JP2020085723A - 光学的測定装置及び測定方法 - Google Patents

光学的測定装置及び測定方法 Download PDF

Info

Publication number
JP2020085723A
JP2020085723A JP2018222416A JP2018222416A JP2020085723A JP 2020085723 A JP2020085723 A JP 2020085723A JP 2018222416 A JP2018222416 A JP 2018222416A JP 2018222416 A JP2018222416 A JP 2018222416A JP 2020085723 A JP2020085723 A JP 2020085723A
Authority
JP
Japan
Prior art keywords
phase
frequency
component
signal
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018222416A
Other languages
English (en)
Other versions
JP7169642B2 (ja
Inventor
土田 英実
Hidemi Tsuchida
英実 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018222416A priority Critical patent/JP7169642B2/ja
Priority to US17/293,066 priority patent/US20210405194A1/en
Priority to PCT/JP2019/044883 priority patent/WO2020110779A1/ja
Priority to EP19889568.2A priority patent/EP3889644A4/en
Publication of JP2020085723A publication Critical patent/JP2020085723A/ja
Application granted granted Critical
Publication of JP7169642B2 publication Critical patent/JP7169642B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4917Receivers superposing optical signals in a photodetector, e.g. optical heterodyne detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/493Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】FMCWライダにおいて、レーザの非線形チャープの影響を除去して、正確な距離と速度の測定を可能とする光学的測定装置及び測定方法を提供する。【解決手段】光学的測定装置は、周波数変調したレーザと、光検出器と、レーザの出力光を2分し、一方をプローブ光、他方を参照光とし、プローブ光又は参照光のいずれか一方に周波数シフトを与え、プローブ光を対象物に照射して、対象物からの散乱光と、参照光を合波して光検出器に入射するヘテロダイン光学系と、IQ検出部と、演算処理部とを備える。IQ検出部は、光検出器から発生するビート信号の、同相成分Iと直交成分Qを検出し、演算処理部は、同相成分Iと直交成分Qから、ビート信号の位相と周波数を求め、周波数から対象物の速度を算出する演算、又は、位相から対象物までの距離を算出する演算の少なくともいずれかを実行する。【選択図】図1

Description

本発明は、自動車や自律ロボット等に用いられる環境認識センサ等に適する、光学的測定装置及び測定方法に関する。
自動車や自律ロボットの環境認識センサや、建設・土木現場における形状計測などへの応用を目的として、ライダ(LiDAR:Laser Imaging Detection and Ranging)の開発が進展している。すでに実用化されているToF(Time of Flight)方式のライダは、対象物に光パルスを照射して、散乱されて戻ってくるまでの時間から距離を測定し、照射する光パルスを空間的に走査して、3次元距離データを生成するものである。
ToF方式ライダでは、直接検波により対象物からの散乱光を検出する。一方、コヒーレント検波を用いるFMCW(Frequency Modulated Continuous Wave)方式は、より高感度の散乱光検出が可能であり、対象物までの距離に加えて、ドップラーシフトから運動速度も測定できる特徴を有している。ミリ波領域のFMCWレーダは、車載用の衝突防止センサとして実用化されている。光波領域でFMCWライダを実現できれば、空間分解能の格段の向上が期待できる。現状のFMCWライダは、装置の構成が複雑であり、高コヒーレンスのレーザ光源が要求されるため、応用分野は限定されている。
図14(a)(b)(c)(d)は、従来技術におけるFMCWライダの動作原理を説明する図である。図14(a)のFMCWライダ装置は、三角波信号発生器27と、注入電流源2と、半導体レーザ3と、ビームスプリッタ6a、6bと、光サーキュレータ7と、反射鏡9と、光検出器14を備える。三角波を発生する三角波信号発生器27の出力を、注入電流源2に入力し、半導体レーザ3の注入電流を変調する。半導体レーザ3の出力光を2分し、一方をプローブ光11、他方を参照光10とする。参照光とは、プローブ光と位相が同期し、光学的遅延の基準となる光をいう。ビームスプリッタ6a、6bと、光サーキュレータ7と、反射鏡9とにより、ホモダイン光学系30を構成する。プローブ光11を対象物13に照射し、対象物13からの散乱光12と参照光10を合波し、光検出器14に入力してビート信号15を生成する。
図14(b)は、参照光10、散乱光12、ビート信号15の各周波数の波形を表す図である。半導体レーザ3の光周波数は、三角波信号発生器27から出力される三角波に対応して、アップ、ダウンチャープを周期的に繰り返す。参照光10に対して、散乱光12には対象物13までの距離に応じた時間遅れを生じ、光検出器14の出力には、時間遅れに比例した周波数を有するビート信号15が発生する。参照光10と散乱光12の周波数が交差する三角波の頂点近傍以外では、ビート信号15の周波数は一定値になるので、スペクトル解析等によりビート周波数を求めて、時間遅れ、すなわち、対象物13までの距離を算出することができる。
FMCWライダにより測定されるビート周波数fは、次式により表すことができる。
Figure 2020085723
ここで、Δνはチャープ帯域幅、T=1/fは変調周期、fは変調周波数、Lは対象物13までの距離、cは光速度である。(1)式において、Δν/(T/2)は単位時間当たりの周波数変化、すなわち、チャープ率を表す。ビート周波数fから距離Lを算出するためには、チャープ率を事前に求めておく必要がある。
ここまでの説明は、対象物13が静止している場合であるが、次に、対象物13が速度Vで運動している場合について説明する。半導体レーザ3から見て、対象物13が遠ざかる方向をV>0とする。対象物13の運動により、散乱光12はドップラーシフトを受け、ビート周波数が変化する。図14(c)は速度Vが正の場合、図14(d)は速度Vが負の場合について、参照光10、散乱光12、ビート信号15の各周波数の波形を表す図である。対象物13が静止している場合、アップ、ダウンチャープの時間域で発生するビート周波数は等しいが、運動している場合は、両者の間に速度Vに応じた差を生じる。
アップ、ダウンチャープの時間域で発生するビート周波数fup、fdownは、それぞれ次式により表すことができる。
Figure 2020085723
Figure 2020085723
ここで、νは光周波数である。(2)、(3)式において、第1項は対象物13までの距離に応じた時間遅れの成分、第2項は対象物13の運動に伴うドップラーシフトΔfである。
ビート周波数fupとfdownの値をそれぞれ測定して、対象物の距離Lと速度Vを次式により算出することができる。
Figure 2020085723
Figure 2020085723
(4)、(5)式は、ビート周波数fupとfdownの和が距離に、差が速度に対応することを示している。
(4)、(5)式による距離と速度の算出においては、ビート周波数fupとfdownが正領域にあること、すなわち、対象物13までの距離に起因するビート周波数fが、ドップラーシフトΔfよりも大きいことを前提としている。(4)式、または(5)式の値が負になる条件においても、その絶対値がビート周波数として検出されるので、距離Lと速度Vを正しく計算できなくなる。このため、以下の条件が課せられる。
Figure 2020085723
(6)式は、対象物13の運動速度Vに応じて、測定できる距離に制限が課せられることを意味している。すなわち、次式で表される距離Lminよりも近傍の測定はできない。
Figure 2020085723
近傍の距離を測定可能とするためには、ビート周波数fを増大すること、すなわち、変調周波数fやチャープ帯域幅Δνを増大することが必要になる。以上の説明においては、対象物13が運動している場合を想定したが、測定装置自体が運動している場合、また、対象物13と測定装置の両方が運動している場合も同様であり、両者の間の相対的な速度により、ドップラーシフトを生じる。したがって、(5)式により算出する値は相対速度になる。
次に、FMCWライダにおける距離分解能について説明する。距離分解能δLは、次式により表すことができる。
Figure 2020085723
(8)式における分解能の意味は、近接する2つの散乱点を分離して検出する能力である。散乱点が1つの場合は、さらに高い精度で距離を測定することができる。距離分解能δLはチャープ帯域幅Δνに反比例するので、高い分解能を得るためには、チャープ帯域幅が増大することが必要である。例えば、分解能10cm、1cmを得るのに必要なチャープ帯域幅は、それぞれ1.5GHz、15GHzである。散乱点が1つの場合においても、精度はチャープ帯域幅に反比例する。
ビート周波数の値から距離と速度を算出する上で、チャープの直線性は極めて重要な特性である。(1)、(2)、(3)式のビート周波数は、半導体レーザ3の周波数が時間に比例して増加(アップチャープ)、または減少(ダウンチャープ)することを前提にしている。光周波数が時間に対して非線形に変化する場合は、一定値であるべきビート周波数が変化して、距離と速度を一意的に決定できなくなる。
アイセーフ波長域で動作する半導体レーザは、注入電流変調により周波数を直接変調できることから、小型で低価格のFMCWライダ用の光源として期待されている。ところが、半導体レーザの周波数変調は熱効果に起因し、周波数応答特性が平坦ではないため、非線形チャープが顕著に現れることが知られている。三角波による周波数変調では、非線形チャープに起因して、変調信号に含まれない周波数成分が現れることが報告されている(非特許文献1参照)。
FMCWライダにおいて、このような非線形チャープの影響を抑圧または低減する手法は、2つに大別できる。一つは、半導体レーザの変調を制御して、所望の線形チャープを得る方法である。もう一つは、検出したビート信号を処理して、非線形チャープの影響を除去する方法である。
レーザの周波数変化を光学的に検出して、基準となる三角波との誤差をレーザに負帰還して制御する装置、及び方法が、次のように報告されている(特許文献1乃至3参照)。距離測定用の光学系とは別のホモダイン、またはヘテロダイン干渉計を用意し、レーザの周波数変化を検出する。検出したレーザの周波数と基準信号との差を誤差信号として、レーザの注入電流を負帰還制御することにより、非線形チャープを抑圧することができる。
周波数変調信号、またはレーザ出力をモニタして、変調信号発生器を制御するとともに、検出したビート信号を補正して、距離を算出する方法が次のように報告されている(特許文献4参照)。レーザ出力光の位相を数学的にモデル化し、モニタ結果からモデルに含まれるパラメータを推定し、制御と信号処理を行い、距離を算出する。
ミリ波FMCWレーダにおいて、光学的にミリ波周波数を検出し、信号処理により、非線形チャープの影響を抑圧する装置が、以下のように報告されている(特許文献5参照)。送出するミリ波信号を光信号に変換し、ホモダイン干渉計によりビート信号を検出して、パルス信号に変換する。パルス信号には非線形チャープの情報が含まれており、このパルス信号をクロックとして、ビート信号をAD変換することにより、非線形チャープの影響を抑圧できる。
特開2000−111312号公報 米国特許出願公開第2010/0085992号明細書 米国特許出願公開第2012/0106579号明細書 米国特許出願公開第2009/0135403号明細書 特表2008−514910号公報
半導体レーザを光源として用いるFMCWライダにおいては、光周波数変化が時間に対して非線形に変化することが原因で、本来は一定値であるべきビート周波数が変化して、距離と速度を一意的に算出できなくなる問題がある。
前述した、非線形チャープの影響を抑圧または低減する方法(特許文献1乃至3参照)では、レーザの負帰還制御により非線形チャープを抑圧するため、誤差信号を実時間で生成する必要がある。このため、ホモダインまたはヘテロダイン干渉計を備える必要がある。また、変調信号発生器の制御と検出信号の補正を行う方法(特許文献4参照)では、干渉計などの光学装置が必要である。また、特許文献5はミリ波レーダ装置に関する技術であるが、光領域のFMCWライダにも適用できる。しかし、AD変換器のクロックを実時間で生成する必要があるため、ホモダイン干渉計が必要である。
また、従来技術のFMCWライダにおいては、測定装置と対象物が相対的に運動している場合、ドップラーシフトにより、近傍の距離と速度が正しく測定できない問題がある。
発明者は、非線形チャープの影響を除去することを目的として、ホモダイン光学系を用いて、ビート信号の周波数の平均値から距離を算出する装置、及び方法を出願している(特願2017−165940)。この出願では、ホモダイン光学系を用いるため、速度の測定は困難であり、対象物が運動している場合は、ドップラーシフトの影響を受けて、距離を正しく求めることができない問題がある。
このように、従来技術においては、距離と速度測定用の光学系とは別に、周波数変調を検出して制御するための装置が必要であり、装置の構成が複雑になる。また、測定装置と対象物の相対的な運動に起因して、近傍の測定が正しく行われない問題がある。光学的な距離、速度、または距離と速度の測定装置として、装置構成が複雑化せず、小型で低価格のライダシステムが実現できれば、車載用の衝突防止、歩行者検知センサなど、民生分野への展開が期待できる。
本発明は、FMCWライダにおける上述の問題を解決しようとするものであり、干渉計などの付加的な装置を用いることなく、レーザの非線形チャープの影響を除去して、距離と速度のうちの少なくともいずれかの正確な測定を可能とする、光学的測定装置及び測定方法を提供することを目的とする。
本発明は、前記目的を達成するために、以下の特徴を有するものである。
(1) 周波数変調したレーザと、光検出器と、前記レーザの出力光を2分し、一方をプローブ光、他方を参照光とし、前記プローブ光又は前記参照光のいずれか一方に周波数シフトを与え、前記プローブ光を対象物に照射して、前記対象物からの散乱光と、前記参照光を合波して前記光検出器に入射するヘテロダイン光学系と、前記光検出器から発生するビート信号の、同相成分Iと直交成分Qを検出するIQ検出部と、前記同相成分Iと前記直交成分Qから、前記ビート信号の位相と周波数を求め、前記周波数から前記対象物の速度を算出する演算、又は、前記位相から前記対象物までの距離を算出する演算の少なくともいずれかを実行する演算処理部とを、備えることを特徴とする光学的測定装置。
(2) 前記演算処理部は、前記周波数の平均値から、前記対象物の運動に起因するドップラーシフトと速度を求めることを特徴とする、前記(1)記載の光学的測定装置。
(3) 前記演算処理部は、前記位相から前記ドップラーシフトの成分を除外した後、絶対値の平均値を求め、事前に校正した距離と位相の絶対値の平均値との比例関係を基に、前記対象物までの距離を算出することを特徴とする前記(1)又は(2)記載の光学的測定装置。
(4) 前記IQ検出部により検出した前記同相成分Iと前記直交成分Qを、デジタルIQ信号として取得する2チャンネルAD変換器を備え、前記デジタルIQ信号を前記演算処理部に入力して、前記デジタルIQ信号から前記ビート信号の位相と周波数を求めることを特徴とする、前記(1)乃至(3)のいずれか1項記載の光学的測定装置。
(5) 前記光検出器から発生する前記ビート信号をデジタルRF信号として取得する1チャンネルAD変換器を備え、前記IQ検出部は、前記デジタルRF信号から、前記同相成分Iと前記直交成分Qを検出し、前記演算処理部により、該同相成分Iと該直交成分Qから前記ビート信号の位相と周波数を求めることを特徴とする、前記(1)乃至(3)のいずれか1項記載の光学的測定装置。
(6) 前記周波数シフトは、前記同相成分Iと前記直交成分Qに含まれる周波数よりも大きいことを特徴とする、前記(1)乃至(5)のいずれか1項記載の光学的測定装置。
(7) 前記レーザの周波数変調信号は正弦波であることを特徴とする前記(1)乃至(6)のいずれか1項記載の光学的測定装置。
(8) 周波数変調したレーザの出力光を2分し、一方をプローブ光、他方を参照光とし、前記プローブ光又は前記参照光のいずれか一方に周波数シフトを与え、前記プローブ光を対象物に照射して、前記対象物からの散乱光と、前記参照光を合波して光検出器に入射し、前記光検出器から発生するビート信号の同相成分Iと直交成分Qを検出し、前記同相成分Iと前記直交成分Qから、ビート信号の位相と周波数を求めた後、前記周波数から前記対象物の速度を算出する演算、又は前記位相から前記対象物までの距離を算出する演算の少なくともいずれかを実行することを特徴とする光学的測定方法。
(9) 前記周波数から前記対象物の速度を算出する前記演算は、前記周波数の平均値から、前記対象物の運動に起因するドップラーシフトと速度を算出することである、前記(8)記載の光学的測定方法。
(10) 前記位相から前記対象物までの距離を算出する演算は、前記位相から前記ドップラーシフトの成分を除外した後、絶対値の平均値を求め、事前に校正した距離と位相の絶対値の平均値との比例関係を基に、前記対象物までの距離を算出することである、前記(8)又は(9)記載の光学的測定方法。
(11) 前記光検出器から発生するビート信号の同相成分Iと直交成分Qを検出し、前記同相成分Iと前記直交成分Qから、ビート信号の位相と周波数を求める際に、前記同相成分Iと前記直交成分Qを、デジタルIQ信号に変換して、該デジタルIQ信号から、前記ビート信号の位相と周波数を求めることを特徴とする、前記(8)乃至(10)のいずれか1項記載の光学的測定方法。
(12) 前記光検出器から発生するビート信号の同相成分Iと直交成分Qを検出し、前記同相成分Iと前記直交成分Qから、ビート信号の位相と周波数を求める際に、前記ビート信号をデジタルRF信号に変換して、該デジタルRF信号から、前記同相成分Iと直交成分Qを検出し、該同相成分Iと該直交成分Qから、前記ビート信号の位相と周波数を求めることを特徴とする、前記(8)乃至(10)のいずれか1項記載の光学的測定方法。
本発明の光学的測定装置及び測定方法によれば、測定装置と対象物が相対的に運動している場合を含めて、距離と速度を正確に測定できる。本発明の光学的測定装置及び測定方法によれば、距離と速度とを一意的に算出できる。即ち、距離変化の影響を受けることなく、速度の測定ができ、また、速度の影響を受けずに高精度の距離測定ができる。本発明では、レーザ光を用い、光波領域でFMCWライダを実現できるので、空間分解能が格段に向上できる。
従来のFMCWライダでは、測定できる距離に制限があり、近傍の測定が不可能であったが、本発明では、周波数シフトを適切に設定することにより、測定距離の制限がないという効果もある。
本発明の光学的測定装置及び測定方法においては、三角波ではなく正弦波により周波数変調した半導体レーザを用いた場合でも、速度及び距離の正確な測定ができる。本発明では、ヘテロダイン光学系を用いて、FMCWライダを構成し、IQ検出部及び演算処理部を用いて、ビート信号の位相と周波数を検出し、周波数から速度を、位相から距離を算出することを可能とする。これらの構成により、本発明では、干渉計などの付加的な装置を用いることなく、レーザの非線型チャープを除去可能であり、速度や距離の正確な測定が可能となる。また、このため、レーザの周波数変化をモニタする光学系と、周波数変調を制御する電子回路等が不要である。その結果、装置構成を格段に簡素化することができて、小型化と低価格化を実現できる。よって、本発明の光学的測定装置及び測定方法によれば、距離及び速度の少なくともいずれかを、小型化した装置で高精度の測定が可能となる。
また、変調信号として三角波や鋸波ではなく、正弦波を用いることにより、レーザや駆動回路の周波数応答特性の影響を低減して、高速動作が可能になる。
光検出器から発生するビート信号をデジタルRF信号として取得する1チャンネルAD変換器を備え、IQ検出部と演算処理部の機能を演算処理装置で実行する場合は、信号処理だけで非線形チャープの影響を抑制できるため、より小型化で高精度の装置が実現できる
本発明に係る光学的測定装置の第1の実施形態を説明する図である。 IQ信号演算処理装置における信号処理を説明する図である。 本発明に係る光学的測定装置の第2の実施形態を説明する図である。 本発明に係る光学的測定装置の測定精度を評価するための装置を説明する図である。 評価例1に係る、光位相シフタにより正の速度を与えた場合のビート信号位相を表す図である。(b)は(a)の一部(点線で囲んだ部分)の拡大図である。 評価例1に係る、光位相シフタにより負の速度を与えた場合のビート信号位相を表す図である。(b)は(a)の一部(点線で囲んだ部分)の拡大図である。 評価例1に係る、速度の算出結果と誤差を表す図である。 評価例1に係る、ドップラーシフト除去前と後の位相絶対平均値の算出結果を表す図である。 評価例2に係る、可変光遅延線により距離を変化させた場合のビート信号位相を表す図である。 評価例2に係る、可変光遅延線により距離を変化させた場合のビート信号位相を表す図である。(a)、(b)、(c)は、それぞれ、図9(a)、(b)、(c)の一部(点線で囲んだ部分)の拡大図である。 評価例2に係る、算出した速度と誤差を表す図である。 評価例2に係る、半導体レーザの周波数変調波形を表す図である。 評価例2に係る、算出した距離を表す図である。(a)は絶対距離と速度0に対する偏差、(b)は相対距離と誤差を表す。 従来技術におけるFMCWライダの原理を説明する図である。(a)にFMCWライダ装置、(b)に対象物が静止している場合の参照光、散乱光、ビート信号の周波数、(c)と(d)に対象物が運動している場合の参照光、散乱光、ビート信号の周波数を示す。
本発明の実施形態について以下説明する。
本発明の実施形態の光学的測定方法では、周波数変調したレーザの出力光を2分し、一方をプローブ光、他方を参照光とし、前記プローブ光又は前記参照光のいずれか一方に周波数シフトfを与え、前記プローブ光を対象物に照射して、前記対象物からの散乱光と、前記参照光を合波して光検出器に入射し、前記光検出器から発生するビート信号の同相成分Iと直交成分Qを検出し、前記同相成分Iと前記直交成分Qから、ビート信号の位相と周波数を求めた後、前記周波数から前記対象物の速度を算出する演算、又は前記位相から前記対象物までの距離を算出する演算の少なくともいずれかを実行する。
本発明の実施形態の光学的測定方法を実施するために、次のような光学的測定装置を用いる。速度の測定のためのみ、距離の測定のためのみ、又は、速度及び距離の両方の測定のために、用いることができる。
本発明の実施形態の光学的測定装置は、周波数変調したレーザと、光検出器と、ヘテロダイン光学系と、IQ検出部と、演算処理部とを少なくとも備える。本実施形態におけるヘテロダイン光学系は、前記レーザの出力光を2分し、一方をプローブ光、他方を参照光とし、前記プローブ光又は前記参照光のいずれか一方に周波数シフトfを与え、前記プローブ光を対象物に照射して、前記対象物からの散乱光と、前記参照光を合波して前記光検出器に入射する光学系である。ヘテロダイン光学系と対象物とでヘテロダイン干渉計を構成する。IQ検出部では、光検出器から発生するビート信号の、同相成分Iと直交成分Qを検出する。演算処理部では、同相成分Iと直交成分Qから、ビート信号の位相と周波数を求め、該周波数から対象物の速度を算出する演算、又は、該位相から対象物までの距離を算出する演算の少なくともいずれかを実行する。
(第1の実施形態)
本実施形態について、図1を参照して説明する。本実施形態では、周波数変調したレーザと、ヘテロダイン光学系と、光検出器と、IQ検出部の例であるIQ復調器と、2チャンネルAD変換器と、演算処理部の例であるIQ信号演算処理装置とを具備する装置を用いて、対象物までの距離と速度を測定する。
図1は、本実施形態に係る光学的測定装置の基本構成を説明する図である。図1の光学的測定装置は、変調信号発生器1と、注入電流源2と、半導体レーザ3と、ヘテロダイン光学系5と、光検出器14と、IQ復調器16と、2チャンネルAD変換器19と、IQ信号演算処理装置20とを備える。図1では、周波数変調したレーザとして、直接変調半導体レーザを例に示している。ヘテロダイン光学系5は、信号発生器4と、ビームスプリッタ6aと光サーキュレータ7と光周波数シフタ8と反射鏡9とビームスプリッタ6bとで、主に構成する。光周波数シフタ8は信号発生器4により駆動する。図1に示すように、変調信号発生器1の出力を、注入電流源2を介して、半導体レーザ3に入力し、出力光の周波数を変調する。半導体レーザ3の出力光をビームスプリッタ6aにより2分し、一方は光周波数シフタ8により周波数シフトを与えて参照光10とし、他方をプローブ光11とする。プローブ光11は光サーキュレータ7を介して、対象物13に照射する。対象物13からの散乱光12を、光サーキュレータ7を介して、ビームスプリッタ6bに導き、該散乱光12と参照光10とを合波して、光検出器14により受光する。周波数変調された参照光10と散乱光12との間には、対象物13までの距離に応じた時間差が存在するため、周波数差を生じる。光検出器14の出力には、周波数差に対応したビート信号15が発生する。
光検出器14の出力と、信号発生器4の出力をIQ復調器16に入力して、ビート信号15の同相成分17と直交成分18を検出して、2チャンネルAD変換器19に入力する。2チャンネルAD変換器19においては、ビート信号の同相成分17と直交成分18をデジタルIQ信号に変換して、IQ信号演算処理装置20へ出力する。IQ信号演算処理装置20においては、デジタルIQ信号から、ビート信号の位相と周波数を計算した後、周波数の平均値を計算してドップラーシフトを求め、対象物13の速度を算出する。次に、位相から、先に求めたドップラーシフトの成分を除去して、絶対値の平均値(以下、位相絶対平均値と呼ぶ。)を計算する。IQ信号演算処理装置20には、半導体レーザ3を用いて、事前に校正した距離と位相絶対平均値との関係が記録されており、対象物13までの距離を算出する。
図1においては、ビームスプリッタ6aにより2分した光のうち、一方をプローブ光11、他方に周波数シフトを与えて参照光10とする構成を示した。ヘテロダイン光学系においては、参照光とプローブ光との間に周波数差があれば良いので、参照光とプローブ光を入れ替えた構成としても動作可能である。
数式を用いて、以下詳しく説明する。図1において、光検出器14から出力されるビート信号15は、次式により表すことができる。
Figure 2020085723
ここで、fは光周波数シフタ8により与えられる周波数シフトである。I(t)とQ(t)はそれぞれ、IQ復調器16から出力される同相成分17と直交成分18である。IQ復調器16は、ビート信号15と信号発生器4の出力を入力することにより、周波数シフトfの成分を取り除いて、同相成分17と直交成分18をそれぞれ出力する機能を有する。IQ復調器16により、同相成分17と直交成分18を正しく復調するためには、I(t)とQ(t)に含まれる成分が、周波数シフトfよりも低い周波数域にあることが必要である。このため、想定される対象物13の距離と速度に応じて、周波数シフトfを設定する必要がある。同相成分17と直交成分18は、それぞれ次式により表すことができる。
Figure 2020085723
Figure 2020085723
ここで、a(t)は半導体レーザ3の強度変調に起因する振幅、φ(t)は半導体レーザ3の周波数変調とドップラーシフトに起因する位相を表す。φ(t)は次式により表すことができる。
Figure 2020085723
ここで、ν(t)は半導体レーザ3の周波数変調、τは対象物13までの光の往復時間を表す。
図2はIQ信号演算処理装置20における信号処理を説明する図である。最初に、デジタル信号に変換した同相成分17と直交成分18から、次式を用いて折り返された位相θ(t)を求める。
Figure 2020085723
(13)式における逆正接は、−π〜+πの範囲の値を算出するので、±πを越える位相は、±πの整数倍だけ差し引かれた値になる。
次に、次式で表される位相アンラップ処理を用いて、(13)式の折り返された位相θ(t)から、本来の位相φ(t)を計算する。
Figure 2020085723
ここで、φ(t)は位相の時系列データ、Nはデータ数を表す。(14)式は、隣り合う時系列データ間の差がπを越える場合に、位相の折り返しが生じていると判断して、2πの整数倍を加算する処理である。(14)式は、位相アンラップ処理の一例であり、他のアルゴリズムを用いても同様に実施することができる。
(14)式の位相を時間微分して、2πで除することにより、ビート信号の周波数f(t)を求めることができる。
Figure 2020085723
周波数f(t)の変調1周期にわたる平均値は、次式により与えられる。
Figure 2020085723
(16)式の計算において、半導体レーザ3の周波数変調に起因する成分は交流信号であるので、平均値は0になり、ドップラーシフトに起因するΔfのみが残る。したがって、ドップラーシフトΔfと次式を用いて、対象物13の速度を求めることができる。
Figure 2020085723
従来技術のFMCWライダにおいては、三角波のアップ、ダウンチャープの時間域で発生するビート周波数の差から、対象物13の速度を求めたが、本実施形態の光学的測定装置においては、ビート周波数の1周期にわたる平均値から、速度を算出する。
(16)式により求めたドップラーシフトΔfを用いて、(12)式の瞬時位相からドップラーシフトの成分を除去した位相Ψ(t)を求めることができる。
Figure 2020085723
半導体レーザ3の周波数変調の周期Tに比べて、対象物13までの光の往復時間τが十分に小さい場合、(18)式の被積分関数は次式により近似できる。
Figure 2020085723
(19)式を(18)式に代入して次式が得られる。
Figure 2020085723
ドップラーシフトの成分を除去した位相Ψ(t)について、変調1周期にわたる位相の絶対値の平均値(以下、「位相絶対平均値」という。)Ψavgは、次式で得られる。
Figure 2020085723
ここで、被積分関数中のν(t)は半導体レーザ3の周波数変調を表し、積分値は、対象物13の距離や速度に依存しない定数である。したがって、位相絶対平均値Ψavgは、対象物13までの距離Lに比例するので、事前に次式で表される比例係数γを求めておけば、距離Lを算出することができる。距離Lは、[位相絶対平均値Ψavg]/[比例係数γ]で与えられる。よって、距離Lは、位相からドップラーシフトの成分を除外した後、絶対値の平均値[位相絶対平均値Ψavg]を求め、事前に校正した距離と位相の絶対値の平均値との比例関係(比例係数γ)を基に、前記対象物までの距離を算出することができる。
Figure 2020085723
IQ信号演算処理装置20と、ビート信号演算処理装置22には、比例係数γを予め記録しておく。比例係数γは、半導体レーザ3の周波数変調ν(t)と、変調周期Tと、光速度cから計算できる。また、光路差が校正された干渉計を用いて、位相絶対平均値Ψavgと光路差の関係を測定することにより求めることもできる。
IQ復調器16と、IQ信号演算処理装置20と、ビート信号演算処理装置22が正しく機能するためには、対象物13の距離と速度に応じて、周波数シフトfを設定する必要がある。(15)式で表されるビート信号の周波数と、周波数シフトfの和が、負領域にある場合は、正の周波数として検出されるため、距離と速度の算出に誤差を生じる。したがって、(15)のビート信号の周波数の絶対値に比べて、周波数シフトfを大きく設定する必要がある。従来技術のFMCWライダにおいては、対象物13の運動速度に応じて、測定できる距離に制限が課せられるが、本発明の光学的距離・速度検出装置においては、周波数シフトfSを適切に設定することにより、測定できる距離に制限は生じない。
従来技術のFMCWライダにおいては、周波数変調信号として、三角波または鋸波を用いる。一方、本実施形態においては、比例係数γを事前に求めておけば、三角波または鋸波に限定されることなく、任意の周期関数信号を用いることができる。また、(21)式は変調1周期にわたる平均値であるが、平均値を計算する区間を変調周期の整数倍に設定してもよい。
(第2の実施形態)
本実施形態について、図3を参照して説明する。図3は、本実施形態に係る光学的測定装置の基本構成を説明する図である。本実施形態においては、第1の実施形態における、IQ復調器16と、2チャンネルAD変換器19と、IQ信号演算処理装置20の代わりに、1チャンネルAD変換器21と、ビート信号演算処理装置22とを用いる。光検出器14の出力を、1チャンネルAD変換器21に入力して、デジタルRF信号として、ビート信号演算処理装置22に入力する。ビート信号演算処理装置22においては、デジタルRF信号から、ビート信号の同相成分と直交成分を求めた後に、ビート信号の位相と周波数を計算する。位相と周波数から、対象物の速度と距離を算出する処理は、IQ信号演算処理装置20の場合と同様である。ここで、ビート信号演算処理装置は、デジタルRF信号から、同相成分Iと直交成分Qを検出するIQ検出部と、同相成分Iと直交成分Qからビート信号の位相と周波数を求めて、対象物の速度と距離を算出する演算処理部との両方の機能を実行する。
[精度の評価]
図4は、本発明に係る光学的測定装置の測定の精度を評価するための装置を説明する図である。図4の精度評価装置は、変調信号発生器1と、注入電流源2と、半導体レーザ3と、ヘテロダイン光学系5と、光検出器14と、ベクトル信号解析装置28と、演算処理装置29とを備える。変調信号発生器1の出力を、注入電流源2を介して、半導体レーザ3に入力し、出力光の周波数を変調する。半導体レーザ3の出力光を、光サーキュレータ7を介して、ヘテロダイン光学系5に入力する。
ヘテロダイン光学系5は、光ファイバを用いて構成し、光サーキュレータ7と、音響光学変調器23と、信号発生器4と、可変光遅延線24と、光位相シフタ26と、三角波信号発生器27と、ファラデー回転鏡25bを備える。ヘテロダイン光学系5は、対象物13(図1や図3参照)に相当するファラデー回転鏡25aと合わせて、ヘテロダイン干渉計を構成する。図1及び図3の光学的測定装置は、マッハ・ツェンダー型干渉計であるが、ここでは、光ファイバ中を伝搬する光の偏波面回転の影響を除去するため、偏波無依存型のマイケルソン型干渉計を用いた。
ヘテロダイン光学系5において、音響光学変調器23は、図1や図3におけるビームスプリッタ6aと6bと、光周波数シフタ8の機能を有する。音響光学変調器23は、信号発生器4により駆動し、光周波数シフトを受けない0次回折光と、光周波数シフトを受けた1次回折光をそれぞれ出力する。ここでは、0次回折光をプローブ光11とし、1次回折光を参照光10とする。0次回折光は、可変光遅延線24を透過した後、ファラデー回転鏡25aにより反射し、同じ光路を逆方向に伝搬して、光サーキュレータ7を介して、光検出器14に入力する。プローブ光11に距離変化を与えるため、可変光遅延線24を用いて、光路長を精密に調整する。光検出器14に到達するプローブ光11は、音響光学変調器23を2回通過するが、周波数シフトは生じない。
一方、1次回折光は、光位相シフタ26を透過した後、ファラデー回転鏡25bにより反射し、同じ光路を逆方向に伝搬して、光サーキュレータ7を介して、光検出器14に入力する。運動を模擬するため、光位相シフタ26を用いて光路長を変調し、参照光10にドップラーシフトを与える。光位相シフタ26は三角波信号発生器27により駆動するので、正と負、両方の運動速度を模擬することができる。光検出器14に到達する参照光10は、音響光学変調器23を2回通過するため、信号発生器4の周波数の2倍に相当する周波数シフトが与えられる。
図4では、プローブ光11に距離変化、参照光10に運動によるドップラーシフトを与える構成とした。この構成は、図1や図3の光学的測定装置において、観測者である測定装置が運動し、対象物13までの距離が変化する場合に相当する。ドップラーシフトによる速度の算出は、測定装置と対象物との間の相対速度を測定するので、参照光、またはプローブ光のいずれかにドップラーシフトを与えても、測定結果は同じである。
光検出器14に入力した参照光10とプローブ光11は、ヘテロダイン干渉によるビート信号15を出力する。ビート信号の中心周波数は、信号発生器4の周波数の2倍である。光検出器14から出力されるビート信号を、ベクトル信号解析装置28に入力して、デジタル信号への変換(分解能12ビット)と、(10)、(11)式でそれぞれ表される同相及び直交成分の検出と、(13)式で表される折り返された位相の計算と、(14)式で表される位相アンラップ処理を実行し、本来の位相を求める。ここでは、(15)式から(22)式に至る処理は、演算処理装置29を用いて、オフラインで実行する。ここでは、図3の形態を用いて、ビート信号の処理を行うが、実際の距離や速度の測定においては、図1の形態であるアナログ電子回路のIQ復調器を用いれば、より高速に行うことができる。
次に、測定精度の評価結果について、具体的な評価例を説明する。変調信号発生器1の出力として、周波数50kHzの正弦波を用い、半導体レーザ3の変調電流振幅は76mApp、出力光のチャープ帯域幅は14.7GHzである。半導体レーザ3は正弦波で変調しているため、出力光は非線形チャープを有し、従来技術である(1)、(2)、(3)式を用いた距離と速度の算出はできない。信号発生器4の周波数は100MHz、ビート信号15の中心周波数は200MHzである。また、光位相シフタ26を駆動する三角波信号発生器27の周波数は1kHzであり、変調信号発生器1と同期している。ベクトル信号解析装置28によるビート信号の取得は、三角波信号発生器27と同期しているので、ビート信号取得のトリガ遅延を調整することにより、正と負の速度に対応する波形をそれぞれ取得することができる。
評価例1では、可変光遅延線24を固定した距離一定の条件のもとで、光位相シフタ26の変調振幅により速度変化を与えて、速度と位相絶対平均値の測定を行った。
図5は、光位相シフタ26により正の速度を与えた場合のビート信号位相の波形を表す図である。(b)は(a)の一部(点線で囲んだ部分)の拡大図である。図5(a)は、光位相シフタ26の変調振幅を0Vから150Vppまで、30V単位で変化させた場合の波形を表示したものである。速度の増加とともに、波形全体が右上がりに傾き上昇していることがわかる。この傾きは(12)式におけるドップラーシフトに対応する。図5(b)の拡大図では、速度に対する位相の変化が明確に現れている。
図6は、光位相シフタ26により負の速度を与えた場合のビート信号位相の波形を表す図である。(b)は(a)の一部(点線で囲んだ部分)の拡大図である。図5と比較すると、波形全体の傾きが逆になっており、運動の方向が逆であることを示している。
図5と図6に示したビート信号位相から、(15)、(16)、(17)式を用いて、速度を算出することができる。図7は、時刻−10μsから+10μsにわたる1周期分の波形について、算出した速度と誤差を表す図である。黒丸印が速度の算出結果であり、黒四角印がと誤差の算出結果を表す。横軸は、非特許文献1に記載されているヘテロダイン干渉計に、光位相シフタ26を組み込んで、位相変調波形を測定し、位相を距離に変換して、速度を校正した値である。測定値は校正値と良く一致し、誤差は±2mm/s以内である。なお、非特許文献1に記載されているヘテロダイン干渉計とは、光周波数シフタを含むマッハツェンダー干渉計により構成され、ビート信号から位相変調波形を測定する機能を有するものである。
図5と図6に示したビート信号位相から、(18)式を用いてドップラーシフトを除去し、さらに、(21)式を用いて位相絶対平均値を算出することができる。図8は、時刻−10μsから+10μsにわたる1周期分の波形から算出した位相絶対平均値を表す図である。黒四角印がドップラーシフト除去前で、黒丸印が除去後の、位相絶対平均値の算出結果である。ドップラーシフトを除去しない波形から算出すると、一定値であるべき平均値が、速度に比例して減少する結果となる。一方、ドップラーシフト除去後の波形から算出した値は、ほぼ一定である。図8は、100mm/s以下の小さな速度でも、位相絶対平均値の算出に大きく影響することを示唆している。
評価例2では、速度一定の条件のもとで、可変光遅延線24により距離を変化させて、距離と速度の測定を行った。
図9は、可変光遅延線24を用いて、距離を4mm単位で変化させた場合のビート信号位相を表す図である。(a)、(b)、(c)は、それぞれ、速度−52.4、0、52.5mm/sに対応する。図9(b)の静止時の波形に対して、図9(a)、(c)では、速度の符号に応じて、波形全体が右上((a)参照)又は右下((c)参照)へ傾いていることがわかる。
図10は、図9の一部(点線で囲んだ部分)を拡大した波形である。(a)、(b)、(c)は、それぞれ、速度−52.4、0、+52.5mm/sに対応する。4mm単位の距離変化による位相変化が明確に現れている。また、図10(b)の静止時の波形に対して、図10(a)、(c)では、速度の符号に応じて、波形全体が上下方向にシフトしていることがわかる。
最初に、図9(a)、(c)に示したビート信号位相のうち、時刻−10μsから+10μsにわたる1周期分の波形と、(16)、(17)式を利用して、速度の算出を行った。図11は、算出した速度と誤差を表す図である。黒三角印は速度−52.4mm/s、黒四角印は速度+52.5mm/sに対応する。速度の測定値は距離によらずほぼ一定であり、誤差は±2mm/s程度である。図11の結果は、距離変化の影響を受けることなく、速度の測定が可能であることを示している。
次に、図9(a)、(b)、(c)に示したビート信号位相のうち、時刻−10μsから+10μsにわたる1周期分の波形と、(20)、(21)、(22)式を利用して、距離の算出を行った。(22)式の比例係数γは、半導体レーザ3の周波数変調から求めた。図12は、非特許文献1に記載されているヘテロダイン干渉計を用いて測定した、半導体レーザ3の周波数変調波形を表す図である。図12の波形から計算した比例係数は、γ=196.1[rad/m]である。なお、非特許文献1に記載されているヘテロダイン干渉計とは、光周波数シフタを含むマッハツェンダー干渉計により構成され、ビート信号から周波数変調波形を測定する機能を有するものである。
図13は、算出した距離を表す図である。黒丸印は速度0mm/s、黒四角印は速度+52.5mm/s、黒三角印は速度−52.4mm/s、の場合に対応する。図13(a)は絶対距離と、速度0の場合に対する偏差である。絶対距離は可変光遅延線の設定値に比例し、速度による距離測定値の偏差は±2mm程度である。図13(b)は相対距離と、可変光遅延線の設定値に対する誤差である。いずれの速度においても、相対誤差は±1mm程度であり、速度の影響を受けずに高精度の距離測定が可能であることを示している。
半導体レーザ3のチャープ帯域幅は14.7GHzであり、従来技術における(8)式により計算した分解能は、1cmである。一方、評価例1と2では、非線形チャープが存在するにもかかわらず、1cmを遥かに越える数mm程度の精度と分解能が得られている。このような性能の違いは、散乱点が一つであることに加えて、時間領域で信号処理を行っていることによるものである。従来技術では、周波数領域で信号処理を行うため、非線形チャープによりビート信号のスペクトルが広がり、中心を正確に求めることが困難になる。一方、本発明の光学的測定装置及び方法においては、時間領域で信号処理を行い、距離と速度による信号の変化を明確に識別できるため、高精度測定が可能になる。
上記実施の形態においては、光源として半導体レーザを用いた場合について説明したが、周波数変調機能を有するレーザ、または周波数固定のレーザと周波数変調器を組み合わせた光源であれば、同様にして実施できる。
上記実施の形態等で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。
本発明の光学的測定装置及び方法は、レーザの周波数変調を制御するための付加的な装置が不要であるので、小型でかつ高精度で低価格のFMCWライダシステムとして産業上有用である。自動車、自律ロボットなどの環境認識センサとしての利用を含め、民生機器へ利用可能性が大である。
1 変調信号発生器
2 注入電流源
3 半導体レーザ
4 信号発生器
5 ヘテロダイン光学系
6a、6b ビームスプリッタ
7 光サーキュレータ
8 光周波数シフタ
9 反射鏡
10 参照光
11 プローブ光
12 散乱光
13 対象物
14 光検出器
15 ビート信号
16 IQ復調器
17 同相成分
18 直交成分
19 2チャンネルAD変換器
20 IQ信号演算処理装置
21 1チャンネルAD変換器
22 ビート信号演算処理装置
23 音響光学変調器
24 可変光遅延線
25a、25b ファラデー回転鏡
26 光位相シフタ
27 三角波信号発生器
28 ベクトル信号解析装置
29 演算処理装置
30 ホモダイン光学系

Claims (12)

  1. 周波数変調したレーザと、
    光検出器と、
    前記レーザの出力光を2分し、一方をプローブ光、他方を参照光とし、前記プローブ光又は前記参照光のいずれか一方に周波数シフトを与え、前記プローブ光を対象物に照射して、前記対象物からの散乱光と、前記参照光を合波して前記光検出器に入射するヘテロダイン光学系と、
    前記光検出器から発生するビート信号の、同相成分Iと直交成分Qを検出するIQ検出部と、
    前記同相成分Iと前記直交成分Qから、前記ビート信号の位相と周波数を求め、前記周波数から前記対象物の速度を算出する演算、又は、前記位相から前記対象物までの距離を算出する演算の少なくともいずれかを実行する演算処理部とを、
    備えることを特徴とする光学的測定装置。
  2. 前記演算処理部は、前記周波数の平均値から、前記対象物の運動に起因するドップラーシフトと速度を求めることを特徴とする、請求項1記載の光学的測定装置。
  3. 前記演算処理部は、前記位相から前記ドップラーシフトの成分を除外した後、絶対値の平均値を求め、事前に校正した距離と位相の絶対値の平均値との比例関係を基に、前記対象物までの距離を算出することを特徴とする請求項1又は2記載の光学的測定装置。
  4. 前記IQ検出部により検出した前記同相成分Iと前記直交成分Qを、デジタルIQ信号として取得する2チャンネルAD変換器を備え、
    前記デジタルIQ信号を前記演算処理部に入力して、前記デジタルIQ信号から前記ビート信号の位相と周波数を求めることを特徴とする、請求項1乃至3のいずれか1項記載の光学的測定装置。
  5. 前記光検出器から発生する前記ビート信号をデジタルRF信号として取得する1チャンネルAD変換器を備え、
    前記IQ検出部は、前記デジタルRF信号から、前記同相成分Iと前記直交成分Qを検出し、
    前記演算処理部により、該同相成分Iと該直交成分Qから前記ビート信号の位相と周波数を求めることを特徴とする、請求項1乃至3のいずれか1項記載の光学的測定装置。
  6. 前記周波数シフトは、前記同相成分Iと前記直交成分Qに含まれる周波数よりも大きいことを特徴とする、請求項1乃至5のいずれか1項記載の光学的測定装置。
  7. 前記レーザの周波数変調信号は正弦波であることを特徴とする請求項1乃至6のいずれか1項記載の光学的測定装置。
  8. 周波数変調したレーザの出力光を2分し、一方をプローブ光、他方を参照光とし、前記プローブ光又は前記参照光のいずれか一方に周波数シフトを与え、前記プローブ光を対象物に照射して、前記対象物からの散乱光と、前記参照光を合波して光検出器に入射し、
    前記光検出器から発生するビート信号の同相成分Iと直交成分Qを検出し、前記同相成分Iと前記直交成分Qから、ビート信号の位相と周波数を求めた後、前記周波数から前記対象物の速度を算出する演算、又は前記位相から前記対象物までの距離を算出する演算の少なくともいずれかを実行することを特徴とする光学的測定方法。
  9. 前記周波数から前記対象物の速度を算出する前記演算は、前記周波数の平均値から、前記対象物の運動に起因するドップラーシフトと速度を算出することである、請求項8記載の光学的測定方法。
  10. 前記位相から前記対象物までの距離を算出する演算は、前記位相から前記ドップラーシフトの成分を除外した後、絶対値の平均値を求め、事前に校正した距離と位相の絶対値の平均値との比例関係を基に、前記対象物までの距離を算出することである、請求項8又は9記載の光学的測定方法。
  11. 前記光検出器から発生するビート信号の同相成分Iと直交成分Qを検出し、前記同相成分Iと前記直交成分Qから、ビート信号の位相と周波数を求める際に、
    前記同相成分Iと前記直交成分Qを、デジタルIQ信号に変換して、該デジタルIQ信号から、前記ビート信号の位相と周波数を求めることを特徴とする、請求項8乃至10のいずれか1項記載の光学的測定方法。
  12. 前記光検出器から発生するビート信号の同相成分Iと直交成分Qを検出し、前記同相成分Iと前記直交成分Qから、ビート信号の位相と周波数を求める際に、
    前記ビート信号をデジタルRF信号に変換して、該デジタルRF信号から、前記同相成分Iと直交成分Qを検出し、該同相成分Iと該直交成分Qから、前記ビート信号の位相と周波数を求めることを特徴とする、請求項8乃至10のいずれか1項記載の光学的測定方法。
JP2018222416A 2018-11-28 2018-11-28 光学的測定装置及び測定方法 Active JP7169642B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018222416A JP7169642B2 (ja) 2018-11-28 2018-11-28 光学的測定装置及び測定方法
US17/293,066 US20210405194A1 (en) 2018-11-28 2019-11-15 Optical measurement device and measurement method
PCT/JP2019/044883 WO2020110779A1 (ja) 2018-11-28 2019-11-15 光学的測定装置及び測定方法
EP19889568.2A EP3889644A4 (en) 2018-11-28 2019-11-15 OPTICAL MEASUREMENT DEVICE AND METHOD OF MEASUREMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018222416A JP7169642B2 (ja) 2018-11-28 2018-11-28 光学的測定装置及び測定方法

Publications (2)

Publication Number Publication Date
JP2020085723A true JP2020085723A (ja) 2020-06-04
JP7169642B2 JP7169642B2 (ja) 2022-11-11

Family

ID=70852987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018222416A Active JP7169642B2 (ja) 2018-11-28 2018-11-28 光学的測定装置及び測定方法

Country Status (4)

Country Link
US (1) US20210405194A1 (ja)
EP (1) EP3889644A4 (ja)
JP (1) JP7169642B2 (ja)
WO (1) WO2020110779A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113885042A (zh) * 2021-08-17 2022-01-04 哈尔滨工业大学 一种1.55μm单光子相干激光雷达探测方法及装置
JP7202044B1 (ja) 2022-08-17 2023-01-11 アクト電子株式会社 レーザドップラ速度計
JP2023535648A (ja) * 2020-09-04 2023-08-18 アワーズ テクノロジー リミテッド ライアビリティー カンパニー Lidar位相ノイズ除去システム
KR20230128381A (ko) 2021-04-06 2023-09-04 미쓰비시덴키 가부시키가이샤 광 측정 장치
US11860277B1 (en) * 2021-03-08 2024-01-02 Silc Technologies, Inc. Dynamic window for LIDAR data generation
US11994630B2 (en) 2022-05-28 2024-05-28 Aurora Operations, Inc. LIDAR waveform calibration system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175388B1 (en) * 2017-11-22 2021-11-16 Insight Lidar, Inc. Digital coherent LiDAR with arbitrary waveforms
US11513228B2 (en) 2020-03-05 2022-11-29 Santec Corporation Lidar sensing arrangements
US20210341611A1 (en) * 2020-05-04 2021-11-04 Silc Technologies, Inc. Lidar with delayed reference signal
US11486792B2 (en) 2020-06-05 2022-11-01 Santec Corporation Tunable light source for optical fiber proximity and testing
US11940566B2 (en) * 2020-07-07 2024-03-26 Silc Technologies, Inc. Sequencing of signals in LIDAR systems
US11567212B2 (en) * 2021-03-15 2023-01-31 Argo AI, LLC Compressive sensing for photodiode data
CN115508859A (zh) * 2022-11-11 2022-12-23 武汉光谷航天三江激光产业技术研究院有限公司 基于单平衡探测器的激光三维成像方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206283A (ja) * 1988-02-13 1989-08-18 Brother Ind Ltd 光ヘテロダイン測定装置
JP2000338244A (ja) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp コヒーレントレーザレーダ装置
JP2003240852A (ja) * 2002-02-20 2003-08-27 Mitsubishi Electric Corp ドップラーレーダ用受信回路
JP2006513399A (ja) * 2002-05-29 2006-04-20 ケント・エル・デインズ レーザ出力の周波数変調を用いて速度を測定するためのシステム及び方法
JP2013238474A (ja) * 2012-05-15 2013-11-28 Mitsubishi Electric Corp レーザーレーダー装置
US20150071315A1 (en) * 2009-04-29 2015-03-12 Bridger Photonics, Inc. Precise Broadband Frequency Modulated Laser
JP2017181269A (ja) * 2016-03-30 2017-10-05 株式会社豊田中央研究所 センサ補正装置及びプログラム
JP2018141821A (ja) * 2017-02-27 2018-09-13 株式会社豊田中央研究所 レーザ光源およびレーザレーダ装置
JP2018185347A (ja) * 2018-08-29 2018-11-22 三菱電機株式会社 Fm−cwレーダ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3510517B2 (ja) 1998-08-04 2004-03-29 三菱重工業株式会社 光周波数線形掃引装置及び光周波数線形掃引装置のための変調補正データ記録装置
JP5112870B2 (ja) 2004-09-28 2013-01-09 キネテイツク・リミテツド 周波数掃引の直線性が改善された周波数変調持続波(fmcw)レーダ
EP1645890A1 (de) 2004-10-09 2006-04-12 Leica Geosystems AG Distanzmessverfahren mit Bestimmung eines nichtidealen Chirpverlaufs
US8175126B2 (en) 2008-10-08 2012-05-08 Telaris, Inc. Arbitrary optical waveform generation utilizing optical phase-locked loops
GB2499616B (en) * 2012-02-22 2017-03-22 Iti Scotland Ltd Heterodyne detection system and method
JP6834443B2 (ja) 2016-03-09 2021-02-24 東洋紡株式会社 縮合環式有機化合物を含有するフェノール性水酸基含有ポリアミド樹脂組成物
GB201610523D0 (en) * 2016-06-16 2016-08-03 Fraunhofer Uk Res Ltd Lidar

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206283A (ja) * 1988-02-13 1989-08-18 Brother Ind Ltd 光ヘテロダイン測定装置
JP2000338244A (ja) * 1999-05-28 2000-12-08 Mitsubishi Electric Corp コヒーレントレーザレーダ装置
JP2003240852A (ja) * 2002-02-20 2003-08-27 Mitsubishi Electric Corp ドップラーレーダ用受信回路
JP2006513399A (ja) * 2002-05-29 2006-04-20 ケント・エル・デインズ レーザ出力の周波数変調を用いて速度を測定するためのシステム及び方法
US20150071315A1 (en) * 2009-04-29 2015-03-12 Bridger Photonics, Inc. Precise Broadband Frequency Modulated Laser
JP2013238474A (ja) * 2012-05-15 2013-11-28 Mitsubishi Electric Corp レーザーレーダー装置
JP2017181269A (ja) * 2016-03-30 2017-10-05 株式会社豊田中央研究所 センサ補正装置及びプログラム
JP2018141821A (ja) * 2017-02-27 2018-09-13 株式会社豊田中央研究所 レーザ光源およびレーザレーダ装置
JP2018185347A (ja) * 2018-08-29 2018-11-22 三菱電機株式会社 Fm−cwレーダ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
土田 英実: ""デジタルコヒーレントライダー"", 光アライアンス, vol. 第29巻,第9号, JPN6020002367, 1 September 2018 (2018-09-01), JP, pages 2 - 5, ISSN: 0004822976 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023535648A (ja) * 2020-09-04 2023-08-18 アワーズ テクノロジー リミテッド ライアビリティー カンパニー Lidar位相ノイズ除去システム
JP7440992B2 (ja) 2020-09-04 2024-02-29 オーロラ・オペレイションズ・インコーポレイティッド Lidar位相ノイズ除去システム
US11860277B1 (en) * 2021-03-08 2024-01-02 Silc Technologies, Inc. Dynamic window for LIDAR data generation
KR20230128381A (ko) 2021-04-06 2023-09-04 미쓰비시덴키 가부시키가이샤 광 측정 장치
GB2620312A (en) * 2021-04-06 2024-01-03 Mitsubishi Electric Corp Optical measurement device
CN113885042A (zh) * 2021-08-17 2022-01-04 哈尔滨工业大学 一种1.55μm单光子相干激光雷达探测方法及装置
CN113885042B (zh) * 2021-08-17 2022-06-03 哈尔滨工业大学 一种1.55μm单光子相干激光雷达探测方法及装置
US11994630B2 (en) 2022-05-28 2024-05-28 Aurora Operations, Inc. LIDAR waveform calibration system
JP7202044B1 (ja) 2022-08-17 2023-01-11 アクト電子株式会社 レーザドップラ速度計
JP2024027277A (ja) * 2022-08-17 2024-03-01 アクト電子株式会社 レーザドップラ速度計

Also Published As

Publication number Publication date
JP7169642B2 (ja) 2022-11-11
EP3889644A1 (en) 2021-10-06
WO2020110779A1 (ja) 2020-06-04
EP3889644A4 (en) 2022-08-17
US20210405194A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
JP7169642B2 (ja) 光学的測定装置及び測定方法
JP6806347B2 (ja) 光学的距離測定装置及び測定方法
JP7074311B2 (ja) 光学的距離測定装置および測定方法
US10670720B2 (en) Method and system for using square wave digital chirp signal for optical chirped range detection
JP7291385B2 (ja) 光学的測定装置及び測定方法
KR102379447B1 (ko) 도플러 효과를 조정하기 위한 라이다(lidar) 시스템
JP7239975B2 (ja) 光角度変調測定装置及び測定方法
JP6241283B2 (ja) レーダ装置および距離速度測定方法
JP7426123B2 (ja) 光学的測定装置及び測定方法
JP2014202716A (ja) 距離測定装置
JP2019020143A (ja) 光ファイバ振動検知センサおよびその方法
JP2019512692A (ja) Ladar振動測定のための光学的フェイゾグラム
CN109031340B (zh) 一种测量物体运动速度的连续调频激光雷达装置
US20210382164A1 (en) Multi-tone continuous wave detection and ranging
US20210026018A1 (en) Operating method for a lidar system, control unit, lidar system, and device
US11630189B2 (en) Multi-tone continuous wave detection and ranging
JP2018059789A (ja) 距離測定装置及び距離測定方法
JP2022129385A (ja) 干渉法による間隔測定のための装置
JP2529616B2 (ja) 距離計測装置
JP6501307B2 (ja) ヘテロダイン干渉装置
JP5612240B2 (ja) 距離計および距離計測方法
JP7380382B2 (ja) 測距計
US20230131584A1 (en) Multi-tone continuous wave detection and ranging
JP2023119469A (ja) 非接触型測距装置及び方法
Baetz et al. Noise-modulated optomechatronic distance-measuring system

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20181217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R150 Certificate of patent or registration of utility model

Ref document number: 7169642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150