JP2020202613A - 静電型デバイスおよび静電型デバイス製造方法 - Google Patents

静電型デバイスおよび静電型デバイス製造方法 Download PDF

Info

Publication number
JP2020202613A
JP2020202613A JP2019106230A JP2019106230A JP2020202613A JP 2020202613 A JP2020202613 A JP 2020202613A JP 2019106230 A JP2019106230 A JP 2019106230A JP 2019106230 A JP2019106230 A JP 2019106230A JP 2020202613 A JP2020202613 A JP 2020202613A
Authority
JP
Japan
Prior art keywords
substrate
elastic support
fixed
electrostatic device
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019106230A
Other languages
English (en)
Inventor
年吉 洋
Hiroshi Toshiyoshi
洋 年吉
浩章 本間
Hiroaki Homma
浩章 本間
裕幸 三屋
Hiroyuki Mitsuya
裕幸 三屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Saginomiya Seisakusho Inc
Original Assignee
University of Tokyo NUC
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Saginomiya Seisakusho Inc filed Critical University of Tokyo NUC
Priority to JP2019106230A priority Critical patent/JP2020202613A/ja
Priority to US17/615,153 priority patent/US20220224253A1/en
Priority to PCT/JP2020/012458 priority patent/WO2020246115A1/ja
Priority to CN202080040763.2A priority patent/CN113924725A/zh
Priority to EP20819353.2A priority patent/EP3965284A4/en
Publication of JP2020202613A publication Critical patent/JP2020202613A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00182Arrangements of deformable or non-deformable structures, e.g. membrane and cavity for use in a transducer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/033Comb drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/031Anodic bondings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

【課題】コスト低減を図ることができる静電型デバイスの提供。【解決手段】振動発電素子1は、固定部11と、可動部12と、可動部12と一体に形成され、可動部12を弾性支持する弾性支持部13と、固定部11および弾性支持部13が互いに分離状態で陽極接合されているガラス製のベース部10と、を備える。振動発電素子の製造方法は、前記固定部、前記可動部および前記弾性支持部を基板に一体状態で形成し、前記ベース部と基板とを陽極接合して前記固定部および前記弾性支持部を前記ベース部に固定し、前記基板をエッチングして前記固定部と前記弾性支持部とを互いに分離する。【選択図】図1

Description

本発明は、静電型デバイスおよび静電型デバイス製造方法に関する。
静電型デバイスとして、例えば、特許文献1に記載のような静電型デバイスが知られている。特許文献1に記載の静電型デバイスは、SOI(Silicon On Insulator)基板から製作されている。SOI(Silicon On Insulator)基板は、シリコンの支持層と、支持層上に形成されたシリコン酸化物(SiO)のBOX(Buried Oxide)層と、BOX層上に接合されたシリコンの活性層とから成る。静電型デバイスのアクチュエータ部あるいはセンサ部は活性層から形成され、アクチュエータ部あるいはセンサ部を支持する基材は支持層から形成される。
特開2016−59191号公報
しかしながら、上述の静電型デバイスでは、デバイス製作用の基板として高価なSOI基板を用いているので、基板コストが静電型デバイスのコスト低減を阻害する要因の一つとなっている。
本発明の態様による静電型デバイスは、固定部と、可動部と、前記可動部と一体に形成され、前記可動部を弾性支持する弾性支持部と、前記固定部および前記弾性支持部が互いに分離状態で陽極接合されているガラス製のベース部と、を備える。
本発明の態様による静電型デバイス製造方法は、前記固定部、前記可動部および前記弾性支持部を基板に一体状態で形成し、前記ベース部と前記基板とを陽極接合して前記固定部および前記弾性支持部を前記ベース部に固定し、前記基板をエッチングして前記固定部と前記弾性支持部とを互いに分離する。
本発明によれば、静電型デバイスのコスト低減を図ることができる。
図1は、振動発電素子の平面図である。 図2は、図1のA−A断面およびB−B断面を示す図である。 図3は、第1の工程を説明する図である。 図4は、第2の工程を説明する図である。 図5は、第3の工程を説明する図である。 図6は、図5のA−A断面、B−B断面、C−C断面を示す図である。 図7は、第4の工程を説明する図である。 図8は、第5の工程を説明する図である。 図9は、第6の工程を説明する図である。 図10は、第7の工程を説明する図である。 図11は、第8の工程を説明する図である。 図12は、第9の工程を説明する図である。 図13は、第10の工程を説明する図である。 図14は、比較例を示す図である。 図15は、比較例における振動発電のシミュレーション結果を示すグラフであり、(a)は電流を示し、(b)は電力を示す。
以下、図を参照して本発明を実施するための形態について説明する。図1は静電型デバイスの一例を示す図であり、静電型の振動発電素子1の平面図である。振動発電素子1は、ベース部10と、ベース部10上に設けられた固定部11と、可動部12とを備えている。左右一対の固定部11には複数の櫛歯電極110がそれぞれ形成されている。一対の固定部11間に配置された可動部12にも、複数の櫛歯電極120が形成されている。櫛歯電極120は、櫛歯電極110と噛合するように対向配置されている。
可動部12は4組の弾性支持部13により支持されており、振動発電素子1に外力が加わると、可動部12が図示左右方向(x方向)に振動する。各弾性支持部13は、ベース部10上に固定された固定領域13a、および、固定領域13aと可動部12とを連結する弾性部13bを備えている。櫛歯電極110,120の少なくとも一方にはエレクトレットが形成されており、可動部12が図示左右に振動して櫛歯電極110と櫛歯電極120との噛合量が変化することで発電が行われる。固定部11には電極パッド111が形成され、弾性支持部13の固定領域13aにも電極パッド131が形成されている。発電された電力は電極パッド111、131から出力される。
図2は図1の断面を示す図であり、図2(a)はA−A断面を、図2(b)はB−B断面を示している。固定部11,可動部12および弾性支持部13はSi基板から形成され、固定部11,可動部12および弾性支持部13の表面にはカリウム等のアルカリ金属のイオンを含むSiO膜202が形成されている。このSiO膜202にエレクトレットが形成される。固定部11と弾性支持部13の固定領域13aとは、ガラス基板で形成されたベース部10上に陽極接合される。ベース部10には凹部101が形成されている。
固定部11と固定領域13aとは分離溝g1により互いに分離されており、固定部11と弾性支持部13および可動部12とは電気的に絶縁されている。なお、図2(b)に示す分離溝g2は、左右一対の固定部11を電気的に分離するためのものである。可動部12は、弾性支持部13によって凹部101の上方に弾性支持されている。ベース部10の裏面にはメタル層102が形成されている。また、固定部11の櫛歯電極110も、凹部101の上方に可動部12の櫛歯電極120と噛合するように配置されている。
(振動発電素子1の製造方法)
図3〜16は、振動発電素子1の製造手順の一例を示す図である。図3に示す第1の工程では、Si基板200の表裏両面にLP−CVDによりSiN膜201を成膜する。図4は第2の工程を説明する図であり、図4(a)は平面図、図4(b)はA−A断面図である。第2の工程では、表面側のSiN膜201をドライエッチングによりエッチングして、電極パッド111,113を形成するためのパターンP1,P2と、分離溝g1、g2を形成するためのパターンP3,P4とを形成する。
図5,6は第3の工程を説明する図であり、図5は平面図を示し、図6(a)はA−A断面図、図6(b)はC−C断面図、図6(c)はB−B断面図を示す。第3の工程では、Si基板200の表面側に固定部11,可動部12および弾性支持部13を形成するためのAlマスクパターン(不図示)を形成し、そのAlマスクパターンを用いたDeep−RIEによりSi基板200およびSiN膜201を貫通するようにエッチングする。このエッチングにより、固定部11,可動部12および弾性支持部13における図5の図示領域Dに含まれる構造を形成する。具体的には、櫛歯電極110、210が形成されている部分の固定部11および可動部12、弾性支持部13を形成する。図5の領域Dは、図2の凹部101の上方領域を示している。
図7は第4の工程を説明する図であり、図7(a)はA−A断面図を、図7(b)はC−C断面図を、図7(c)はB−B断面図を示す。第4の工程では、分離溝g1,g2を形成するためのエッチングをDeep−RIEにより行う。分離溝g1,g2は、パターンP3,P4(図4参照)の位置に形成される。ただし、第4の工程では分離溝g1,g2で完全に分離させず、基板裏面側からSi基板200全体が一体に保たれる程度の深さまでエッチング(いわゆる、ハーフエッチング)する。
図8は第5の工程を説明する図であり、図8(a)は平面図を、図8(b)はA−A断面図を示す。第5の工程では、Si基板200の露出面にカリウム等のアルカリ金属のイオンを含むSiO膜202を形成する。
図9は第6の工程を説明する図であり、図9(a)は平面図を、図9(b)はA−A断面図を示す。第6の工程では、まず、CFガスを用いたRIEにより、基板裏面側のSiN膜201を除去する。同様に、基板表面側のSiN膜201を除去する。
図10は第7の工程を説明する図であり、図10(a)は平面図を、図10(b)は断面図を示す。第7の工程では、ベース部10を形成するためのガラス基板300に凹部101を形成する。凹部101の底面と枠部103の端面との段差寸法Hは、振動する可動部12が干渉しない寸法(例えば、数十μm)に設定される。ガラス基板300には、陽極接合に用いられるガラス基板(例えば、ナトリウム含有のガラス基板)が用いられる。
図11は第8の工程を説明する図であり、図11(a)は平面図を、図11(b)は断面図を示す。第8の工程では、ベース部10の裏面側にアルミ蒸着膜等のメタル層102を形成する。なお、裏面側のメタル層102は、陽極接合プロセス時の電界をガラス基板300全面に分散させるために形成したものである。しかし、メタル層102が無くても陽極接合は可能なため、メタル層102は必須ではない。
図12に示す第9の工程では、固定部11、可動部12および弾性支持部13が形成されたSi基板200(図9参照)の裏面側に、図11に示したガラス基板から成るベース部10を陽極接合する。ヒータ40上にベース部10を載置し、そのベース部10の上に固定部11、可動部12および弾性支持部13が形成されたSi基板200を積層する。ヒータ40の温度は、ガラス基板中におけるナトリウムイオンの熱拡散が十分活発になる温度(例えば、500℃以上)に設定される。ヒータ40を基準とするSi基板200の電圧V1は、例えば、400V以上に設定される。
シリコン基板(Si基板200)とガラス基板(ベース部10)とを陽極接合する場合には、シリコン基板とガラス基板との積層体を加熱しつつ、シリコン基板側を陽極として積層体に数百V程度の直流電圧を印加する。ガラス基板内のナトリウムイオンがマイナス電位側へ移動し、ガラス基板とシリコン基板との接合面のガラス基板側にSiOの空間電荷層(ナトリウムイオンが欠乏した層)が形成される。その結果、静電引力によりガラス基板とシリコン基板とが接合される。
図13は第10の工程を説明する図であり、図13(a)はA−A断面図を、図13(b)はC−C断面図を、図13(c)はB-B断面図を示す。第10の工程では、ベース部10に陽極接合されたSi基板200をDeep−RIEにより途中までエッチングすることにより、図7に示す非貫通の分離溝g1、g2をSi基板200の表裏に貫通した状態とする。これにより、固定部11と可動部12を弾性支持する弾性支持部13とが完全に分離される。なお、このエッチングにより、分離溝g1、g2が貫通状態となるだけではなく、穴形状の電極パッド111、131も形成される。
その後、周知のエレクトレット形成方法、例えば、特開2013−13256号公報に記載のBias-Temperature法により、櫛歯電極110,120の少なくとも一方にエレクトレットを形成することで、図1の振動発電素子1が完成する。
本実施の形態の振動発電素子1では、固定部11、可動部12および弾性支持部13をシリコン基板により形成し、固定部11および弾性支持部13をガラス基板により形成されたベース部10に固定する構成とした。そのため、特許文献1に記載の静電型デバイスのように高価なSOI基板を用いていないので、コスト低減を図ることができる。
(比較例)
図14は比較例を示すである。比較例の振動発電素子50は、SOI基板を用いて形成される。振動発電素子50の固定部51、可動部52および不図示の弾性支持部13はSOI基板の上部シリコン層である活性層61に形成され、ベース部53は下部シリコン層である支持層63に形成される。可動部52の櫛歯電極にはエレクトレット520が形成されている。活性層61と支持層63とはSiOから成るBOX層62を介して設けられているので、活性層61と支持層63との間に生じる寄生容量Cs1,Cs2が、振動発電素子50の発電電力に悪影響を与えることになる。
固定部51に対して可動部52が図示左右方向に振動すると、固定部51および可動部52の櫛歯電極間の静電容量C1,C2が変化し、静電容量C1,C2の変化による交流電流が端子電流I1として出力される。出力された端子電流I1は、一部の電流I3が寄生容量Cs1,Cs2を流れ、残りの電流I2が振動発電素子50に接続された負荷抵抗Rを流れる。
図15は振動発電素子50による発電のシミュレーション結果を示したものであり、図15(a)は電流I2,I3を示し、図15(b)は負荷抵抗Rで消費される電力W2および寄生容量Cs1に出入りする電力W3を示す。寄生容量Cs1の電流は端子電圧に対して位相が90度進んでいる。寄生容量Cs1で消費される電力W3は外部に取り出されない無効電力である。寄生容量Cs2で消費される電力についても同様である。寄生容量Cs1,Cs2の増加により無効電力W3は増加し、負荷抵抗Rで消費される電力である有効電力W2は減少する。
一方、本実施の形態の振動発電素子1では、シリコンで形成された固定部11および可動部12はガラス基板で形成したベース部10に接合されているので、寄生容量の発生を防止することができる。その結果、寄生容量に起因する無効電力の発生を防止することができ、発電された電力を無駄なく負荷抵抗Rにより消費することができる。
なお、SOI基板から振動発電素子50を形成した場合であっても、BOX層の厚さを従来よりも厚くして寄生容量を小さくすることにより、ガラス基板のベース部10を採用する場合と同様に無効電力の低減を図ることができる。
上述した実施の形態の作用効果をまとめると以下のようになる。
(1)静電型デバイスである振動発電素子1は、図1に示すように、固定部11と、可動部12と、可動部12と一体に形成され、可動部12を弾性支持する弾性支持部13と、固定部11および弾性支持部13が互いに分離状態で陽極接合されているガラス製のベース部10と、を備える。そのため、SOI基板を用いて製作される振動発電素子50に比べてコスト低減を図ることができる。
なお、上述した実施の形態では、静電型デバイスである振動発電素子1を例に説明したが、振動発電素子1に限らず、特許文献1に記載のようなアクチュエータやセンサ等にも適用することができる。すなわち、アクチュエータやセンサをシリコン基板から製作し、それらをガラス製のベース部で支持するような構成とする。そうすることで、コスト低減に加えて寄生容量の抑制も図ることができる。なお、電気伝導性を有しガラス基板との線膨張係数が十分に一致すれば、シリコン基板に限らずその他のガラス基板やシリコン薄膜を成膜したガラス基板などを用いてアクチュエータやセンサ等を形成しても良い。
(2)さらに、固定部11および可動部12をシリコンで形成し、固定部11および可動部12の少なくとも一方にエレクトレットを形成するようにしても良い。
(3)図1に示す静電型デバイスである振動発電素子1は、固定部11には固定電極である櫛歯電極110が形成され、可動部12は櫛歯電極110と対向する可動電極である櫛歯電極120が形成され、さらに固定部11および可動部12の少なくとも一方にエレクトレットが形成され、固定部11に対する可動部12の変位により櫛歯電極110と櫛歯電極120との静電容量が変化して発電を行う。ベース部10がガラス製であるため、上述したコスト低減に加えて、図14に示すSOI基板を用いた振動発電素子50における寄生容量Cs1,Cs2の発生を防止でき、寄生容量に起因する無効電力W3の発生を防止することができる。
(4)上述した静電型デバイスの製造方法では、固定部11、可動部12および弾性支持部13を基板、例えばSi基板200、に一体状態で形成し、ガラス製のベース部10とSi基板200とを陽極接合して固定部11および弾性支持部13をガラス製のベース部10に固定し、Si基板200をエッチングして固定部11と弾性支持部13とを互いに分離して、固定部11と可動部12とを電気的に分離する。
このように固定部11と弾性支持部13とを分離する前に、固定部11,可動部12および弾性支持部13が一体状態となったSi基板200をベース部10に陽極接合し、陽極接合後に分離するようにしているので、ウエハレベルの固定部11、可動部12および弾性支持部13の位置関係を維持した状態で、それらをベース部10に接合することができる。
本発明は上述した実施の形態の内容に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1,50…振動発電素子、10,53…ベース部、11,51…固定部、12,52…可動部、13…弾性支持部、13a…固定領域、13b…弾性部、40…ヒータ、110,120…櫛歯電極、200…Si基板、300…ガラス基板、Cs1,Cs2…寄生容量

Claims (4)

  1. 固定部と、
    可動部と、
    前記可動部と一体に形成され、前記可動部を弾性支持する弾性支持部と、
    前記固定部および前記弾性支持部が互いに分離状態で陽極接合されているガラス製のベース部と、を備える静電型デバイス。
  2. 請求項1に記載の静電型デバイスにおいて、
    前記固定部および前記可動部はシリコンで形成され、
    前記固定部および前記可動部の少なくとも一方にエレクトレットが形成されている、静電型デバイス。
  3. 請求項2に記載の静電型デバイスにおいて、
    前記固定部には固定電極が形成され、
    前記可動部には前記固定電極と対向する可動電極が形成され、
    前記固定部に対する前記可動部の変位により前記固定電極と前記可動電極との静電容量が変化して発電を行う、静電型デバイス。
  4. 請求項1から請求項3までのいずれか一項に記載の静電型デバイスを製造するための静電型デバイス製造方法であって、
    前記固定部、前記可動部および前記弾性支持部を基板に一体状態で形成し、
    前記ベース部と前記基板とを陽極接合して前記固定部および前記弾性支持部を前記ベース部に固定し、
    前記基板をエッチングして前記固定部と前記弾性支持部とを互いに分離する、静電型デバイス製造方法。
JP2019106230A 2019-06-06 2019-06-06 静電型デバイスおよび静電型デバイス製造方法 Pending JP2020202613A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019106230A JP2020202613A (ja) 2019-06-06 2019-06-06 静電型デバイスおよび静電型デバイス製造方法
US17/615,153 US20220224253A1 (en) 2019-06-06 2020-03-19 Electrostatic Device and Method for Manufacturing Electrostatic Device
PCT/JP2020/012458 WO2020246115A1 (ja) 2019-06-06 2020-03-19 静電型デバイスおよび静電型デバイス製造方法
CN202080040763.2A CN113924725A (zh) 2019-06-06 2020-03-19 静电型设备及静电型设备制造方法
EP20819353.2A EP3965284A4 (en) 2019-06-06 2020-03-19 ELECTROSTATIC DEVICE AND METHOD OF MAKING AN ELECTROSTATIC DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019106230A JP2020202613A (ja) 2019-06-06 2019-06-06 静電型デバイスおよび静電型デバイス製造方法

Publications (1)

Publication Number Publication Date
JP2020202613A true JP2020202613A (ja) 2020-12-17

Family

ID=73651995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019106230A Pending JP2020202613A (ja) 2019-06-06 2019-06-06 静電型デバイスおよび静電型デバイス製造方法

Country Status (5)

Country Link
US (1) US20220224253A1 (ja)
EP (1) EP3965284A4 (ja)
JP (1) JP2020202613A (ja)
CN (1) CN113924725A (ja)
WO (1) WO2020246115A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166618A (ja) * 1995-12-15 1997-06-24 Matsushita Electric Works Ltd 半導体加速度センサ
US6146917A (en) * 1997-03-03 2000-11-14 Ford Motor Company Fabrication method for encapsulated micromachined structures
JP2008105162A (ja) * 2006-10-27 2008-05-08 Hitachi Ltd 機能素子
JP2008229823A (ja) * 2007-03-23 2008-10-02 Mitsutoyo Corp Memsデバイスの製造方法
JP2009045712A (ja) * 2007-08-21 2009-03-05 Toshiba Corp Mems装置およびmems装置製造方法
JP2009515338A (ja) * 2005-11-03 2009-04-09 マキシム・インテグレーテッド・プロダクツ・インコーポレーテッド ウェハ・レベル・パッケージングの方法
JP2010011547A (ja) * 2008-06-24 2010-01-14 Panasonic Electric Works Co Ltd 発電デバイス
JP2010512548A (ja) * 2006-12-12 2010-04-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 封入能力を有するマイクロミラーアクチュエータ及びその製造方法
JP2013030759A (ja) * 2011-06-20 2013-02-07 Tohoku Univ パッケージされたデバイス、パッケージング方法及びパッケージ材の製造方法
JP2013250133A (ja) * 2012-05-31 2013-12-12 Seiko Epson Corp 電子デバイス及びその製造方法、並びに電子機器
JP2014187354A (ja) * 2013-02-21 2014-10-02 Ricoh Co Ltd デバイス、及びデバイスの作製方法
JP2018523846A (ja) * 2015-07-15 2018-08-23 テクノロジー イノベーション モメンタム ファンド(イスラエル)リミテッド パートナーシップTechnology Innovation Momentum Fund(israel)Limited Partnership 調整可能なmemsエタロン

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7258010B2 (en) * 2005-03-09 2007-08-21 Honeywell International Inc. MEMS device with thinned comb fingers
JP2008046078A (ja) * 2006-08-21 2008-02-28 Hitachi Ltd 微小電気機械システム素子およびその製造方法
JP5320625B2 (ja) * 2008-10-20 2013-10-23 Towa株式会社 アクチュエータ及びその製造方法
JP5676377B2 (ja) 2011-06-29 2015-02-25 アオイ電子株式会社 エレクトレット膜およびこれを用いた振動発電素子
JP6099372B2 (ja) 2011-12-05 2017-03-22 株式会社半導体エネルギー研究所 半導体装置及び電子機器
JP2013118784A (ja) * 2011-12-05 2013-06-13 Murata Mfg Co Ltd 発電装置及びその製造方法
US10340818B2 (en) * 2013-08-08 2019-07-02 National University Corporation Shizuoka University Actuator, shutter device, fluid control device, switch, and two-dimensional scanning sensor device
JP2016059191A (ja) 2014-09-11 2016-04-21 ソニー株式会社 静電型デバイス
JP2016209935A (ja) * 2015-04-30 2016-12-15 アオイ電子株式会社 エレクトレットの形成方法、mems装置
JP6682106B2 (ja) * 2015-10-02 2020-04-15 株式会社鷺宮製作所 振動発電素子

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166618A (ja) * 1995-12-15 1997-06-24 Matsushita Electric Works Ltd 半導体加速度センサ
US6146917A (en) * 1997-03-03 2000-11-14 Ford Motor Company Fabrication method for encapsulated micromachined structures
JP2009515338A (ja) * 2005-11-03 2009-04-09 マキシム・インテグレーテッド・プロダクツ・インコーポレーテッド ウェハ・レベル・パッケージングの方法
JP2008105162A (ja) * 2006-10-27 2008-05-08 Hitachi Ltd 機能素子
JP2010512548A (ja) * 2006-12-12 2010-04-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 封入能力を有するマイクロミラーアクチュエータ及びその製造方法
JP2008229823A (ja) * 2007-03-23 2008-10-02 Mitsutoyo Corp Memsデバイスの製造方法
JP2009045712A (ja) * 2007-08-21 2009-03-05 Toshiba Corp Mems装置およびmems装置製造方法
JP2010011547A (ja) * 2008-06-24 2010-01-14 Panasonic Electric Works Co Ltd 発電デバイス
JP2013030759A (ja) * 2011-06-20 2013-02-07 Tohoku Univ パッケージされたデバイス、パッケージング方法及びパッケージ材の製造方法
JP2013250133A (ja) * 2012-05-31 2013-12-12 Seiko Epson Corp 電子デバイス及びその製造方法、並びに電子機器
JP2014187354A (ja) * 2013-02-21 2014-10-02 Ricoh Co Ltd デバイス、及びデバイスの作製方法
JP2018523846A (ja) * 2015-07-15 2018-08-23 テクノロジー イノベーション モメンタム ファンド(イスラエル)リミテッド パートナーシップTechnology Innovation Momentum Fund(israel)Limited Partnership 調整可能なmemsエタロン

Also Published As

Publication number Publication date
EP3965284A1 (en) 2022-03-09
CN113924725A (zh) 2022-01-11
WO2020246115A1 (ja) 2020-12-10
US20220224253A1 (en) 2022-07-14
EP3965284A4 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
JP5305797B2 (ja) 静電誘導式発電デバイス及びその製造方法
US10972071B2 (en) Resonator device
CN106664039B (zh) 静电型装置
JP5855602B2 (ja) 静電誘導型電気機械変換素子およびナノピンセット
CN109478876A (zh) 谐振器和谐振装置
CA2561297A1 (en) Semiconductor physical quantity sensor of electrostatic capacitance type and method for manufacturing the same
WO2020246115A1 (ja) 静電型デバイスおよび静電型デバイス製造方法
JP2018130027A (ja) 発電素子および発電装置
JP2016209935A (ja) エレクトレットの形成方法、mems装置
US10756651B2 (en) Power generating element and power generating device
CN113316891A (zh) 振动发电元件以及振动发电元件的制造方法
WO2019111893A1 (ja) 弾性波装置
WO2020246116A1 (ja) 静電型デバイス、静電型デバイス中間体および製造方法
JP5130151B2 (ja) 静電容量型半導体物理量センサの製造方法及び静電容量型半導体物理量センサ
JP5545410B2 (ja) 可変容量素子を有する電子機器とその製造方法
JP2021136704A (ja) Mems素子および振動発電デバイス
WO2020153362A1 (ja) 振動発電素子
JP2010509086A (ja) パッシェン・スタッキングを用いた充電ガード
JP2002373829A (ja) 可変キャパシタ
JP2013000825A (ja) 三次元構造体の製造方法及びこの製造方法によって製造された三次元構造体
JP2009212451A (ja) 可変容量素子
JP2020021780A (ja) 静電チャック
JP2021129336A (ja) 振動発電素子
JP2021132462A (ja) 振動素子の製造方法、振動発電素子の製造方法、振動素子、および振動発電素子
JP2019180236A (ja) エレクトレット素子、電気機械変換器およびエレクトレット素子の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210319

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220913