JP2021136374A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2021136374A
JP2021136374A JP2020032851A JP2020032851A JP2021136374A JP 2021136374 A JP2021136374 A JP 2021136374A JP 2020032851 A JP2020032851 A JP 2020032851A JP 2020032851 A JP2020032851 A JP 2020032851A JP 2021136374 A JP2021136374 A JP 2021136374A
Authority
JP
Japan
Prior art keywords
charge storage
voltage
storage unit
semiconductor
conductive layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020032851A
Other languages
English (en)
Inventor
達朗 小倉
Tatsuo Ogura
達朗 小倉
貴史 来栖
Takashi Kurusu
貴史 来栖
宗幸 津田
Muneyuki Tsuda
宗幸 津田
裕 竹田
Yutaka Takeda
裕 竹田
奈由太 刈谷
Nayuta Kariya
奈由太 刈谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Priority to JP2020032851A priority Critical patent/JP2021136374A/ja
Priority to US17/014,776 priority patent/US20210272640A1/en
Publication of JP2021136374A publication Critical patent/JP2021136374A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3468Prevention of overerasure or overprogramming, e.g. by verifying whilst erasing or writing
    • G11C16/3472Circuits or methods to verify correct erasure of nonvolatile memory cells whilst erasing is in progress, e.g. by detecting onset or cessation of current flow in cells and using the detector output to terminate erasure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/12Programming voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)

Abstract

【課題】良好な特性の半導体記憶装置を提供する。【解決手段】半導体記憶装置は、基板と交差する第1方向に配置された複数の導電層110、第1方向に延び複数の導電層と対向する半導体層120、及び半導体層と複数の導電層との間に設けられた電荷蓄積部を備え、複数の導電層と半導体層が対向する位置に形成された複数のメモリセルが、第1方向に直列に接続されてメモリストリングを構成する、メモリセルアレイを備える。電荷蓄積部は、基板の主面に沿った第2方向に複数の導電層と対向する複数の第1電荷蓄積部132aと、複数の第1電荷蓄積部に対して第1方向及び第2方向の異なる位置に配置された複数の第2電荷蓄積部132bとを含む。第1電荷蓄積部と半導体層との距離は、第2電荷蓄積部と半導体層との距離よりも小さい。第2電荷蓄積部と導電層との距離は、第1電荷蓄積部と導電層との距離よりも小さい。【選択図】図4

Description

本実施形態は、半導体記憶装置に関する。
基板と、複数の導電層と、これら複数の導電層に対向する半導体層と、この半導体層と複数の導電層との間にそれぞれ設けられた電荷蓄積部を備えた半導体記憶装置が知られている。
特開2010−67745号公報 米国特許出願公開2019/0273092号公報
良好な特性の半導体記憶装置を提供する。
一の実施形態に係る半導体記憶装置は、基板と、前記基板と交差する第1方向に配置された複数の導電層、前記第1方向に延び前記複数の導電層と対向する半導体層、及び前記半導体層と前記複数の導電層との間に設けられた電荷蓄積部を備え、前記複数の導電層と前記半導体層が対向する位置に複数のメモリセルが形成され、前記複数のメモリセルが前記第1方向に直列に接続されてメモリストリングを構成する、メモリセルアレイと、を備える。前記電荷蓄積部は、前記基板の主面に沿った第2方向に前記複数の導電層とそれぞれ対向する複数の第1電荷蓄積部と、前記複数の第1電荷蓄積部に対して前記第1方向及び前記第2方向の異なる位置に配置された複数の第2電荷蓄積部とを含む。前記第1電荷蓄積部と前記半導体層との前記第2方向の距離は、前記第2電荷蓄積部と前記半導体層との前記第2方向の距離よりも小さく、前記第2電荷蓄積部と前記複数の導電層との前記第2方向の距離は、前記第1電荷蓄積部と前記複数の導電層との前記第2方向の距離よりも小さい。
第1実施形態に係る半導体記憶装置の模式的な構成を示す等価回路図である。 同半導体記憶装置の模式的な斜視図である。 図2の一部の拡大図である。 図3の一部の拡大図である。 メモリセルMCのしきい値電圧の分布を示す図である。 比較例の半導体記憶装置の捕獲電荷の状態を示す模式的断面図である。 他の比較例の半導体記憶装置の捕獲電荷の状態を示す模式的断面図である。 第1実施形態に係る半導体記憶装置のデータ書き込み前の捕獲電荷の状態を示す模式的断面図である。 第1実施形態に係る半導体記憶装置の消去フローを示すフローチャートである。 同半導体記憶装置のフラッシュ消去動作の各部の印加電圧を示す波形図である。 同半導体記憶装置のフラッシュ消去動作の後の捕獲電荷の状態を示す模式的断面図である。 同半導体記憶装置の奇数番目のメモリセルに対するストライプ消去動作の各部の印加電圧を示す波形図である。 同半導体記憶装置の奇数番目のメモリセルに対するストライプ消去動作の後の捕獲電荷の状態を示す模式的断面図である。 同半導体記憶装置の偶数番目のメモリセルに対するストライプ消去動作の各部の印加電圧を示す波形図である。 同半導体記憶装置の偶数番目のメモリセルに対するストライプ消去動作の後の捕獲電荷の状態を示す模式的断面図である。 第2実施形態に係る半導体記憶装置の書き込みフローを示すフローチャートである。 第1実施形態及び第2実施形態に係る半導体記憶装置の製造工程を説明するための部分断面図である。 第1実施形態及び第2実施形態に係る半導体記憶装置の製造工程を説明するための部分断面図である。 第1実施形態及び第2実施形態に係る半導体記憶装置の製造工程を説明するための部分断面図である。 第1実施形態及び第2実施形態に係る半導体記憶装置の製造工程を説明するための部分断面図である。 第1実施形態及び第2実施形態に係る半導体記憶装置の製造工程を説明するための部分断面図である。 第1実施形態及び第2実施形態に係る半導体記憶装置の製造工程を説明するための部分断面図である。 第1実施形態及び第2実施形態に係る半導体記憶装置の製造工程を説明するための部分断面図である。 第1実施形態及び第2実施形態に係る半導体記憶装置の製造工程を説明するための部分断面図である。 第3実施形態に係る半導体記憶装置の一部の断面図である。 第4実施形態に係る半導体記憶装置の一部の断面図である。
次に、実施形態に係る半導体記憶装置を、図面を参照して詳細に説明する。なお、以下の実施形態はあくまでも一例であり、本発明を限定する意図で示されるものではない。また、以下の図面は模式的なものであり、説明の都合上、一部の構成等が省略される場合がある。また、複数の実施形態について共通する部分には同一の符号を付し、説明を省略する場合がある。
また、本明細書においては、基板の表面(主面)に対して平行な所定の方向をX方向、基板の表面に対して平行で、X方向と垂直な方向をY方向、基板の表面に対して垂直な方向をZ方向と呼ぶ。また、本明細書において、「上」や「下」等の表現は、基板を基準とする。例えば、Z方向に沿って基板から離れる向きを上と、Z方向に沿って基板に近付く向きを下と呼ぶ。また、ある構成について下面や下端と言う場合には、この構成の基板側の面や端部を意味する事とし、上面や上端と言う場合には、この構成の基板と反対側の面や端部を意味する事とする。
また、本明細書において「半導体記憶装置」とは、メモリダイ、メモリチップ、メモリカード、SSD等のコントロールダイを含むメモリシステム、スマートホン、タブレット端末、パーソナルコンピュータ等のホストコンピュータを含む構成等、種々の意味を有する。
また、本明細書において、第1の構成が第2の構成に「電気的に接続された」とは、第1の構成が第2の構成に直接、又は配線、半導体部材若しくはトランジスタ等の回路を介して接続されていることを言う。例えば、3つのトランジスタを直列に接続した場合には、2つ目のトランジスタがOFF状態であったとしても、1つ目のトランジスタは3つ目のトランジスタに「電気的に接続」されている。
[第1実施形態]
[構成]
以下、図面を参照して、第1実施形態に係る半導体記憶装置の構成について説明する。
図1は、第1実施形態に係る半導体記憶装置の構成を示す模式的な等価回路図である。
本実施形態に係る半導体記憶装置は、メモリセルアレイMAと、メモリセルアレイMAを制御する制御回路としての周辺回路PCと、を備える。
メモリセルアレイMAは、複数のメモリブロックMBを備える。これら複数のメモリブロックMBは、それぞれ、複数のストリングユニットSUを備える。これら複数のストリングユニットSUは、それぞれ、複数のメモリユニットMUを備える。これら複数のメモリユニットMUの一端は、それぞれ、ビット線BLを介して周辺回路PCに接続される。また、これら複数のメモリユニットMUの他端は、それぞれ、共通のソース線SLを介して周辺回路PCに接続される。
メモリユニットMUは、ビット線BL及びソース線SLの間に直列に接続されたドレイン選択トランジスタSTD、複数のメモリセルMC(メモリストリングMS)、及び、ソース選択トランジスタSTSを備える。以下、ドレイン選択トランジスタSTD、及び、ソース選択トランジスタSTSを、単に選択トランジスタ(STD、STS)等と呼ぶ事がある。
メモリセルMCは、チャネル領域として機能する半導体層、電荷蓄積膜を含むゲート絶縁膜、及び、ゲート電極を備える電界効果型のトランジスタ(メモリトランジスタ)である。メモリセルMCのしきい値電圧は、電荷蓄積膜中の電荷量に応じて変化する。なお、1つのメモリストリングMSに対応する複数のメモリセルMCのゲート電極には、それぞれ、ワード線WLが接続される。これらワード線WLは、それぞれ、1つのメモリブロックMB中の全てのメモリストリングMSに共通に接続される。
選択トランジスタ(STD、STS)は、チャネル領域として機能する半導体層、ゲート絶縁膜及びゲート電極を備える電界効果型のトランジスタである。選択トランジスタ(STD、STS)のゲート電極には、それぞれ、選択ゲート線(SGD、SGS)が接続される。ドレイン選択ゲート線SGDは、ストリングユニットSUに対応して設けられ、1つのストリングユニットSU中の全てのメモリユニットMUに共通に接続される。ソース選択ゲート線SGSは、1つのメモリブロックMB中の複数のストリングユニットSU中の全てのメモリユニットMUに共通に接続される。
周辺回路PCは、動作電圧を生成する動作電圧生成回路21と、アドレスデータをデコードするアドレスデコーダ22と、アドレスデコーダ22の出力信号に応じてメモリセルアレイMAに動作電圧を転送するブロック選択回路23及び電圧選択回路24と、ビット線BLに接続されたセンスアンプ25と、これらを制御するシーケンサ26と、を備える。
動作電圧生成回路21は、シーケンサ26からの制御信号に従って、メモリセルアレイMAに対する読み出し動作、書き込み動作及び消去動作に際してビット線BL、ソース線SL、ワード線WL及び選択ゲート線(SGD、SGS)に印加される複数通りの動作電圧を順次生成し、複数の動作電圧出力端子31に出力する。動作電圧生成回路21は、例えば、複数のチャージポンプ回路及び複数のレギュレータ回路を備える。
アドレスデコーダ22は、複数のブロック選択線32及び複数の電圧選択線33を備える。例えば、アドレスデコーダ22は、シーケンサ26からの制御信号に従って順次アドレスレジスタのアドレスデータを参照し、このアドレスデータをデコードして、アドレスデータに対応する所定のブロック選択線32及び電圧選択線33を“H”状態とし、それ以外のブロック選択線32及び電圧選択線33を“L”状態とする。
ブロック選択回路23は、メモリブロックMBに対応する複数のブロック選択部34を備える。これら複数のブロック選択部34は、それぞれ、ワード線WL及び選択ゲート線(SGD、SGS)に対応する複数のブロック選択トランジスタ35を備える。ブロック選択トランジスタ35は、例えば、電界効果型の耐圧トランジスタである。ブロック選択トランジスタ35の一端は、それぞれ、対応するワード線WL又は選択ゲート線(SGD、SGS)に電気的に接続される。他端は、それぞれ、配線CG及び電圧選択回路24を介して動作電圧出力端子31に電気的に接続される。ゲート電極は、対応するブロック選択線32に共通に接続される。
電圧選択回路24は、ワード線WL及び選択ゲート線(SGD、SGS)に対応する複数の電圧選択部36を備える。これら複数の電圧選択部36は、それぞれ、複数の電圧選択トランジスタ37を備える。電圧選択トランジスタ37は、例えば、電界効果型の耐圧トランジスタである。電圧選択トランジスタ37の一端は、それぞれ、配線CG及びブロック選択回路23を介して、対応するワード線WL又は選択ゲート線(SGD、SGS)に電気的に接続される。他端は、それぞれ、対応する動作電圧出力端子31に電気的に接続される。ゲート電極は、それぞれ、対応する電圧選択線33に接続される。
センスアンプ25は、複数のビット線BLに接続される。センスアンプ25は、例えば、ビット線BLに対応する複数のセンスアンプユニットを備える。センスアンプユニットは、それぞれ、動作電圧生成回路21において生成された電圧に基づいてビット線BLを充電するクランプトランジスタと、ビット線BLの電圧又は電流をセンスするセンス回路と、このセンス回路の出力信号や書き込みデータ、ベリファイパスフラグFLG等を保持する複数のラッチと、論理回路と、を備える。論理回路は、例えば読み出し動作に際して、ラッチに保持された下位ページのデータを参照してメモリセルMCに保持されたデータを特定する。また、例えば書き込み動作に際して、ラッチに保持された下位ページのデータを参照して、ビット線BLの電圧を制御する。
シーケンサ26は、入力された命令及び半導体記憶装置の状態に応じて、動作電圧生成回路21、アドレスデコーダ22及びセンスアンプ25に制御信号を出力する。例えば、シーケンサ26は、クロック信号に従って順次コマンドレジスタのコマンドデータを参照し、このコマンドデータをデコードして、動作電圧生成回路21、アドレスデコーダ22及びセンスアンプ25に出力する。
図2は、本実施形態に係る半導体記憶装置の模式的な斜視図である。説明の都合上、図2では一部の構成を省略する。
図2に示す通り、本実施形態に係る半導体記憶装置は、基板Sと、基板Sの上方に設けられたメモリセルアレイMAとを備える。
基板Sは、例えば、単結晶シリコン(Si)等からなる半導体基板である。基板Sは、例えば、半導体基板の表面にリン(P)等のN型の不純物層を有し、更にこのN型の不純物層中にホウ素(B)等のP型の不純物層を有する2重ウェル構造を備える。また、本実施形態において、基板Sの表面は、下部配線として機能する配線層である。ただし、基板Sの上方に、別途配線層を設けても良い。
メモリセルアレイMAは、Z方向に延伸する、例えば円柱状の複数のメモリ構造100と、XY断面においてこれら複数のメモリ構造100の外周面を覆う、例えばXY方向に延びる板状の複数の導電層110と、これら複数の導電層110に接続されたコンタクト140と、メモリ構造100の上端に接続された複数の配線150とを備える。
メモリ構造100は、X方向及びY方向に所定のパターンで配設されている。これらメモリ構造100は、基本的にはメモリユニットMUとして機能する。メモリセルMCは、メモリ構造100及び導電層110の各交差部に設けられる。
メモリ構造100は、Z方向に延伸する半導体層120と、半導体層120及び導電層110の間に設けられたゲート絶縁膜130と、半導体層120の下端及び基板Sの表面の間に接続された半導体層113と、半導体層120の上端に接続された半導体層114とを備える。
半導体層120は、例えば、1つのメモリユニットMU(図1)に含まれる複数のメモリセルMC及びドレイン選択トランジスタSTDのチャネル領域として機能する。半導体層120は、例えば略円筒状の形状を有し、中心部分には酸化シリコン(SiO)等の絶縁層121が埋め込まれている。半導体層120は、例えば、ノンドープの多結晶シリコン(Si)等の半導体を含む。
ゲート絶縁膜130は、半導体層120の外周面に略円筒状の形状を有して設けられる。図3は、図2のA部を拡大した断面図であり、図4は、更にその一部を拡大した断面図である。ゲート絶縁膜130は、例えば図3に示す通り、半導体層120及び導電層110の間に積層されたトンネル絶縁膜131、電荷蓄積膜132、及び、ブロック絶縁膜133,134を備える。トンネル絶縁膜131及びブロック絶縁膜133,134は、例えば、酸化シリコン(SiO)等の絶縁膜である。電荷蓄積膜132は、例えば、窒化シリコン(SiN)等の電荷を蓄積可能な膜である。なお、図3及び図4は、メモリユニットMUの一部のX方向に沿った断面(XZ断面)上の構成を示しているが、X方向以外の基板Sの主面方向に沿った断面上においても、メモリユニットMUは同様の構成を備える。以下、基板Sの主面方向としてX方向を例にとり本実施形態の構成の説明を続けるが、基板Sの主面に沿った他の方向の断面構成についても同様に理解される。
電荷蓄積膜132は、導電層110とX方向に対向する部分に設けられた第1電荷蓄積部132aと、この第1電荷蓄積部132aとX方向及びZ方向の異なる位置に配置された第2電荷蓄積部132bとを有する。この例では、電荷蓄積膜132は、全体がZ方向に延び、導電層110と対向する部分(第1電荷蓄積部132a)だけが半導体層120側に突出したジグザグ状に形成されている。
図4に詳細を示すように、第1電荷蓄積部132aと半導体層120とのX方向の距離caは、第2電荷蓄積部132bと半導体層120とのX方向の距離cbよりも小さい。また、第2電荷蓄積部132bと導電層110とのX方向の距離dbは、第1電荷蓄積部132aと導電層110とのX方向の距離daよりも小さい。導電層110の電荷蓄積膜132との対向面SのうちZ方向の両端近傍の面部分Sbは、第2電荷蓄積部132bとX方向に対向し、対向面Sのうち両端近傍の面部分Sbよりも内側の面部分Saは、第1電荷蓄積部132aとX方向に対向している。また、第1電荷蓄積部132aのX方向の幅taは、第2電荷蓄積部132bのX方向の幅tbよりも大きい。すなわち、ワード線WLの電荷蓄積膜132との対向面Sは、Z方向(積層方向)の中央部が第1電荷蓄積部132aと対向し、Z方向の両端部が第2電荷蓄積部132bと対向している。この例では、第1電荷蓄積部132aのZ方向の長さは、導電層110のZ方向の厚さよりも小さい。
図2に戻って、半導体層113は、例えば、ソース選択トランジスタSTSのチャネル領域として機能する。半導体層113の外周面には、ゲート絶縁膜119が設けられている。半導体層113は、例えば、単結晶シリコン(Si)等の半導体を含む。ゲート絶縁膜119は、例えば、酸化シリコン(SiO)等の絶縁膜である。
半導体層114は、例えば、多結晶シリコン(Si)等の半導体中にリン等のN型の不純物を含む層である。
導電層110は、酸化シリコン(SiO)等の絶縁層101を介してZ方向に複数配列され、X方向及びY方向に延伸する略板状の形状を有する。これら導電層110は、所定のパターンで形成された複数の貫通孔を有し、この貫通孔の内部には、それぞれ、メモリ構造100が設けられる。また、導電層110のX方向の端部には、コンタクト140に接続されるコンタクト部111が設けられる。導電層110は、メモリブロックMBを構成するため、X方向及びZ方向に基板Sまで延びる酸化シリコン等の絶縁部STによってY方向に分断されている。導電層110は、例えば、窒化チタン(TiN)及びタングステン(W)の積層膜等を含む。
一部の導電層110aは、それぞれ、ワード線WL(図1)及びこのワード線WLに接続された複数のメモリセルMC(図1)のゲート電極として機能する。
これらの上方に設けられた導電層110bは、ドレイン選択ゲート線SGD(図1)及びこのドレイン選択ゲート線SGDに接続された複数のドレイン選択トランジスタSTD(図1)のゲート電極として機能する。絶縁部STによって分断された導電層110のうち、導電層110bは、更にX方向及びZ方向に延びる酸化シリコン等の絶縁部SHEによってY方向に分断されている。すなわち、導電層110bは、導電層110aよりもY方向の幅が小さい。
これらの下方に設けられた導電層110cは、ソース選択ゲート線SGS(図1)及びこれに接続された複数のソース選択トランジスタSTSのゲート電極として機能する。導電層110cは、ゲート絶縁膜119を介して半導体層113の外周面を覆っている。
コンタクト140は、Z方向に延伸し、複数の導電層110のコンタクト部111に接続されている。コンタクト140は、例えば、窒化チタン(TiN)及びタングステン(W)の積層膜等を含む。
配線150は、ビット線BLとして機能する。配線150は、X方向に複数配設され、Y方向に延伸する。配線150は、コンタクト151を介して、複数のメモリ構造100に接続される。
次に、メモリセルMCのしきい値電圧について説明する。図5は、メモリセルMCのしきい値電圧とセル数との関係を示す図である。メモリセルMCに書き込み動作が行われた場合、メモリセルMCのしきい値電圧は、メモリセルMCの電荷蓄積膜132に蓄積された電子又は正孔の量に依存する。この例では4通りのしきい値分布が形成されている。しきい値電圧が低い方から分布Er,A,B,Cが形成され、これらの分布に対応するメモリセルMCには、例えば、データ”11”,”01”,”00”,”10”が割り当てられる。分布Erは、しきい値レベルが最も低い消去レベルであり、電荷蓄積膜132には正孔が蓄積されている。以下、電荷蓄積膜132に保持される電子の数が少ない順に、分布A,B,Cが形成される。なお、これらの分布を、以下、レベルEr,A,B,Cとも言う。また、レベルErのしきい値電圧の最大値の電圧Vverは、消去動作時の消去ベリファイ電圧を示し、レベルA,B,Cのしきい値電圧の最小値の電圧Vva,Vvb,Vvcは、それぞれレベルA,B.Cの書き込み動作時の書き込みベリファイ電圧を示している。消去ベリファイ電圧Vverは、0Vよりも低い、負の電圧である。書き込みベリファイ電圧Vva,Vvb,Vvcは、0Vよりも大きい、正の電圧である。
[動作]
次に、このように構成された半導体記憶装置のメモリセルMCのデータ消去動作の説明に先立ち、図6及び図7を参照して比較例について説明する。
図6及び図7は、比較例と他の比較例の半導体記憶装置の一部の断面を、捕獲電荷の状態と合わせて模式的に示している。具体的には、図6は、電荷蓄積膜132がZ方向に延びるように形成された半導体記憶装置である。このように電荷蓄積膜132がZ方向に連続した構造であると、メモリセルMC間のピッチ縮小に伴って、隣接メモリセルMC間の影響が大きくなる。具体的には、例えばNWI(Neighbor Word-line Interference)による隣接メモリセルMCへの電荷染み出し、HTDR(High Temperature Data Retention)による隣接メモリセルMC間の電荷蓄積膜132を介した横抜け、及び隣接メモリセルMC間への正孔注入によるデータ保持特性の劣化などの問題が生じるおそれがある。
そこで、図7に示すように、電荷蓄積膜132をメモリセルMC毎に分断する構造も考えられる。しかし、このようにメモリセルMC毎に電荷蓄積膜132を分断する構造であると、データ書き込み時に電子が蓄積される部分のゲート長方向の長さが短くなり、データの読み出し時に、図示のように電荷蓄積膜132が存在しない部分を介してチャネルがオンになりやすい。つまり、実効ゲート長が短くなる。実効ゲート長が短くなるとノイズが増え、QLC(Quadruple-Level Cell)等の多値のデータを記憶する場合、しきい値分布間のマージンの減少を招く。この結果、読み出しエラーが増加するおそれがある。この問題は、しきい値分布が高い側のデータほど顕著に現れる。
次に、本実施形態に係る半導体記憶装置のメモリセルMCのデータ消去動作について説明する。まず、図8に、本実施形態に係る半導体記憶装置のデータ書き込み前の捕獲電荷の状態を模式的に示す。
本実施形態では、図8に示すように、導電層110の電荷蓄積膜132との対向面のZ方向中央部と対向する第1電荷蓄積部132aを、半導体層120側に突出させた構造としている。また、導電層110のZ方向の両端近傍と対向する第2電荷蓄積部132bを、第1電荷蓄積部132aよりも導電層110側に寄せる構造とした。このような構造において、第2電荷蓄積部132bには、予め電子を蓄積させておく。これにより、データの読み出し時には、ワード線WLのZ方向の両端近傍とチャネルとの間の電界が、第2電荷蓄積部132bに蓄積された電子によってシールドされる。この結果、第1電荷蓄積部132aのゲート長方向の両側でチャネルがノーマリーオン状態になるのを防止することができる。これにより、本実施形態では、電荷蓄積膜132の分割構造を模しつつ、メモリセルMCの実効ゲート長が短くなるのを防止することができる。
図9は、図8に示すような電荷蓄積膜132の捕獲電荷の状態を生成するための消去フローを示すフローチャートである。この消去フローでは、メモリブロックMBを一括消去するフラッシュ消去動作(S1)と、メモリユニットMU中奇数番目のメモリセルMC−oddに対するストライプ消去動作(S2)と、メモリユニットMU中偶数番目のメモリセルMC−evenに対するストライプ消去動作(S3)をこの順で実行する。
図10は、フラッシュ消去動作(S1)を示す波形図である。また、図11は、このフラッシュ消去動作(S1)後の電荷蓄積膜132の捕獲電荷の状態を模式的に示している。
図10に示す時刻T0で全てのワード線WL1〜WLnに電圧Vssを印加する。ビット線BL及び図示しないウェル配線CPWELLに接続されるコンタクトに、消去電圧Vera1を印加する。また、選択ゲート線SGDには、選択トランジスタSTDでGIDL(Gate Induced Drain Leakage)電流が生じる程度の電圧Vsgd1を印加し,選択ゲート線SGSには、選択トランジスタSTSがオンして基板S側から正孔が注入可能な電圧Vsgs1を印加する。これにより、半導体層120に形成されたチャネルに、基板S側及びビット線BL側から正孔が注入される。そして、図11に示すように、全てのワード線WL1〜WLnに対向する電荷蓄積膜132の第1電荷蓄積部132aにトンネル絶縁膜131を介して正孔が注入される。続く、時刻T1からは、消去ベリファイ動作となる。全てのワード線WLには、電圧Vssよりもやや小さい消去ベリファイ電圧Vverが与えられる。ビット線BLに、所定のビット線電圧Vblを印加し、選択ゲート線SGD,SGSにそれぞれ選択トランジスタSTD,STSがオンする電圧Vsgd2,Vsgs2を印加する。ベリファイパスでなければ、ビット線電圧Vblは維持される。この場合、時刻T2で、2回目のフラッシュ消去動作が行われる。すなわち、全てのワード線WL1〜WLnにVssを印加する。また、ビット線BL及びウェル配線CPWELLに消去電圧Vera1よりも僅かに大きい消去電圧Vera2を印加する。続く時刻T3も上記と同様の消去ベリファイ動作が実行される。時刻T4、T5では、3回目の消去動作、消去ベリファイ動作が行われ、時刻T6でベリファイがパスしたら、ベリファイパスフラグFLGが立ち上がり、フラッシュ消去動作が終了する。
このフラッシュ消去動作(S1)を実行すると、図11に示すように、第1電荷蓄積部132aは半導体層120に形成されるチャネルに近いため、チャネル側から注入された正孔が蓄積する。このため、しきい値レベルが消去レベル(Er)まで引き下げられる。一方、第2電荷蓄積部132bは、第1電荷蓄積部132aよりも半導体層120から遠いため、チャネルから正孔が移動し難い。
続いて、奇数番目のメモリセルMC−oddに対するストライプ消去動作(S2)が実行される。
なお、本実施形態では、後述するように実行されるストライプ消去動作における、下から数えて奇数番目のワード線WL−oddが「第1導電層」、下から数えて偶数番目のワード線WL−evenが「第2導電層」に対応する。但し、この対応関係は一例であって、ワード線WL−evenが「第1導電層」、ワード線WL−oddが「第2導電層」のように対応付けることもできる。
図12は、奇数番目のメモリセルMC−oddに対するストライプ消去動作(S2)を示す波形図である。また、図13は、このストライプ消去動作(S2)後の電荷蓄積膜132の捕獲電荷の状態を模式的に示している。
時刻T10で奇数番目のワード線WL−oddには第1電圧であるVss、例えば0Vが印加され、偶数番目のワード線WL−evenには、電圧Vera11が印加される。ビット線BL及び図示しないウェル配線CPWELLに接続されるコンタクトには、消去電圧Vera21が印加される。電圧Vera11は、消去電圧Vera21より小さく設定しても良い。第1電荷蓄積部132aの正孔がチャネル側に移動しないためである。また、選択ゲート線SGDには、選択トランジスタSTDがオン可能な電圧Vsgd1を印加し,選択ゲート線SGSには、選択トランジスタSTSがオン可能な電圧Vsgs1を印加する。これにより、半導体層120に形成されたチャネルは消去電圧Vera21に設定される。図13に示すように、奇数番目のワード線WL−oddと、これに隣接する偶数番目のワード線WL−evenとの間に形成される電界により、奇数番目のワード線WL−oddに近い第2電荷蓄積部132bにブロック絶縁膜133を介して電子が注入される。一方、奇数番目のワード線WL−oddからこれに対向する第1電荷蓄積部132aまでのブロック絶縁膜133は厚いので、ワード線WL−odd側から第1電荷蓄積部132aへは、電子が注入されることはない。
続く時刻T11で、電圧Vera12及び消去電圧Vera22を1回目の電圧Vera11及び消去電圧Vera21よりもそれぞれ少し大きく設定して、2回目のストライプ消去動作が実行される。更に、時刻T12で、電圧Vera13及び消去電圧Vera23を2回目の電圧Vera12及び消去電圧Vera22よりもそれぞれ少し大きく設定して、3回目のストライプ消去動作が実行される。所定回数のストライプ消去動作が実行されたら、奇数番目のメモリセルMC−oddに対するストライプ消去動作(S2)が終了する。
奇数番目のメモリセルMC−oddに対するストライプ消去動作(S2)が終了すると、図13に示すように、第2電荷蓄積部132bのワード線WL−oddに近い部分に所定量の電子が蓄積される。
図14は、偶数番目のメモリセルMC−evenに対するストライプ消去動作(S3)を示す波形図である。また、図15は、このストライプ消去動作(S3)後の電荷蓄積膜132の捕獲電荷の状態を模式的に示している。
時刻T20で偶数番目のワード線WL−evenには第1電圧であるVss、例えば0Vが印加され、奇数番目のワード線WL−oddには、電圧Vera31が印加される。ビット線BL及び図示しないウェル配線CPWELLに接続されるコンタクトには、消去電圧Vera41が印加される。電圧Vera31は、消去電圧Vera41より小さく設定しても良い。第1電荷蓄積部132aの正孔がチャネル側に移動しないためである。また、選択ゲート線SGDには、選択トランジスタSTDがオン可能な電圧Vsgd1を印加し,選択ゲート線SGSには、選択トランジスタSTSがオン可能な電圧Vsgs1を印加する。これにより、半導体層120に形成されたチャネルは消去電圧Vera41に設定される。図15に示すように、偶数番目のワード線WL−evenと、これに隣接する奇数番目のワード線WL−oddとの間に形成される電界により、偶数番目のワード線WL−evenに近い第2電荷蓄積部132bにブロック絶縁膜133を介して電子が注入される。一方、偶数番目のワード線WL−evenからこれに対向する第1電荷蓄積部132aまでのブロック絶縁膜133は厚いので、ワード線WL−even側から第1電荷蓄積部132aへは、電子が注入されることはない。
続く時刻T21で、電圧Vera32及び消去電圧Vera42を1回目の電圧Vera31及び消去電圧Vera41よりもそれぞれ少し大きく設定して、2回目のストライプ消去動作が実行される。更に、時刻T22で、電圧Vera33及び消去電圧Vera43を2回目の電圧Vera32及び消去電圧Vera42よりもそれぞれ少し大きく設定して、3回目のストライプ消去動作が実行される。所定回数のストライプ消去動作が実行されたら、偶数番目のメモリセルMC−evenに対するストライプ消去動作(S3)が終了する。
偶数番目のメモリセルMC−evenに対するストライプ消去動作(S3)が終了すると、図15に示すように、第2電荷蓄積部132bのワード線WL−evenに近い部分に所定量の電子が蓄積される。
このような消去フローが実行された後のメモリセルMCへのデータ書き込みは、次のように行われる。
選択ワード線WL−selにプログラム電圧Vprogが印加され、非選択ワード線WL−uselにプログラム電圧Vprogよりも低い電圧Vpassが印加される。また、半導体層120側には、データを書き込む場合(しきい値を移動させる場合)、ビット線BLを介してVssが印加され、データ(しきい値)を維持する場合、Vssよりも大きな電圧が印加される。この結果、データ書き込みを行うメモリセルMCでは、半導体層120側からトンネル絶縁膜131を介して第1電荷蓄積部132aに電子が注入される。一方、選択ワード線WL−selには、高いプログラム電圧Vprogが印加されるが、隣接する非選択ワード線WL−uselにも電圧Vpassが印加されるので、第2電荷蓄積部132b側からブロック絶縁膜133を介して選択ワード線WL−selに電子が移動するには至らない。MLC(Multi-Level Cell)等の多値データの書き込み動作では、第1電荷蓄積部132aに蓄積される電子の量でしきい値分布、すなわち記憶されるデータの値が決まる。
データの読み出し時には、ワード線WLのZ方向の両端近傍とチャネルの間の電界を第2電荷蓄積部132bに蓄積された電子によってシールドすることができる。これにより、第1電荷蓄積部132aのゲート長方向の両側でチャネルがノーマリーオン状態になるのを防止することができ、第1電荷蓄積部132aに蓄積された電荷量に応じた精度の良い読み出し動作が可能になる。
[第2実施形態]
図16は、第2の実施形態に係る半導体記憶装置の書き込みフローを示すフローチャートである。
上記の実施形態では、データの消去フローとして、データを一括消去するフラッシュ消去(S1)の後に、奇数番目のメモリセルMC−oddに対するストライプ消去(S2)と、偶数番目のメモリセルMC−evenに対するストライプ消去(S3)を実施した。
これに対し、本実施形態では、2つのストライプ消去が、書き込み動作の直前に行われる。このため、2つのストライプ消去(S11,S12)は、書き込みフローに組み込まれている。
この書き込みフローは、メモリブロックMBの一括消去がなされている状態で実行される。まず、奇数番目のメモリセルMC−oddに対する前述と同様のストライプ消去(S11)を制御回路が実行する。次に、偶数番目のメモリセルMC−evenに対する前述と同様のストライプ消去(S12)を制御回路が実行する。最後に、データの書き込み処理(S13)を制御回路が実行する。
この実施形態によれば、フラッシュ消去からデータの書き込みまでに多くの時間がかかった場合でも、電子が第2電荷蓄積部132bに確実に注入された状態でデータの書き込みを行うことが可能になる。
[製造方法]
次に、図17〜図24を参照して、図3に示した半導体記憶装置の製造方法を説明する。図17〜図24は、本実施形態に係る半導体記憶装置の製造工程を順に示す部分断面図である。
図17に示す通り、基板上に、複数の絶縁層101a及び複数の犠牲層180をZ方向に交互に積層する。絶縁層101aは、例えば、酸化シリコン(SiO)等からなる。犠牲層180は、例えば、窒化シリコン(SiN)等からなる。この工程は、例えば、CVD(Chemical Vapor Deposition)等の方法によって行う。
次に、絶縁層101a及び犠牲層180からなる積層体にメモリ構造100を形成するための開口opを形成する。この工程は、例えば、RIE(Reactive Ion Etching)等の方法によって行う。
次に、図18に示すように、絶縁層101a及び犠牲層180からなる積層体のうち、開口opに面する側壁の犠牲層180を選択的に後退させるリセスエッチングを行う。リセスエッチングは、ウェットエッチング又はドライエッチング等の方法によって行う。
次に、図19に示すように、開口opの側壁にブロック絶縁膜133aを、開口opの側壁段差が埋まらない厚さで形成する。ブロック絶縁膜133aは、例えば、酸化シリコン(SiO)等からなる。この工程は、例えば、CVD等の方法によって行う。
続いて、図20に示すように、ブロック絶縁膜133aの上に電荷蓄積膜132cを、開口opの側壁段差を埋め込むように形成する。電荷蓄積膜132cは、例えば、窒化シリコン(SiN)等の電荷を蓄積可能な膜である。この工程は、例えばCVD等の方法によって行う。
次に、図21に示すように、電荷蓄積膜132cを後退させるリセスエッチングを行う。リセスエッチングは、ウェットエッチング又はドライエッチング等の方法によって行う。これにより、絶縁層101aと犠牲層180の積層体の積層方向に電荷蓄積膜132cが分断され、犠牲層180の積層方向の中央部と対向する部分の電荷蓄積膜132cのみが残る。
続いて、図22に示すように、開口opに面する側壁のブロック絶縁膜133a及び絶縁層101aを選択的に後退させるリセスエッチングを行う。リセスエッチングは、ウェットエッチング又はドライエッチング等の異方性エッチングによって行う。このリセスエッチングにより、開口opに面する絶縁層101a及びブロック絶縁膜133aの面は、電荷蓄積膜132cの、犠牲層180と対向する面よりも、犠牲層180に近い位置まで後退する。すなわち、開口opに面する側壁において、電荷蓄積膜132cが絶縁層101a及びブロック絶縁膜133aよりも突出する。
次に、図23に示すように、電荷蓄積膜132cが突出した開口opの側壁に沿って電荷蓄積膜132dを形成する。電荷蓄積膜132dは、例えば、窒化シリコン(SiN)等の電荷を蓄積可能な膜である。この工程は、例えばCVD等の方法によって行う。
次に、図24に示すように、電荷蓄積膜132dの上にブロック絶縁膜134を形成する。このブロック絶縁膜134は、例えば、酸化シリコン(SiO)等からなる。この工程は、例えば、CVD等の方法によって行う。その後、リセスエッチングによってブロック絶縁膜134を電荷蓄積膜132dと略同一面となる位置まで後退させる。
その後、トンネル絶縁膜131、半導体層120及び絶縁層121を順次形成し、絶縁部STを形成する溝を介して犠牲層180を導電層110に置換することにより、図3に示した構造を得ることができる。
[第3実施形態]
図25は、第3実施形態に係る半導体記憶装置の一部を示す断面図である。
第1実施形態では、電荷蓄積膜132を構成する第1電荷蓄積部132aと第2電荷蓄積部132bとがジグザク状に連結されていた。これに対し、第3実施形態では、電荷蓄積膜132を構成する第1電荷蓄積部132eと第2電荷蓄積部132fとが分離されている。すなわち、第1電荷蓄積部132eは、導電層110のZ方向の中央部とX方向に対向する位置に配置され、Z方向に分離されている。また、第2電荷蓄積部132fは、隣接する導電層110間に対応させて、第1電荷蓄積部132eとX方向及びZ方向の異なる位置に配置され、Z方向に互いに分離されている。第1電荷蓄積部132eは、トンネル絶縁膜131に接している。第2電荷蓄積部132fは、第1電荷蓄積部132eよりも導電層110に近い位置に配置されている。
このような構造であると、第2電荷蓄積部132fに蓄積された電子が第1電荷蓄積部132eに移動することが無いので、更に安定した動作を確保することができる。
[第4実施形態]
図26は、第4実施形態に係る半導体記憶装置の一部を示す断面図である。
本実施形態では、電荷蓄積膜132を構成する第1電荷蓄積部132gと第2電荷蓄積部132hとが接続されている。しかし、第2電荷蓄積部132hは、隣接する導電層110間に対応する位置で、Z方向に分断されている。
この構造によれば、隣接メモリセルMC間で、第2電荷蓄積部132hを介して電子が移動することが無いので、更に安定した動作を確保することができる。
[その他]
以上、第1〜第4実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことが出来る。例えば、上記各実施形態では、第1電荷蓄積部132a,132e,132g及び第2電荷蓄積部132b,132f,132hを窒化シリコン(SiN)で形成する例を示したが、電荷蓄積が可能であれば、いずれか一方又は両方をポリシリコン等の他の材料で形成することもできる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
101…絶縁層、110…導電層、120…半導体層、130…ゲート絶縁膜、131…トンネル絶縁膜、132…電荷蓄積膜、132a,132e,132g…第1電荷蓄積部、132b,132f,132h…第2電荷蓄積部、133,134…ブロック絶縁膜。

Claims (5)

  1. 基板と、
    前記基板と交差する第1方向に配置された複数の導電層、前記第1方向に延び前記複数の導電層と対向する半導体層、及び前記半導体層と前記複数の導電層との間に設けられた電荷蓄積部を備え、前記複数の導電層と前記半導体層が対向する位置に複数のメモリセルが形成され、前記複数のメモリセルが前記第1方向に直列に接続されてメモリストリングを構成する、メモリセルアレイと、
    を備え、
    前記電荷蓄積部は、前記基板の主面に沿った第2方向に前記複数の導電層とそれぞれ対向する複数の第1電荷蓄積部と、前記複数の第1電荷蓄積部に対して前記第1方向及び前記第2方向の異なる位置に配置された複数の第2電荷蓄積部とを含み、
    前記第1電荷蓄積部と前記半導体層との前記第2方向の距離は、前記第2電荷蓄積部と前記半導体層との前記第2方向の距離よりも小さく、
    前記第2電荷蓄積部と前記複数の導電層との前記第2方向の距離は、前記第1電荷蓄積部と前記複数の導電層との前記第2方向の距離よりも小さい
    半導体記憶装置。
  2. 前記複数の導電層の前記電荷蓄積部との各対向面は、前記第1方向の両端近傍の面部分と、前記両端よりも内側の面部分を有し、
    前記両端近傍の面部分は前記第2電荷蓄積部と対向し、
    前記内側の面部分は前記第1電荷蓄積部と対向している
    請求項1記載の半導体記憶装置。
  3. 前記第1電荷蓄積部の前記第2方向の幅は、前記第2電荷蓄積部の前記第2方向の幅よりも大きい
    請求項1又は2記載の半導体記憶装置。
  4. 前記複数のメモリセルに対するデータの消去動作、書き込み動作及び読み出し動作を実行する制御回路をさらに備え、
    前記複数の導電層は、互いに隣接する第1導電層と第2導電層とを有し、
    前記制御回路は、
    前記第1導電層に第1電圧を印加しつつ前記第2導電層に前記第1電圧より高い電圧を印加する第1消去動作と、
    前記第1消去動作の後に実行され、前記第2導電層に前記第1電圧を印加しつつ前記第1導電層に前記第1電圧より高い電圧を印加する第2消去動作と
    を実行可能である
    請求項1〜3のいずれか1項記載の半導体記憶装置。
  5. 前記制御回路は、
    前記複数の導電層に前記第1電圧を印加する一括消去動作を実行し、
    前記一括消去動作の後に、前記第1消去動作及び前記第2消去動作を実行する
    請求項4記載の半導体記憶装置。
JP2020032851A 2020-02-28 2020-02-28 半導体記憶装置 Pending JP2021136374A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020032851A JP2021136374A (ja) 2020-02-28 2020-02-28 半導体記憶装置
US17/014,776 US20210272640A1 (en) 2020-02-28 2020-09-08 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020032851A JP2021136374A (ja) 2020-02-28 2020-02-28 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2021136374A true JP2021136374A (ja) 2021-09-13

Family

ID=77462875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020032851A Pending JP2021136374A (ja) 2020-02-28 2020-02-28 半導体記憶装置

Country Status (2)

Country Link
US (1) US20210272640A1 (ja)
JP (1) JP2021136374A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380399B2 (en) 2020-05-18 2022-07-05 Kioxia Corporation Semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380399B2 (en) 2020-05-18 2022-07-05 Kioxia Corporation Semiconductor memory device

Also Published As

Publication number Publication date
US20210272640A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP5259666B2 (ja) 不揮発性半導体記憶装置
US9543022B2 (en) Semiconductor memory device
JP5542737B2 (ja) 不揮発性半導体記憶装置
US8441855B2 (en) Strings of memory cells having string select gates, memory devices incorporating such strings, and methods of accessing and forming the same
JP5044624B2 (ja) 不揮発性半導体記憶装置
US9349464B2 (en) Non-volatile semiconductor device
JP5524134B2 (ja) 不揮発性半導体記憶装置
KR101053002B1 (ko) 비휘발성 반도체 기억 장치 및 그 소거 검증 방법
JP2017135238A (ja) 半導体記憶装置及びその製造方法
JP4004809B2 (ja) 半導体装置及びその動作方法
KR102250454B1 (ko) 3d 비휘발성 메모리에 대한 서브블록 크기 감소
JP2011159364A (ja) 不揮発性半導体記憶装置および不揮発性半導体記憶装置の駆動方法
JP2021026786A (ja) 半導体記憶装置
JP2012160222A (ja) 不揮発性半導体記憶装置
JP2017054974A (ja) 半導体記憶装置
TWI633552B (zh) 半導體記憶體裝置及半導體記憶體裝置之控制方法
JP2011023705A (ja) 不揮発性半導体記憶装置
US10770117B1 (en) Semiconductor storage device
JP2021136374A (ja) 半導体記憶装置
JP2013030552A (ja) 不揮発性半導体記憶装置
US9935115B2 (en) Nonvolatile semiconductor storage device and method of manufacturing nonvolatile semiconductor storage device
US10176874B2 (en) Storage device and method of controlling the storage device
JP2020155499A (ja) 半導体記憶装置
TWI747394B (zh) 非揮發性半導體記憶裝置及非揮發性半導體記憶裝置之驅動方法
US20150263118A1 (en) Semiconductor memory device and method of manufacturing the same