14側の透孔7bは、概略楕円形状に形成され、第2の導入室14の流路面積よりも複数の第2の導入室14側の透孔7bの合計流路面積が小さくなるように設定されている。ロータ5の回転翼6が回転することにより、吐出部12を介してスラリーFが吐出され、第1の導入室13室側の透孔7aを介して予備混合物Fpが供給されるとともに、第2の供給部17を介して未分散スラリーFrが導入されることになるので、分散混合ポンプY内が減圧される。
図6及び図7に示すように、この実施形態では、各掻出翼9が棒状に形成され、ロータ5の径方向視(図7(b)の紙面表裏方向視)で、当該棒状の掻出翼9の先端側ほど前壁部2側に位置し、かつ、ロータ5の軸心方向視(図7(a)の紙面表裏方向視)で、当該棒状の掻出翼9の先端側ほどロータ5の径方向内方側に位置する傾斜姿勢で、当該棒状の掻出翼9の基端部9Bがロータ5と一体回転するように固定され、ロータ5が、その軸心方向視(図7(a)の紙面表裏方向視)において掻出翼9の先端が前側となる向き(図4〜図7において矢印にて示す向き)に回転駆動される。
図5〜図7に基づいて、掻出翼9について説明する。
掻出翼9は、仕切板15に固定される基端部9B、第1の導入室13に露呈する状態となる中間部9M、環状溝10に嵌め込まれる(すなわち、進入する)状態となる先端部9Tを基端から先端に向けて一連に備えた棒状に構成されている。
図5、図6及び図7(b)に示すように、掻出翼9の基端部9Bは、概ね矩形板状に構成されている。
図5、図6、図7(a)及び(b)に示すように、掻出翼9の中間部9Mは、横断面形状が概ね三角形状になる概ね三角柱状に構成されている(特に、図5参照)。そして、掻出翼9が上述の如き傾斜姿勢で設けられることにより、三角柱状の中間部9Mの三側面のうちのロータ5の回転方向前側を向く一側面9m(以下、「放散面」と記載する場合がある。)は、ロータ5の回転方向前側に向けて傾斜する前下がり状で、しかも、ロータ5の径方向に対して径方向外方側に向く(以下、「斜め外向き」と記載する場合がある。)ように構成されている(特に、図6、図7参照)。
つまり、棒状の掻出翼9が、上述の如き傾斜姿勢で設けられることにより、掻出翼9のうち第1の導入室13に露呈する中間部9Mが環状溝10に嵌め込まれる先端部9Tよりもロータ5の径方向外方に位置し、しかも、その中間部9Mの回転方向前側を向く放散面9mが、ロータ5の回転方向前側に向けて傾斜する前下がり状で、しかも、ロータ5の径方向に対して斜め外向きに傾斜している。これにより、掻出翼9の先端部9Tにより環状溝10から掻き出された予備混合物Fpは、掻出翼9の中間部9Mの放散面9mにより、第1の導入室13内においてロータ5の径方向外方側に向けて流動するように案内される。
図6、図7(a)及び(b)に示すように、掻出翼9の先端部9Tは、横断面形状が概ね矩形状になる概ね四角柱状であり、ロータ5の軸心方向視(図7(a)の紙面表裏方向視)において、四側面のうちのロータ5の径方向外方側に向く外向き側面9oが環状溝10の内面における径方向内方側を向く内向き内面に沿い、かつ、四側面のうちのロータ5の径方向内方側に内向き側面9iが環状溝10の内面における径方向外方側を向く外向き内面に沿う状態となる弧状に構成されている。
また、四角柱状の先端部9Tの四側面のうちの、ロータ5の回転方向前側を向く掻き出し面9fは、ロータ5の回転方向前側に向けて傾斜する前下がり状で、しかも、ロータ5の径方向に対して径方向外方側に向く(以下、「斜め外向き」と記載する場合がある。)になるように構成されている。
これにより、掻出翼9の先端部9Tにより環状溝10から掻き出された予備混合物Fpは、掻出翼9の先端部9Tの掻き出し面9fにより、ロータ5の径方向外方側に向けて第1の導入室13内に放出されることになる。
さらに、掻出翼9の先端部9Tの先端面9tは、その先端部9Tが環状溝10に嵌め込まれた状態で環状溝10の底面と平行になるように構成されている。
また、ロータ5が、その軸心方向視(図7(a)の紙面表裏方向視)において掻出翼9の先端が前側となる向きに回転駆動されると、掻出翼9の基端部9B、中間部9M、先端部9Tそれぞれに、回転方向の後側となる面(背面)9aが形成される。この背面9aには、掻出翼9が回転することにより、いわゆるキャビテーション(局所沸騰)が発生するように構成されている。
上述のような形状に構成された4個の掻出翼9が、上述の如き傾斜姿勢で、中心角で90度ずつ間隔を隔てて周方向に並べた形態で、夫々、基端部9Bを仕切板15の環状平板部15cに固定して設けられている。
図4に示すように、掻出翼9が設けられた仕切板15が、間隔保持部材20によりロータ5の前面と間隔を隔てた状態でロータ5の前面の取付部5aに取り付けられ、このロータ5が、仕切板15の筒状摺接部15aが第2の供給部17に摺接回転可能に嵌め込まれた状態でケーシング1内に配設される。
これにより、ロータ5の膨出状の前面と仕切板15の後面との間に、ケーシング1の前壁部2側ほど小径となる先細り状の第2の導入室14が形成され、第2の供給部17が仕切板15の筒状摺接部15aを介して第2の導入室14に連通するように構成されている。
また、ケーシング1の前壁部2と仕切板15の前面との間に、第1の供給部11に連通する環状の第1の導入室13が形成される。
そして、ロータ5が回転駆動されると、筒状摺接部15aが第2の供給部17に摺接する状態で、仕切板15がロータ5と一体的に回転することになり、ロータ5及び仕切板15が回転する状態でも、第2の供給部17が仕切板15の筒状摺接部15aを介して第2の導入室14に連通する状態が維持されるように構成されている。
〔再循環機構部〕
再循環機構部(分離部の一例)70は、円筒状容器71内において比重によって溶解液を分離するように構成され、図1に示すように、分散混合ポンプYの吐出部12から吐出路18を通して供給されるスラリーFから、完全に分散、混合していない粉体Pを含む可能性がある状態の未分散スラリーFrを循環流路16に、粉体Pがほぼ完全に分散、混合した状態のスラリーFを、スラリーFに含まれる気泡と共に、排出路22にそれぞれ分離するように構成されている。吐出路18及び循環流路16は、夫々、円筒状容器71の下部に接続され、排出路22は、円筒状容器71の上部に形成された排出部73から貯留混合タンク51に接続される。
ここで、再循環機構部70は、図8に示すように、吐出路18が接続される導入パイプ72を円筒状容器71の底面から内部に突出して配設し、円筒状容器71の上部に排出路22に接続される排出部73を備えるとともに、下部に循環流路16に接続される循環部74を備え、導入パイプ72の吐出上端に、導入パイプ72から吐出されるスラリーFの流れを旋回させる捻り板75を配設して構成されている。これにより、スラリーF内から溶媒Rの気泡を分離して、循環流路16に循環供給される未分散スラリーFrから溶媒Rの気泡を分離した状態で第2の導入室14内に供給することができる。
〔制御部〕
分散、混合装置100に備えられる制御部は、図示しないが、CPUや記憶部等を備えた公知の演算処理装置からなり、分散、混合装置100を構成する定量供給装置X、分散混合ポンプY、溶媒供給部50等の各機器の運転を制御可能に構成されている。
特に、制御部は、回転翼6の周速度(ロータ5の回転数)を制御可能に構成され、第1の導入室13及び第2の導入室14内の圧力が所定の負圧状態となるように、回転翼6の周速度(ロータ5の回転数)を設定し、当該設定された周速度(ロータ5の回転数)で回転翼6を回転することで、少なくとも、ステータ7の第1の導入室13側の透孔7a及び第2の導入室14側の透孔7bを通過した直後の翼室8内の領域を、翼室8内の全周に亘って連続して、溶媒Rの微細気泡(マイクロバブル)が多数発生した微細気泡領域(キャビテーション(局所沸騰)による気泡発生領域)として形成させることができるように構成されている。
ここで、第1の導入室13及び第2の導入室14内の圧力(本実施形態においては、第1の導入室13内の圧力(ここで、第1の導入室13と第2の導入室14とは、シャッタバルブ46を閉じた状態ではほぼ同圧となる。)。)を測定するための圧力計80を設けるようにしている。
〔分散、混合装置の動作〕
次に、この分散、混合装置100の動作について説明する。
まず、定量供給装置Xを停止し、シャッタバルブ46を閉止して粉体排出管45を介する粉体Pの吸引を停止した状態で、溶媒供給部50の貯留混合タンク51から溶媒Rのみを供給しながらロータ5を回転させ、分散混合ポンプYの運転を開始する。所定の運転時間が経過して、分散混合ポンプY内が、負圧状態となると、シャッタバルブ46を開放する。これによって、定量供給装置Xの膨張室47を負圧状態とし、導入部41の内部及びホッパ31の下部開口部31b近傍を当該負圧状態と大気圧状態との間の圧力状態にする。
そして、定量供給装置Xを作動させ、ホッパ31内に貯留された粉体Pを、撹拌羽根32Aの撹拌作用及び分散混合ポンプYの負圧吸引力により、ホッパ31の下部開口部31bから定量供給部40の膨張室47を介してミキシング機構60のミキシング部材61に所定量ずつ連続的に定量供給する。並行して、溶媒供給部50の送出ポンプ52Pを作動させ、分散混合ポンプYの負圧吸引力により、溶媒Rをミキシング機構60のミキシング部材61に所定量ずつ連続的に定量供給する。
ミキシング機構60のミキシング部材61からは、粉体Pがミキシング部材61の筒状部62を通して第1の供給部11に供給されるとともに、溶媒Rが、環状のスリット63を通して切れ目のない中空円筒状の渦流の状態で第1の供給部11に供給され、第1の供給部11により、粉体Pと溶媒Rとが予備混合され、その予備混合物Fpが環状溝10に導入される。
ロータ5が回転駆動されて、そのロータ5と一体的に仕切板15が回転すると、その仕切板15に同心状に設けられた掻出翼9が、環状溝10に先端部9Tが嵌め込まれた状態で周回する。
これにより、図4及び図5において実線矢印にて示すように、第1の供給部11を流動して環状溝10に導入された予備混合物Fpは、環状溝10に嵌め込まれて周回する掻出翼9の先端部9Tにより掻き出され、その掻き出された予備混合物Fpは、概略的には、第1の導入室13内を仕切板15における漏斗状部15bの前面と環状平板部15cの前面とに沿いながらロータ5の回転方向に流動し、さらに、ステータ7の第1の導入室13側の透孔7aを通過して翼室8に流入し、その翼室8内をロータ5の回転方向に流動して、吐出部12から吐出される。
環状溝10に導入された予備混合物Fpは、掻出翼9の先端部9Tにより掻き出されるときに、剪断作用を受ける。この場合、掻出翼9の先端部9Tの外向き側面9oと内側の環状溝10の内向き内面との間、及び、掻出翼9の先端部9Tの内向き側面9iと内側の環状溝10の外向き内面との間において剪断作用が働く。同時に、掻出翼9の回転方向背面側の背面9aにおいては、掻出翼9が回転することにより、いわゆるキャビテーション(局所沸騰)が発生する。また、ステータ7の第1の導入室13側の透孔7aを通過する際に、剪断作用が働く。
つまり、第1の導入室13内の予備混合物Fpに剪断力を作用させるとともに、局所沸騰を発生させることができるので、掻き出される予備混合物Fpは、掻出翼9及び第1の導入室13側の透孔7aから剪断作用を受けて混合されるとともに、掻出翼9の背面9aに発生するキャビテーション(局所沸騰)により、溶媒Rに対する粉体Pの分散がより良好に行われることとなる。よって、このような予備混合物Fpを供給することができ、翼室8内において溶媒Rに対する粉体Pの良好な分散を期待することができる。
吐出部12から吐出されたスラリーFは、吐出路18を通して再循環機構部70に供給され、再循環機構部70において、完全に分散、混合していない粉体Pを含む状態の未分散スラリーFrと、粉体Pがほぼ完全に分散、混合した状態のスラリーFとに分離されるとともに、溶媒Rの気泡が分離されて、未分散スラリーFrは、ポンプ駆動モータM4により回転駆動される循環ポンプ16Pを介在させた循環流路16を介して、再び分散混合ポンプYの第2の供給部17に供給され、スラリーFは排出路22を通して貯留混合タンク51に供給される。
未分散スラリーFrは、第2の供給部17の絞り部14aを介して流量が制限された状態で第2の導入室14内に導入される。その第2の導入室14内においては、回転する複数の撹拌羽根21により剪断作用を受けて、さらに細かく解砕され、さらに、第2の導入室14側の透孔7bの通過の際にも剪断作用を受けて解砕される。この際には、第2の導入室14側の透孔7bを介して流量が制限された状態で翼室8に導入される。そして、翼室8内において、高速で回転する回転翼6により剪断作用を受けて解砕され、粉体Pの凝集物(ダマ)がさらに少なくなったスラリーFが第1の導入室13からのスラリーFと混合されて吐出部12から吐出される。
ここで、制御部は、回転翼6の周速度(ロータ5の回転数)を制御可能に構成され、第1の導入室13及び第2の導入室14内の圧力が所定の負圧状態となるように、回転翼6の周速度(ロータ5の回転数)を設定し、当該設定された周速度(ロータ5の回転数)で回転翼6を回転することで、少なくとも、ステータ7の第1の導入室13側の透孔7a及び第2の導入室14側の透孔7bを通過した直後の翼室8内の領域を、翼室8内の全周に亘って連続して、溶媒Rの微細気泡(マイクロバブル)が多数発生した微細気泡領域(キャビテーション(局所沸騰)による気泡発生領域)として形成させることができる。
これによって、翼室8内の全周に亘って、粉体Pの凝集物(いわゆるダマ)に浸透した溶媒Rが発泡することで当該凝集物の解砕が促進され、さらに、その発生した微細気泡が翼室8において加圧され消滅する際の衝撃力によりさらに粉体Pの分散が促進されることになり、結果、翼室8内の全周に存在するスラリーFのほぼ全体に亘って、溶媒R中での粉体Pの分散が良好な高品質のスラリーFを生成することができる。
そして、定量供給装置Xのホッパ31からの所定量の粉体Pの供給が終わると、定量供給装置Xを停止し、粉体排出管45に配設されたシャッタバルブ46を閉止して粉体排出管45を介する粉体Pの吸引を停止させる。
これにより、粉体Pの非供給時に、シャッタバルブ46より上流側の粉体排出管45の内部が湿潤して、閉塞することを防止することができ、併せて、分散混合ポンプYの第1の供給部11から空気が吸引されることを防止することができる。
この状態で分散混合ポンプYの運転を所定時間継続する。
このとき、溶媒供給部50の貯留混合タンク51からは、溶媒Rと置き換わったスラリーFが供給される。
そして、この粉体Pの非供給時においては、第1の供給部11から空気が吸引されることがないため、分散混合ポンプY内、すなわち、第1の導入室13と第2の導入室14の真空度が高まるため(ここで、第1の導入室13と第2の導入室14とは、シャッタバルブ46を閉じた状態ではほぼ同圧となる。)、設定された周速度(ロータ5の回転数)で回転翼6を回転することで、少なくとも、ステータ7の第1の導入室13側の透孔7a及び第2の導入室14側の透孔7bを通過した直後の翼室8内の領域を、翼室8内の全周に亘って連続して、溶媒Rの微細気泡(マイクロバブル)が多数発生した微細気泡領域(キャビテーション(局所沸騰)による気泡発生領域)として形成させることができる。
この場合、定量供給装置Xを停止し、粉体排出管45に配設されたシャッタバルブ46を閉止して粉体排出管45を介する粉体Pの吸引を停止した状態で分散混合ポンプYを運転しているとき(粉体Pの非供給時)に、第1の導入室13及び第2の導入室14内の圧力が、−0.01〜−0.10MPa、好ましくは、−0.03〜−0.09MPa、より好ましくは、−0.04〜−0.08MPaの範囲の負圧状態となるように、分散混合ポンプYの回転翼6の周速度(ロータ5の回転数)を、6〜80m/s、好ましくは、15〜50m/sに設定するようにする。
ここで、前記負圧状態は、圧力計80により測定した第1の導入室13及び第2の導入室14内の圧力(本実施形態においては、第1の導入室13内の圧力(ここで、第1の導入室13と第2の導入室14とは、シャッタバルブ46を閉じた状態ではほぼ同圧となる。)。)をいう。
これによって、翼室8内の全周に亘って、粉体Pの凝集物(いわゆるダマ)に浸透した溶媒Rが発泡することで当該凝集物の解砕が促進され、さらに、その発生した微細気泡が翼室8において加圧され消滅する際の衝撃力によりさらに粉体Pの分散が促進されることになり、結果、翼室8内の全周に存在するスラリーFのほぼ全体に亘って、より確実に、溶媒R中での粉体Pの分散が良好な高品質のスラリーFを生成することができる。
すなわち、負圧状態で発生するキャビテーションの気泡(キャビティー)が、ステータ7の第2の導入室14側の透孔7bを通過した直後に、翼室8内において高速回転する回転翼6によってさらに微細な気泡に粉砕されることによって、スラリーFは泡状となり、凝集状態の粉体P(ケイ素系材料など)は、解され、分散が促進される。
そして、泡状のスラリーFは、このように、翼室8内において高速で回転する回転翼6により剪断作用を受けて解砕されながら、遠心力によって翼室8の外周部へ移動し、吐出部12から吐出されるが、この間に、泡状のスラリーFが液状に戻る際に生じる衝撃によって、スラリーFに含まれる凝集状態の粉体P(ケイ素系材料)は、さらに分散が促進され、粉体P(ケイ素系材料など)が1次粒子になるまで分散された高品質のスラリーFを生成することができる。
このようにして生成された高品質のスラリーFは、貯留混合タンク51に貯留され、その後、分散混合ポンプYの運転を停止する。
次に、より具体的な実施例に基づいて、本発明の非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリーについて説明する。
表1に示す負極用材料(粉体Pとして、活物質としてのアモルファスタイプの一酸化ケイ素(SiO)(平均粒度:5μm)並びに導電助剤としてのアセチレンブラック(AB)及び気相成長炭素繊維(VGCF)を用い、溶媒Rとして、N−メチルピロリドン(NMP)を用いた。また、固形分であるバインダ成分としてのポリイミド(PI)は、NMPで希釈するようにした。ここで、ポリイミド(PI)を含む固形分と、N−メチルピロリドン(NMP)の重量比は、すべての負極用材料で、固形分:60重量%、N−メチルピロリドン(NMP):40重量%に調製した。)に対して、上記のキャビテーションを生じさせる分散、混合装置100を用いて分散、混合を行い、スラリーの生成を行った。
分散、混合装置100による分散、混合条件は、周速度25m/s、循環時間10分、減圧度−0.06〜0.08MPa、温度25℃とした。
同様の配合で、通常の撹拌ミキサ(自公転ミキサ)を用いて分散、混合を行い、スラリーの生成を行った。
撹拌ミキサ(自公転ミキサ)による分散、混合条件は、2000rpm、撹拌時間30分とした。
Figure 0006744569
表1に示すものに加え、同様にして、ポリイミド(PI)の含有量が固形分比で2〜18重量%となるように調製し、上記のキャビテーションを生じさせる分散、混合装置100及び通常の撹拌ミキサ(自公転ミキサ)を用いて生成したスラリーを用いて、以下の条件で、非水電解質二次電池の負極を製造し、この負極を用いて非水電解質二次電池を製造し、電池特性を測定した。
〔負極の製造〕
・集電体:Niめっき鋼箔又はSUS箔
・熱処理:真空雰囲気(300℃、1時間以上)
〔正極の製造〕
・スラリー:活物質としてのリン酸鉄リチウム(LFP)89重量%(固形分比。以下同じ。)、導電助剤としての活性炭素繊維(ACF)1.5重量%、アセチレンブラック(AB)、ケッチェンブラック(KB)3重量%及び気相成長炭素繊維(VGCF)1.5重量%並びにバインダ成分としてのアクリル系バインダ5重量%を用い、スラリーの生成を行った。
・集電体:アルミニウム箔
〔非水電解質二次電池の製造〕
・試験極:リチウム金属(CR2032型コインセル)
・電解液:LiPF(エチレンカーボネート(EC):ジエチルカーボネート(DEC)=50:50容量%、ビニレンカーボネート(VC)1重量%含有)
・セパレータ:ガラス不織布
・充電:放電=CC 0.2C:CC 0.2C
得られた非水電解質二次電池の特性を、表2及び図9(ポリイミド(PI)を固形分比で6重量%添加した負極用材料を用いたもの)に示す。
Figure 0006744569
表2及び図9に示すように、ポリイミド(PI)を固形分比で4〜1重量%添加した負極用材料を用いたものは、良好な電池特性が得られたのに対して、固形分比で2重量%及び14重量%以上添加した負極用材料を用いたものは、電池特性が得られなかった。
ここで、キャビテーションを生じさせる分散、混合装置を用いて分散、混合を行った場合に、通常の撹拌ミキサを用いて分散、混合を行った場合と比較して、添加するポリイミド(PI)が少量で済む理由及び逆に添加するポリイミド(PI)の量が多いと電池特性が得られない理由を、図10に示すケイ素系材料の表面をポリイミドによりコーティングした状態の概念図を用いて説明する。
多量(例えば、固形分比で18重量%)のポリイミドを添加して通常の撹拌ミキサ(自公転ミキサ)を用いて分散、混合を行った場合、図10(a)に示すように、生成したスラリーの分散、混合が不完全で、スラリーに気泡が含有されている。このため、スラリーを集電体上に塗工、乾燥(硬化)させることによってケイ素系材料の表面をポリイミドでコーティングするようにしたとき、ポリイミドのコーティング層にスラリーに含有されていた気泡の箇所が微細孔として残ってイオンの脱入経路ができ、電池特性が得られる。
なお、ポリイミドの添加量が少ないと、微細孔の影響が大きくなり、ケイ素系材料の表面の拘束力が低下するため、充放電を繰り返すと電極構造に歪みが生じ、サイクル寿命が低下する。
多量(例えば、固形分比で18重量%)のポリイミドを添加してキャビテーションを生じさせる分散、混合装置を用いて分散、混合を行った場合、図10(b)に示すように、生成したスラリーの分散、混合が完全で、スラリーに気泡が含有されない。このため、スラリーを集電体上に塗工、乾燥(硬化)させることによってケイ素系材料の表面をポリイミドでコーティングするようにしたとき、ポリイミドのコーティング層(厚膜)にイオンの脱入経路ができず、電池特性が得られない。
少量(例えば、固形分比で10重量%)のポリイミドを添加してキャビテーションを生じさせる分散、混合装置を用いて分散、混合を行った場合、図10(c)に示すように、生成したスラリーの分散、混合が完全で、スラリーに気泡が含有されない。このため、スラリーを集電体上に塗工、乾燥(硬化)させることによってケイ素系材料の表面をポリイミドでコーティングするようにしたとき、ポリイミドのコーティング層(薄膜)にイオンの脱入経路ができ、電池特性が得られるとともに、ポリイミドの添加量が少なくても、微細孔の影響を受けないため、ケイ素系材料の表面の拘束力が低下することがなく、充放電を繰り返しても電極構造に歪みが生じず、サイクル寿命が低下することがない。
このように、本発明の非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリーによれば、電池性能に寄与しないバインダ成分を低減しながら、ケイ素系材料の膨張収縮を抑制し、電極性能を向上させるとともに、製造コストを低減することができ、併せて、バインダ成分の低減によってエネルギ密度を高めることができ、これにより、電池性能を向上させることができる。
以上、本発明の非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリーについて、その実施の形態に基づいて説明したが、本発明は上記実施の形態に記載した内容に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。
本発明の非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリーは、電池性能に寄与しないバインダ成分を低減しながら、ケイ素系材料の膨張収縮を抑制し、電極性能を向上させるとともに、製造コストを低減することができる特性を有していることから、非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリーの用途に好適に用いることができる。
1 ケーシング
5 ロータ
6 回転翼
6a 背面部
7 ステータ
7a 絞り流路(透孔)
7b 絞り流路(透孔)
8 翼室(排出室)
9 掻出翼
10 環状溝
11 第1の供給部
12 吐出部
13 第1の導入室
14 第2の導入室
14a 絞り部
15 仕切板
16 循環流路
16P 循環ポンプ
17 第2の供給部
22 排出路
50 溶媒供給部
51 貯留混合タンク
52 供給管
52P 送出ポンプ
60 ミキシング機構(供給機構部)
70 再循環機構部
71 円筒状容器(分離部)
80 圧力計
100 分散、混合装置
Y 分散混合ポンプ
F スラリー
Fp 予備混合物
Fr 未分散スラリー
P 粉体(固形分)
R 溶媒(液相分散媒)
G 空気(気体)

Claims (7)

  1. ケイ素系材料を含んだ非水電解質二次電池の負極用スラリーの製造方法であって、平均粒度が5μmのケイ素系材料をスラリー中の全固形分を1とした固形分比で85〜93重量%含み、バインダ成分としての熱硬化性樹脂をスラリー中の全固形分を1とした固形分比で4〜1重量%含有する非水電解質二次電池の負極用材料に対して、キャビテーションを生じる条件下でスラリーの分散、混合を行うことで、スラリーを集電体上に塗工、乾燥させたときにイオンの脱入経路を有するバインダでコーティングされたケイ素系材料を得るようにしたことを特微とする非水電解質二次電池の負極用スラリーの製造方法。
  2. 熱硬化性樹脂が、ポリイミドからなることを特徴とする請求項1に記載の非水電解質二次電池の負極用スラリーの製造方法。
  3. ケイ素系材料を含んだ非水電解質二次電池の負極用スラリーであって、平均粒度が5μmのケイ素系材料をスラリー中の全固形分を1とした固形分比で85〜93重量%含み、バインダ成分としての熱硬化性樹脂をスラリー中の全固形分を1とした固形分比で4〜1重量%含有してなることを特徴とする非水電解質二次電池の負極用スラリー。
  4. 熱硬化性樹脂が、ポリイミドからなることを特徴とする請求項3に記載の非水電解質二次電池の負極用スラリー。
  5. 請求項3又は4に記載の非水電解質二次電池の負極用スラリーを塗工、乾燥してなることで、イオンの脱入経路を有するバインダでコーティングされたケイ素系材料が塗工されてなることを特徴とする非水電解質二次電池の負極。
  6. 請求項5に記載の非水電解質二次電池の負極を備えてなる非水電解質二次電池。
  7. 請求項6に記載の非水電解質二次電池を用いた電子機器。
JP2016027115A 2016-02-16 2016-02-16 非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリー Active JP6744569B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016027115A JP6744569B2 (ja) 2016-02-16 2016-02-16 非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016027115A JP6744569B2 (ja) 2016-02-16 2016-02-16 非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリー

Publications (3)

Publication Number Publication Date
JP2017147081A JP2017147081A (ja) 2017-08-24
JP2017147081A5 JP2017147081A5 (ja) 2019-03-28
JP6744569B2 true JP6744569B2 (ja) 2020-08-19

Family

ID=59683072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016027115A Active JP6744569B2 (ja) 2016-02-16 2016-02-16 非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリー

Country Status (1)

Country Link
JP (1) JP6744569B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117101463B (zh) * 2023-10-20 2024-01-02 博鼎精工智能科技(山东)有限公司 一种电化学储能的电解液混合设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4458536B2 (ja) * 2005-03-31 2010-04-28 株式会社イズミフードマシナリ 粉体混合ポンプ
JP5947198B2 (ja) * 2012-11-21 2016-07-06 信越化学工業株式会社 蓄電デバイス用負極材および蓄電デバイス用電極の製造方法
JP6610851B2 (ja) * 2013-08-09 2019-11-27 国立研究開発法人産業技術総合研究所 カーボンを含有したペーストの製造方法

Also Published As

Publication number Publication date
JP2017147081A (ja) 2017-08-24

Similar Documents

Publication Publication Date Title
JP6245625B1 (ja) 非水電解質二次電池の正極用スラリーの製造方法及び非水電解質二次電池の正極用スラリー
KR102507484B1 (ko) 슬러리제조장치, 및 슬러리제조장치의 운전방법
TWI581487B (zh) A dispersion mixing system and a carbonaceous pulp manufacturing method for producing a mixed slurry pump for containing carbon paste
JP2021003703A (ja) スラリーの製造に用いる分散混合ポンプを備えた分散混合システム
JP6610851B2 (ja) カーボンを含有したペーストの製造方法
JP2017100117A5 (ja)
US11433364B2 (en) Slurry production apparatus
JP6744569B2 (ja) 非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリー
JP2018130646A (ja) 撹拌システム及びその運転方法
JP2017147081A5 (ja)
JP6864698B2 (ja) 非水電解質二次電池の正極用スラリーの製造方法及びその装置
WO2018211610A1 (ja) 非水電解質二次電池の負極用スラリーの製造方法及び非水電解質二次電池の負極用スラリー
JP6973223B2 (ja) 活物質合材の製造方法
US20210167355A1 (en) Method and apparatus for manufacturing active material mixture
TWI741232B (zh) 非水電解質二次電池的正極用漿料之製造方法及其裝置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200714

R150 Certificate of patent or registration of utility model

Ref document number: 6744569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250