JP2020063907A - 試料注入装置および容器情報取得方法 - Google Patents

試料注入装置および容器情報取得方法 Download PDF

Info

Publication number
JP2020063907A
JP2020063907A JP2017031330A JP2017031330A JP2020063907A JP 2020063907 A JP2020063907 A JP 2020063907A JP 2017031330 A JP2017031330 A JP 2017031330A JP 2017031330 A JP2017031330 A JP 2017031330A JP 2020063907 A JP2020063907 A JP 2020063907A
Authority
JP
Japan
Prior art keywords
sample
liquid
container
sample container
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017031330A
Other languages
English (en)
Inventor
努 大古場
Tsutomu Okoba
努 大古場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2017031330A priority Critical patent/JP2020063907A/ja
Priority to PCT/JP2018/003330 priority patent/WO2018155117A1/ja
Publication of JP2020063907A publication Critical patent/JP2020063907A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】試料容器の内部形状に関わらず試料容器内の液量を正確に取得することが可能な試料注入装置および容器情報取得方法を提供する。【解決手段】制御装置30は、容器情報取得モード時に、液体注入動作および検出動作を複数回繰り返すように液体供給部10を制御し、各液体注入動作後の試料容器内の液量および検出動作により検出される液面高さに基づいて試料容器内の液量と液面高さとの対応関係を生成する。また、制御装置30は、試料注入モード時に、検出動作により試料容器内の試料の液面高さを検出するように液体供給部10を制御し、検出された液面高さおよび対応関係に基づいて試料容器内の試料の液量を検出し、検出された液量に基づいて吸引動作および試料注入動作を行うように液体供給部10を制御する。【選択図】図2

Description

本発明は、試料容器内の試料を所定の注入部に注入する試料注入装置、および試料容器の内部形状に関する情報を取得する容器情報取得方法に関する。
試料注入装置は、水平方向および垂直方向に移動可能なニードルと、試料の吸引および吐出を行うための送液機構とを備える。この試料注入装置では、液体の測定試料(以下、試料と略記する。)が収容された試料瓶等の試料容器がラック上に載置される。ニードルがラック上の試料容器の上方まで水平方向に移動し、下降して試料容器内の試料を吸引する。その後、ニードルは上昇して例えば液体クロマトグラフの試料注入口の上方まで水平方向に移動し、下降して試料注入口内に試料を注入する。
このような試料注入装置においては、使用者が試料容器内の試料の量を入力することなく、試料容器内の試料の量を自動的に検出して欲しいという要求がある。このような要求に関して、例えば特許文献1には、試料容器内の液面高さを検知する検知機能を有する液体試料導入装置が記載されている。特許文献1に記載された液体試料導入装置は、液面検知ニードルおよび液体吸引/吐出ニードルを備える。液面検知ニードルは、先端部に電極を有し、先端部が試料容器内の試料に接触したことを電気的に検知する液面検知機能を有する。
特開2014−202721号公報
上記の特許文献1の液体試料導入装置(試料注入装置)では、液面検知ニードルを用いて試料容器内の液面高さを検出することができる。それにより、試料容器の内部空間の断面積を高さについて積分することにより試料容器内の液量を算出することができる。
しかしながら、試料容器の内部形状は、試料容器の種類により異なる。そのため、試料容器の種類に合わせて液面高さから液量を計算するための計算式が必要となる。従来の試料注入装置では、予め定められた種類の試料容器についてのみ液量計算式が用意されている。予め定められた種類以外の試料容器内の試料を測定する場合には、試料容器の内径から概算の断面積を求め、その断面積から液量計算式を求める必要がある。この方法によると、断面積が高さ方向に一定でないような複雑な内部形状を有する試料容器を用いる場合には、試料容器内の液量の誤差が大きくなる。
本発明の目的は、試料容器の内部形状に関わらず試料容器内の液量を正確に取得することが可能な試料注入装置および容器情報取得方法を提供することである。
(1)本発明に係る試料注入装置は、試料容器内に所定量の液体を注入する液体注入動作、試料容器内の試料を吸引する吸引動作、および所定の注入部に試料を注入する試料注入動作を行う液体供給部と、試料容器内の液面の高さを検出する検出動作を行う液面検出部と、試料容器の内部形状に基づく情報を容器情報として取得するための容器情報取得モードと試料容器内の試料を注入部に注入するための試料注入モードとで動作可能な制御部とを備え、制御部は、容器情報取得モード時に、液体注入動作および検出動作を複数回繰り返すように液体供給部および液面検出部を制御し、各液体注入動作後の試料容器内の液体の量および検出動作により検出される液面の高さに基づいて試料容器内の液体の量と液面の高さとの対応関係を生成し、試料注入モード時に、検出動作により試料容器内の試料の液面の高さを検出するように液面検出部を制御し、検出された高さおよび対応関係に基づいて試料容器内の試料の量を検出し、検出された量に基づいて吸引動作および試料注入動作を行うように液体供給部を制御する。
その試料注入装置においては、容器情報取得モード時に、液体注入動作および試料容器内の液面の高さを検出する検出動作が複数回繰り返される。各液体注入動作後の試料容器内の液体の量および検出動作により検出される液面の高さに基づいて試料容器内の液体の量と液面の高さとの対応関係が生成される。試料注入モード時には、検出動作により試料容器内の試料の液面の高さが検出され、検出された高さおよび対応関係に基づいて試料容器内の試料の量が検出され、検出された量に基づいて吸引動作および試料注入動作が行われる。したがって、上記の構成により、試料容器の内部形状に関わらず試料容器内の液量を正確に取得することが可能となる。
(2)液体供給部は、液体の注入、試料の吸引および試料の注入を行うためのニードルと、ニードルを試料容器および注入部に移動させる移動機構と、液体注入動作時にニードルを通して試料容器内に液体を注入し、吸引動作時にニードルを通して試料容器内の試料を吸引し、試料注入動作時にニードルを通して試料を注入部に注入する送液機構とを含み、液面検出部は、ニードルの先端が試料容器内の液面に接触したか否かを検出する液面センサと、液面センサの出力信号と移動機構により移動するニードルの先端の高さとに基づいて試料容器内の液面の高さを算出する液面高さ算出部とを含んでもよい。
この場合、ニードルを用いて液体の注入、試料の吸引および試料の注入が行われるとともに試料容器内の液面の高さが検出される。それにより、部品点数の増加を抑制しつつ試料容器内の液量を正確に取得することが可能となる。
(3)制御部は、容器情報取得モード時において、各液体注入動作後に検出動作を複数回行うように液面検出部を制御し、複数回の検出動作により得られた複数の高さの演算により各液体注入動作後の液面の高さを算出してもよい。この場合、試料容器内の液面の高さをより正確に検出することができる。
(4)試料注入装置は、制御部により生成された対応関係を試料容器の種類ごとに記憶する記憶部と、試料注入モードにおいて使用すべき試料容器の種類についての対応関係を選択する選択部とをさらに備え、制御部は、選択部により選択された対応関係に基づいて試料容器内の試料の量を検出してもよい。
この場合、容器情報取得モードにより取得された対応関係が試料容器の種類ごとに記憶されるので、同じ種類の試料容器が用いられる場合には容器情報取得モードにより対応関係を取得する必要がない。それにより、試料の注入を効率的に行うことができる。
(5)試料注入装置は、試料容器の種類を示す識別情報を試料容器から読み取る情報読取部をさらに備え、選択部は、情報読取部により読み取られた識別情報に基づいて、対応関係を選択してもよい。
この場合、使用者が試料容器の種類を入力する手間が不要となる。それにより、試料の注入を効率的に行うことができる。
(6)本発明に係る容器情報取得方法は、試料容器の内部形状に基づく情報を容器情報として取得する容器情報取得方法であって、試料容器内に所定量の液体を注入する注入動作および試料容器内の液面の高さを検出する検出動作を複数回繰り返すステップと、各注入動作後における試料容器内の液体の量および液面の高さに基づいて試料容器内の液体の量と液面の高さとの対応関係を容器情報として生成するステップとを含む。
その容器情報取得方法によれば、液体注入動作および検出動作が複数回繰り返される。各液体注入動作後の試料容器内の液体の量および検出動作により検出される液面の高さに基づいて試料容器内の液体の量と液面の高さとの対応関係が容器情報として生成される。したがって、試料容器の内部形状に関わらず試料容器内の液量を正確に取得することが可能となる。
本発明によれば、試料容器の内部形状に関わらず試料容器内の液量を正確に取得することが可能となる。
本発明の一実施の形態に係る試料注入装置の構成を示す模式図である。 図1の試料注入装置の機能的な構成を示すブロック図である。 図2の試料注入装置の動作を示すフローチャートである。 図2の試料注入装置の動作を示すフローチャートである。 容器情報取得モードにより得られる液面高さと液量との対応データの例を示す図である。 液量計算近似式の生成方法の一例を示す図である。 容器情報取得モード時の液面高さの算出方法の他の例を示すフローチャートである。
以下、本発明の実施の形態に係る試料注入装置および容器情報取得方法について図面を参照しながら詳細に説明する。
(1)試料注入装置の構成
図1は本発明の一実施の形態に係る試料注入装置の構成を示す模式図である。図1の試料注入装置1は、ニードル11、送液機構12、液面センサ20、ラック40、注入部(注入ポート)60および液体供給源70を備える。ニードル11および送液機構12が液体供給部10を構成する。注入部60は、例えば液体クロマトグラフの試料注入部である。
ニードル11は、後述する移動機構13(図2)により水平方向および垂直方向に移動可能に設けられる。ニードル11の基端(上端)には液面センサ20が接続される。液面センサ20としては、静電容量方式または空気圧検知方式の液面センサが用いられる。静電容量方式の液面センサは、ニードル11の先端(下端)が液面に接触するとニードル11を含む回路の静電容量が変化することを利用して液面を検出する。例えば、静電容量が一定のしきい値を超えたときのニードル11の先端の高さが液面の高さと判定される。空気圧検知方式の液面センサは、ニードル11の先端が液面に接触するとニードル11内の圧力が変化することを利用して液面を検出する。
送液機構12は、配管P1〜P6、サンプルループ131,133、高圧弁132、三方弁134および計量シリンジ135を含む。ニードル11の基端は配管P1を通してサンプルループ131の一端に接続される。高圧弁132は、例えば6注入3ポート高圧弁である。図1には高圧弁132の4つのポートpo1〜po4のみが示される。サンプルループ131の他端は配管P2を通して高圧弁132のポートpo1に接続される。高圧弁132のポートpo2とポートpo3との間には配管P3が接続され、配管P3にサンプルループ133が設けられる。高圧弁132のポートpo4は配管P4を通して三方弁134のポートpt1に接続される。三方弁134のポートpt2は、配管P5を通して計量シリンジ135に接続される。三方弁134のポートpt3は、配管P6の一端に接続され、配管P6の他端は液体供給源70に挿入される。液体供給源70には、液体として例えば水が貯留される。
ラック40には、複数の試料容器50が載置される。図1の例では、ラック40に試料容器50として異なる種類の複数の試料容器50a,50b,50cが載置されている。複数の試料容器50a,50b,50cは異なる内部形状を有する。
試料注入装置1は、容器情報取得モードおよび試料注入モードで動作する。容器情報取得モード時には、空の試料容器50がラック40上に載置される。なお、ニードル11の先端が試料容器50の内部の底面に接触するときに液面高さが0となるようにニードル11の高さが予め調整されている。まず、ニードル11が試料容器50内に挿入される。計量シリンジ135の動作により液体供給源70内の液体が配管P6、三方弁134および配管P5を通して吸引される。吸引された液体は、計量シリンジ135の動作により三方弁134、配管P4、高圧弁132および配管P3を通してサンプルループ133に供給され、さらに高圧弁132および配管P2を介してサンプルループ131に供給される。サンプルループ131内の一定量の液体がニードル11を通して試料容器50内に注入される。
試料注入モード時には、試料を収容する試料容器50がラック40上に載置される。まず、ニードル11が試料容器50内に挿入される。計量シリンジ135の動作により試料容器50内の試料がニードル11および配管P1を通して吸引され、吸引された試料がサンプルループ131内に供給され、さらに配管P2および高圧弁132を通してサンプルループ133内に供給される。その後、ニードル11が注入部60内に挿入され、計量シリンジ135の動作によりサンプルループ131,133内の試料が注入部60内に注入される。
図2は図1の試料注入装置1の機能的な構成を示すブロック図である。図2に示すように、試料注入装置1は、液体供給部10、液面センサ20、制御装置30、識別情報読取装置80、操作部90および表示部100を含む。液体供給部10は、ニードル11、送液機構12および移動機構13を含む。制御装置30は、容器情報取得モード制御部31、液面高さ算出部32、対応関係生成部33、液量算出部34、動作モード切替部35、記憶部36、選択部37、試料注入モード制御部38および液量検出部39を含む。
この制御装置30は、CPU(中央演算処理装置)、RAM(ランダムアクセスメモリ)、ROM(リードオンリメモリ)および記憶装置により構成される。CPUがROMまたは記憶装置等の記憶媒体に記憶されたコンピュータプログラムを実行することにより、制御装置30の各構成要素の機能が実現される。なお、制御装置30の一部またはすべての構成要素が電子回路等のハードウエアにより実現されてもよい。
操作部90は、スイッチまたはキーボード等を含み、使用者により操作される。動作モード切替部35は、操作部90の操作に基づいて制御装置30の動作モードを容器情報取得モードまたは試料注入モードに設定しまたは切り替える。容器情報取得モード制御部31は、容器情報取得モード時に、送液機構12、移動機構13、液面高さ算出部32および液量算出部34を制御するとともに液面センサ20の出力信号を受ける。また、容器情報取得モード制御部31は、ニードル11の垂直方向の移動量を液面高さ算出部32に与えるとともに、ニードル11から試料容器50に注入される液体の量を液量算出部34に与える。
液面高さ算出部32は、容器情報取得モード時および試料注入モード時に、液面センサ20の出力信号およびニードル11の移動量に基づいて試料容器50内の液面高さを算出する。液量算出部34は、容器情報取得モード時に、ニードル11による液体の注入ごとに試料容器50内の液体の量の積算値(液体の体積)を液量として算出する。対応関係生成部33は、液面高さ算出部32により算出された液面高さと液量算出部34により算出された液量との対応関係を生成する。対応関係は、試料容器50の内部形状に対応する容器情報である。本実施の形態では、対応関係として、試料容器50内の液面高さと液量との関係を示す関係式(以下、液量計算近似式と呼ぶ。)が生成される。記憶部36は、対応関係生成部33により生成された液量計算近似式を試料容器50の種類ごとに記憶する。
試料注入モード制御部38は、試料注入モード時に、送液機構12、移動機構13および液量検出部39を制御するとともに液面センサ20の出力信号を受ける。
使用者は、操作部90により試料容器50の種類を選択部37に入力することができる。識別情報読取装置80は、試料容器50の種類を示す識別情報が試料容器50に付されている場合に、試料容器50から識別情報を読み取るために用いられる。識別情報としては、1次元バーコード、2次元バーコード、RFID(無線周波数識別子:Radio Frequency Identifier)タグ等が用いられる。識別情報読取装置80により試料容器50から識別情報が読み取られた場合には、識別情報により示される試料容器50の種類が選択部37に入力される。選択部37は、記憶部36に記憶された複数の液量計算近似式のうち入力された種類に対応する液量計算近似式を選択する。
液量検出部39は、試料注入モード時に、選択部37により選択された液量計算近似式を用いて、液面高さ算出部32により算出された液面高さに対応する液量を検出する。試料注入モード制御部38は、液量検出部39により検出された液量に基づいて送液機構12による試料容器50内の試料の吸引量を制御する。表示部100は、試料容器50の種類およびその他の種々の情報を画面に表示する。
(2)試料注入装置1の動作
図3および図4は図2の試料注入装置1の動作を示すフローチャートである。ここで、容器情報取得モードでの液体の注入回数をMとし、注入回数のカウント値を表す変数をKとする。Mは2以上の整数である。
動作モード切替部35は、操作部90により設定された動作モードが容器情報取得モードであるか否かを判定する(ステップS1)。容器情報取得モード時には、使用者は空の試料容器50をラック40上に載置する。また、使用者は、操作部90により試料容器50の種類を入力する。試料容器50に識別情報が付されている場合には、使用者は識別情報読取装置80を用いて試料容器50から識別情報を読み取ることにより試料容器50の種類を入力してもよい。
動作モードが容器情報取得モードである場合には、容器情報取得モード制御部31は変数Kの値を1に設定し(ステップS2)、移動機構13によりニードル11を試料容器50の上方に移動させる(ステップS3)。この状態で、容器情報取得モード制御部31は、送液機構12によりニードル11から試料容器50内に一定量の液体を注入させる(ステップS4)。その後、容器情報取得モード制御部31は、移動機構13によりニードル11を試料容器50内に下降させるとともに(ステップS5)、液面センサ20の出力信号に基づいて液面センサ20が液面を検出したか否かを判定する(ステップS6)。液面センサ20の出力信号は、ニードル11の先端が試料容器50内の液面に接触したときに変化する。そのため、液面センサ20の出力信号に基づいて液面センサ20が液面を検出したか否かを判定することができる。ステップS6で液面センサ20が液面を検出しない場合には、容器情報取得モード制御部31はステップS5に戻り、移動機構13によりニードル11をさらに下降させる。
ステップS6で液面センサ20が液面を検出した場合には、液面高さ算出部32は、ニードル11の垂直方向の移動量に基づいて試料容器50内の液面高さを算出する(ステップS7)。また、液量算出部34は、ニードル11による1回当たりの液体の注入量および現時点までの注入回数に基づいて試料容器50内の液量を算出する(ステップS8)。対応関係生成部33は、液面高さ算出部32により算出された液面高さと液量算出部34により算出された液量とを対応付けて対応データとして記憶部36に記憶させる(ステップS9)。その後、容器情報取得モード制御部31は、移動機構13によりニードル11を上昇させ(ステップS10)、変数Kの値がMに等しいか否かを判定する(ステップS11)。変数Kの値がMに等しくない場合には、容器情報取得モード制御部31は変数Kの値を1増加させ(ステップS12)、ステップS4に戻る。変数Kの値がMに等しくなるまでステップS4〜S12の処理が繰り返し行われる。
ステップS11において変数Kの値がMに等しくなった場合には、対応関係生成部33は、M回の液体の注入により得られたM組の対応データに基づいて液量計算近似式を生成する(ステップS13)。液量計算近似式の生成方法については後述する。液量計算近似式は、試料容器50の種類と対応付けて記憶部36に記憶される。
その後、容器情報取得モード制御部31は、操作部90により動作終了が指示されたか否かを判定する(ステップS14)。容器情報取得モード制御部31は、動作終了が指示されてない場合にはステップS1に戻り、動作終了が指示された場合には容器情報取得モード時の動作を終了する。
本実施の形態では、ステップS1において、動作モードが容器情報取得モードでない場合には、動作モードが試料注入モードであると判定される。試料注入モード時には、使用者は試料を収容する試料容器50をラック40に載置する。また、使用者は、操作部90により試料容器50の種類を入力する。試料容器50に識別情報が付されている場合には、使用者は識別情報読取装置80を用いて試料容器50から識別情報を読み取ることにより試料容器50の種類を入力してもよい。
試料注入モード制御部38は、移動機構13によりニードル11を試料容器50の上方に移動させた後(ステップS15)、移動機構13によりニードル11を試料容器50内に下降させるとともに(ステップS16)、液面センサ20の出力信号に基づいて液面センサ20が液面を検出したか否かを判定する(ステップS17)。ステップS17で液面センサ20が液面を検出しない場合には、試料注入モード制御部38はステップS16に戻り、移動機構13によりニードル11をさらに下降させる。
液面センサ20が液面を検出した場合には、液面高さ算出部32は、ニードル11の垂直方向の移動量に基づいて試料容器50内の液面高さを算出する(ステップS18)。選択部37は、記憶部36に記憶された液量計算近似式のうち入力された種類に対応する液量計算近似式を選択する(ステップS19)。液量検出部39は、選択部37により選択された液量計算近似式を用いて、液面高さ算出部32により算出された液面高さに対応する液量を試料容器50内の試料の液量として検出する(ステップS20)。
その後、試料注入モード制御部38は、移動機構13によりニードル11を試料容器50内の試料中まで下降させ(ステップS21)、検出された液量に基づいて、試料容器50内の試料を送液機構12により吸引させる(ステップS22)。例えば、試料容器50内の試料の全量が吸引されるように送液機構12が制御される。この場合、試料容器50内の試料の量が正確に検出されているので、試料に空気が混入することを防止しつつ試料容器50内の試料の全量を吸引することができる。吸引された試料は、図1のサンプルループ131,133に供給される。
次に、試料注入モード制御部38は、移動機構13によりニードル11を試料容器50の上方に上昇させ(ステップS23)、注入部60の上方まで移動させた後(ステップS24)、注入部60内に下降させる(ステップS25)。この状態で、試料注入モード制御部38は、送液機構12によりサンプルループ131,133内の試料をニードル11から注入部60内に注入させる(ステップS26)。このようにして、例えば、試料容器50内の試料の全量が注入部60に注入される。
その後、試料注入モード制御部38は、移動機構13によりニードル11を注入部60の上方に上昇させ(ステップS27)、ステップS14に戻る。ステップS14において、試料注入モード制御部38は、動作終了が指示されてない場合にはステップS1に戻り、動作終了が指示された場合には試料注入モード時の動作を終了する。
なお、容器情報取得モードによる試料容器50の種類に対応する液量計算近似式の生成に続けて同じ種類の試料容器50を用いて試料注入モードによる試料の吸引および注入を行う場合には、使用者は試料容器50の種類を入力しないでもよい。
(3)液量計算近似式
図5は容器情報取得モードにより得られる液面高さと液量との対応データの例を示す図であり、図6は液量計算近似式の生成方法の一例を示す図である。
図5の対応データは、1回当たり1mLの液体を試料容器50に10回注入した場合に得られる。図5の例では、離散的な値を有する対応データが示される。図6には、図5の対応データが複数のドットで示される。複数のドット間の液量および液面高さの値は、点線で示されるように、複数のドットの値の補間により求められる。
補間方法としては、複数のドットを最小二乗法等により1次直線に近似する方法、複数のドットを2次曲線に近似する方法、隣り合う各2つのドット間の区間の値を線形補間する方法等が用いられる。例えば、試料容器50が円筒形状を有する場合には、複数のドットを1次直線に近似する方法を用いることができる。一方、試料容器50が例えばナスフラスコのように複雑な内部形状を有する場合には、線形補間を用いることが好ましい。複数のドットを他の方法により補間することにより液量計算近似式を生成してもよい。
このように、離散的な値を有する対応データから補間により液量の連続的な変化と液面高さの連続的な変化との関係を示す液量計算近似式が得られる。図5および図6の例では、試料容器50に液体を10回に分割して注入しているが、試料容器50への液体の注入回数は10回に限らず、20回、30回等の他の回数あってもよく、注入回数が多いほど液量計算近似式の精度が向上する。試料容器へ注入する液体の量は固定に限られず、分割して注入するごとに変更するようにしてもよい。
(4)液面高さの算出方法の他の例
図7は容器情報取得モード時の液面高さの算出方法の他の例を示すフローチャートである。本例では、試料容器50への液体の注入ごとに液面センサ20により液面を複数回検出する。ここで、液体の注入ごとの液面センサ20による液面の検出回数をNとし、検出回数のカウント値を表す変数をIとする。Nは2以上の整数である。
図3のステップS4の処理の後、容器情報取得モード制御部31は、変数Iの値を1に設定し(ステップS51)、移動機構13によりニードル11を試料容器50内に下降させるとともに(ステップS52)、液面センサ20の出力信号に基づいて液面センサ20が液面を検出したか否かを判定する(ステップS53)。液面センサ20が液面を検出した場合には、液面高さ算出部32は、ニードル11の垂直方向の移動量に基づいて試料容器50内の液面高さを算出する(ステップS54)。その後、容器情報取得モード制御部31は、変数Iの値がNに等しいか否かを判定する(ステップS55)。
変数Iの値がNに等しくない場合には、容器情報取得モード制御部31は、変数Iの値を1増加させ(ステップS56)、移動機構13によりニードル11を上昇させ(ステップS57)、ステップS52に戻る。変数Iの値がNに等しくなるまでステップS52〜S57の処理が繰り返し行われる。ステップS55において変数Iの値がNに等しくなると、液面高さ算出部32は、複数(N回)の液面高さの平均値を算出する(ステップS58)。複数の液面高さの平均値が1つの液量に対応する液面高さとして用いられる。
液面高さのばらつきは、正規分布に従うことが多いと考えられる。そこで、各液量について複数回の液面高さの検出結果の平均値を液面高さとして用いることにより、液面高さの検出精度が向上する。
(5)実施の形態の効果
本実施の形態に係る試料注入装置1においては、容器情報取得モード時に、試料容器50内の液面高さと液量との対応関係として液量計算近似式が試料容器50の種類ごとに生成される。試料注入モード時には、試料容器50内の試料の液面高さが検出され、試料容器50の種類に対応する液量計算近似式および検出された液面高さに基づいて試料容器50内の試料の量が検出され、検出された量に基づいて試料容器50内の試料の吸引および注入部60への試料の注入が行われる。したがって、試料容器50の内部形状に関わらず試料容器50内の液量を正確に取得するとともに、注入部60へ正確な量の試料を注入することが可能となる。
(6)他の実施の形態
上記実施の形態では、試料容器50内の液面高さと液量との対応関係として液量計算近似式が用いられるが、対応関係として試料容器50内の液面高さの複数の値と液量の複数の値との対応関係を表形式で示す対応テーブルが用いられてもよい。また、上記実施の形態では、液面センサ20が試料を吸引および注入するためのニードル11に取り付けられるが、ニードル11とは別に液面検出用のニードルが設けられ、液面検出用のニードルに液面センサ20が取り付けられてもよい。
上記実施の形態では、液面センサ20として静電容量方式または空気圧検知方式のセンサが用いられるが、液面センサとして光学式のセンサ等の他の方式のセンサが用いられてもよい。また、上記実施の形態では、送液機構12に計量シリンジ135が用いられるが、計量シリンジ135の代わりにプランジャー式ポンプ等のポンプが用いられてもよい。
図4のステップS16〜S18の液面高さの算出方法の代わりに図7のステップS51〜S58の液面高さの算出方法が用いられてもよい。図7の液面高さの算出方法では、複数の液面高さの平均値が算出されているが、これに限定されず、他の演算方法により各液量に対応する複数の液面高さから1つの液面高さが算出されてもよい。例えば、複数の液面高さの中間値が算出されてもよい。
本発明に係る試料注入装置は、自動試料注入装置、オートサンプラまたは自動試料導入装置とも称され、自動分注装置も含む。
(7)請求項の各構成要素と実施の形態の各部との対応
以下、請求項の各構成要素と実施の形態の各部との対応の例について説明するが、本発明は下記の例に限定されない。上記実施の形態における液面センサ20および液面高さ算出部32が本発明の液面検出部の例であり、制御装置30が制御部の例であり、液量計算近似式または対応テーブルが対応関係の例である。請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることができる。
1…試料注入装置,10…液体供給部,11…ニードル,12…送液機構,13…移動機構,20…液面センサ,30…制御装置,31…容器情報取得モード制御部,32…液面高さ算出部,33…対応関係生成部,34…液量算出部,35…動作モード切替部,36…記憶部,37…選択部,38…試料注入モード制御部,39…液量検出部,40…ラック,50,50a,50b,50c…試料容器,60…注入部,70…液体供給源,80…識別情報読取装置,90…操作部,100…表示部,131,133…サンプルループ,132…高圧弁,134…三方弁,135…計量シリンジ,P1〜P6…配管,po1〜po4,pt1〜pt3…ポート

Claims (6)

  1. 試料容器内に所定量の液体を注入する液体注入動作、試料容器内の試料を吸引する吸引動作、および所定の注入部に試料を注入する試料注入動作を行う液体供給部と、
    試料容器内の液面の高さを検出する検出動作を行う液面検出部と、
    試料容器の内部形状に基づく情報を容器情報として取得するための容器情報取得モードと試料容器内の試料を前記注入部に注入するための試料注入モードとで動作可能な制御部とを備え、
    前記制御部は、前記容器情報取得モード時に、前記液体注入動作および前記検出動作を複数回繰り返すように前記液体供給部および前記液面検出部を制御し、各液体注入動作後の試料容器内の液体の量および前記検出動作により検出される液面の高さに基づいて試料容器内の液体の量と液面の高さとの対応関係を生成し、前記試料注入モード時に、前記検出動作により前記試料容器内の試料の液面の高さを検出するように前記液面検出部を制御し、検出された高さおよび前記対応関係に基づいて試料容器内の試料の量を検出し、検出された量に基づいて前記吸引動作および前記試料注入動作を行うように前記液体供給部を制御する、試料注入装置。
  2. 前記液体供給部は、
    液体の注入、試料の吸引および試料の注入を行うためのニードルと、
    前記ニードルを試料容器および前記注入部に移動させる移動機構と、
    前記液体注入動作時に前記ニードルを通して試料容器内に液体を注入し、前記吸引動作時に前記ニードルを通して試料容器内の試料を吸引し、前記試料注入動作時に前記ニードルを通して試料を前記注入部に注入する送液機構とを含み、
    前記液面検出部は、前記ニードルの先端が試料容器内の液面に接触したか否かを検出する液面センサと、
    前記液面センサの出力信号と前記移動機構により移動する前記ニードルの先端の高さとに基づいて試料容器内の液面の高さを算出する液面高さ算出部とを含む、請求項1記載の試料注入装置。
  3. 前記制御部は、前記容器情報取得モード時において、各液体注入動作後に前記検出動作を複数回行うように前記液面検出部を制御し、前記複数回の検出動作により得られた複数の高さの演算により各液体注入動作後の液面の高さを算出する、請求項1または2記載の試料注入装置。
  4. 前記制御部により生成された前記対応関係を試料容器の種類ごとに記憶する記憶部と、
    前記試料注入モードにおいて使用すべき試料容器の種類についての前記対応関係を選択する選択部とをさらに備え、
    前記制御部は、前記選択部により選択された前記対応関係に基づいて試料容器内の試料の量を検出する、請求項1〜3のいずれか一項に記載の試料注入装置。
  5. 試料容器の種類を示す識別情報を前記試料容器から読み取る情報読取部をさらに備え、
    前記選択部は、前記情報読取部により読み取られた識別情報に基づいて、前記対応関係を選択する、請求項4記載の試料注入装置。
  6. 試料容器の内部形状に基づく情報を容器情報として取得する容器情報取得方法であって、
    試料容器内に所定量の液体を注入する注入動作および試料容器内の液面の高さを検出する検出動作を複数回繰り返すステップと、
    各注入動作後における試料容器内の液体の量および液面の高さに基づいて試料容器内の液体の量と液面の高さとの対応関係を前記容器情報として生成するステップとを含む、容器情報取得方法。
JP2017031330A 2017-02-22 2017-02-22 試料注入装置および容器情報取得方法 Pending JP2020063907A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017031330A JP2020063907A (ja) 2017-02-22 2017-02-22 試料注入装置および容器情報取得方法
PCT/JP2018/003330 WO2018155117A1 (ja) 2017-02-22 2018-02-01 試料注入装置および容器情報取得方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017031330A JP2020063907A (ja) 2017-02-22 2017-02-22 試料注入装置および容器情報取得方法

Publications (1)

Publication Number Publication Date
JP2020063907A true JP2020063907A (ja) 2020-04-23

Family

ID=63253642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017031330A Pending JP2020063907A (ja) 2017-02-22 2017-02-22 試料注入装置および容器情報取得方法

Country Status (2)

Country Link
JP (1) JP2020063907A (ja)
WO (1) WO2018155117A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115567B2 (ja) * 2019-01-17 2022-08-09 株式会社島津製作所 クロマトグラフ用オートサンプラ及び流体クロマトグラフィー分析システム
JP7354703B2 (ja) * 2019-09-06 2023-10-03 株式会社島津製作所 分析システム、分析支援装置、分析方法および分析支援方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145763A (ja) * 1994-11-24 1996-06-07 Sanyo Electric Co Ltd 分注機の液面位検出装置
JP3443478B2 (ja) * 1995-04-28 2003-09-02 オリンパス光学工業株式会社 自動分析装置及び試薬残量管理方法
JP3681234B2 (ja) * 1996-10-22 2005-08-10 シスメックス株式会社 液体容器の液体残量検出装置
JP2000046624A (ja) * 1998-07-30 2000-02-18 Sysmex Corp 液体残量検出機能を備えた分析装置
JP3886387B2 (ja) * 2002-01-31 2007-02-28 シスメックス株式会社 液体吸引装置

Also Published As

Publication number Publication date
WO2018155117A1 (ja) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2018155117A1 (ja) 試料注入装置および容器情報取得方法
US7578173B2 (en) Chromatography system with flow sensing
US9849237B2 (en) Injection system with capacitive sensing
CN103034360B (zh) 使用笔的便携式终端的输入设备和输入方法
US20090070049A1 (en) Method for monitoring a fluid transfer process
CN107250805B (zh) 自动分析装置
US20120175289A1 (en) Chromatography Systems and System Components
JPS6215466A (ja) 自動サンブリング装置
JP7180949B2 (ja) バッファ管理システム用のマニホールド、希釈スキッド及びバッファ管理システムを使用する方法
JP2015536764A (ja) シリンジの特性評価
US20220128520A1 (en) Autosampler for chromatograph and fluid chromatography system
US11555803B2 (en) Chromatograph data processor and automatic sample injector
CN111307998B (zh) 试样注入装置
TW200420311A (en) Syringe pump
CN112414506B (zh) 一种试剂空吸检测装置及计算机可读存储介质
CN113188840A (zh) 取样方法、装置、检测设备和存储介质
CN112881739B (zh) 加样方法及其装置、计算机存储介质、样本分析方法及其装置
JP2000338115A (ja) 液体残量検出装置
JP4719622B2 (ja) 自動分析装置
KR20200116048A (ko) 연동 펌프 교정 방법, 연동 펌프에 의한 소정량의 액체 분배 방법 및 상기 방법을 실행할 수 있는 멸균 제제 제조 장치
CN113574391A (zh) 自动分析装置
JP2013032928A (ja) 分注装置
JP2003222630A (ja) 液体吸引装置
CN114868017B (zh) 流动相监视器、液相色谱仪、分析系统及存储介质
CN109759160B (zh) 一种生物芯片用试剂定量加入方法及系统