JP2020537302A - 固体酸化物燃料電池用連結材、その製造方法および固体酸化物燃料電池 - Google Patents

固体酸化物燃料電池用連結材、その製造方法および固体酸化物燃料電池 Download PDF

Info

Publication number
JP2020537302A
JP2020537302A JP2020520232A JP2020520232A JP2020537302A JP 2020537302 A JP2020537302 A JP 2020537302A JP 2020520232 A JP2020520232 A JP 2020520232A JP 2020520232 A JP2020520232 A JP 2020520232A JP 2020537302 A JP2020537302 A JP 2020537302A
Authority
JP
Japan
Prior art keywords
solid oxide
protective film
connecting material
fuel cell
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020520232A
Other languages
English (en)
Other versions
JP6947297B2 (ja
Inventor
ミン ノ、タイ
ミン ノ、タイ
リョー、チャンソク
キム、デファン
タエク リー、カン
タエク リー、カン
チョイ、クァンウク
パク、クァンギョン
ウー ジョー、ドン
ウー ジョー、ドン
タヒーム、インダドゥラ
Original Assignee
エルジー・ケム・リミテッド
テグ ギョンブク インスティチュート オブ サイエンス アンド テクノロジー
テグ ギョンブク インスティチュート オブ サイエンス アンド テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド, テグ ギョンブク インスティチュート オブ サイエンス アンド テクノロジー, テグ ギョンブク インスティチュート オブ サイエンス アンド テクノロジー filed Critical エルジー・ケム・リミテッド
Publication of JP2020537302A publication Critical patent/JP2020537302A/ja
Application granted granted Critical
Publication of JP6947297B2 publication Critical patent/JP6947297B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

本明細書は、固体酸化物燃料電池用連結材とその製造方法および固体酸化物燃料電池に関する。

Description

本出願は、2017年10月20日付で韓国特許庁に提出された特許出願第10−2017−0136479号の出願日の利益を主張し、その内容のすべては本明細書に組み込まれる。
本発明は、固体酸化物燃料電池用連結材、その製造方法および固体酸化物燃料電池用連結材を含む固体酸化物燃料電池に関する。
最近、石油や石炭のような既存のエネルギー資源の枯渇が予測されるにつれ、これらを代替できるエネルギーに対する関心が高まっている。このような代替エネルギーの一つとして、燃料電池は高効率であり、NOおよびSOなどの公害物質を排出せず、使用される燃料が豊富であるなどの利点によって特に注目されている。
燃料電池は、燃料と酸化剤の化学反応エネルギーを電気エネルギーに変換させる発電システムであって、燃料としては水素とメタノール、ブタンなどのような炭化水素が、酸化剤としては酸素が代表的に使用される。
燃料電池には、高分子電解質型燃料電池(PEMFC)、直接メタノール型燃料電池(DMFC)、リン酸型燃料電池(PAFC)、アルカリ型燃料電池(AFC)、溶融炭酸塩型燃料電池(MCFC)、固体酸化物型燃料電池(SOFC)などがある。
図11および図12は、固体酸化物型燃料電池の構造および電気発生原理を概略的に示すもので、固体酸化物型燃料電池は、電解質(Electrolyte)と、該電解質の両面に形成される燃料極(Anode)および空気極(Cathode)とから構成される。固体酸化物型燃料電池の電気発生原理を示す図12を参照すれば、空気極で空気が電気化学的に還元されながら酸素イオンが生成され、生成された酸素イオンは電解質を通して燃料極に伝達される。燃料極では水素、メタノール、ブタンなどのような燃料が注入され、燃料が酸素イオンと結合して電気化学的に酸化されながら電子を出して水を生成する。このような反応によって外部回路に電子の移動が発生する。
連結材は、単位セルを電気的に連結すると同時に、燃料と空気とを分離させる役割を果たす固体酸化物燃料電池(solid oxide fuel cell:SOFC)の核心部品である。
最近提示された金属としては、Fe−based合金系のCr(16〜22%)を含む合金鋼(例:ドイツのThyssenKrupp(社)のCrofer22APU、日本のHitach Metals(社)のZMG232など)があり、他の金属より加工性に優れ、電極材料と類似の熱膨張係数を有するなどの利点があって、これを適用するための多くの研究が進められている。しかし、Fe−Cr系金属を連結材として用いる場合、高温の酸化雰囲気で金属からCrO(OH)のような揮発性クロムが発生して各セルの電解質および正極の触媒活性を低下させる問題と、金属表面に生成された非導電性酸化物の影響で高い接触抵抗を発生させる問題点がある。したがって、高耐食性および高導電表面特性を有する金属連結材の素材を確保することが重要な技術的事項である。これを改善するための方法として、分離板で要求する機能に合わせて新たな合金素材を開発したり、表面に導電性の金属や非金属コーティングなどで表面処理をする方策がある。
最近、既存の常用金属の表面に保護被膜をコーティングすることが試みられており、電気メッキ法、スパッタリング蒸着法、プラズマ溶射コーティング法など、様々なコーティング法を試みているが、高価なコーティング費用とコーティング条件の選定に困難があり、これに対する改善が必要である。
本明細書の一実施態様は、セラミック保護膜を含む固体酸化物燃料電池用連結材を提供する。
本明細書の他の実施態様は、固体酸化物燃料電池用連結材の製造方法を提供する。
本明細書のさらに他の実施態様は、前記固体酸化物燃料電池用連結材を含む固体酸化物燃料電池を提供する。
本明細書の一実施態様は、導電性基板と、
前記導電性基板の一面または両面に備えられたセラミック保護膜とを含み、
前記セラミック保護膜は、下記化学式1で表されたスピネル構造の酸化物を含むものである固体酸化物燃料電池用連結材を提供する。
[化学式1]
Mn1.5−0.5(x1+x2)Co1.5−0.5(x1+x2)Cux1x2
前記化学式1において、
前記x1およびx2それぞれは、CuおよびYのモル比を示し、0<x1≦0.9、0<x2≦0.5の範囲を満足する。
本明細書の他の実施態様は、導電性基板の一面または両面に、前記化学式1で表されたスピネル構造を有する化合物を含むセラミック保護膜を形成するステップを含む固体酸化物燃料電池用連結材の製造方法を提供する。
本明細書のさらに他の実施態様は、2以上の単位セルと、前記2以上の単位セルの間に備えられた固体酸化物燃料電池用連結材を含む連結材層とを含み、前記単位セルは、燃料極と、空気極と、前記燃料極と前記空気極との間に備えられた電解質とを含み、前記連結材層は、前記単位セルの空気極または燃料極と接するものである固体酸化物燃料電池を提供する。
本明細書の一実施態様に係る固体酸化物燃料電池用連結材は、セラミック保護膜と金属導電性基板との間にクロム気体の蒸発による酸化層形成を効果的に抑制することができ、これにより、連結材の電気的特性が低下せず、導電性基板との熱的特性が類似の効果を有する。
本明細書の一実施態様に係る固体酸化物燃料電池用連結材は、金属導電性基板の表面の酸化膜成長と金属の揮発を抑制することができる効果を有する。
本明細書の一実施態様に係る固体酸化物燃料電池用連結材の製造方法は、セラミック保護膜と金属導電性基板の亀裂および剥離現象を最小化することができ、コーティング層と導電性基板との接合面積を増加させることができる。
本明細書の一実施態様に係る固体酸化物燃料電池は、長時間駆動時にも電気的特性が低下しない効果を有する。
本明細書の一実施態様に係る固体酸化物燃料電池用連結材を示す断面図である。 製造例1による組成1のXRD測定結果である。 実施例1による固体酸化物燃料電池用連結材上に形成されたセラミック保護膜の表面のSEM写真である。 実施例1による固体酸化物燃料電池用連結材の断面図である。 実験例1による結果を示すものである。 実験例1による結果を示すものである。 実験例2による結果を示すものである。 実験例3による結果を示すものである。 実験例3による結果を示すものである。 実験例4による結果を示すものである。 本明細書の一実施態様に係る固体酸化物燃料電池の作動原理の一例を示すものである。 本明細書の一実施態様に係る燃料電池の構造を示す。
以下、本明細書についてより詳細に説明する。
本明細書において、「または」とは、別の定義がない限り、挙げられたものを選択的にまたはすべて含む場合、すなわち、「および/または」の意味を表す。
本明細書において、「層」とは、当該層が存在する面積を70%以上覆っているものを意味する。好ましくは75%以上、より好ましくは80%以上覆っているものを意味する。
本明細書において、ある層の「厚さ」とは、当該層の下面から上面までの最短距離を意味する。
本明細書において、「接するもの」の意味は、いずれか1つの構成が他の構成と物理的に接触しているものを意味し、前記いずれか1つの構成の全体面積に前記他の構成が接触して結合しているものを意味するのではなく、大部分は接触して結合しており、部分的に離隔しているとしても離隔した部分も対応する面に対面しているものを意味する。
本明細書において、「含む」は、他の構成をさらに包含できることを意味する。
本明細書において、「ペースト」は、同じ組成を含む組成物を意味することができる。
固体酸化物燃料電池用連結材
本明細書の一実施態様は、導電性基板と、前記導電性基板の一面または両面に備えられたセラミック保護膜とを含み、前記セラミック保護膜は、下記化学式1で表されたスピネル構造を有する化合物を含むものである固体酸化物燃料電池用連結材を提供する。
[化学式1]
Mn1.5−0.5(x1+x2)Co1.5−0.5(x1+x2)Cux1x2
前記化学式1において、
前記x1およびx2それぞれは、CuおよびYのモル比を示し、0<x1≦0.9、0<x2≦0.5の範囲を満足する。
本明細書の一実施態様において、前記セラミック保護膜は、前記化学式1で表されたスピネル構造を有する化合物のほか、他の化合物をさらに含んでもよい。
前記固体酸化物燃料電池用連結材は、固体酸化物燃料電池の単位セルを物理的に分離しながら電気的に連結し、各単位セルに供給される燃料と空気の通路の役割を果たす構成である。前記固体酸化物燃料電池用連結材は、燃料電池の機能によって、「セパレータ(separator)」と名付けられる。
しかし、前記導電性基板は、一般的に金属素材を用いるが、セラミック素材に比べて金属素材の酸化による燃料電池スタックの性能劣化の問題が発生しうる。具体的には、固体酸化物燃料電池が作動する約800℃の温度で酸化雰囲気、すなわち空気または水蒸気に長時間露出する場合、金属表面に電気抵抗の高い絶縁性酸化膜が成長し、スタックの電気的抵抗が増加して性能が低下する問題があった。
また、導電性基板として鉄−クロム(Fe−Cr)合金のような材料は、高温で酸素と接触する場合、揮発性の高いクロム酸化物(CrO)が形成され、金属から揮発されたクロム原子(Cr)が電極表面に蒸着されて、電極の反応点数を減少させ、電極の性能を低下させる問題があった。
そこで、本発明者らは、前記化学式1で表されたスピネル構造を有する化合物を含むセラミック保護膜を導電性基板の一面または両面に導入して、緻密な構造のセラミック保護膜を構成して、金属上にガスが透過するのを防止することで、上述した問題点を解決しようとした。
特に、マンガン(Mn)およびコバルト(Co)のモル比が前記化学式1の範囲を満足し、銅(Cu)およびイットリア(Y)のモル比が前記化学式1のx1およびx2の範囲をそれぞれ満足する時、連結材の他の構成との熱的相溶性に優れ、面抵抗特性が低い効果を有する。
例えば、銅含有量が多すぎると、熱膨張係数が過度に変化し、局所的に銅(Cu)が過濃縮された二次相が形成されて電気伝導性が低下することがある。
しかし、銅含有量が一定範囲水準に調節されれば、銅の低い融点によって焼結度が増加し、粒子間の距離が近くなって、結果的に電気伝導性が増加する効果がある。
本明細書の一実施態様において、前記化学式1で表されたスピネル構造を有する化合物の650℃における電気伝導度は、40S/cm以上、好ましくは50S/cm以上、さらに好ましくは70S/cm以上であってもよい。
セラミック保護膜
本明細書の一実施態様において、前記セラミック保護膜は、前記化学式1で表されたスピネル構造を有する化合物を含む。
本明細書において、前記「セラミック保護膜」は、固体酸化物燃料電池のインターコネクタとして用いられる導電性基板の一面または両面に備えられる構成である。本明細書のセラミック保護膜は、導電性基板を効果的に保護すると同時に、電気伝導度特性に優れるという利点がある。図1は、導電性基板1の一面にセラミック保護膜2が形成された固体酸化物燃料電池用連結材を示す。
本明細書の一実施態様において、前記セラミック保護膜は、前記導電性基板の一面または両面に備えられ、好ましくは、導電性基板が電極と接する面の他面に備えられる。
本明細書の一実施態様に係る固体酸化物燃料電池用連結材は、前記セラミック保護膜を含むことにより、高温で高い電気伝導性を有するので、固体酸化物燃料電池の効率が増大するという利点がある。具体的には、従来のセラミック素材は、電気伝導度が低い問題点があったが、前記化学式1のスピネル構造を有する化合物を含むことにより、優れた電気伝導度を有することができる。
また、固体酸化物燃料電池の連結材の熱膨張係数(Coefficient of Thermal Expansion:CTE)を他の電池部品の熱膨張係数と類似に調節し、特に、前記固体酸化物燃料電池の連結材に含まれる導電性基板とセラミック保護膜の熱膨張係数(CTE)を類似にすることで、熱応力を最小化することができる。すなわち、本明細書のセラミック保護膜の熱膨張係数(CTE)を導電性基板の熱膨張係数と類似に調節することが可能である。
本明細書の一実施態様に係る固体酸化物燃料電池は、前記化学式1で表されるスピネル構造を有する化合物を含むセラミック保護膜を含む。スピネル構造は、キュービック(cubic)またはテトラゴナル(tetragonal)構造を有するが、他の金属のドーピングによる結晶構造の変化が発生しても、酸素放出が抑制される特性がある。これによって、酸素イオンの拡散が抑制されて酸素イオン伝導度が低いという利点がある。酸素イオン伝導度が低いので、クロム酸化層のような絶縁層が形成されるのを防止することができる。
従来のセラミック素材に含まれるペロブスカイト(perovskite)構造の化学式はABOに代表されるが、陽イオンとしてサイズの大きい方がA、小さい方がBで表される。前記元素Aと酸素Oは面心立方構造をなし、Bはその中の8面体サイト(octahedral site)を占める。前記ABOのAまたはB位置に他の元素がドーピングされると、既存の酸素のサイトが空いたり新しい酸素が入ってくる。すなわち、ペロブスカイト構造は、電子またはイオンの移動による電気伝導度が高いので、酸素イオンの拡散速度が非常に大きい問題点があり、本発明では、スピネル構造を有する化合物を含むセラミック保護膜を導入することで、上述した問題点を解決した。
前記化学式1で表されるスピネル構造を有する化合物では、銅(Cu)とイットリア(Y)がスピネル組成の結晶粒界に分離されていて、結晶粒界を通した酸素の移動を効果的に抑制することができる。
前記セラミック保護膜は、前記化学式1で表されるスピネル構造を有する化合物を含むことにより、保護膜の構造が非常に緻密で、金属上にガスが透過することを効果的に抑制して、絶縁酸化膜の成長を効果的に抑制することができる。
また、前記セラミック保護膜は、電気的特性が非常に優れるという利点がある。具体的には、前記セラミック保護膜は、高温で長時間駆動時にも面特性抵抗が大きく上昇せず、電気伝導度が優れたものに維持されるという利点がある。
本明細書の一実施態様に係る固体酸化物燃料電池は、前記化学式1で表されるスピネル構造を有する化合物を含むセラミック保護膜を含む。
本明細書の一実施態様において、前記化学式1で表されるスピネル構造を有する化合物は、マンガン(Mn)、コバルト(Co)、および酸素(O)からなるスピネル構造に、銅(Cu)およびイットリア(Y)がドーピングされた形態を有する。
前記銅(Cu)は、約1,000℃の低い融点を有する元素であって、これらが添加された場合、焼結助剤(sintering aid)として作用して、焼結密度を高める役割を果たして、セラミック保護膜の電気伝導度を向上させることができる。
前記イットリア(Y)は、スピネル構造の結晶粒界に分離されて、結晶粒界を通した酸素の移動を抑制する役割を果たす。これにより、保護膜の表面に絶縁膜が形成されることを抑制して、保護膜の電気的抵抗が上昇することを抑制し、セラミック保護膜の高い電気伝導度を維持することができる。
前記スピネルの格子式はABで、陽イオンA、Bと酸素イオンとによって最密充填された面心立方構造である。スピネルは、格子内の陽イオンAとBの種類と組成によってそれぞれ異なる特性を示すことができる。特に、マンガン(Mn)、コバルト(Co)を主要成分として含有するスピネル構造に、銅(Cu)およびイットリア(Y)をドーピングさせる場合、前記ドーピングされた銅およびイットリアによってスピネル構造の結晶度が高く維持され、高温で長時間固体酸化物燃料電池を駆動しても、構造内の酸素イオンが離脱することを効果的に抑制することができる。これにより、導電性基板で発生したクロムなどの金属気体が酸素イオンによって酸化されることを抑制することができ、クロム酸化物層のような絶縁層が生成されることを抑制することができるという利点がある。
本明細書の一実施態様において、前記x1およびx2それぞれは、CuおよびYのモル比を示し、0<x1≦0.9、0<x2≦0.5の範囲を満足する。また、好ましくは、0<x1≦0.7および0<x2≦0.4の数値範囲、0.1≦x1≦0.5および0<x2≦0.3の数値範囲、0.2≦x1≦0.4および0<x2≦0.2の数値範囲、または0.2≦x1≦0.3および0<x2≦0.2の数値範囲を満足することができる。前記数値範囲を満足する場合、固体酸化物燃料電池の他の構成と熱膨張係数が類似し、熱膨張挙動で有利であり、長時間駆動時にも抵抗値が低く維持される。
また、前記数値範囲を満足する場合、上述したスピネル構造に含まれる銅(Cu)による保護膜の焼結密度を高める効果と、イットリア(Y)による電気伝導度の上昇効果を同時に有することができる。
前記銅の含有量(x1)が前記数値範囲より少ない場合、保護膜の焼結密度が低いので、空隙が発生して電気伝導度の上昇効果がわずかでありうる。
前記イットリアの含有量(x2)が前記数値範囲より少ない場合、イットリア(Y)がスピネル構造の結晶粒界に分離される程度がわずかで、酸素が移動することを効果的に抑制することができないが、この時、保護膜の表面に絶縁膜が形成されて、固体酸化物燃料電池用連結材の電気伝導度が低くなりうる。
本明細書の一実施態様において、前記x1およびx2それぞれは、0<x1≦0.5およびx2=0.1、0.1≦x1≦0.5およびx2=0.1、0.2≦x1≦0.4およびx2=0.1、0.2≦x1≦0.3およびx2=0.1の数値範囲を満足することができる。
本明細書の一実施態様において、前記セラミック保護膜の973Kにおける熱膨張係数は、10.0×10−6−1〜13.0×10−6−1、好ましくは10.5×10−6−1〜12.5×10−6−1であり、さらに好ましくは11.0×10−6−1〜12.0×10−6−1である。前記範囲を満足する場合、高温環境下でもセラミック保護膜自体の膨張または収縮による連結材の変形を効果的に抑制することができる。
前記セラミック保護膜の熱膨張係数は、本発明の属する技術分野で一般的に使用される方法で測定され、例えば、セラミック保護膜を形成するための組成物を3mm(W)×3mm(D)×15mm(L)のdimensionを有する焼結体barに成形した後、膨張計(Dilatometer、LINSEIS社のL75 model)を用いて、5℃/min〜10℃/minの昇温速度で1,300℃までの熱膨張変化を測定した。
本明細書の一実施態様において、前記化学式1で表されるスピネル構造を有する化合物は、Mn1.35Co1.35Cu0.20.1、Mn1.30Co1.30Cu0.30.1、Mn1.20Co1.20Cu0.50.1、またはMn1.40Co1.40Cu0.10.1であってもよい。
本明細書の一実施態様において、前記セラミック保護膜の973Kにおける熱膨張係数および前記導電性基板の973Kにおける熱膨張係数の関係が、下記関係式1および関係式2を満足するものであってもよく、関係式1−2および関係式2、関係式1−3および関係式2、関係式1−4および関係式2、または関係式1−5および関係式2を満足することができる。
[関係式1]
0≦DC≦6%
[関係式1−2]
0≦DC≦5.5%
[関係式1−3]
0≦DC≦5%
[関係式1−4]
0≦DC≦1%
[関係式1−5]
0≦DC≦0.9%
(前記DCは、下記関係式2を満足する)
[関係式2]
DC=[(導電性基板の973Kにおける熱膨張係数−セラミック保護膜の973Kにおける熱膨張係数)/(セラミック保護膜の973Kにおける熱膨張係数)]*100(%)の絶対値
本明細書の一実施態様において、前記セラミック保護膜の熱膨張係数および前記導電性基板の熱膨張係数の関係式は、650℃で測定された値であってもよい。
前記関係式を満足する場合、セラミック保護膜の熱膨張係数と導電性基板の熱膨張係数とが互いに類似し、セラミック保護膜と導電性基板との熱的相溶性が良くて、高温で長時間駆動する場合にも固体酸化物燃料電池の性能が低下することを抑制することができるという利点がある。従来は、セラミック保護膜と導電性基板との熱膨張係数が互いに異なっていて、固体酸化物燃料電池を高温で長時間駆動する場合、互いに接しているセラミック保護膜と導電性基板の収縮または膨張の程度が大きく隔たるようになる。これによって、両構造の界面で亀裂が生じる問題があった。
しかし、本発明に係る固体酸化物燃料電池用連結材によれば、前記セラミック保護膜と導電性基板との熱膨張係数を類似に維持して、長時間高温で駆動時にも両構造の界面で亀裂が生じることを効果的に抑制することができる。
本明細書の一実施態様において、前記セラミック保護膜の厚さが10μm〜30μm、好ましくは15μm〜25μmである。前記数値範囲を満足する場合、セラミック保護膜で酸素イオンが移動することを効果的に抑制して、導電性基板とセラミック保護膜との間にクロム酸化物層が形成されるのを防止することができ、電気伝導度を高く維持することができるという利点がある。
導電性基板
本明細書の一実施態様に係る固体酸化物燃料電池は、導電性基板を含む。前記導電性基板は、電気伝導度に優れた基板を意味するものであって、電気伝導度については後述する。
本明細書の一実施態様において、前記導電性基板は、低いイオン伝導度を有しかつ高い電子伝導度を有するものであれば制限はない。一般的に、LaCrOなどのようなセラミック基板または金属基板があり、好ましい例には、金属基板がある。
本明細書の一実施態様において、前記導電性基板は、フェライト系ステンレス鋼(Ferritic Stainless steel:FSS)基板であってもよい。導電性基板として前記フェライト系ステンレス鋼板を用いる場合、熱伝導度に優れてスタック温度分布が均一になり、平板型スタックで熱応力を低下させることができ、機械的強度に優れ、電気伝導度に優れるという利点がある。
本明細書の一実施態様において、前記導電性基板の厚さは、1mm以上5mm以下、好ましくは1.5mm以上4.5mm以下、さらに好ましくは2mm以上4mm以下である。前記数値範囲を満足する場合、電気伝導性が高く、機械的強度に優れるという利点がある。
前記フェライト系ステンレス鋼は、ステンレス434(STS434)、ステンレス444(STS444)、ステンレス430(STS430)、ステンレス409(STS409)、ステンレス410L(STS410L)、ステンレス441(STS441)、ZMG232(Hitachi Metal社製造)、およびCrofer22(ThyssenKrupp社製造)を含む群より選択される1種であってもよい。
本明細書の一実施態様において、前記導電性基板の熱膨張係数は、873K〜1073Kの温度区間、好ましくは973Kの温度において10.5×10−6−1〜12.5×10−6−1、好ましくは11.0×10−6−1〜12.0×10−6−1である。前記数値範囲を満足する場合、温度変化による導電性基板のサイズ変化を抑制することができる。
本明細書の一実施態様において、前記セラミック保護膜は、前記導電性基板の一面または両面に備えられ、好ましくは、導電性基板が電極と接する面の他面に備えられる。
固体酸化物燃料電池用連結材の製造方法
本明細書の一実施態様は、導電性基板の一面または両面に、下記化学式1で表されたスピネル構造を有する化合物を含むセラミック保護膜を形成するステップを含む、上述した固体酸化物燃料電池用連結材の製造方法を提供する。
[化学式1]
Mn1.5−0.5(x1+x2)Co1.5−0.5(x1+x2)Cux1x2
前記化学式1において、
前記x1およびx2それぞれは、CuおよびYのモル比を示し、0<x1≦0.9、0<x2≦0.5の範囲を満足する。
本明細書の一実施態様に係る固体酸化物燃料電池用連結材の製造方法において、前記導電性基板の一面または両面にセラミック保護膜を形成するステップは、原料粉末を混合、ミリング、乾燥およびか焼して導電性酸化物粉末を製造するステップと、前記導電性酸化物粉末を含むペーストを製造するステップと、前記導電性基板の一面または両面に前記導電性酸化物粉末を含むペーストを蒸着するステップと、熱処理するステップとを含むことができる。
本明細書の一実施態様において、前記導電性酸化物粉末を製造するステップは、原料粉末を混合するステップと、混合された原料粉末をミリングするステップと、乾燥するステップと、か焼するステップとを含む。
本明細書の一実施態様において、前記原料粉末は、YおよびY(NOからなる群より選択された1以上;およびCuOおよびCu(NOからなる群より選択された1以上を含む。前記YおよびY(NOは、イットリア(Y)の原料粉末であり、CuOおよびCu(NOは、銅(Cu)の原料粉末である。
本明細書の一実施態様において、前記原料粉末は、MnCO、Mn(NO、Co、Co、およびCo(NOからなる群より選択される1または2以上をさらに含んでもよい。前記MnCO、Mn(NOは、Mnの原料粉末であり、Co、Co、およびCo(NOは、Coの原料粉末である。
本明細書の一実施態様において、前記原料粉末を混合するステップでは、計算されたモル(mole)の比率に合わせてそれぞれの粉末を正確に混合するが、ABスピネル(spinel)構造を形成できるように設計された組成を用いて、モル比を適用してそれぞれの原料粉末の純度まで考慮して計算する。原料粉末および溶媒をボールミル(ball mill)容器に投入する。前記ボールミル容器の材料や種類は大きく制限されず、例えば、ポリエチレン(PE:poly ethylene)材質の容器であってもよい。
本明細書の一実施態様において、前記原料粉末を混合するステップは、前記原料粉末を溶媒で混合するものであってもよい。
本明細書の一実施態様において、前記溶媒は、原料粉末を分散させ、乾燥させて除去しやすい物質であれば大きく制限されず、当該技術分野で知られている通常の材料を使用することができる。例えば、前記溶媒は、水、イソプロパノール(iso propanol)、トルエン、エタノール、n−プロパノール、n−ブチルアセテート、エチレングリコール、ブチルカルビトール、およびブチルカルビトールアセテートからなる群より選択される1または2以上を使用することができ、好ましくは、水またはエタノールを使用することができる。
本明細書の一実施態様において、前記混合された原料粉末をミリングするステップは、溶媒と共に混合した原料粉末を物理的に混ぜるための工程で、100rpm〜2,000rpmの分あたりの回転数の条件で5時間〜30時間混合するものであってもよい。この時、5mm、10mm、または15mmの直径を有するジルコニアボールを使用する。
本明細書の一実施態様において、前記乾燥ステップは、溶媒と共に液体状態になった原料粉末を乾燥させて固体状態にするための工程で、循環乾燥機で90℃〜200℃の温度で5時間〜24時間行われる。
本明細書の一実施態様において、前記か焼するステップは、混合された粉末をABスピネル構造に形成させ、有機物質を燃焼させ、固相反応を起こすための熱処理工程である。昇温速度を3℃/min〜5℃/minとして1,000℃〜1,200℃の温度条件で1時間〜20時間または3時間以上10時間維持してか焼するものであってもよい。
本明細書の一実施態様において、前記導電性酸化物粉末は、銅(Cu)およびイットリア(Y)がドーピングされたスピネル構造である(MnCoCuY)粉末であってもよい。
本明細書の一実施態様において、前記固体酸化物燃料電池の製造方法は、前記導電性酸化物を再ミリングするステップをさらに含んでもよい。前記導電性酸化物を再ミリングするステップは、導電性酸化物粉末の粒子サイズをより微細に調節するための工程である。その方法としては、ジェットミル(Jet mill)、ビーズミル(Bead mill)、またはアトリションミル(attrition mill)工程がある。
本明細書の一実施態様において、前記再ミリングするステップを経た後の導電性酸化物粉末の粒子サイズは、0.1μm〜5μmであってもよいし、工程の種類によって得られる粉末の粒子サイズは異なっていてもよい。
本明細書の一実施態様において、前記ジェットミルは、圧縮空気の圧力でディスクを回転させて粉末を粉砕する方法である。
本明細書の一実施態様において、前記ビーズミルは、チャンバ内にビーズ(bead)を入れて回転力および遠心力によって粉砕する方法で、ジェットミルに比べてより小さい粒子を得ることができる。この時、ビーズミルチャンバの速度やポンプ注入速度を調節すると、より小さいサイズの粒子を得ることができる。
本明細書の一実施態様において、前記再ミリングするステップは、導電性酸化物を水に分散させた後にミリングするものであってもよい。
本明細書の一実施態様において、前記導電性酸化物粉末を含むペーストを製造するステップは、分散剤が添加された分散溶媒に導電性酸化物粉末を分散させて混合させた後、添加剤をさらに添加して混合して製造されるものであってもよい。前記ペーストを製造するステップは、前記導電性酸化物粉末をコーティングする前の前処理で、各種添加剤を混ぜるための工程である。
本明細書の一実施態様において、前記添加剤は、バインダー、可塑剤、および分散剤のうちの少なくとも1つをさらに含んでもよい。前記バインダー、可塑剤、および分散剤は特に限定されず、当該技術分野でよく知られている通常の材料を使用することができる。
本明細書の一実施態様において、前記バインダーは、Poly(butyl methacrylate)−poly(2−ethylhexyl methacrylate)(PBMA−PEHMA)の共重合体、エチルセルロース(Ethyl cellulose:EC)、PViB(Poly vinylisobutyral)、およびPEHA(Poly2−ethylhexylacrylate)のうちの少なくとも1つであってもよい。
本明細書の一実施態様において、前記バインダーの含有量は、前記ペーストの総重量を基準として20重量%以上30重量%以下である。
本明細書の一実施態様において、前記可塑剤は、DBP(Di−butyl−phthalate)、DOP(Di−2−ethylhexyl phthalate)、DINP(Di−isononyl phthalate)、DIDP(Di−isodecyl phthalate)、およびBBP(Butyl benzyl phthalate)のうちの少なくとも1つであってもよい。
本明細書の一実施態様において、前記可塑剤の含有量は、前記ペーストの総重量を基準として3重量%以上7重量%以下であってもよい。
本明細書の一実施態様において、前記分散剤は、当技術分野で知られたものであれば特に限定されず、例えば、BYK−110、BYK−111、およびBYK−112のうちの少なくとも1つであってもよい。
本明細書の一実施態様において、前記分散剤の含有量は、前記ペーストの総重量を基準として0.5重量%以上2重量%以下であってもよい。
本明細書の一実施態様において、前記分散溶媒は、原料粉末を分散させ、ペーストを製造した後に除去しやすい物質であれば大きく制限されず、当該技術分野で知られている通常の材料を使用することができる。例えば、前記分散溶媒は、水、イソプロパノール(iso propanol)、トルエン、エタノール、n−プロパノール、n−ブチルアセテート、エチレングリコール、ブチルカルビトール、およびブチルカルビトールアセテートからなる群より選択される1または2以上を使用することができ、好ましくは、水またはエタノールを使用することができる。
本明細書の一実施態様において、前記分散溶媒の含有量は、前記ペーストの総重量を基準として5重量%以上10重量%以下であってもよい。前記範囲を満足する場合、原料粉末がよく分散することができ、溶媒を乾燥させる工程で溶媒の乾燥が円滑に行われる。
本明細書の一実施態様において、前記導電性基板の一面または両面に前記導電性酸化物粉末を含むペーストを蒸着するステップの前に、金属粒子を用いて前記導電性基板をサンドブラスティング処理(sand blasting)するステップをさらに含んでもよい。
前記サンドブラスティング(sand blasting)は、金属粒子または金属酸化物粒子のような研磨剤を、圧縮された空気を用いて導電性基板の表面を研磨する方法である。
前記導電性基板をサンドブラスティング処理して研磨する場合、導電性基板の表面に均一な粗さが付与され、表面に微細屈曲が形成され得て、導電性基板上にセラミック保護膜を形成する時、セラミック保護膜の導電性基板に対する付着力(adhesion)が増大できるという利点がある。これにより、セラミック保護膜が容易に剥離されるのを防止することができる。
本明細書の一実施態様において、前記金属粒子は、SiC、BC、CeO、SiO、およびAlからなる群より選択される1つ以上であってもよく、好ましくは、Alのような強度に優れた金属酸化物粒子であってもよい。例えば、#80meshサイズのAl粒子であってもよい。
本明細書の一実施態様において、前記導電性基板の一面または両面に前記導電性酸化物粉末を含むペーストを蒸着するステップは、前記ペーストをスクリーンプリンティング法を利用して導電性基板の一面または両面にコーティングするものであってもよい。
本明細書の一実施態様において、前記熱処理するステップは、800℃〜1,000℃の実行温度で1時間〜10時間行われるものであってもよい。前記範囲を満足する場合、コーティング層の緻密度に優れ、熱処理によるセラミック保護膜の焼結時、導電性基板が高温で劣化することを抑制することができる。
本明細書は、2以上の単位セルと、前記2以上の単位セルの間に備えられた、上述した固体酸化物燃料電池用連結材を含む連結材層とを含み、前記単位セルは、燃料極と、空気極と、前記燃料極と空気極との間に備えられた電解質とを含み、 前記連結材層は、前記単位セルの空気極または燃料極と接するものである固体酸化物燃料電池を提供する。
本明細書の一実施態様において、前記単位セルは、固体酸化物燃料電池の最も基本単位であって、燃料極と、空気極と、燃料極と空気極との間に備えられた電解質とを含む。
本明細書の一実施態様において、前記燃料極は、還元雰囲気で安定性が高く、高いイオン伝導度および高い電子伝導度を有する材料であれば、特に制限されない。例えば、酸化ニッケル(NiO)およびイットリア安定化ジルコニア(Yttria stabilized Zirconia、YSZ)が混合された物質からなってもよいし、これに限定されるものではない。
本明細書の一実施態様において、前記空気極は、酸化雰囲気で安定性が高く、高いイオン伝導度および高い電子伝導度を有する材料であれば、特に制限されない。
本明細書の一実施態様において、前記電解質は、酸化および還元雰囲気で安定性が高く、高いイオン伝導度および低い電子伝導度を有する材料であれば、特に制限されない。例えば、電解質は、炭化水素系高分子、フッ素系高分子、イットリア安定化ジルコニア、(La、Sr)(Ga、Mg)O、Ba(Zr、Y)O、GDC(Gd doped CeO)、YDC(Y doped CeO)、YSZ(Yttrium stabilized zirconia)、スカンジウム安定化ジルコニア(ScSZ(Scandium stabilized zirconia))などを使用し、これらに限定されるものではない。
本明細書の一実施態様において、前記単位セルは、密封材をさらに含んでもよい。前記密封材は、単位セルの燃料極、空気極、および連結材と熱膨張係数が類似し、各構成間の密封が可能なものであれば、特に制限されない。例えば、シリカ、アルカリ、またはアルカリ希土類酸化物などがある。
本明細書において、前記「接する」の意味は、直接接するものだけでなく、連結材層を介して間接的に接することも含む。
本明細書の一実施態様において、前記固体酸化物燃料電池用連結材は、前記複数の単位セルを直列連結する。
本明細書の一実施態様において、前記複数の単位セルのうちm番目の単位セルの連結材は、前記m番目の空気極とm+1番目の燃料極とを直列連結する。前記mは、1以上の整数である。
以下、実施例を通じて本発明をより詳細に説明する。これらの実施例は本発明をより具体的に説明するためのもので、本発明の範囲がこれらの実施例によって制限されないことは、当業界における通常の知識を有する者にとって自明である。
<実験例>
<製造例1>−導電性酸化物粉末1の製造
出発原料粉末の組成を下記表1の組成1のように調節し、これらをポリエチレン(PE:poly ethylene)材質の容器に投入した後、ジルコニアボール(Zr ball)と共に、溶媒としてDI waterを用いて混合した。この後、100℃の条件で乾燥させた後、1,000〜1,100℃の温度および昇温速度3〜5℃/minで3時間以上維持して混合された粉末をか焼させて、Mn1.35Co1.35Cu0.20.1の組成を有する導電性酸化物粉末1を製造した。
図2は、導電性酸化物粉末1のX−ray回折分析(X−Ray Diffraction:XRD)スペクトルを示すもので、合成完了した粉末がスピネル構造を有するか否かを確認するためにXRDを測定して示すものである。測定結果、導電性酸化物粉末1は、スピネル構造を有することを確認することができた。
<製造例2>−導電性酸化物粉末2の製造
出発原料粉末の組成を下記表1の組成2のように調節した以外は、前記製造例1と同様の方法で導電性酸化物粉末2を製造した。
<製造例3>−導電性酸化物粉末3の製造
出発原料粉末の組成を下記表1の組成3のように調節した以外は、前記製造例1と同様の方法で導電性酸化物粉末3を製造した。
<製造例4>−導電性酸化物粉末4の製造
出発原料粉末の組成を下記表1の組成4のように調節した以外は、前記製造例1と同様の方法で導電性酸化物粉末4を製造した。
<製造例5>−導電性酸化物粉末5の製造
出発原料粉末の組成を下記表1の組成5のように調節した以外は、前記製造例1と同様の方法で導電性酸化物粉末5を製造した。
<製造例6>−導電性酸化物粉末6の製造
出発原料粉末の組成を下記表1の組成6のように調節した以外は、前記製造例1と同様の方法で導電性酸化物粉末6を製造した。
<製造例7>−導電性酸化物粉末7の製造
出発原料粉末の組成を下記表1の組成7のように調節した以外は、前記製造例1と同様の方法で導電性酸化物粉末7を製造した。
<製造例8>−導電性酸化物粉末8の製造
出発原料粉末の組成を下記表1の組成8のように調節した以外は、前記製造例1と同様の方法で導電性酸化物粉末8を製造した。
<ペーストの製造>
<ペースト1の製造>
製造例1で製造された導電性酸化物粉末1、バインダーとしてエチルセルロース(Ethyl cellulose)、および分散溶媒としてブチルカルビトール(Butyl carbitol)が混合され、可塑剤ジブチルフタレート(Di−butyl−phthalate:DBP)を添加した後、ペーストミキサを用いて2,000rpmの速度で混合物を混ぜた後、1次的に形成されたペーストを、さらに3roll milling装備を用いて3回混合粉砕を実施して、導電性酸化物粉末1を含むペースト組成物1を最終製造した。前記ペースト組成物1の全体重量に対する、前記導電性酸化物粉末1、バインダー、分散溶媒、および可塑剤の重量%は、下記表2の通りである。
<ペースト2の製造>
導電性酸化物粉末1の代わりに導電性酸化物粉末2を用いたことを除けば、前記ペースト1の製造方法と同様の方法でペースト2を製造した。
<ペースト3の製造>
導電性酸化物粉末1の代わりに導電性酸化物粉末3を用いたことを除けば、前記ペースト1の製造方法と同様の方法でペースト3を製造した。
<ペースト4の製造>
導電性酸化物粉末1の代わりに導電性酸化物粉末4を用いたことを除けば、前記ペースト1の製造方法と同様の方法でペースト4を製造した。
<ペースト5の製造>
導電性酸化物粉末1の代わりに導電性酸化物粉末5を用いたことを除けば、前記ペースト1の製造方法と同様の方法でペースト5を製造した。
<ペースト6の製造>
導電性酸化物粉末1の代わりに導電性酸化物粉末6を用いたことを除けば、前記ペースト1の製造方法と同様の方法でペースト6を製造した。
<ペースト7の製造>
導電性酸化物粉末1の代わりに導電性酸化物粉末7を用いたことを除けば、前記ペースト1の製造方法と同様の方法でペースト7を製造した。
<ペースト8の製造>
導電性酸化物粉末1の代わりに導電性酸化物粉末8を用いたことを除けば、前記ペースト1の製造方法と同様の方法でペースト8を製造した。
<固体酸化物燃料電池用連結材の製造>
<実施例1>
前記ペースト1を導電性基板(STS441)にスクリーンプリンティングの方法を利用してコーティングした。この後、100℃の温度の循環乾燥機で溶媒を除去した。この後、1,000℃の温度で2時間熱処理して、10μm〜15μmの厚さを有するセラミック保護膜を形成して、固体酸化物燃料電池用連結材1を製造した。
図3は、実施例1によるセラミック保護膜の表面の形状を示す走査電子顕微鏡(Scanning Electron Microscope:SEM)写真で、緻密な構造のセラミック保護膜が形成されたことを確認することができた。
図4は、実施例1によるセラミック保護膜と導電性基板との間に、14μmの厚さを有する酸化防止層が形成されたことを示すSEM写真である。
<実施例2>
ペースト1の代わりにペースト2を用いた以外は、前記実施例1と同様の方法で固体酸化物燃料電池用連結材2を製造した。
<実施例3>
ペースト1の代わりにペースト3を用いた以外は、前記実施例1と同様の方法で固体酸化物燃料電池用連結材3を製造した。
<実施例4>
ペースト1の代わりにペースト4を用いた以外は、前記実施例1と同様の方法で固体酸化物燃料電池用連結材4を製造した。
<比較例1>
ペースト1の代わりにペースト5を用いた以外は、前記実施例1と同様の方法で固体酸化物燃料電池用連結材を製造した。
<比較例2>
ペースト1の代わりにペースト6を用いた以外は、前記実施例1と同様の方法で固体酸化物燃料電池用連結材を製造した。
<比較例3>
ペースト1の代わりにペースト7を用いた以外は、前記実施例1と同様の方法で固体酸化物燃料電池用連結材を製造した。
<比較例4>
ペースト1の代わりにペースト8を用いた以外は、前記実施例1と同様の方法で固体酸化物燃料電池用連結材を製造した。
<実験例>
1.実験例1:導電性酸化物粉末の電気伝導度実験
前記導電性酸化物粉末の電気伝導度測定のために、酸化雰囲気を650℃に維持させ、開始とともに酸化ガス(窒素80%および酸素20%)をファーネス(Pot type furnace)に注入し、温度別に抵抗値を確認する。
電気伝導度測定のための試験片の作製は、合成された導電性酸化物粉末を3mm(W)×3mm(D)×15mm(L)のdimensionを有するペレット(pellet)に成形した後、5℃/min〜10℃/minの昇温速度で1,200〜1,300℃の温度範囲で焼結を進行させる。この後、電気伝導度の測定は、4−プローブ(probe)測定可能なデジタルマルチメータを用いて抵抗値を測定した後、焼結体barと電極との間の距離を考慮して伝導度を計算する。
各粉末の測定された電気伝導度をまとめると、図5、図6および下記表3の通りである。
前記組成1〜3は、650℃における電気伝導度値が50S/cm以上と高い値を示したのに対し、前記組成5〜組成8は、650℃における電気伝導度値が40S/cm未満と低い値を示した。これは、各組成の材料である導電性酸化物粉末において、組成1〜組成3は、銅(Cu)およびイットリア(Y)を一定比率で含み、イットリアおよび銅がスピネル構造の結晶粒界(grain boundary)に分離(segregation)されていて、結晶粒界を通した酸素の移動を抑制し、これによって、大気中の酸素が直接的に接触するのを防止して表面の酸化膜成長を抑制したからである。また、添加されたCuの場合、低い融点を有する元素であって、これらが添加された場合、焼結助剤(sintering aid)として作用して、焼結密度を高める役割を果たして、高い電気伝導度を示した。
一方、組成5(Mn1.20Co1.20Cu0.10.1)は、銅およびイットリアを含んでいるが、マンガンおよびコバルトの比率が低すぎて、相対的に低い焼結密度を有し、気孔が相対的に多くて電気伝導度が低くなるため、前記組成1〜3に比べて相対的に低い電気伝導度を示した。
組成6〜8は、銅またはイットリアを一部含んでいるが、銅とイットリアをすべて含むものではないため、酸素の移動抑制効果が大きくなかったからである。
前記のような結果から、導電性酸化物粉末のスピネル構造が銅およびイットリアをすべて含み、マンガン、コバルト、銅、およびイットリアの組成比が組成1〜3の通りである時、粉末の電気伝導度に優れていることを確認することができた。
2.実験例2:セラミック保護膜と導電性基板の熱的相溶性テスト
セラミック保護膜と導電性基板の熱的相溶性をテストした。具体的には、セラミック保護膜と導電性基板の熱膨張係数を比較した。
セラミック保護膜の熱膨張係数を測定するために、セラミック保護膜形成用ペーストに含まれる導電性酸化物粉末をペレット(pellet)状にし、これらの熱膨張係数を測定して比較した。
これをまとめると、下記表4の通りであり、前記導電性酸化物粉末1〜3の熱膨張係数を測定して、図7に示した。
前記ペーストの熱膨張係数は、セラミック保護膜組成物を3mm(W)×3mm(D)×15mm(L)のdimensionを有するペレット(pellet)状に成形した後、膨張計(Dilatometer、LINSEIS社のL75 model使用)で5℃/min〜10℃/minの昇温速度で1,300℃までの熱膨張変化を測定した。
前記ペーストの熱膨張係数値と導電性基板(STS430またはSTS441)の熱膨張係数値により、前記関係式2で表現されるDC値を導出した。前記導電性基板の熱膨張係数値としては11.40×10−6−1を用いた。
この場合、セラミック保護膜と導電性基板の熱的特性が類似し、連結材の全体高温耐久性が向上する効果がある。
3.実験例3:面特性抵抗の測定
高温の酸化雰囲気で電気的特性を評価するために、DC4 probe法を利用して、air雰囲気で温度による面特性抵抗(area specific resistance:ASR)を測定した。
実施例1〜4の連結材の面特性抵抗を測定して、図8および図9に示した。図8は、温度の変化による連結材の面特性抵抗値の測定結果であり、図9は、650℃における測定結果を示すものである。
実施例による連結材は、500℃の低温はもちろん、800℃の高温環境下でも低い抵抗値が維持されることを確認することができた。特に、実施例1および2の連結材は、500℃〜800℃の作動温度で実施例3および4の連結材に比べて面特性抵抗値が低いことを確認することができた。前記結果から、銅含有量を調節する時、連結材の面抵抗特性が低くなることを確認することができた。
4.実験例4:長期安定性の比較
長時間駆動時の電気的特性を評価するために、DC4 probe法を利用して、air雰囲気で時間による面特性抵抗(area specific resistance:ASR)を測定した。駆動時間の変化に伴う連結材の面特性抵抗を測定して、図10に示した。この時、温度は650℃であった。
実施例による連結材は、運転初期はもちろん、長時間駆動時にも低い抵抗値が維持されることを確認することができた。特に、実施例1および実施例2の連結材は、長時間駆動時にも面抵抗値が低く維持されることを確認することができた。
反面、比較例4による連結材は、200時間以下の運転初期に面特性抵抗値が急激に増加することを確認することができた。これは、比較例による連結材を用いる場合、熱処理によるセラミックコーティング層の焼結時、導電性基板が高温で劣化したからである。具体的には、銅およびイットリアを含まない比較例4の連結材は、運転初期に面特性抵抗値が急激に増加する問題があった。
しかし、実施例による連結材を用いる場合、高温環境下で導電性基板が劣化することを効果的に抑制して、長時間駆動時にも面特性抵抗が低く維持されることができた。
1:導電性基板
2:セラミック保護膜

Claims (11)

  1. 導電性基板と、
    前記導電性基板の一面または両面に備えられたセラミック保護膜とを含み、
    前記セラミック保護膜は、下記化学式1で表されたスピネル構造の酸化物を含むものである固体酸化物燃料電池用連結材:
    [化学式1]
    Mn1.5−0.5(x1+x2)Co1.5−0.5(x1+x2)Cux1x2
    前記化学式1において、
    前記x1およびx2それぞれは、CuおよびYのモル比を示し、0<x1≦0.9、0<x2≦0.5の範囲を満足する。
  2. 前記セラミック保護膜の973Kにおける熱膨張係数が10.0×10−6−1〜13.0×10−6−1である、請求項1に記載の固体酸化物燃料電池用連結材。
  3. 前記セラミック保護膜の973Kにおける熱膨張係数および前記導電性基板の973Kにおける熱膨張係数の関係が、下記関係式1および関係式2を満足するものである、請求項1または2に記載の固体酸化物燃料電池用連結材:
    [関係式1]
    0≦DC≦6%
    (前記DCは、下記関係式2を満足する)
    [関係式2]
    DC=[(導電性基板の973Kにおける熱膨張係数−セラミック保護膜の973Kにおける熱膨張係数)/(セラミック保護膜の973Kにおける熱膨張係数)]*100(%)の絶対値。
  4. 前記セラミック保護膜の厚さが10μm〜30μmである、請求項1〜3のいずれか一項に記載の固体酸化物燃料電池用連結材。
  5. 前記導電性基板は、フェライト系ステンレス鋼(Ferritic Stainless steel:FSS)基板である、請求項1〜4のいずれか一項に記載の固体酸化物燃料電池用連結材。
  6. 導電性基板の一面または両面に、下記化学式1で表されたスピネル構造を有する化合物を含むセラミック保護膜を形成するステップを含む、請求項1〜5のいずれか1項に記載の固体酸化物燃料電池用連結材の製造方法:
    [化学式1]
    Mn1.5−0.5(x1+x2)Co1.5−0.5(x1+x2)Cux1x2
    前記化学式1において、
    前記x1およびx2それぞれは、CuおよびYのモル比を示し、0<x1≦0.9、0<x2≦0.5の範囲を満足する。
  7. 前記導電性基板の一面または両面にセラミック保護膜を形成するステップは、原料粉末を混合、ミリング、乾燥およびか焼して導電性酸化物粉末を製造するステップと、
    前記導電性酸化物粉末を含むペーストを製造するステップと、
    前記導電性基板の一面または両面に前記導電性酸化物粉末を含むペーストを蒸着するステップと、
    熱処理するステップとを含むものである、請求項6に記載の固体酸化物燃料電池用連結材の製造方法。
  8. 前記原料粉末は、YおよびY(NOからなる群より選択された1以上;およびCuOおよびCu(NOからなる群より選択された1以上を含むものである、請求項7に記載の固体酸化物燃料電池用連結材の製造方法。
  9. 前記導電性基板の一面または両面に前記導電性酸化物粉末を含むペーストを蒸着するステップの前に、金属粒子を用いて前記導電性基板をサンドブラスティング処理(sand blasting)するステップをさらに含むものである、請求項7または8に記載の固体酸化物燃料電池用連結材の製造方法。
  10. 前記蒸着は、スクリーンプリンティング法で行われるものである、請求項7〜9のいずれか一項に記載の固体酸化物燃料電池用連結材の製造方法。
  11. 2以上の単位セルと、
    前記2以上の単位セルの間に備えられた、請求項1〜5のいずれか1項に記載の固体酸化物燃料電池用連結材を含む連結材層とを含み、
    前記単位セルは、燃料極と、空気極と、前記燃料極と前記空気極との間に備えられた電解質とを含み、
    前記連結材層は、前記単位セルの空気極または燃料極と接するものである固体酸化物燃料電池。
JP2020520232A 2017-10-20 2018-10-19 固体酸化物燃料電池用連結材、その製造方法および固体酸化物燃料電池 Active JP6947297B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2017-0136479 2017-10-20
KR20170136479 2017-10-20
PCT/KR2018/012417 WO2019078674A1 (ko) 2017-10-20 2018-10-19 고체산화물 연료 전지용 연결재, 그 제조방법 및 고체산화물 연료 전지

Publications (2)

Publication Number Publication Date
JP2020537302A true JP2020537302A (ja) 2020-12-17
JP6947297B2 JP6947297B2 (ja) 2021-10-13

Family

ID=66174190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020520232A Active JP6947297B2 (ja) 2017-10-20 2018-10-19 固体酸化物燃料電池用連結材、その製造方法および固体酸化物燃料電池

Country Status (6)

Country Link
US (1) US11374231B2 (ja)
EP (1) EP3678242B1 (ja)
JP (1) JP6947297B2 (ja)
KR (1) KR102106225B1 (ja)
CN (1) CN111201652B (ja)
WO (1) WO2019078674A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021515967A (ja) * 2018-06-20 2021-06-24 エルジー・ケム・リミテッド 固体酸化物燃料電池用連結材、その製造方法、およびそれを含む固体酸化物燃料電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523823A (ja) * 2007-04-13 2010-07-15 フラオンホファー−ゲゼルシャフト・ツア・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファオ 高温に対して抵抗性の酸化クロム形成性基材上の保護被覆のための材料、その製造方法及び使用
US20150118597A1 (en) * 2013-10-30 2015-04-30 Korea Institute Of Science And Technology Metal separator for solid oxide regenerative fuel cell coated with conductive spinel oxide film, method for producing the same and solid oxide regenerative fuel cell including the same
JP2016512388A (ja) * 2013-03-15 2016-04-25 エルジー フュール セル システムズ,インコーポレイティド クロムを捕捉するよう構成された燃料電池システム
JP2016189243A (ja) * 2015-03-30 2016-11-04 日立金属株式会社 燃料電池用インターコネクタ及びこれを用いたセルスタック

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10061959A1 (de) 2000-12-13 2002-06-20 Creavis Tech & Innovation Gmbh Kationen-/protonenleitende, mit einer ionischen Flüssigkeit infiltrierte keramische Membran, Verfahren zu deren Herstellung und die Verwendung der Membran
US7892698B2 (en) * 2003-07-18 2011-02-22 Versa Power Systems, Ltd. Electrically conductive fuel cell contact material
JP3799038B2 (ja) * 2003-11-11 2006-07-19 ニッタ株式会社 固体高分子型燃料電池用セパレータ
WO2012110516A1 (de) * 2011-02-15 2012-08-23 Plansee Se Schichtaufbau sowie seine verwendung zur ausbildung eines keramischen schichtaufbaus zwischen einem interkonnektor und einer kathode einer hochtemperaturbrennstoffzelle
US9537158B2 (en) * 2011-11-30 2017-01-03 Korea Institute Of Science And Technology Oxidation resistant ferritic stainless steel including copper-containing spinel-structured oxide, method of manufacturing the steel, and fuel cell interconnect using the steel
US10431833B2 (en) 2012-03-01 2019-10-01 Bloom Energy Corporation Coatings for metal interconnects to reduce SOFC degradation
KR101456982B1 (ko) 2013-04-02 2014-11-04 한국에너지기술연구원 고체산화물 연료전지 금속분리판 보호막용 세라믹 분말의 제조방법 및 그 보호막
US20160190614A1 (en) * 2014-04-01 2016-06-30 General Electric Company Interconnect and solid oxide fuel cell device
CN104103838A (zh) * 2014-07-08 2014-10-15 华中科技大学 固体氧化物燃料电池的阳极保护层及其制备方法和应用
KR101725082B1 (ko) 2015-08-31 2017-04-27 한국에너지기술연구원 고체산화물 연료전지 금속분리판용 페로브스카이트 세라믹 보호막 제조 방법 및 이를 이용하여 제조된 보호막
JP6741410B2 (ja) * 2015-09-25 2020-08-19 株式会社フジミインコーポレーテッド 溶射用スラリー、溶射皮膜および溶射皮膜の形成方法
US10333162B2 (en) * 2015-10-14 2019-06-25 Bloom Energy Corporation Methods and systems for detecting leaks in a fuel cell stack
CN105332029B (zh) * 2015-10-28 2017-08-25 西安科技大学 一种导电耐蚀钴锰尖晶石涂层的制备方法
CN105239050B (zh) * 2015-11-12 2018-09-07 哈尔滨工业大学 一种固体氧化物燃料电池不锈钢连接体尖晶石氧化物保护涂层的制备方法
KR101943375B1 (ko) 2017-11-30 2019-01-30 주식회사 원익아이피에스 가스분사장치 및 기판 처리 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523823A (ja) * 2007-04-13 2010-07-15 フラオンホファー−ゲゼルシャフト・ツア・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファオ 高温に対して抵抗性の酸化クロム形成性基材上の保護被覆のための材料、その製造方法及び使用
JP2016512388A (ja) * 2013-03-15 2016-04-25 エルジー フュール セル システムズ,インコーポレイティド クロムを捕捉するよう構成された燃料電池システム
US20150118597A1 (en) * 2013-10-30 2015-04-30 Korea Institute Of Science And Technology Metal separator for solid oxide regenerative fuel cell coated with conductive spinel oxide film, method for producing the same and solid oxide regenerative fuel cell including the same
JP2016189243A (ja) * 2015-03-30 2016-11-04 日立金属株式会社 燃料電池用インターコネクタ及びこれを用いたセルスタック

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021515967A (ja) * 2018-06-20 2021-06-24 エルジー・ケム・リミテッド 固体酸化物燃料電池用連結材、その製造方法、およびそれを含む固体酸化物燃料電池
JP7005864B2 (ja) 2018-06-20 2022-02-10 エルジー・ケム・リミテッド 固体酸化物燃料電池用連結材、その製造方法、およびそれを含む固体酸化物燃料電池

Also Published As

Publication number Publication date
CN111201652B (zh) 2023-07-07
EP3678242A1 (en) 2020-07-08
CN111201652A (zh) 2020-05-26
EP3678242B1 (en) 2023-02-15
KR102106225B1 (ko) 2020-05-04
WO2019078674A1 (ko) 2019-04-25
JP6947297B2 (ja) 2021-10-13
US20210194017A1 (en) 2021-06-24
EP3678242A4 (en) 2020-12-02
US11374231B2 (en) 2022-06-28
KR20190044546A (ko) 2019-04-30

Similar Documents

Publication Publication Date Title
WO2009131180A1 (ja) 固体酸化物形燃料電池用セル
US20130224628A1 (en) Functional layer material for solid oxide fuel cell, functional layer manufactured using functional layer material, and solid oxide fuel cell including functional layer
US20150099061A1 (en) Formation of solid oxide fuel cells
KR20130123189A (ko) 고체산화물 연료전지용 음극 지지체 및 그 제조방법과 이를 포함한 고체산화물 연료전지
WO2018230248A1 (ja) 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法
KR101079248B1 (ko) 전도성 산화물과 비전도성 산화물을 포함하는 치밀한 구조의 복합 산화물의 박막, 이의 제조방법 및 그를 이용한금속 접속자
KR20120140476A (ko) 고체산화물 연료전지용 소재, 상기 소재를 포함하는 캐소드 및 상기 소재를 포함하는 고체산화물 연료전지
CN110088954B (zh) 固体氧化物电池堆中互联和电池之间的改进的接触
JP2007200664A (ja) 固体電解質型燃料電池の製造方法
JP2011142042A (ja) 固体酸化物形燃料電池用発電セル及びその製造方法
JP6947297B2 (ja) 固体酸化物燃料電池用連結材、その製造方法および固体酸化物燃料電池
JP6947295B2 (ja) 固体酸化物燃料電池用連結材、その製造方法及び固体酸化物燃料電池
JP6315581B2 (ja) 固体酸化物形燃料電池用カソード及びその製造方法、並びに当該カソードを備える固体酸化物形燃料電池
KR100960270B1 (ko) 치밀한 구조를 갖는 스피넬계 전도성 박막, 이의 제조방법및 이를 이용한 금속 접속자
JP5350893B2 (ja) 固体酸化物形燃料電池
KR101627270B1 (ko) 스피넬계 전도성 산화막이 코팅된 고체산화물 재생 연료전지용 금속 분리판, 이의 제조방법 및 이를 포함하는 고체산화물 재생 연료전지
KR101054005B1 (ko) Lno 전도성 산화물이 코팅된 상안정성 및 전기전도성이 향상된 스테인레스 스틸 금속 접속자
JP2007012498A (ja) 固体酸化物形燃料電池用燃料電極の製造方法及び燃料電池
WO2024134975A1 (ja) Soecまたはsofcの電極用材料、そのような電極用材料を含む粉末、そのような粉末を含むペースト、soecまたはsofcの電極、soec、およびsofc
JP5412534B2 (ja) 複合基板の製造方法および固体酸化物形燃料電池セルの製造方法
Yu The Performance of Spinel-Based Interconnect Coating and Cathode-Side Contact Layer for Solid Oxide Fuel Cell
JP2007012499A (ja) 固体酸化物形燃料電池用酸素電極及びその製造方法並びに固体酸化物形燃料電池
JP2016091857A (ja) 固体酸化物型燃料電池の空気極、固体酸化物型燃料電池、及び固体酸化物型燃料電池の空気極の製造方法
JP2003277058A (ja) スカンジアを固溶させたジルコニア材料およびこれを備えた固体酸化物形燃料電池
JP2019196291A (ja) 多孔質焼結体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R150 Certificate of patent or registration of utility model

Ref document number: 6947297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150