JP2020155499A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2020155499A
JP2020155499A JP2019050497A JP2019050497A JP2020155499A JP 2020155499 A JP2020155499 A JP 2020155499A JP 2019050497 A JP2019050497 A JP 2019050497A JP 2019050497 A JP2019050497 A JP 2019050497A JP 2020155499 A JP2020155499 A JP 2020155499A
Authority
JP
Japan
Prior art keywords
region
voltage
memory cell
conductive layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019050497A
Other languages
English (en)
Inventor
洋一 峯村
Yoichi Minemura
洋一 峯村
倫明 松尾
Tomoaki Matsuo
倫明 松尾
怜子 社本
Reiko Shamoto
怜子 社本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Priority to JP2019050497A priority Critical patent/JP2020155499A/ja
Priority to CN201910705081.8A priority patent/CN111725228B/zh
Priority to TW108127822A priority patent/TWI735018B/zh
Priority to US16/560,416 priority patent/US11031415B2/en
Publication of JP2020155499A publication Critical patent/JP2020155499A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3454Arrangements for verifying correct programming or for detecting overprogrammed cells
    • G11C16/3459Circuits or methods to verify correct programming of nonvolatile memory cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

【課題】動作特性を容易に向上できる半導体記憶装置を提供する。【解決手段】一つの実施形態によれば、半導体記憶装置において、第1半導体ピラーは、第1領域内を前記第1方向に延在する。第1領域は、第1導電層における隣り合う第2分断膜の間の領域である。第2半導体ピラーは、第2領域内を前記第1方向に延在する。第2領域は、第1導電層における隣り合う第1分断膜と第2分断膜と間の領域である。第1電荷蓄積層は、第1半導体ピラーと第1領域との間に配置されている。第2電荷蓄積層は、第2半導体ピラーと第2領域との間に配置されている。周辺回路は、第2導電層における第2領域に対応した領域に選択電位を供給する時に第2領域に対応した第1導電層に第1電圧を供給する。周辺回路は、第2導電層における第1領域に対応した領域に選択電位を供給する時に第1領域に対応した第1導電層に第2電圧を供給する。第2電圧は、第1電圧より高い電圧である。【選択図】図1

Description

本実施形態は、半導体記憶装置に関する。
導電層が複数積層された積層体内を柱状の半導体チャネルが貫通し、各導電層と半導体チャネルの近接する部分をメモリセルとして機能させる3次元構造の半導体記憶装置が知られている。この半導体記憶装置では、3次元構造における位置によりメモリセルを構成する酸化膜厚などがばらつくことがあり、動作速度や信頼性に影響を及ぼすことがあった。
特開2018−160298号公報
本発明の実施形態は、動作速度や信頼性を向上できる半導体記憶装置を提供することを目的とする。
一つの実施形態によれば、複数の第1導電層と第2導電層と複数の第1分断膜と複数の第2分断膜と第1半導体ピラーと第2半導体ピラーと第1電荷蓄積層と第2電荷蓄積層と周辺回路とを有する半導体記憶装置が提供される。複数の第1導電層は、第1方向に積層されている。第2導電層は、複数の第1導電層の第1方向に配されている。複数の第1分断膜は、第2方向に複数の第1導電層及び第2導電層を分断する。第2方向は、第1方向と交差する方向である。複数の第1分断膜は、第1方向と第3方向とに延在する。第3方向は、第1方向及び第2方向に交差する方向である。複数の第2分断膜は、第2導電層における隣り合う第1分断膜の間の領域を第2方向に分断する。複数の第2分断膜は、第1方向と第3方向とに延在する。第1半導体ピラーは、第1領域内を前記第1方向に延在する。第1領域は、第1導電層における隣り合う第1分断膜の間の領域である。第2半導体ピラーは、第2領域内を前記第1方向に延在する。第2領域は、第1導電層における隣り合う第1分断膜と第2分断膜と間の領域である。第1電荷蓄積層は、第1半導体ピラーと第1領域との間に配置されている。第2電荷蓄積層は、第2半導体ピラーと第2領域との間に配置されている。周辺回路は、第2導電層における第2領域に対応した領域に選択電位を供給する時に第2領域に対応した第1導電層に第1電圧を供給する。周辺回路は、第2導電層における第1領域に対応した領域に選択電位を供給する時に第1領域に対応した第1導電層に第2電圧を供給する。第2電圧は、第1電圧より高い電圧である。
図1は、第1の実施形態に係る半導体記憶装置の構成を示す斜視図である。 図2は、第1の実施形態に係る半導体記憶装置の構成を示すブロック図である。 図3は、第1の実施形態に係る半導体記憶装置に含まれるメモリセルアレイの構成を示す回路図である。 図4は、第1の実施形態に係る半導体記憶装置に含まれるメモリセルアレイの詳細を示す平面図である。 図5は、第1の実施形態に係る半導体記憶装置に含まれるメモリセルアレイの詳細を示す断面図である。 図6は、第1の実施形態に係る半導体記憶装置に含まれるメモリセルアレイの構成を示す平面図である。 図7は、第1の実施形態に係る半導体記憶装置に含まれるメモリセルアレイへの書き込み開始電圧の設定値を示す図である。 図8は、第1の実施形態に係る半導体記憶装置に含まれるメモリセルアレイに対する書き込み開始電圧の補正値を示す図である。 図9は、第1の実施形態に係る半導体記憶装置に含まれるメモリセルアレイに対する書き込み処理について説明するための図である。 図10は、第1の実施形態に係る半導体記憶装置に含まれるメモリセルアレイに対するステップアップ書き込み動作を説明するための図である。 図11は、第1の実施形態に係る半導体記憶装置の変形例に含まれるメモリセルアレイの詳細を示す平面図である。 図12は、第1の実施形態に係る半導体記憶装置の変形例に含まれるメモリセルアレイへの書き込み開始電圧の補正値を示す図である。 図13は、第1の実施形態に係る半導体記憶装置の変形例に含まれるメモリセルアレイに対する書き込みについて説明するための図である。 図14は、第1の実施形態に係る半導体記憶装置を含む半導体チップ上における書き込み開始電圧の補正値の分布を示す図である。 図15は、第2の実施形態に係る半導体記憶装置に含まれるメモリセルアレイに対する書き込み処理を説明するためのフローチャートである。 図16は、第2の実施形態に係る半導体記憶装置の変形例に含まれるメモリセルアレイに対する書き込み処理を説明するためのフローチャートである。 図17は、第3の実施形態に係る半導体記憶装置に含まれるメモリセルアレイに対する消去動作時の印加電圧を示す図である。 図18は、第3の実施形態に係る半導体記憶装置に含まれるメモリセルアレイに対する消去動作時の印加電圧を示す波形図である。 図19は、第3の実施形態に係る半導体記憶装置の変形例に含まれるメモリセルアレイに対する消去動作時の印加電圧を示す図である。 図20は、第3の実施形態に係る半導体記憶装置の変形例に含まれるメモリセルアレイに対する消去動作時の印加電圧を示す波形図である。
以下に実施の形態について図面を参照しながら説明する。図面中の同一部分には、同一番号を付してその詳しい説明は適宜省略し、異なる部分について説明する。なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
(第1の実施形態)
図1は、第1の実施形態に係る半導体記憶装置1のメモリセルアレイ2の構成を模式的に示す斜視図である。半導体記憶装置1は、3次元配置されたメモリセルを含むNAND型不揮発性記憶装置である。
以下の説明では、半導体基板SUBの表面に平行な平面内で互いに直交する方向をX方向及びY方向とし、より具体的には、X方向はワード線WLの延びる方向とし、Y方向はビット線BLの延びる方向とする。Z方向は、半導体基板SUBに直交する方向とする。このため、Z方向は、X方向及びY方向と直交する。
図1に示すように、半導体記憶装置1には、選択ゲートSGSと、ワード線WLと、選択ゲートSGDとが含まれる。選択ゲートSGSは、層間絶縁膜7を介して半導体基板SUBの上に積層される。図1の例では、選択ゲートSGSは3層設けられる。ワード線WLは、最上層の選択ゲートSGSの上に層間絶縁膜7を介して積層される。図1の例では、ワード線WLは8層設けられる。同じ層に含まれ分割された複数の選択ゲートを意味する。図1の例では、Y方向に分割された選択ゲートSGD0とSGD1が示されている。選択ゲートSGDは、最上層のワード線WLの上に層間絶縁膜7を介して積層される。選択ゲートSGS、ワード線WLおよび選択ゲートSGDは、それぞれX方向及びY方向に延びる板状である。
図1の例では、選択ゲートSGD、ワード線WL、及び選択ゲートSGSは、スリットSTによりY方向に分断され絶縁される。スリットSTは、半導体基板SUBに設けられ、X方向及びZ方向に延在する。
選択ゲートSGDは、例えば、絶縁層83によりY方向に分断される。絶縁層83は、ワード線WLの上方(+Z側)に設けられ、Y方向及びZ方向に延在する。このため、ワード線WL上には、選択ゲートSGD0と選択ゲートSGD1とがY方向に並んで配置される。図1の例では、選択ゲートSGD0およびSGD1は、それぞれ、3層設けられる。
半導体基板SUBは、例えば、シリコン基板である。選択ゲートSGS、ワード線WL、選択ゲートSGDは、例えば、タングステン(W)を含む金属層である。層間絶縁膜7および絶縁層83は、例えば、酸化シリコンを含む絶縁体である。
半導体記憶装置1は、複数の柱状体4をさらに備える。柱状体4は、選択ゲートSGS、ワード線WLおよび選択ゲートSGDを貫いて、その積層方向であるZ方向に延びる。半導体記憶装置1は、選択ゲートSGDの上方に設けられた複数のビット線BLと、ソース線SLと、をさらに備える。
柱状体4は、それぞれコンタクトプラグ31を介してビット線BLに電気的に接続される。例えば、選択ゲートSGD0を共有する柱状体4のうちの1つと、選択ゲートSGD1を共有する柱状体4のうちの1つは、1つのビット線BLに電気的に接続される。
なお、図1では、図示の簡略化のために、選択ゲートSGDとビット線BLとの間に設けられる層間絶縁膜を省略している。また、第1の実施形態では、選択ゲートSGDとして隣り合うスリットSTの間に4つの選択ゲートが設けられる。このため、図1における選択ゲートSGDAの−X側には、絶縁層83を介して選択ゲートSGD3と選択ゲートSGD4とがさらに配置されてもよい。
半導体記憶装置1のように3次元的構造を有する半導体記憶装置(メモリ)の場合、ワード線WLと柱状体4とが交差する部分がメモリセルとして機能するように構成され、複数のメモリセルが3次元的に配列されたメモリセルアレイ2が構成される。また、選択ゲートSGSと柱状体4とが交差する部分がソース側の選択ゲートとして機能し、選択ゲートSGD0,SGD1と柱状体4とが交差する部分がドレイン側の選択ゲートとする。半導体記憶装置1では、積層体におけるワード線WLの積層数を増やすことによって、より微細なパターニング技術を利用しなくても、記憶容量を増加することが可能である。
図2は、半導体記憶装置1の構成を示すブロック図である。
図2に示すように、半導体記憶装置1は、メモリセルアレイ2、周辺回路10、及びインタフェース20ソース線を有している。周辺回路10は、WL駆動回路11、SGS駆動回路12、SGD駆動回路13、SL駆動回路14、及びセンスアンプ回路15を含む。
WL駆動回路11は、ワード線WLへの印加電圧を制御する回路であり、SGS駆動回路12は、選択ゲートSGSに印加する電圧を制御する回路である。SGD駆動回路13は、選択ゲートSGDに印加する電圧を制御する回路であり、SL駆動回路14は、ソース線SLに印加する電圧を制御する回路である。センスアンプ回路15は、選択されたメモリセルからの信号に応じて読み出したデータを判定する回路である。
周辺回路10は、インタフェース20経由で外部(例えば、半導体記憶装置1が適用されるメモリシステムのメモリコントローラ)から入力された指示に基づいて、半導体記憶装置1の動作を制御する。例えば、周辺回路10は、書き込み指示を受けた場合、書き込みが指示されたアドレスのメモリセルをSGS駆動回路12、SGD駆動回路13、及びWL駆動回路11により選択し、Vpgm管理情報を参照しながら、選択メモリセルにデータに応じた電圧を印加して書き込む。また、周辺回路10は、読み出し指示を受けた場合、メモリセルアレイ2における指示されたアドレスのメモリセルからの信号に応じて読み出したデータをセンスアンプ回路15で判定し、そのデータをインタフェース20経由で外部(メモリコントローラ)へ出力する。
次に、メモリセルアレイ2の構成について図3を用いて説明する。図3は、メモリセルアレイ2の回路構成を示す回路図である。
メモリセルアレイ2は、各々が複数のメモリセルトランジスタMTの集合である複数のブロックBLKを有する。各ブロックBLKは、ワード線およびビット線に関連付けられたメモリセルトランジスタMTの集合である複数のストリングユニットSU0,SU1,SU2,SU3を有する。各ストリングユニットSU0〜SU3は、メモリセルトランジスタMTが直列接続された複数のメモリストリングMSTを有する。なお、ストリングユニットSU0〜SU3内のメモリストリングMSTの数は任意である。
複数のストリングユニットSU0,SU1,SU2,SU3は、複数の選択ゲートSGD0,SGD1,SGD3,SGD4に対応しているとともに選択ゲートSGSを共有しており、ブロックBLK0における複数の駆動単位として機能する。各ストリングユニットSUは、その対応する選択ゲートSGDと選択ゲートSGSとで駆動され得る。また、各ストリングユニットSUは、複数のメモリストリングMSTを含む。
各メモリストリングMSTは、例えば64個のメモリセルトランジスタMT(MT0〜MT63)および選択トランジスタSDT,SSTを含んでいる。メモリセルトランジスタMTは、コントロールゲートと電荷蓄積層とを有し、データを不揮発に保持する。そして64個のメモリセルトランジスタMT(MT0〜MT63)は、選択トランジスタSDTのソースと選択トランジスタSSTのドレインとの間に直列接続されている。なお、メモリストリングMST内のメモリセルトランジスタMTの個数は64個に限定されない。
各ストリングユニットSU0〜SU3における選択トランジスタSDTのゲートは、それぞれ選択ゲートSGDに接続される。これに対して各ストリングユニットSUにおける選択トランジスタSSTのゲートは、例えば選択ゲートSGSに共通接続される。
各ストリングユニットSU内にある各メモリストリングMSTの選択トランジスタSDTのドレインは、それぞれ異なるビット線BL0〜BLk(kは任意の2以上の整数)に接続される。また、ビット線BL0〜BLkは、複数のブロックBLK間で各ストリングユニットSU内にある1つのメモリストリングMSTを共通に接続する。更に、各選択トランジスタSSTのソースは、ソース線SLに共通に接続されている。
つまりストリングユニットSUは、異なるビット線BL0〜BLkに接続され、且つ同一の選択ゲートSGDに接続されたメモリストリングMSTの集合である。また各ブロックBLKは、ワード線WLを共通にする複数のストリングユニットSU0〜SU3の集合である。そしてメモリセルアレイ2は、ビット線BL0〜BLkを共通にする複数のブロックBLKの集合である。
なお、ワード線WLを共有するメモリセルトランジスタMTの群を「メモリセルグループMCG」と呼ぶことにすると、メモリセルグループMCGは、ワード線WLを介して一括して所定の電圧(例えば、書き込み電圧、読み出し電圧)を印加可能なメモリセルの集合の最小単位である。
次に、メモリセルアレイ2の具体的な構成について図4〜図6を用いて説明する。図4は、第1の実施形態に係る半導体記憶装置1に含まれるメモリセルアレイ2の詳細を示すXY平面図である。図5は、第1の実施形態に係る半導体記憶装置1に含まれるメモリセルアレイ2の詳細を示すZX断面図である。図6は、第1の実施形態に係る半導体記憶装置1に含まれるメモリセルアレイ2の構成を示すXY平面図である。
メモリセルアレイ2は、図4及び図5に示すように、半導体基板SUBの+Z側において、柱状体4がXY方向に2次元的に配列されるとともに、複数層のワード線WLが柱状体4で貫通されて3次元的なメモリセルの配列として構成される。
図4に示すように、XY平面視において、複数の柱状体4は、例えば、16列(16レーン)を構成するように配されている。各列(各レーン)は、X方向に沿って延びている。16列におけるY方向に近接する列(レーン)は、柱状体4の配置位置がX方向における配置ピッチの略半分で互いにシフトしている。XY平面視において、複数の柱状体4は、千鳥状に配列されていると見なすこともできる。各柱状体4は、Z方向に配置された複数のメモリトランジスタMT0〜MT63に対応している。すなわち、複数の柱状体4のXY方向の配列と各柱状体4に対応したメモリトランジスタMTのZ方向の配列とにより、複数のメモリトランジスタMTの3次元的な配列と複数の選択トランジスタSDTの配列とが構成される。
3次元的に配列された複数のメモリトランジスタMTのうち略同じZ座標で16列(16レーン)を構成する複数のメモリトランジスタMTは、例えばワード線WL63としての導電層6を共有し、周辺回路10から同じ制御電圧(書き込み電圧)が供給され得る。
また、複数の選択トランジスタSDTは、複数のメモリトランジスタMT0〜MT63の+Z側に配され、4列(4レーン)単位でグループ化される。すなわち、選択ゲートSGDとしての各導電層は、XZ方向に延びた略板状(略フィン形状)の絶縁膜(第2分断膜)83で複数の駆動電極膜61〜64に分割(分断)されている。2次元的に又は3次元的に配列された複数の選択トランジスタSDTのうち略同じZ座標の4列(4レーン)の選択トランジスタSDTは、例えば選択ゲートSGDとしての駆動電極膜を共有し、周辺回路10から同じ制御電圧(駆動電圧)が供給される。
これに応じて、複数のメモリトランジスタMTの配列は、4列(4レーン)単位でストリングユニットSU0〜SU3としてグループ化される。すなわち、各ストリングユニットSU0〜SU3は、ブロックBLK0における駆動電極膜61〜64による被駆動単位として機能する。すなわち、各ストリングユニットSU0〜SU3は、4列(4レーン)の選択トランジスタSDTと4列(4レーン)のメモリトランジスタMT0〜MT63と4列(4レーン)の選択トランジスタSSTとを含む(図3参照)。
メモリセルアレイ2における複数のストリングユニットSU0〜SU3のうち、スリットSTからの距離が近いストリングユニットSU0,SU3を外側のストリングユニットSU0,SU3と呼び、スリットSTからの距離が遠いストリングユニットSU1,SU2を内側のストリングユニットSU1,SU2と呼ぶことにする。外側のストリングユニットSU0,SU3は、スリットSTに接するストリングユニットとみなすこともでき、内側のストリングユニットSU1,SU2は、スリットSTに接しないストリングユニットとみなすこともできる。なお、外側のストリングユニットSU0,SU3を含む領域を外側領域RG_outerと呼び、内側のストリングユニットSU1,SU2を含む領域を内側領域RG_innerと呼んでもよい。
メモリセルアレイ2では、導電層6と絶縁層7とが交互に繰り返し積層され、さらに駆動電極膜61〜64と絶縁層7とが交互に繰り返し積層されている。各導電層6は、導電物(例えば、タングステンなどの金属)を主成分とする材料で形成され得る。各絶縁層7は、絶縁物(例えば、シリコン酸化物などの半導体酸化物)を主成分とする材料で形成され得る。導電層6は、ワード線WLとして機能する。駆動電極膜61〜64は、それぞれ、導電物(例えば、タングステンなどの金属)を主成分とする材料で形成され得る。駆動電極膜61は、選択ゲートSGD0として機能し、駆動電極膜62は、選択ゲートSGD1として機能し、駆動電極膜63は、選択ゲートSGD2として機能し、駆動電極膜64は、選択ゲートSGDとして機能する。
また、メモリセルアレイ2において、柱状部4は、コア絶縁膜41、半導体チャネル42、及び絶縁膜43を含む。コア絶縁膜41は、絶縁物(例えば、シリコン酸化物)を主成分とする材料で形成され得る。半導体チャネル42は、コア絶縁膜41を外側から囲むように配され柱状体4の中心軸に沿って延びた略円筒状の形状を含む。
半導体チャネル42は、メモリストリングMSにおけるチャネル領域(アクティブ領域)を含み、実質的に不純物を含まない半導体(例えば、ポリシリコン)を主成分とする材料で形成することができる。
絶縁膜43は、駆動電極膜61〜64又は導電層6(ワード線WL)と半導体チャネル42との間に配され、平面視において半導体チャネル42を囲っている。絶縁膜43は、半導体チャネル42の側面を覆っている。絶縁膜43は、導電層6(ワード線WL)と半導体チャネル42との間に配される部分において、電荷蓄積能力を有するように構成される。絶縁膜43は、図6に示すように、半導体チャネル42側から順に、トンネル絶縁膜431/電荷蓄積膜432/ブロック絶縁膜433の3層構造で構成され得る。トンネル絶縁膜431は、酸化物(例えば、シリコン酸化物)を主成分とする材料で形成され得る。電荷蓄積膜432は、窒化物(例えば、シリコン窒化物)を主成分とする材料で形成され得る。ブロック絶縁膜433は、酸化物(例えば、シリコン酸化物、金属酸化物またはそれらの積層)を主成分とする材料で形成され得る。すなわち、絶縁膜43は、導電層6(ワード線WL)と半導体チャネル42との間に配される部分において、電荷蓄積膜が1対の絶縁膜(トンネル絶縁膜、ブロック絶縁膜)で挟まれたONO型の3層構造を有していてもよい。また、絶縁膜43は、駆動電極膜61〜64と半導体チャネル42との間に配される部分において、ゲート絶縁膜の単層構造で構成されていてもよい。ゲート絶縁膜は、酸化物(例えば、シリコン酸化物)を主成分とする材料で形成され得る。
また、メモリセルアレイ2は、柱状構造物(ティアとも呼ぶ)が半導体膜44を介して複数積層されて柱状体4が構成されることがある。図5では、柱状体4が2ティアで構成される場合が例示されている。半導体膜44は、上下のティアの半導体チャネル42にそれぞれ電気的に接続されている。メモリセルアレイ2は、2ティアに対応してZ方向に分割された領域UR,LRを有する。領域URは、上側ティアに対応した領域であり、領域LRは、下側ティアに対応した領域である。領域URは、領域LRの+Z側の領域である。なお、選択トランジスタSDTに対応する領域を領域SGDRと呼び、選択トランジスタSSTに対応する領域を領域SGSRと呼ぶことにすると、領域SGDRは、領域URの+Z側に配され、領域SGSRは、領域LRの−Z側に配される。
領域URは、Z方向に所定数(例えば、2つ)にさらに分割されてもよく、領域UURと領域ULRとに分割され得る。領域UURは、領域ULRの+Z側の領域である。領域LRは、Z方向に所定数(例えば、2つ)にさらに分割されてもよく、領域LURと領域LLRとに分割され得る。領域LURは、領域LLRの+Z側の領域である。すなわち、各ストリングユニットSU0〜SU3内では、基板SBからの高さが高くなる順に、領域LLR、領域LUR、領域ULR、領域UURが配されている。領域LLRは、ワード線WL0〜WL15に対応するとともに、メモリセルMT0〜MT15に対応する。領域LURは、ワード線WL16〜WL30に対応するとともに、メモリセルMT16〜MT30に対応する。領域ULRは、ワード線WL31〜WL45に対応するとともに、メモリセルMT31〜MT45に対応する。領域UURは、ワード線WL46〜WL61に対応するとともに、メモリセルMT46〜MT61に対応する。
各メモリセルMTへの書き込み処理は、書き込み電圧を増加させながらベリファイOKとなるまで書き込み動作とベリファイ動作とが交互に繰り返されるISPP(Incremental Step Pulse Program)方式で行われ得る(図10参照)。この書き込み処理では、書き込み開始電圧の値に応じて書き込み時のループ回数が変わり、それに応じて書き込み時間WTが変わり得る。メモリセルアレイ2における各メモリセルMTの間で書き込み時間WTのばらつきを低減するためには、メモリセルMTごとにその書き込みやすさに応じて書き込み開始電圧を変えることが有効である。
そのような観点から、メモリセルアレイ2のROM領域に格納されたVpgm管理情報2b1は、図7に示すように、ワード線WLの単位で区分可能なメモリセルMTの大まかな物理位置と書き込み開始電圧の設定値Vwsとが対応付けられた設定情報を含む。図7は、書き込み開始電圧の設定値Vwsを示す図である。図7に示す設定情報では、ワード線WLの単位で区分可能なメモリセルMTの大まかな物理位置として、ブロックの識別情報(例えば、ブロック番号)と領域の識別情報(例えば、Z方向に分割された領域LLR、領域LUR、領域ULR、領域UURのいずれであるかを示す情報)とを含み、書き込み開始電圧の設定値Vwsとして、その物理位置に対応した設定値を含む。図7に示す設定情報を参照することで、メモリセルMTの大まかな物理位置に対応した書き込み開始電圧の設定値Vwsを把握することができる。例えば、ブロックBLK0の領域UURに属するメモリセルMTに対する書き込み開始電圧の設定値がVws=Vws1であることを把握できる。
一方、プロセス上の理由(犠牲膜をウェットエッチングで除去される際に図5に示す絶縁膜43がエッチャントに晒される実質的な時間が外側のストリングユニットより内側のストリングユニットで短いこと)により、図4に示す外側のストリングユニットSU0,SU3に比べて、内側のストリングユニットSU1,SU2は、絶縁膜43の膜厚が相対的に厚くなる。これにより、外側のストリングユニットSU0,SU3に比べて、内側のストリングユニットSU1,SU2は、同じ書き込み電圧が印加された時に情報が書き込まれにくくなる。
それに対して、メモリセルアレイ2のROM領域に格納された補正情報2b2は、図8に示すように、メモリセルMTのY位置と書き込み開始電圧の補正値ΔVwsとが対応付けられた補正情報を含む。例えば、図8に示す補正情報は、メモリセルMTのY位置、すなわちメモリセルMTの属するストリングユニットを示す情報として、ストリングユニット識別情報(例えば、Y方向に配列されたストリングユニットSU0、ストリングユニットSU1、ストリングユニットSU2、ストリングユニットSU3のいずれであるかを示す情報)を含む。補正情報は、メモリセルMTのZ位置、すなわちメモリセルMTの属する領域を示す情報として、領域識別情報(例えば、Z方向に配置された領域UUR、領域ULR、領域LUR、領域LLRのいずれであるかを示す情報)を含む。補正情報は、書き込み開始電圧の補正値ΔVwsとして、そのメモリセルMTの属するストリングユニット及び領域に対応した補正値を含む。この補正情報を参照することで、メモリセルMTのY位置(メモリセルMTの属するメモリストリングがSU0〜SU3のいずれであるのか)に対応した書き込み開始電圧の補正値ΔVwsを把握することができる。
例えば、図8に示す補正情報を異なるY位置について参照すると、外側のストリングユニットSU0及び領域UURに属するメモリセルMTに対する書き込み開始電圧Vwsの補正値がΔVws=0であることを把握でき、内側のストリングユニットSU1及び領域UURに属するメモリセルMTに対する書き込み開始電圧Vwsの補正値がΔVws=α1(>0)であることを把握できる。
すなわち、図8に示す補正情報を用いた制御を行うことで、書き込み開始時の外側のストリングユニットSU0,SU3に対する補正値ΔVwsに比べて、書き込み開始時の内側のストリングユニットSU1,SU2に対する補正値ΔVwsをより高くすることができる。
また、プロセス上の理由(犠牲膜をウェットエッチングで除去される際に絶縁膜43がエッチャントに晒される実質的な時間の外側及び内側間の時間差が上側の領域より下側の領域で短いこと)により、積層体LMBにおける上側の領域URに比べて、下側の領域LRは、絶縁膜43の外側ストリングユニット及び内側ストリングユニット間の膜厚差が相対的に小さくなる。
さらに細かく見ると、領域UR内における上側の領域UURに比べて、下側の領域ULRは、絶縁膜43の外側ストリングユニット及び内側ストリングユニット間の膜厚差が相対的に小さくなる。
同様に、領域LR内における上側の領域LURに比べて、下側の領域LLRは、絶縁膜43の外側ストリングユニット及び内側ストリングユニット間の膜厚差が相対的に小さくなる。
それに対して、メモリセルアレイ2のROM領域に格納された補正情報2b2は、図8に示すように、メモリセルMTのZ位置と書き込み開始電圧の補正値ΔVwsとが対応付けられた補正情報を含む。この補正情報を参照することで、メモリセルMTのZ位置(メモリセルMTの属する領域がZ方向に配置された領域UUR〜LLRのいずれであるのか)に対応した書き込み開始電圧の補正値ΔVwsを把握することができる。
例えば、図8に示す補正情報を異なるZ位置について参照すると、内側のストリングユニットSU1及び領域UURに属するメモリセルMTに対する書き込み開始電圧Vwsの補正値がΔVws=α1であることを把握できる。内側のストリングユニットSU1及び領域ULRに属するメモリセルMTに対する書き込み開始電圧Vwsの補正値がΔVws=α2(<α1)であることを把握できる。内側のストリングユニットSU1及び領域LURに属するメモリセルMTに対する書き込み開始電圧Vwsの補正値がΔVws=α3(<α2)であることを把握できる。内側のストリングユニットSU1及び領域LURに属するメモリセルMTに対する書き込み開始電圧Vwsの補正値がΔVws=α4(<α3)であることを把握できる。
すなわち、図8に示す補正情報を用いた制御を行うことで、書き込み開始時の上側の領域に対する補正値ΔVwsに比べて、書き込み開始時の下側の領域に対する補正値ΔVwsをより小さくすることができる。
周辺回路10は、図8に示すような補正値ΔVwsを用いて、書き込み開始電圧の補正を行い得る。書き込み開始電圧の設定値をVwsとし、補正値をΔVwsとすると、周辺回路10は、書き込み開始時にメモリセルMTに次の数式1で示される書き込み電圧Vpgmを印加する。
Vpgm=Vws+ΔVws・・・数式1
例えば、領域UURに属し且つ外側のストリングユニットSU0,SU3に属するメモリセルMTに対する書き込み指示を外部(メモリコントローラ)から受けると、周辺回路10は、図7に示す設定情報を参照して、書き込み開始電圧の設定値Vws=Vws1を特定し、図8に示す補正情報を参照して、書き込み開始電圧の補正値ΔVws=0を特定する。周辺回路10は、数式1により書き込み電圧Vpgm=Vws1を求めてWL駆動回路11へ通知する。
そして、図9(a)に示すように、SGD駆動回路13は、駆動電極膜61に選択電位VSLを有する駆動電圧VSGD0を印加し、駆動電極膜62,63,64に非選択電位VUSを有する駆動電圧VSGD1,VSGD2,VSGD3をそれぞれ印加する。図9は、第1の実施形態に係る半導体記憶装置1に含まれるメモリセルアレイ2に対する書き込み処理について説明するための図である。これにより、外側のストリングユニットSU0の選択トランジスタSDTがオンして各半導体チャネル42の電位が選択電位VSLに応じた電位に設定されるとともに、内側のストリングユニットSU1,SU2及び外側のストリングユニットSU3の選択トランジスタSDTがオフして各半導体チャネル42がフローティング状態になる。
それとともに、図9(b)に示すように、WL駆動回路11は、書き込み指示で指示されたアドレスに応じたワード線WL(例えば、ワード線WL63)としての導電層6に、書き込み電圧Vpgm=Vws1を印加する。図9(a)及び図9(b)は、それぞれ、外側のストリングユニットSU0に対する書き込み処理時の印加電圧を示す図であり、アクティブな制御ラインを実線で示し、ノンアクティブな制御ラインを破線で示している。メモリセルアレイ2におけるワード線WL63に対応する領域は、領域UURである(図5参照)。これにより、領域UURに属し且つ外側のストリングユニットSU0に属するメモリセルMTに対して、書き込み開始時に書き込み電圧Vpgm=Vws1が印加される。そして、周辺回路10は、書き込み電圧をステップ幅ΔV0で増加させながらWL駆動回路11による書き込み動作とセンスアンプ回路15によるベリファイ動作とをベリファイOKとなるまで交互に繰り返す。これにより、図10に実線で示すように、領域UURに属し且つ外側のストリングユニットSU0に属するメモリセルMTに対する書き込み処理が書き込み時間WT1で完了し得る。図10は、第1の実施形態に係る半導体記憶装置1に含まれるメモリセルアレイ2に対するステップアップ書き込み動作を説明するための図である。
このとき、非選択の内側のストリングユニットSU1,SU2及び非選択の外側のストリングユニットSU3では、フローティング状態になっている半導体チャネル42とワード線WLとしての導電層6とのカップリングにより、書き込み電圧の印加に応じて半導体チャネル42の電位がブースト電位に上昇され得ることにより、メモリセルMTに情報が書き込まれない。
また、例えば、領域UURに属し且つ内側のストリングユニットSU1,SU2に属するメモリセルMTに対する書き込み指示を外部(メモリコントローラ)から受けると、周辺回路10は、図7に示す設定情報を参照して、書き込み開始電圧の設定値Vws=Vws1を特定し、図8に示す補正情報を参照して、書き込み開始電圧の補正値ΔVws=α1を特定する。周辺回路10は、数式1により書き込み電圧Vpgm=Vws1+α1を求めてWL駆動回路11へ通知する。
そして、図9(c)に示すように、SGD駆動回路13は、駆動電極膜62,63に選択電位VSLを有する駆動電圧VSGD1,VSGD2をそれぞれ印加し、駆動電極膜61,64に非選択電位VUSを有する駆動電圧VSGD0,VSGD3をそれぞれ印加する。これにより、内側のストリングユニットSU1,SU2の選択トランジスタSDTがオンして各半導体チャネル42の電位が選択電位VSLに応じた電位に設定されるとともに、外側のストリングユニットSU0,SU3の選択トランジスタSDTがオフして各半導体チャネル42がフローティング状態になる。
それとともに、図9(d)に示すように、WL駆動回路11は、書き込み指示で指示されたアドレスに応じたワード線WL(例えば、ワード線WL63)としての導電層6に、書き込み電圧Vpgm=Vws1+α1を印加する。図9(c)及び図9(d)は、内側のストリングユニットSU1に対する書き込み処理時の印加電圧を示す図である。メモリセルアレイ2におけるワード線WL63に対応する領域は、領域UURである(図5参照)。これにより、領域UURに属し且つ内側のストリングユニットSU1に属するメモリセルMTに対して、書き込み開始時に書き込み電圧Vpgm=Vws1+α1が印加される。そして、周辺回路10は、書き込み電圧をステップ幅ΔV0で増加させながらWL駆動回路11による書き込み動作とセンスアンプ回路16によるベリファイ動作とをベリファイOKとなるまで交互に繰り返す。これにより、図10に波線で示すように、領域UURに属し且つ内側のストリングユニットSU1に属するメモリセルMTに対する書き込み処理が書き込み時間WT1’(≒WT1)で完了し得る。
このとき、非選択の外側のストリングユニットSU0,SU3及び非選択の内側のストリングユニットSU2では、フローティング状態になっている半導体チャネル42とワード線WLとしての導電層6とのカップリングにより、書き込み電圧の印加に応じて半導体チャネル42の電位がブースト電位に上昇され得ることにより、メモリセルMTに情報が書き込まれない。
図10に示されるように、書き込み開始時に外側のストリングユニットSU0,SU3のメモリセルMTに対して印加される書き込み電圧Vpgmに比べて、書き込み開始時に内側のストリングユニットSU1,SU2のメモリセルMTに対して印加される書き込み電圧Vpgmをより高くすることで、書き込み処理時におけるループ回数を外側のストリングユニットSU0,SU3と内側のストリングユニットSU1,SU2とで均等にすることができ、互いに書き込み時間WTを略一致させることができる。
以上のように、第1の実施形態では、半導体記憶装置1において、周辺回路10は、メモリセルアレイ2における外側のストリングユニットSU0,SU3のメモリセルMTに情報を書き込む時より内側のストリングユニットSU1,SU2のメモリセルMTに情報を書き込む時により高い書き込み電圧Vpgmを印加する。これにより、複数のメモリセルMTの間でその書き込み速度を書き込み速度が速いメモリセルに合わせることが可能になるため、半導体記憶装置1において全体として書き込み性能を向上できる。
例えば、メモリセルアレイ2におけるスリットSTに近い内側のストリングユニットSU0,SU3に比べて、スリットSTから遠い外側のストリングユニットSU1,SU2は、絶縁膜43の膜厚が相対的に厚くなり、同じ書き込み電圧が印加された時に情報が書き込まれにくくなる。
それに対して、周辺回路10は、外側のストリングユニットSU0,SU3のメモリセルMTに情報を書き込む時より内側のストリングユニットSU0,SU3のメモリセルMTに情報を書き込む時により高い書き込み電圧をWL駆動回路11から印加させる。これにより、複数のメモリセルMTの間で書き込み速度が速いメモリセルMTに合わせることが可能になり、半導体記憶装置1全体としての書き込み性能を向上できる。
なお、書き込み開始電圧の補正値は、多段階的に変えてもよい。例えば、第1の実施形態の変形例として、半導体記憶装置1では、図11に示すように、XY平面視において、複数の柱状体4が、例えば、20列(20レーン)を構成するように配されていてもよい。図11は、第1の実施形態に係る半導体記憶装置1の変形例に含まれるメモリセルアレイ2の詳細を示すXY平面図である。2図11に示すメモリセルアレイ2は、図4に示すストリングユニットSU1とストリングユニットSU2との間にストリングユニットSU4を追加することで構成される。6565なお、外側のストリングユニットSU0,SU3を含む領域を外側領域RG_outerと呼び、内側のストリングユニットSU1,SU2を含む領域を内側領域RG_innerと呼び、最も内側のストリングユニットSU4を含む領域を最内側領域RG_most_innerと呼んでもよい。
これに応じて、メモリセルアレイ2のROM領域に格納された補正情報2b2は、図12に示すように、メモリセルMTのY位置と書き込み開始電圧の補正値ΔVwsとが多段階的に対応付けられた補正情報を含み得る。この補正情報を異なるY位置について参照すると、メモリセルMTのY位置に対応した書き込み開始電圧の補正値ΔVwsを把握することができる。例えば、外側SU0,SU3→内側SU1,SU2→最内側SU4とみていくと、書き込み開始電圧Vwsの補正値ΔVwsが「0」→「α1(>0)」→「β1(>α1>0)」と多段階的に高くなっていることが把握できる。
すなわち、図12に示す補正情報2b2を用いた制御を行うことで、書き込み開始時の外側のストリングユニットSU0,SU3に対する補正値ΔVwsに比べて、書き込み開始時の内側のストリングユニットSU1,SU2に対する補正値ΔVwsをより高くすることができる。また、図12に示す補正情報を用いた制御を行うことで、書き込み開始時の内側のストリングユニットSU1,SU2に対する補正値ΔVwsに比べて、書き込み開始時の最も内側のストリングユニットSU4に対する補正値ΔVwsをより高くすることができる。
また、補正情報2b2は、図12に示すように、メモリセルMTのZ位置(メモリセルMTの属する領域がZ方向に配置された領域UUR〜LLRのいずれであるのか)と書き込み開始電圧の補正値ΔVwsとが対応付けられた補正情報を含む。この補正情報を異なるZ位置について参照すると、例えば、最内側SU4について、領域UURに属するメモリセルMTに対する書き込み開始電圧の補正値ΔVws=β1(>0)であることを把握でき、領域ULRに属するメモリセルMTに対する書き込み開始電圧の補正値ΔVws=β2(<β1,>0)であることを把握でき、領域LURに属するメモリセルMTに対する書き込み開始電圧の補正値ΔVws=β3(<β2,>0)であることを把握でき、領域LLRに属するメモリセルMTに対する書き込み開始電圧の補正値ΔVws=β4(<β3,>0)であることを把握できる。
すなわち、図12に示す補正情報2b2を用いた制御を行うことで、例えば、最も内側のストリングユニットSU4について、書き込み開始時の上側の領域に対する補正値ΔVwsに比べて、書き込み開始時の下側の領域に対する補正値ΔVwsをより小さくすることができる。
また、本変形例では、図13に示すように、メモリセルアレイ2において、駆動電極膜62(選択ゲートSGD1)と駆動電極膜63(選択ゲートSGD3)との間に駆動電極膜65(選択ゲートSGD5)が追加されている。図13は、第1の実施形態に係る半導体記憶装置1の変形例に含まれるメモリセルアレイ2に対する書き込み処理について説明するための図である。
例えば、(ワード線WL63に対応する)領域UURに属し且つ外側のストリングユニットSU0に属するメモリセルMTに対する書き込み処理は、図13(a)及び図13(b)に示すように、第1の実施形態における図9(a)及び図9(b)で示す書き込み処理と同様に行われる。
また、例えば、(ワード線WL63に対応する)領域UURに属し且つ内側のストリングユニットSU1に属するメモリセルMTに対する書き込み処理は、図13(c)及び図13(d)に示すように、第1の実施形態における図9(c)及び図9(d)で示す書き込み処理と同様に行われる。
また、例えば、領域UURに属し且つ最も内側のストリングユニットSU4に属するメモリセルMTに対する書き込み処理は、次のように行われる。書き込み指示を外部(メモリコントローラ)から受けると、周辺回路10は、図7に示す設定情報を参照して、書き込み開始電圧の設定値Vws=Vws1を特定し、図12に示す補正情報を参照して、書き込み開始電圧の補正値ΔVws=β1を特定する。周辺回路10は、数式1により書き込み電圧Vpgm=Vws1+β1を求めてWL駆動回路11へ通知する。
そして、図13(e)に示すように、SGD駆動回路13は、駆動電極膜65に選択電位VSLを有する駆動電圧VSGD4を印加し、駆動電極膜61,62,63,64に非選択電位VUSを有する駆動電圧VSGD0,VSGD1,VSGD2,VSGD3をそれぞれ印加する。これにより、最も内側のストリングユニットSU4の選択トランジスタSDTがオンして各半導体チャネル42の電位が選択電位VSLに応じた電位に設定されるとともに、外側のストリングユニットSU0,SU3及び若干内側のストリングユニットSU1,SU2の選択トランジスタSDTがオフして各半導体チャネル42がフローティング状態になる。
それとともに、図13(f)に示すように、WL駆動回路11は、書き込み指示で指示されたアドレスに応じたワード線WL(例えば、ワード線WL63)としての導電層6に、書き込み電圧Vpgm=Vws1+β1を印加する。図13(e)及び図13(f)は、最も内側のストリングユニットSU4に対する書き込み処理時の印加電圧を示す図であり、アクティブな制御ラインを実線で示し、ノンアクティブな制御ラインを破線で示している。メモリセルアレイ2におけるワード線WL63に対応する領域は、領域UURである(図5参照)。これにより、領域UURに属し且つ最も内側のストリングユニットSU4に属するメモリセルMTに対して、書き込み開始時に書き込み電圧Vpgm=Vws1+β1が印加される。そして、周辺回路10は、書き込み電圧をステップ幅ΔV0で増加させながらWL駆動回路11による書き込み動作とセンスアンプ回路16によるベリファイ動作とをベリファイOKとなるまで交互に繰り返す。これにより、領域UURに属し且つ最も内側のストリングユニットSU4に属するメモリセルMTに対する書き込み処理が書き込み時間WT1(図10参照)に略等しい時間で完了し得る。
このとき、非選択の外側のストリングユニットSU0,SU3及び非選択の内側のストリングユニットSU1,SU2では、フローティング状態になっている半導体チャネル42とワード線WLとしての導電層6とのカップリングにより、書き込み電圧の印加に応じて半導体チャネル42の電位がブースト電位に上昇され得ることにより、メモリセルMTに情報が書き込まれない。
このように、書き込み開始時に外側のストリングユニットSU0,SU3のメモリセルMTに対して印加される書き込み電圧Vpgmに比べて、書き込み開始時に内側のストリングユニットSU1,SU2のメモリセルMTに対して印加される書き込み電圧Vpgmをより高くする。また、書き込み開始時に内側のストリングユニットSU1,SU2のメモリセルMTに対して印加される書き込み電圧Vpgmに比べて、書き込み開始時に最も内側のストリングユニットSU4のメモリセルMTに対して印加される書き込み電圧Vpgmをより高くする。これにより、書き込み処理時におけるループ回数を外側のストリングユニットSU0,SU3と内側のストリングユニットSU1,SU2と最も内側のストリングユニットSU4とで互いに均等にすることができ、互いに書き込み時間を略一致させることができる。したがって、メモリセルアレイ2における複数のメモリセルMTの間でその書き込み速度を書き込み速度が速いメモリセルに合わせることが可能になるため、半導体記憶装置1の書き込み性能を全体として向上できる。
あるいは、半導体記憶装置1が半導体チップとして実装される場合、書き込み開始電圧の補正値は、半導体チップ内における位置(すなわち、基板SBにおける位置)に応じて変えてもよい。例えば、プロセス上の理由(犠牲膜をウェットエッチングで除去される際に絶縁膜43がエッチャントに晒される実質的な時間が半導体チップにおける+X側の領域より−X側領域で短いことなど)により、半導体チップにおける+X側の領域に比べて、−X側領域は、内側・外側のストリングユニット間における絶縁膜43の膜厚差が相対的に小さくなり得る。
それに対して、メモリセルアレイ2のROM領域に格納された補正情報2b2は、図14に示すように、半導体チップCHP1内におけるXY位置と書き込み開始電圧の補正値ΔVwsとが対応付けられた補正情報を含み得る。図14は、第1の実施形態に係る半導体記憶装置を含む半導体チップ上における書き込み開始電圧の補正値の分布を示す図である。図14に示す補正情報は、メモリセルMTのXY位置として、半導体チップCHP1内の物理位置を示す情報(例えば、半導体チップCHP1内の座標を示す情報、又は周辺回路10で管理された物理アドレスを示す情報など)を含み、書き込み開始電圧の補正値ΔVwsとして、そのXY位置に対応した補正値を含む。図14では、補正値ΔVwsの値を色の濃さ(線の密度)で示し、色が濃いほど補正値ΔVwsの値が小さいことを示している。図14に示す補正情報を参照することで、メモリセルMTの半導体チップCHP1内のXY位置に対応した書き込み開始電圧の補正値ΔVwsを把握することができる。
また、図14に示す補正情報は、プレーンPLN0,PLN1の物理位置がマッピングされていてもよく、さらに、各プレーンPLN0,PLN1の各ブロックBLK0〜BLKnの物理位置がマッピングされていてもよい。各プレーンPLN0,PLN1は、メモリセルアレイ2が分割されて構成され、メモリセルアレイ2内で互いに並列にアクセスされることが可能なサブアレイである。各プレーンPLN0,PLN1は、複数のブロックBLK0,BLK1,・・・,BLKn(nは任意の2以上の整数)を有する。この場合、図14に示す補正情報を参照することにより、各プレーンPLN0,PLN1に対する書き込み開始電圧の補正値ΔVwsを大まかに把握することができ、さらに、各ブロックBLK0〜BLKnに対する書き込み開始電圧の補正値ΔVwsを大まかに把握することができる。
すなわち、図14に示す補正情報を用いた制御を行うことで、内側のストリングユニットの補正値ΔVwsを、半導体チップ内の領域ごとに制御でき、例えば半導体チップにおける+X側の領域より−X側領域でより小さくすることができる。
あるいは、半導体記憶装置が半導体ウェハとして実装される場合、書き込み開始電圧の補正値は、半導体ウェハ内におけるメモリセルMTの位置(すなわち、基板SBにおけるメモリセルMTの位置)に応じて変えてもよい。例えば、プロセス上の理由(犠牲膜をウェットエッチングで除去される際に絶縁膜43がエッチャントに晒される実質的な時間が半導体ウェハにおける中心側の領域より周辺側領域で短いことなど)により、半導体ウェハにおける中心側の領域に比べて、周辺側領域は、内側・外側のストリングユニット間における絶縁膜43の膜厚差が相対的に小さくなり得る。
それに対して、半導体ウェハ内の位置に応じた補正情報を用いた制御を行うことで、内側のストリングユニットの補正値ΔVwsを、半導体ウェハ内の領域ごとに制御でき、例えば半導体ウェハにおける中心側の領域より周辺側領域でより小さくすることができる。
(第2の実施形態)
次に、第2の実施形態にかかる半導体記憶装置について説明する。以下では、第1の実施形態と異なる部分を中心に説明する。
第1の実施形態では、3次元メモリにおける列(レーン)数の増加に伴う外側のレーンと内側のレーンとの間で生じ得る書き込み性能の差の増加に対して、書き込み電圧を工夫することで、書き込み性能の向上を図っている。
第2の実施形態では、3次元メモリにおける列(レーン)数の増加に伴う外側のレーンと内側のレーンとの間で生じ得る書き込み性能の差の増加に対して、書き込み動作の順番を工夫することで、書き込み性能の向上を図る。
例えば、メモリセルアレイ2におけるスリットSTに近いストリングユニットSUは、スリットSTから遠いストリングユニットSUに比べて、絶縁膜43の膜厚が相対的に薄くなっており、プログラムディスターブを受けやすい。プログラムディスターブとは、書き込み処理時に発生するストレスによりメモリセルの書き込み状態が不良となる現象である。
また、同一ブロックBLK内の複数のストリングユニットSU0〜SU3は、駆動電極膜61〜64が互いに分離されている(図9(a)参照)が、ワード線WLとしての導電層6を共有している(図9(b)参照)。このため、各ストリングユニットSUは、他のストリングユニットSUの書き込み動作時に、非選択であってもワード線WL(導電層6)からの電圧印加の影響を受け得る。すなわち、メモリセルアレイ2におけるスリットSTに近いストリングユニットSU(外側のストリングユニットSU)は、スリットSTから遠いストリングユニットSU(内側のストリングユニットSU)に比べて、非選択の状態におけるワード線WL(導電層6)からの電圧印加により、プログラムディスターブを受けやすい。
そこで、第2の実施形態では、半導体記憶装置において、外側のストリングユニットSUの書き込み動作を内側のストリングユニットSUの書き込み動作より後に行うことで、外側のストリングユニットSUに対するプログラムディスターブの緩和を図る。
例えば、図4に示すブロックBLKにおける物理アドレスがストリングユニットSU0,SU1,SU2,SU3の順番に割り振られているとする。半導体記憶装置1を制御するメモリコントローラ(図示せず)は、ホスト(図示せず)から、シーケンシャルな論理アドレスを含むシーケンシャルライトコマンドを受信すると、論理アドレスを物理アドレスに変換し、シーケンシャルな物理アドレスを含む書き込み指示を半導体記憶装置1に対して発行する。半導体記憶装置1において、周辺回路10は、ブロックBLK0に対するシーケンシャルな物理アドレスを含む書き込み指示を受けた場合、通常、図15(a)に示すように、物理アドレスの順番にデータを書き込むように、書き込み順を制御する。これに応じて、WL駆動回路11は、ストリングユニットSU0,SU1,SU2,SU3を順番に選択状態にして書き込み動作を行う(すなわち、S1,S2,S3,S4を順番に行う)。
それに対して、第2の実施形態では、シーケンシャルな物理アドレスを含む書き込み指示を受けた場合、周辺回路10は、データの書き込み動作の順番を物理アドレスの順番から(ストリングユニット単位で)変更する。周辺回路10は、図15(b)に示すように、内側のストリングユニットSU2,SU3の書き込み処理(S11,S12)を行った後に、外側のストリングユニットSU0,SU3の書き込み処理(S13,S14)を行うように、書き込み順を制御する。図15は、第2の実施形態に係る半導体記憶装置に含まれるメモリセルアレイに対する書き込み処理を説明するためのフローチャートである。すなわち、周辺回路10は、S11の処理、S12の処理を順次に行い、その後、S13の処理、S14の処理を順次に行うように、書き込み順を制御する。これにより、S11,S12の処理において外側のストリングユニットSU0,SU3がプログラムディスターブを受けないようにすることができ、外側のストリングユニットSU0,SU3のプログラムディスターブを緩和できる。
なお、周辺回路10は、固定的に書き込み順の制御を行ってもよい。例えば、出荷前において、図15(b)に示す書き込み順の制御情報をメモリセルアレイ2のROM領域に格納しておく。周辺回路10は、半導体記憶装置1の起動時等の初期設定の期間において、ROM領域に格納された書き込み順の制御情報を読み出してステートマシンに設定する。周辺回路10は、ステートマシンを用いて、書き込み順の制御を行う。例えば、周辺回路10は、ブロックBLK0に対するシーケンシャルな物理アドレスを含む書き込み指示を受けた場合、図15(b)に示す書き込み順の制御を行う。WL駆動回路11は、ステートマシンによる書き込み順の制御のもと、図15(b)に示す書き込み順で各ストリングユニットに書き込み動作を行う。また、書き込み順の制御は、ブロックごとに異ならせてもよく、書き込み順の制御情報は、ブロックの物理位置と書き込み順の情報とが対応付けられていてもよい。
以上のように、第2の実施形態では、半導体記憶装置1において、外側のストリングユニットSU0,SU3の書き込み動作を内側のストリングユニットSU2,SU3の書き込み動作より後に行う。これにより、外側のストリングユニットSU0,SU3に対するプログラムディスターブを緩和できる。
なお、周辺回路10は、書き込み順の適切化をさらに行ってもよい。適切化とは、プログラムディスターブを受けにくくするように、複数の書き込み動作の順番を調整することを指している。この適切化は、出荷前における検査工程で行われてもよいし、出荷後における半導体記憶装置1の起動時等の初期化動作の一環として行われてもよい。また、出荷前において、適切化後の書き込み順の制御情報をメモリセルアレイ2のROM領域に格納しておいてもよい。
例えば、周辺回路10は、S13→S14の順番とS14→S13の順番とのいずれがプログラムディスターブを受けにくいか確認する。周辺回路10は、それぞれの順番について、書き込み動作及びベリファイ動作を行い、ベリファイOKとなるループ回数を比較することなどによりプログラムディスターブの受けにくさを確認してもよい。周辺回路10は、S13→S14の順番よりS14→S13の順番がプログラムディスターブを受けにくいことを確認した場合、図15(b)に示す書き込み順をS14→S13の順番に変更する。これにより、半導体記憶装置1におけるプログラムディスターブをさらに緩和できる。
あるいは、例えば、周辺回路10は、S11→S12の順番とS12→S11の順番とのいずれがプログラムディスターブを受けにくいか確認する。周辺回路10は、それぞれの順番について、書き込み動作及びベリファイ動作を行い、ベリファイOKとなるループ回数を比較することなどによりプログラムディスターブの受けにくさを確認してもよい。周辺回路10は、S11→S12の順番よりS12→S11の順番がプログラムディスターブを受けにくいことを確認した場合、図15(b)に示す書き込み順をS12→S11の順番に変更する。これにより、半導体記憶装置1におけるプログラムディスターブをさらに緩和できる。
あるいは、例えば、周辺回路10は、S11→S12の順番とS12→S11の順番とのいずれがプログラムディスターブを受けにくいか確認し、S13→S14の順番とS14→S13の順番とのいずれがプログラムディスターブを受けにくいか確認する。周辺回路10は、それぞれの順番について、書き込み動作及びベリファイ動作を行い、ベリファイOKとなるループ回数を比較することなどによりプログラムディスターブの受けにくさを確認してもよい。周辺回路10は、S11→S12の順番よりS12→S11の順番がプログラムディスターブを受けにくいことを確認し、S13→S14の順番よりS14→S13の順番がプログラムディスターブを受けにくいことを確認した場合、図15(b)に示す書き込み順をS12→S11→S14→S13の順番に変更する。これにより、半導体記憶装置1におけるプログラムディスターブをさらに緩和できる。
あるいは、書き込み順の制御は、多段階的に行われてもよい。例えば、図11に示すブロックBLKにおける物理アドレスがストリングユニットSU0,SU1,US4,SU2,SU3の順番に割り振られているとする。周辺回路10は、ブロックBLKに対するシーケンシャルな物理アドレスを含む書き込み指示を受けた場合、データの書き込み動作の順番を物理アドレス順の順番から(ストリングユニット単位で)多段階的に変更する。
具体的には、周辺回路10は、書き込み順を、図16(a)に示す物理アドレス順の順番(S1d→S2d→S3d→S4d→S5d)から図16(b)に示す順番に変更する。周辺回路10は、図16(b)に示すように、最も内側のストリングユニットSU4の書き込み処理(S11d)を行った後に、内側のストリングユニットSU1,SU2の書き込み処理(S12d,S13d)を行い、さらにその後に、外側のストリングユニットSU0,SU3の書き込み処理(S14d,S15d)を行うように、書き込み順を制御する。すなわち、周辺回路10は、S11dの処理を行い、S12dの処理、S13dの処理を順次に行い、その後、S14dの処理、S15dの処理を順次に行うように、書き込み順を制御する。これに応じて、WL駆動回路11は、S11d→S12d→S13d→S14d→S15dの順番で書き込み動作を行う。これにより、S11d,S12及びS13dの処理において外側のストリングユニットSU0,SU3がプログラムディスターブを受けないようにすることができ、外側のストリングユニットSU0,SU3のプログラムディスターブを緩和できる。
なお、周辺回路10は、固定的に書き込み順の制御を行ってもよい。例えば、出荷前において、図16(b)に示す書き込み順の制御情報をメモリセルアレイ2のROM領域に格納しておく。周辺回路10は、半導体記憶装置1の起動時等の初期設定の期間において、ROM領域に格納された書き込み順の制御情報を読み出してステートマシンに設定する。周辺回路10は、ステートマシンを用いて、書き込み順の制御を行う。例えば、周辺回路10は、ブロックBLK0に対するシーケンシャルな物理アドレスを含む書き込み指示を受けた場合、図16(b)に示す書き込み順の制御を行う。WL駆動回路11は、ステートマシンによる書き込み順の制御のもと、図16(b)に示す書き込み順で各ストリングユニットに書き込み動作を行う。また、書き込み順の制御は、ブロックごとに異ならせてもよく、書き込み順の制御情報は、ブロックの物理位置と書き込み順の情報とが対応付けられていてもよい。
このように、書き込み順の制御を多段階的に行うことで、外側のストリングユニットSU0,SU3に対するプログラムディスターブをさらに緩和できる。
また、3次元メモリにおける列(レーン)数の増加に伴う外側のレーンと内側のレーンとの間で生じ得る書き込み性能の差の増加に対して、書き込み電圧の工夫に加えて、書き込み順の工夫を行ってもよい。すなわち、外側のストリングユニットの書き込み動作を内側のストリングユニットの書き込み動作より後に行うとともに、内側のストリングユニットに対する高い書き込み電圧を外側のストリングユニットに対する書き込み電圧より高く制御してもよい。これにより、外側のストリングユニットに対するプログラムディスターブをさらに緩和できるとともに、複数のメモリセルMTの間でその書き込み速度を書き込み速度が速いメモリセルに合わせることが可能になる。この結果、半導体記憶装置において全体として書き込み性能をさらに向上できる。
(第3の実施形態)
次に、第3の実施形態にかかる半導体記憶装置について説明する。以下では、第1の実施形態及び第2の実施形態と異なる部分を中心に説明する。
第1の実施形態及び第2の実施形態では、半導体記憶装置の書き込み性能を向上するための工夫を行っている。
第3の実施形態では、半導体記憶装置の消去性能を向上するための工夫を行う。
3次元メモリにおける列(レーン)数の増加に伴い外側のレーンより内側のレーンの絶縁膜(ブロック絶縁膜)が厚くなり得ることに起因して、外側のレーンと内側のレーンとの間で消去性能の差が生じ得る。すなわち、メモリセルアレイ2における内側のストリングユニットに比べて、外側のストリングユニットは、絶縁膜43の膜厚が相対的に薄くなり、メモリセルMTにおけるコントロールゲート(ワード線WL)及びチャネル領域(半導体チャネル42)間に同じ消去電圧が印加された時に情報が消去されやすい。例えば、同一ブロックBLKに対して一括して消去電圧が印加され、消去ベリファイ動作でブロックBLK全体がベリファイOKとなることで消去動作が完了される。このとき、外側のストリングユニットSUのメモリセルMTの閾値分布は、内側のストリングユニットSUのメモリセルMTの閾値分布より深い位置(低電圧側の位置)に分布する傾向にある。同一ブロックBLK内において、複数のストリングユニットSU間の消去後の閾値分布のばらつきにより、複数のストリングユニットSU間で信頼性のばらつきが発生する可能性がある。
そこで、第3の実施形態では、半導体記憶装置において、外側のストリングユニットSUの消去動作の条件を内側のストリングユニットSUの消去動作の条件より緩和することで、複数のストリングユニットSU間における消去性能の均質化及びそれによる消去後の閾値分布のばらつきの低減を図る。
メモリセルアレイ2における各メモリセルMTの消去処理について、図5を用いて説明する。消去処理では、ブロックBLKにおける各ワード線WL(各導電膜)に相対的に低い電圧(ワード線電圧)を印加し、チャネル領域(半導体チャネル42)にはビット線BL及び/又はソース線SL(半導体基板SUBにおけるソース層)を介して相対的に高い電圧(チャネル印加電圧)を印加し、選択ゲートSGD及び/又は選択ゲートSGSにチャネル電圧より所定値低く且つワード線電圧より高い電圧を印加する。これにより、選択トランジスタSDT及び/又は選択トランジスタSSTのドレイン近傍でGIDL(Gate Induced Drain Leakage)により電子・正孔対を発生させ、正孔をチャネル領域(半導体チャネル42)から各メモリセルMTの絶縁膜43(電荷蓄積層)に注入することで、各メモリセルMTの絶縁膜43に蓄積された電荷を消去し、各メモリセルMTの閾値電圧を低下させて消去状態にする。この消去処理は、通常、ブロックBLKに対して、共通の条件により一括して行われる。
それに対して、第3の実施形態では、メモリセルアレイ2におけるブロックBLKに対する消去処理において、外側のストリングユニットSUの消去動作の条件を内側のストリングユニットSUの消去動作の条件より緩和する。すなわち、外側のストリングユニットSUにおけるチャネル印加電圧とワード線電圧との電圧差を、チャネル印加電圧の値を変えることで、内側のストリングユニットにおけるチャネル印加電圧とワード線電圧との電圧差より小さくする。チャネル印加電圧はビット線電圧及び/又はソース線電圧で制御することになるが、ソース線SL及び/又はビット線BLは、外側のストリングユニットSUと内側のストリングユニットSUとで共通化されている。このため、ブロックBLKにおける内側のストリングユニットSUの消去動作と外側のストリングユニットSUの消去動作とを時間的に別々に行う。
例えば、メモリセルアレイ2のROM領域に格納された消去管理情報2b3は、図17に示すように、内側のストリングユニットSUの消去動作時と外側のストリングユニットSUの消去動作時とのそれぞれについて各印加電圧の条件を含む。図17は、第3の実施形態における消去動作時の印加電圧の設定値を示す図である。
電圧VSL及び/又は電圧VBLは、ソース線SL及び/又はビット線BLへの印加電圧、すなわち、チャネル領域(半導体チャネル42)への印加電圧(チャネル印加電圧)を示している。電圧VSGD1,VSGD2は、内側のストリングユニットSU1,SU2の駆動電極膜62,63(図9参照)への印加電圧(内側SGD駆動電圧)を示している。電圧VSGD0,VSGD3は、外側のストリングユニットSU0,SU3の駆動電極膜61,64(図9参照)への印加電圧(外側SGD駆動電圧)を示している。電圧VSGSは、選択ゲートSGSとしての導電層6−1(図5参照)への印加電圧(SGS駆動電圧)を示している。電圧VWL0〜VWL63は、ワード線WL0〜WL63としての導電層6−2〜6−65への印加電圧(ワード線電圧)を示している。
消去動作の選択・非選択は、SGD駆動電圧の電位を選択電位・非選択電位にすることで制御する。また、チャネル領域に注入させる正孔の量をチャネル電圧と選択電位を有するSGD駆動電圧との電圧差で制御する。
図17に示す補正情報を参照すると、内側のストリングユニットSUの消去動作時に、内側SGD駆動電圧VSGD1,VSGD2の設定値が選択電位VSL1(例えば、5V)であり、外側SGD駆動電圧VSGD0,VSGD3の設定値が非選択電位VUS1(例えば、10V)である。これにより、チャネル印加電圧VSL,VBLの設定値VERA1と内側SGD駆動電圧VSGD1,VSGD2の設定値VSL1との電圧差(例えば、20V−5V=15V)が、チャネル印加電圧VSL,VBLの設定値VERA1と外側SGD駆動電圧VSGD0,VSGD3の設定値VUS1との電圧差(例えば、20V−10V=10V)より大きくなる。この結果、実質的に、内側のストリングユニットSUで選択的に正孔がチャネル領域に注入され、内側のストリングユニットSUで選択的に消去動作が行われる。
同様に、外側のストリングユニットSUの消去動作時に、内側SGD駆動電圧VSGD1,VSGD2の設定値が非選択電位VUS1(例えば、10V)であり、外側SGD駆動電圧VSGD0,VSGD3の設定値が選択電位VSL1(例えば、5V)である。これにより、チャネル印加電圧VSL,VBLの設定値VERA2と外側SGD駆動電圧VSGD0,VSGD3の設定値VSL1との電圧差(例えば、18V−5V=13V)が、チャネル印加電圧VSL,VBLの設定値VERA2と内側SGD駆動電圧VSGD1,VSGD2の設定値VUS1との電圧差(例えば、18V−10V=8V)より大きくなる。この結果、実質的に、外側のストリングユニットSUで選択的に正孔がチャネル領域に注入され、外側のストリングユニットSUで選択的に消去動作が行われる。
このとき、外側のストリングユニットSUの消去動作時におけるチャネル印加電圧VSL,VBLの設定値VERA2が、内側のストリングユニットSUの消去動作時におけるチャネル印加電圧VSL,VBLの設定値VERA1より小さくなっている。これにより、外側のストリングユニットSUの消去動作時にチャネル領域に注入される正孔の量が内側のストリングユニットSUの消去動作時にチャネル領域に注入される正孔の量より抑制され得る。すなわち、図17に示す補正情報を用いた制御を行うことで、外側のストリングユニットSUの消去動作の条件を内側のストリングユニットSUの消去動作の条件より緩和できる。
なお、内側のストリングユニットSUの消去動作時と外側のストリングユニットSUの消去動作時とのいずれにおいても、SGS駆動電圧VSGSの設定値は非選択電位VUS2(例えば、20V)であり、WL駆動電圧VWL0〜VWL63の設定値は消去電位VERA_WL(例えば、0.5V)である。
例えば、周辺回路10は、図17に示す補正情報を用いて、図18に示すような消去動作の制御を行う。図18は、第3の実施形態における消去動作を示す波形図である。
タイミングt1において、周辺回路10は、ソース線SL及び/又はビット線BLを介して、チャネル領域(半導体チャネル42)へチャネル印加電圧として消去電位VERA1(例えば、20V)を印加する。SGD駆動回路13は、内側のストリングユニットSU1,SU2の駆動電極膜62,63に駆動電圧VSGD1,VSGD2として選択電位VSL1(例えば、5V)を印加し、外側のストリングユニットSU0,SU3の駆動電極膜61,64に駆動電圧VSGD0,VSGD3として非選択電位VUS1(例えば、10V)を印加する。これにより、内側のストリングユニットSU1,SU2で選択的に正孔がチャネル領域(半導体チャネル42)に注入される。また、SGS駆動回路12は、選択ゲートSGSに非選択電位VUS1(例えば、20V)を印加し、WL駆動回路11は、各ワード線WL0〜WL63に消去電位VERA_WLを印加する。これにより、内側のストリングユニットSU1,SU2で選択的に正孔がチャネル領域(半導体チャネル42)からメモリセルMTの絶縁膜43に注入される(図5参照)。この結果、メモリセルMTの絶縁膜(第1電荷蓄積層)43に蓄積された電荷が消去され、メモリセルMTが消去状態にされ得る。
その後、周辺回路10は、各印加電圧を基準電位(例えば、グランド電位、又は0V)にする。
タイミングt2になると、各印加電圧が基準電位(例えば、グランド電位、又は0V)になり、内側のストリングユニットSU1,SU2に対する消去動作が完了する。すなわち、タイミングt1〜t2の期間TPinnerは、内側のストリングユニットSU1,SU2に対する消去動作が行われる期間である。
タイミングt3において、周辺回路10は、ソース線SL及び/又はビット線BLを介して、チャネル領域(半導体チャネル42)へチャネル印加電圧として消去電位VERA2(例えば、18V)を印加する。SGD駆動回路13は、外側のストリングユニットSU0,SU3の駆動電極膜61,64に駆動電圧VSGD0,VSGD3として選択電位VSL1(例えば、5V)を印加し、内側のストリングユニットSU1,SU2の駆動電極膜62,63に駆動電圧VSGD1,VSGD2として非選択電位VUS1(例えば、10V)を印加する。これにより、外側のストリングユニットSU0,SU3で選択的に正孔がチャネル領域に注入される。また、SGS駆動回路12は、選択ゲートSGSに非選択電位VUS1(例えば、20V)を印加し、WL駆動回路11は、各ワード線WL0〜WL63に消去電位VERA_WLを印加する。これにより、外側のストリングユニットSU0,SU3で選択的に正孔がチャネル領域(半導体チャネル42)からメモリセルMTの絶縁膜43に注入される(図5参照)。この結果、メモリセルMTの絶縁膜(第2電荷蓄積層)43に蓄積された電荷が消去され、メモリセルMTが消去状態にされ得る。
その後、周辺回路10は、各印加電圧を基準電位(例えば、グランド電位、又は0V)にする。
タイミングt4になると、各印加電圧が基準電位(例えば、グランド電位、又は0V)になり、外側のストリングユニットSU0,SU3に対する消去動作が完了する。すなわち、タイミングt3〜t4の期間TPouterは、外側のストリングユニットSU0,SU3に対する消去動作が行われる期間である。
以上のように、第3の実施形態では、半導体記憶装置1において、外側のストリングユニットSUの消去動作の条件を内側のストリングユニットSUの消去動作の条件より緩和する。これにより、複数のストリングユニットSU間における消去性能を均質化できるので、複数のストリングユニットSU間における消去後の閾値分布のばらつきを低減できる。
なお、第3の実施形態では、主として、図4に示すメモリセルアレイ2における消去処理について説明しているが、第3の実施形態の考え方は、図11に示すメモリセルアレイ2にも適用可能である。
また、外側のストリングユニットSUの消去動作の条件を内側のストリングユニットSUの消去動作の条件より緩和することは、外側のストリングユニットSUと内側のストリングユニットSUとでSGD駆動電圧の選択電位を変えることで行ってもよい。この場合、外側のストリングユニットSUと内側のストリングユニットSUとで共通のチャネル印加電圧の消去電位を用いながら、外側のストリングユニットSUにおけるチャネル印加電圧とワード線電圧との電圧差を、内側のストリングユニットにおけるチャネル印加電圧とワード線電圧との電圧差より小さくできる。このため、ブロックBLKにおける内側のストリングユニットSUの消去動作と外側のストリングユニットSUの消去動作とを同時に行うことができる。
例えば、メモリセルアレイ2のROM領域に格納された消去管理情報2b3は、図19に示すように、内側のストリングユニットSUと外側のストリングユニットSUとの同時消去動作時について各印加電圧の条件を含む。図19は、第3の実施形態の変形例における消去動作時の印加電圧の設定値を示す図である。
図19に示す補正情報2b3を参照すると、同時消去動作時に、内側SGD駆動電圧VSGD1,VSGD2の設定値が選択電位VSL3(例えば、3V)であり、外側SGD駆動電圧VSGD0,VSGD3の設定値が選択電位VSL1(例えば、5V)である。これにより、チャネル印加電圧VSL,VBLの設定値VERA1と内側SGD駆動電圧VSGD1,VSGD2の設定値VSL1との電圧差(例えば、20V−3V=18V)に比べて、チャネル印加電圧VSL,VBLの設定値VERA1と外側SGD駆動電圧VSGD0,VSGD3の設定値VSL1との電圧差(例えば、20V−5V=15V)が小さくされ得る。これにより、同時消去動作時に、外側のストリングユニットSUのチャネル領域に注入される正孔の量が内側のストリングユニットSUのチャネル領域に注入される正孔の量より抑制され得る。すなわち、図19に示す補正情報を用いた制御を行うことで、外側のストリングユニットSUの消去動作の条件を内側のストリングユニットSUの消去動作の条件より緩和できる。
なお、同時消去動作時に、SGS駆動電圧VSGSの設定値は非選択電位VUS2’(例えば、10V)であり、WL駆動電圧VWL0〜VWL63の設定値は消去電位VERA_WL(例えば、0.5V)である。
例えば、周辺回路10は、図19に示す補正情報2b3を用いて、図20に示すような消去動作の制御を行う。図20は、第3の実施形態の変形例における消去動作を示す波形図である。
タイミングt11において、周辺回路10は、ソース線SL及び/又はビット線BLを介して、チャネル領域(半導体チャネル42)へ消去電位VERA1(例えば、20V)を印加する。SGD駆動回路13は、内側のストリングユニットSU1,SU2の駆動電極膜62,63に駆動電圧VSGD1,VSGD2として選択電位VSL3(例えば、3V)を印加し、外側のストリングユニットSU0,SU3の駆動電極膜61,64に駆動電圧VSGD0,VSGD3として選択電位VSL1(例えば、5V)を印加する。これにより、内側のストリングユニットSU1,SU2で第1の量で正孔がチャネル領域に注入され、外側のストリングユニットSU0,SU3で第1の量より少ない第2の量で正孔がチャネル領域に注入される。また、SGS駆動回路12は、選択ゲートSGSに非選択電位VUS2’(例えば、10V)を印加し、WL駆動回路11は、各ワード線WL0〜WL63に消去電位VERA_WL(例えば、0.5V)を印加する。これにより、各ストリングユニットSU0〜SU3で正孔がチャネル領域(半導体チャネル42)からメモリセルMTの絶縁膜43に注入される(図5参照)。この結果、内側のストリングユニットSU1,SU2のメモリセルMTの絶縁膜(第1電荷蓄積層)43に蓄積された電荷と外側のストリングユニットSU0,SU3のメモリセルMTの絶縁膜(第2電荷蓄積層)43に蓄積された電荷とがそれぞれ消去され、各メモリセルMTが消去状態にされ得る。このとき、消去されやすい外側のストリングユニットSU0,SU3のチャネル領域に存在する正孔の量が内側のストリングユニットSU1,SU2のチャネル領域に存在する正孔の量より抑制され得るので、複数のストリングユニットSU間における消去状態が均質化され得る。
その後、周辺回路10は、各印加電圧を基準電位(例えば、グランド電位、又は0V)にする。
タイミングt12になると、各印加電圧が基準電位(例えば、グランド電位、又は0V)になり、各ストリングユニットSU0〜SU3に対する消去動作が完了する。すなわち、タイミングt11〜t12の期間TPinner_outerは、内側のストリングユニットSU1,SU2と外側のストリングユニットSU0,SU3との同時消去動作時が行われる期間である。
このように、外側のストリングユニットSUと内側のストリングユニットSUとでSGD駆動電圧の選択電位を変えることによっても、外側のストリングユニットSUの消去動作の条件を内側のストリングユニットSUの消去動作の条件より緩和できる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 半導体記憶装置、10 周辺回路、42 半導体チャネル、43 絶縁膜、MT メモリセル。

Claims (5)

  1. 第1方向に積層された複数の第1導電層と、
    前記複数の第1導電層の前記第1方向に配された第2導電層と、
    前記第1方向と交差する第2方向に前記複数の第1導電層及び前記第2導電層を分断し、前記第1方向と前記第1方向及び前記第2方向に交差する第3方向とに延在する複数の第1分断膜と、
    前記第2導電層における隣り合う前記第1分断膜の間の領域を前記第2方向に分断し、前記第1方向と前記第3方向とに延在する複数の第2分断膜と、
    前記第1導電層における隣り合う前記第2分断膜の間の領域である第1領域内を前記第1方向に延在する第1半導体ピラーと、
    前記第1導電層における隣り合う前記第1分断膜と前記第2分断膜と間の領域である第2領域内を前記第1方向に延在する第2半導体ピラーと、
    前記第1半導体ピラーと前記第1領域との間に配置された第1電荷蓄積層と、
    前記第2半導体ピラーと前記第2領域との間に配置された第2電荷蓄積層と、
    前記第2導電層における前記第2領域に対応した領域に選択電位を供給する時に前記第2領域に対応した前記第1導電層に第1電圧を供給し、前記第2導電層における前記第1領域に対応した領域に選択電位を供給する時に前記第1領域に対応した前記第1導電層に前記第1電圧より高い第2電圧を供給する周辺回路と、
    を備えた半導体記憶装置。
  2. 基板をさらに備え、
    前記第1半導体ピラーは、前記第1導電層における前記第1領域と前記基板との間の領域である第3領域内を前記第1方向に延在し、
    前記第2半導体ピラーは、前記第1導電層における前記第2領域と前記基板との間の領域である第4領域内を前記第1方向に延在し、
    前記周辺回路は、前記第2導電層における前記第4領域に対応した領域に選択電位を供給する時に前記第4領域に対応した前記第1導電層に第3電圧を供給し、前記第2導電層における前記第3領域に対応した領域に選択電位を供給する時に前記第3領域に対応した前記第1導電層に前記第3電圧より高く且つ前記第2電圧より低い第4電圧を供給する
    請求項1に記載の半導体記憶装置。
  3. 前記第2電圧と前記第1電圧との差分は、前記半導体記憶装置における前記第1領域及び前記第2領域の位置に応じて決められている
    請求項1又は2に記載の半導体記憶装置。
  4. 前記周辺回路は、前記第2導電層における前記第2領域に対応した領域に選択電位を供給し前記第2領域に対応した前記第1導電層に第1の電圧を供給する動作を行った後に、前記第2導電層における前記第1領域に対応した領域に選択電位を供給し前記第1領域に対応した前記第1導電層に前記第2電圧を供給する動作を行う
    請求項1から3のいずれか1項に記載の半導体記憶装置。
  5. 前記周辺回路は、前記第1電荷蓄積層に蓄積された電荷を第1の条件で消去し、前記第2電荷蓄積層に蓄積された電荷を前記第1の条件より緩和された第2の条件で消去する
    請求項1から4のいずれか1項に記載の半導体記憶装置。
JP2019050497A 2019-03-18 2019-03-18 半導体記憶装置 Pending JP2020155499A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019050497A JP2020155499A (ja) 2019-03-18 2019-03-18 半導体記憶装置
CN201910705081.8A CN111725228B (zh) 2019-03-18 2019-07-31 半导体存储装置
TW108127822A TWI735018B (zh) 2019-03-18 2019-08-06 半導體記憶裝置
US16/560,416 US11031415B2 (en) 2019-03-18 2019-09-04 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050497A JP2020155499A (ja) 2019-03-18 2019-03-18 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2020155499A true JP2020155499A (ja) 2020-09-24

Family

ID=72515830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050497A Pending JP2020155499A (ja) 2019-03-18 2019-03-18 半導体記憶装置

Country Status (4)

Country Link
US (1) US11031415B2 (ja)
JP (1) JP2020155499A (ja)
CN (1) CN111725228B (ja)
TW (1) TWI735018B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023045239A (ja) * 2021-09-21 2023-04-03 キオクシア株式会社 半導体記憶装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5851030B2 (ja) * 2012-06-04 2016-02-03 株式会社日立製作所 半導体記憶装置
US9454420B1 (en) * 2012-12-31 2016-09-27 Sandisk Technologies Llc Method and system of reading threshold voltage equalization
JP2014167838A (ja) * 2013-02-28 2014-09-11 Toshiba Corp 半導体記憶装置
JP6290124B2 (ja) 2015-03-12 2018-03-07 東芝メモリ株式会社 半導体記憶装置
US10074665B2 (en) * 2015-09-11 2018-09-11 Toshiba Memory Corporation Three-dimensional semiconductor memory device including slit with lateral surfaces having periodicity
US9460805B1 (en) 2015-10-19 2016-10-04 Sandisk Technologies Llc Word line dependent channel pre-charge for memory
KR102435026B1 (ko) * 2015-12-15 2022-08-22 삼성전자주식회사 저장 장치의 동작 방법
TWI643254B (zh) * 2016-01-21 2018-12-01 東芝記憶體股份有限公司 Semiconductor device and method of manufacturing same
US10546871B2 (en) * 2016-03-23 2020-01-28 Toshiba Memory Corporation Semiconductor memory device and method of manufacturing the same
US9887273B2 (en) * 2016-03-31 2018-02-06 Toshiba Memory Corporation Semiconductor memory device
US10283647B2 (en) * 2016-08-04 2019-05-07 Toshiba Memory Corporation Semiconductor device
US10332904B2 (en) * 2016-09-20 2019-06-25 Toshiba Memory Corporation Semiconductor memory device and method for manufacturing same
JP2018147535A (ja) 2017-03-07 2018-09-20 東芝メモリ株式会社 半導体記憶装置及びメモリシステム
US10115731B2 (en) * 2017-03-13 2018-10-30 Toshiba Memory Corporation Semiconductor memory device
JP2018160298A (ja) 2017-03-22 2018-10-11 東芝メモリ株式会社 記憶装置の制御方法

Also Published As

Publication number Publication date
TW202038435A (zh) 2020-10-16
TWI735018B (zh) 2021-08-01
US20200303404A1 (en) 2020-09-24
CN111725228A (zh) 2020-09-29
CN111725228B (zh) 2024-04-16
US11031415B2 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
US10325658B2 (en) Non-volatile memory device and programming method thereof
US11183249B2 (en) Nonvolatile memory device with intermediate switching transistors and programming method
US9437300B2 (en) Semiconductor memory device
JP6230512B2 (ja) 半導体メモリ
US9036411B2 (en) Nonvolatile semiconductor memory device and data erase method thereof
US9543022B2 (en) Semiconductor memory device
TWI458081B (zh) 併有具有串選擇閘之記憶體單元串之記憶體裝置,及操作及形成其之方法
US9349464B2 (en) Non-volatile semiconductor device
JP5524134B2 (ja) 不揮発性半導体記憶装置
CN104813407A (zh) 以对字线的顺序选择对3d非易失性存储器进行擦除
JP5524158B2 (ja) 不揮発性半導体記憶装置
JP2012160222A (ja) 不揮発性半導体記憶装置
US11043273B2 (en) Vertical memory device and an operating method thereof
JP7293060B2 (ja) 半導体記憶装置
US11961564B2 (en) Nonvolatile memory device with intermediate switching transistors and programming method
JP2010040125A (ja) 不揮発性半導体記憶装置の消去方法
TWI743636B (zh) 記憶體裝置及記憶體裝置的擦除方法
TWI735018B (zh) 半導體記憶裝置
JP2020155494A (ja) 半導体記憶装置
JP2018156702A (ja) 半導体記憶装置及びメモリシステム
JP2021136374A (ja) 半導体記憶装置
US10176874B2 (en) Storage device and method of controlling the storage device
US9257183B2 (en) Semiconductor storage device having nand-type flash memory
JP2017162879A (ja) 半導体記憶装置およびその製造方法