JP2019203820A - 絶縁基板の検査方法、検査装置 - Google Patents

絶縁基板の検査方法、検査装置 Download PDF

Info

Publication number
JP2019203820A
JP2019203820A JP2018099744A JP2018099744A JP2019203820A JP 2019203820 A JP2019203820 A JP 2019203820A JP 2018099744 A JP2018099744 A JP 2018099744A JP 2018099744 A JP2018099744 A JP 2018099744A JP 2019203820 A JP2019203820 A JP 2019203820A
Authority
JP
Japan
Prior art keywords
insulating substrate
metal
lower electrode
inspecting
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018099744A
Other languages
English (en)
Other versions
JP7010143B2 (ja
Inventor
上田 哲也
Tetsuya Ueda
哲也 上田
一樹 鮫島
Kazuki Samejima
一樹 鮫島
塩田 裕基
Hironori Shioda
裕基 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018099744A priority Critical patent/JP7010143B2/ja
Priority to US16/210,046 priority patent/US10996257B2/en
Priority to CN201910415091.8A priority patent/CN110531226B/zh
Publication of JP2019203820A publication Critical patent/JP2019203820A/ja
Application granted granted Critical
Publication of JP7010143B2 publication Critical patent/JP7010143B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1218Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using optical methods; using charged particle, e.g. electron, beams or X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/129Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of components or parts made of semiconducting materials; of LV components or parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/16Construction of testing vessels; Electrodes therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2642Testing semiconductor operation lifetime or reliability, e.g. by accelerated life tests

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】本発明は、低コスト化に好適な絶縁基板の検査方法と検査装置を提供することを目的とする。【解決手段】絶縁層14と、該絶縁層14の下面に接する下部金属15と、該絶縁層14の上面に接する上部金属13とを有する絶縁基板12の該下部金属15に下部電極23を接触させ、該上部金属13に上部電極22を接触させることと、該下部電極23と該上部電極22に交流電圧をかけて、該絶縁層14の欠陥で生じる電磁波を検出することと、を備えたことを特徴とする。【選択図】図1

Description

本発明は絶縁基板の検査方法と、その方法に用いられる検査装置に関する。
絶縁基板単体又はパワーデバイス等の半導体装置に交流電圧を印加し、ある基準となる電圧で絶縁破壊しないことを確認する耐電圧試験がある。この耐電圧試験では半導体装置の絶縁劣化を考慮した長期信頼性の検査ができない。そこで、例えば特許文献1には、製品状態の半導体装置にX線照射しつつ交流電圧を印加することで、絶縁層中の絶縁欠陥内で発生する部分放電を検出することが開示されている。
特開2011−209266号公報
パワーモジュール等の半導体装置は構造が複雑である。したがって半導体装置の部分放電発生時に生じる電磁波の発生方向を特定できない。そのため、部分放電の検出精度を高めることができない。特に、欠陥が微小なものである場合には、放電電荷量が小さく、電磁波が弱いので、電磁波の検出が困難になる。
半導体装置にX線を照射することで欠陥部に初期電子を供給し放電量を増加して電磁波信号強度を上げたり、アンテナの指向性、設置位置及び方向、並びに筐体の材質等の限定により電磁波の検出感度を上げたりすることが考えられる。しかしながら、製品状態の半導体装置の検査を行う場合、少なくとも以下の2つの問題がある。第1の問題は、製品の種類に応じてアンテナの位置及び方向を適正化する必要があるので、製品の種類に応じて事前調整が必要になることである。これはコストアップの原因になる。第2の問題は、パワーモジュール等の形成がある程度進み付加価値の付いた半導体装置で欠陥検査を実施し、絶縁欠陥が確認された場合、製品廃棄コストが高いという問題である。
本発明は、上述のような課題を解決するためになされたもので、低コスト化に好適な絶縁基板の検査方法と検査装置を提供することを目的とする。
本願の発明に係る絶縁基板の検査方法は、絶縁層と、該絶縁層の下面に接する下部金属と、該絶縁層の上面に接する上部金属とを有する絶縁基板の該下部金属に下部電極を接触させ、該上部金属に上部電極を接触させることと、該下部電極と該上部電極に交流電圧をかけて、該絶縁層の欠陥で生じる電磁波を検出することと、を備えたことを特徴とする。
本願の発明に係る検査装置は、上面に平坦部分を有する下部電極と、該下部電極の上に設けられ下面に平坦部分を有する上部電極と、該下部電極と該上部電極に交流電圧を印加する電源部と、電磁波を検出して電流に変換するアンテナと、該下部電極、該上部電極及び該アンテナを覆う金属筐体と、を備えたことを特徴とする。
本発明のその他の特徴は以下に明らかにする。
本発明によれば、半導体プロセス開始前、又は半導体プロセスの主要プロセスの開始前に絶縁基板の絶縁欠陥を検査するので、低コスト化に好適な絶縁基板の検査方法と検査装置を提供できる。
実施の形態1に係る検査装置の構成例を示す図である。 部分放電の発生原理を示す図である。 アンテナの配置例を示す図である。 部分放電開始電圧の温度依存性を示す図である。 ノイズの電磁波レベルの電磁波周波数依存を示す図である。 検出された電磁波の電磁波エネルギの例を示す図である。 複数のアンテナを設けた検査装置の構成例を示す図である。 実施の形態2に係る絶縁基板の検査方法の例を示す図である。 ワークシートの概略図である。 ワークシートの変形例を示す図である。 同サイズの上部金属と下部金属を示す図である。 絶縁基板の製造方法のフローチャートである。 実施の形態3に係る検査装置の構成例を示す図である。 マーキング方法を示す図である。 マーキング方法を示す図である。 格子状の上部電極を示す平面図である。 格子状の上部電極を有する検査装置の構成例を示す図である。 絶縁基板の製造方法のフローチャートである。 実施の形態4に係る検査装置の構成例を示す図である。 金属筐体をステージに接触させたことを示す図である。 実施の形態5に係る検査装置の構成例を示す図である。 絶縁基板の検査時における検査装置を示す図である。 図21に示す装置の側面図である。 図22に示す装置の側面図である。 実施の形態6に係る検査装置の構成例を示す図である。 絶縁基板の検査時における検査装置の図である。
本発明の実施の形態に係る絶縁基板の検査方法と検査装置について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
図1は、実施の形態1に係る検査装置の構成例を示す図である。検査装置による検査対象は、例えば、絶縁層14と、絶縁層14の下面に接する下部金属15と、絶縁層14の上面に接する上部金属13とを有する絶縁基板12である。上部金属13は例えば金属配線である。絶縁層14の材料は例えばセラミック又は有機絶縁材料である。下部金属15は、金属ベース板、金属配線または金属箔である。図1の例では、下部金属15は金属ベース板である。
絶縁基板12に接触させて、絶縁基板12に電圧を印加するために、上部電極22と下部電極23が設けられている。下部電極23は上面に平坦部分を有する。上部電極22は下面に平坦部分を有する。上部電極22は下部電極23の上に下部電極23に対向して設けられている。電源部18は、下部電極23と上部電極22に交流電圧を印加する部分である。電源部18は、配線19によって下部電極23及び上部電極22に電気的に接続されている。
絶縁層14は例えばボイド、層間剥離又はクラック等の絶縁欠陥16を有し得る。上部電極22と下部電極23に交流電圧を印加すると、絶縁層14の絶縁欠陥16で部分放電が生じる。この部分放電が原因で電磁波17が生じ得る。図1の検査装置には、この電磁波17を検出するためのアンテナ20が設けられている。アンテナ20は電磁波を検知できれば特に限定されないが、例えばコイルを有するループアンテナである。電磁波を検出するループアンテナのループ面の高さを絶縁層14の高さと一致させることで、効率的な電磁波検出が可能となる。アンテナ20にて電磁波を検出して電流に変換し、変換された電流を測定器21で測定する。測定器21は、この電流の有無によって絶縁欠陥16の有無を判定したり、この電流によって部分放電の強弱又は良否判定をしたりする。
図2は、部分放電の発生原理を示す図である。上部電極22と下部電極23、配線19、電源部18により、絶縁基板12の上部金属13及び下部金属15に交流電圧をかけることで、絶縁欠陥16の上下両端に高い電圧が集中する。その電圧がある閾値を超えると、絶縁欠陥16の上下両端に放電が生じる。また、その時の部分放電電流により電磁波も発生する。なお、図2の電圧の向きは一例である。
図1には、下部電極23、上部電極22及びアンテナ20などを覆う金属筐体24が図示されている。金属筐体24は外部からの電磁波ノイズを反射し遮断する。したがって、絶縁基板12、下部電極23、上部電極22及びアンテナ20を金属筐体24で覆った状態で絶縁基板12の検査をすることで、検査精度を高めることができる。
図3は、アンテナ20の配置例を示す平面図である。ファラデーの電磁誘導の法則に従い部分放電電流により発生する電磁波17の磁束を多く検出できるように、アンテナ20のコイル部を垂直に横切る磁束が多くなる位置にアンテナ20を設ける。例えば、アンテナ20のループ面20aの接線方向に絶縁層14が位置するようにアンテナ20を配置することができる。例えば、絶縁基板12を中心とする円に対して、ループ面20aが垂直となるようにアンテナ20を設置することができる。このようなアンテナ配置が測定感度を高める。
図4は、部分放電開始電圧の温度依存性を示す図である。図4から、部分放電は試料の温度が高いほど発生しやすいことが分かる。そこで、下部電極23、上部電極22又は金属筐体24を加熱しながら電磁波を検出することで、室温では検出できない絶縁欠陥16からの部分放電を検出し得る。図1には、一例として下部電極23に加熱部分39Aを埋め込み、その加熱部分39Aを加熱装置39Bで加熱する構成を示す。下部電極23、上部電極22又は金属筐体24の加熱の程度は、求められる検出精度に応じて決めることができる。例えば、絶縁基板12を製品化後の市場動作環境温度まで昇温して絶縁欠陥測定を行うことができる。これにより、温度変化に伴い製品構造起因で発生する絶縁欠陥16、またはサイズが大きくなった絶縁欠陥16を見出すことができる。
実施の形態1に係る絶縁基板の検査方法では、まず、絶縁基板12の下部金属15に下部電極23を接触させ、上部金属13に上部電極22を接触させる。次いで、下部電極23と上部電極22に交流電圧をかけて、絶縁層14の絶縁欠陥16で生じる電磁波を検出する。これにより、絶縁基板12の良否を判定することができる。問題のない絶縁基板12に対し、たとえば周知の半導体プロセスで、高電圧で使用されるパワーモジュール等の半導体装置を形成する。他方、規定を超える電磁波が検出された絶縁基板12は、半導体プロセス開始前、又は半導体プロセスの主要プロセスの開始前に廃棄処分する。
半導体プロセスでパワーデバイスを形成する場合、絶縁層14の欠陥の在否及びその程度は、デバイスの絶縁性能を決定する1つの情報となる。上述のように、本質的な加工処理を始める前の絶縁基板12の検査を行うことで、欠陥を有する絶縁基板が製造ラインへ投入されたり、絶縁層の不良を理由に付加価値の高い製品を廃棄したりすることを回避できる。また、異なる製品が形成される予定の複数の絶縁基板でも、それらの形状及び厚さは概ね類似しているものである。つまり、半導体プロセス開始前、又は半導体プロセスの主要プロセスの開始前に、上述の絶縁基板の検査方法によって絶縁基板12の放電を検査することは、検査装置の仕様の統一を可能とする。具体的にいえば、半導体プロセス開始前、又は半導体プロセスの主要プロセスの開始前の絶縁基板12の欠陥に伴う電荷の移動方向は一定と見ることができ、電荷の移動に伴う発生電磁波の磁界方向が絶縁基板12の平面方向に同心円状に発生する。そのため、アンテナ等測定装置のコイルの配置及び方向を固定でき、製品仕様に応じたこれらの変更が不要となる。これに対し、異なる形状の製品を1つの検査装置で検査しようとすると、製品に応じて測定系の調整が必要となる。
図5は、アンテナで検知されるノイズの電磁波レベルの電磁波周波数依存を示す図である。アンテナ20では、絶縁欠陥16から発生する電磁波17だけでなく、例えば周辺の他装置で発生するノイズ電磁波N1も検知される。電磁波17とノイズ電磁波N1の周波数は広域にわたり、どちらも高周波数になるほど電磁波レベルが小さくなる。数GHz程度の高周波数領域では、ノイズ電磁波N1の電磁波レベルは、電磁波17の電磁波レベルより低下する。したがって、例えば、電磁波17を1−10GHzの周波数で検出することで、この周波数より小さい周波数で電磁波17を検出する場合よりもノイズを抑制できる。電磁波17を1−10GHzの周波数で検出するために、アンテナの検出周波数を設定することができる。これより、S/N比の高い測定が可能となる。
さらに、金属筐体24内で電磁波17の測定を行うことで、金属筐体24の内壁で電磁波を反射させることができ、アンテナ20に対し垂直に電磁波を入射させ得る。これは、S/N比の最も高い条件での検出可能性を高め、かつ、検査装置の周辺の他装置等による外部からの電磁波ノイズ成分を遮断又は低減する事ができる。
図6は、検出された電磁波17の電磁波エネルギの例を示す図である。図6に示すように、電磁波17のエネルギは一定ではなく、異なるエネルギの電磁波17が検出され得る。エネルギのばらつきは、例えば、絶縁欠陥16の種類、形状又はサイズのばらつきにより生じる。そこで、事前に絶縁欠陥16の種類、形状又はサイズと電磁波17のエネルギの相関を求めておき、その相関に基づき、絶縁基板12の検査において検出された電磁波のエネルギから絶縁欠陥16の種類、形状又はサイズを推定することができる。このような推定のために、検出した電磁波17をエネルギ分散させることができる。たとえば絶縁欠陥16の大きさの上限に対応する電磁波エネルギとしてE1を設定しておき、検出した電磁波のエネルギが予め定められた値であるE1より大きいときに絶縁基板12を不良と判定することができる。このような基準の設定によって、軽微で無視できる程度の絶縁欠陥による放電が生じても、それを理由に絶縁基板12が廃棄されることを回避できる。
図7は、複数のアンテナを設けた検査装置の構成例を示す図である。アンテナ20A、20B、20C、20Dは、全体として上部電極22と絶縁基板12を囲んでいる。アンテナ20A、20B、20C、20Dは例えばループアンテナである。図7の矢印が付された円は、絶縁欠陥16よって同心円状に生じた磁力線である。アンテナ20A、20B、20C、20Dのループ面20a、20b、20c、20dの接線方向に絶縁層14が位置するようにアンテナ20A、20B、20C、20Dを配置することができる。また、ループ面20a、20b、20c、20dが磁力線に垂直になるようにアンテナ20A、20B、20C、20Dを設けることができる。上述のとおり、絶縁欠陥16より発生する電磁波17と、ノイズ電磁波の周波数は一定ではない。そのため、ループアンテナを複数備え、複数のループアンテナの検出周波数が異なるものとすることで、信号とノイズの区別が容易になる。例えば、ノイズ電磁波の周波数特性に近い周波数特性を持つアンテナを設けることで高いS/N比での測定が可能になる。
実施の形態1で説明した様々な技術的特徴を以下の実施の形態に係る絶縁基板の検査方法と検査装置に適用することができる。以下の実施の形態にかかる絶縁基板の検査方法と検査装置は、実施の形態1との共通点が多いので実施の形態1との相違点を中心に説明する。
実施の形態2.
図8は、実施の形態2に係る絶縁基板の検査方法の例を示す図である。絶縁基板12Aは複数の単位構造が一体となったワークシートである。図1の絶縁基板12はワークシートから個片化されたものである。したがって、図8の絶縁基板12Aは、図1の絶縁基板12が平面状に複数並べられて一体化されたものということができる。絶縁基板12Aの上部金属13はパターニングされている。上部金属13は絶縁基板12Aの回路パターンである。
図9は、ワークシートの概略図である。ワークシートである絶縁基板12Aは、この例では9つの単位構造を有している。このワークシートは、絶縁基板の製造中のものであるので、絶縁基板の半完成品ということができる。このワークシートに対し、上述の欠陥検査を行うことで、複数の単位構造の絶縁層14に内在する絶縁欠陥16を一括検査できるので、処理能力が向上できる。なお、絶縁基板の製造メーカでは装置の共用化と生産効率化のためワークシートのサイズを1〜3種類程度まで少なくしているので、ワークシート単位で欠陥を検査する検査装置によって検査装置の共用化ができる。
図10は、検査対象となるワークシートの変形例を示す図である。絶縁基板12Bは複数の単位構造が一体となったワークシートである。上部金属13Aはパターニングされていない。上部金属13Aは絶縁層14の上面のうち外縁に沿った部分を露出させる1つの金属層である。つまり、上部金属13Aは、配線パターンを加工する前の金属板の状態である。この場合、図11に示すように上部金属13と下部金属15が同サイズであり、絶縁層14の外縁の上にまで上部金属13があると、上部金属13と下部金属15の間には、絶縁層14の厚さしか沿面距離が確保されない。そうすると、電圧印加時に上部金属13と下部金属15の間にリーク電流が流れるなどの不具合が発生し得る。この不具合は、絶縁欠陥16への電圧印加を妨げ、部分放電検査を実施できなくする。
そこで、図10の例では、上部金属13Aを絶縁層14の外縁に沿った部分を避けて形成することで、上部金属13Aと下部金属15の間の沿面距離を確保した。これは、例えば、上部金属13Aのサイズを、下部金属15のサイズより小さくすることで実現できる。したがって図10の例は、ワークシートの単位で効率的な欠陥検出が可能であり、しかも上部金属の配線パターンの設計に関わらず上部金属の形状を共通化できるものである。上部金属の形状を共通化することは、上部電極22のサイズの小型化を可能にする。
図12は、絶縁基板の検査を含む絶縁基板の製造方法のフローチャートである。まず、最初の工程S1にて、ワークシートを積層及び他工程で作製する。次いで、工程S2にて、ワークシートの上部金属をパターニングする。
次いで、工程S3に処理を進める。工程S3では、例えば図1の検査装置を用いて、上述した電磁波検出によりワークシートの絶縁欠陥の測定を行う。判定OKとなったワークシートは工程S4にて個片化されて、製品サイズに分割される。そして、工程S5にて最終検査へ進み、問題なければ出荷する。
他方、工程S3にて判定NGが出た場合は、工程S6にてワークシートを個片化する。その後、工程S7で、個片化された絶縁基板に対して再度絶縁欠陥検査を行う。絶縁欠陥16がない又は無視できるほど小さいと判定された場合は判定OKとなり、工程S8で最終検査を受け、問題なければ出荷する。工程S7で判定NGとなった絶縁基板は次工程へ流動せず廃棄する。
このように、ワークシートでの絶縁欠陥測定で絶縁欠陥が見つかりNG判定された場合、そのワークシートを個片化した後に、例えば実施形態1で説明した分割後の絶縁基板に対する絶縁欠陥測定を実施する。個片化後の検査結果に基づいて、個片化後の絶縁基板について良否を判定する。ワークシートでの検査でNGが出されなかった場合には、個片化後の検査を省略できるので、個片化後の絶縁基板を枚葉で検査するよりも効率的である。
実施の形態3.
図13は、実施の形態3に係る検査装置の構成例を示す図である。この検査装置は、上部電極22の上方に、下部電極23の方向にX線を照射するX線照射装置37を備えている。X線照射装置37は、X線照射部34とX線制御部35を備えている。X線照射部34は金属筐体24の中に設け、X線制御部35は金属筐体24の外に設けることができる。X線制御部35からの指令を受けて、X線照射部34がX線を照射する。絶縁層14の絶縁欠陥16における部分放電は、部分放電開始電圧以上の電圧でないと発生しないが、X線を絶縁基板に照射する事によって電子が励起し部分放電が発生しやすくなる。そのため、より低電圧の印加で絶縁欠陥16の検出を可能としたり、同じ電圧の印加でより小さな絶縁欠陥16の検出を可能としたりすることができる。また、X線照射部34、又は、絶縁基板12を支持する下部電極23を可動にし、X線を絶縁基板上に走査させることで、ワークシート上にある絶縁欠陥16の位置を知ることができる。
実施の形態3に係る絶縁基板の検査方法で用いる絶縁基板は複数の単位構造が一体となったワークシートである。絶縁基板の上方から絶縁基板に対しX線を走査しながら電磁波を検出することで、電磁波が検出されたときのX線の走査位置から、欠陥の存在する単位構造を特定することができる。
図13の検査装置は、欠陥の存在する単位構造にマーク付けするためのマーク装置36を備えている。図14、15に示すように、絶縁欠陥16により判定NGとなった箇所に対し、マーク装置36によるマーキングを行うことで、廃棄すべき分割後の絶縁基板を特定することができる。マーキングに代えて、判定NGとなったワークシート上の座標を測定器21により記録することで、分割後廃棄する絶縁基板を明確にできる。
図13−15の例では、上部電極22によってX線が遮断されないように、上部電極22のサイズをワークシートに比べて小さくした。
図16は、格子状の上部電極38を示す平面図である。上部電極38は格子状の形状を有している。格子状の形状は、上部金属13の広範囲にわたって上部電極38を接触させることと、絶縁基板へのX線照射とを可能にする。図17は、格子状の上部電極38を有する検査装置の構成例を示す図である。
図18は、実施の形態3に係る絶縁基板の検査を含む絶縁基板の製造方法のフローチャートである。まず、工程S1にてワークシートを作製する。次いで、工程S2で上部金属をパターニングして配線を形成する。その後、工程S3にて、実施の形態1と同様の方法で絶縁欠陥測定を行う。つまり、工程S3の検査ではX線は照射しない。判定OKとなったワークシートは、工程S4で個片化により製品サイズに分割する。その後、工程S5にて、最終検査し問題なければ出荷する。
工程S3にて判定NGとなったワークシートは、工程S6にて絶縁基板上にX線を照射し、工程S7にて絶縁基板上にそのX線を走査させて、絶縁欠陥測定を行う。このとき、ワークシート上の絶縁欠陥16の位置を特定する。
その後、工程S8にてワークシートを個片化して製品サイズの絶縁基板とする。その後、工程S7にて検査OKであった絶縁基板は、工程S9の最終検査へ流動し問題なければ出荷する。他方、工程S7にて検査NGであった絶縁基板は次工程へ流動せず廃棄する。これにより、絶縁欠陥16を内包する絶縁基板を製品化前に廃棄でき、不良品に対する個片化後の検査工程を省略できる。
実施の形態4.
図19は、実施の形態4に係る検査装置の構成例を示す図である。金属筐体24は、上部電極22を囲む支持部24Aと、支持部24Aの上に設けられた蓋部分24Bを有している。上部電極22は導電性の第1弾性体25を介して蓋部分に取り付けられている。第1弾性体25は例えば上部電極22と蓋部分24Bの距離を可変とするピストンである。下部電極23は導電性の第2弾性体26を介してステージ28に取り付けられている。ステージ28は例えば金属である。第2弾性体26は例えば下部電極23とステージ28の距離を可変とするピストンである。検査時には、電源部18によって交流電圧を第1弾性体25と第2弾性体26を介して下部電極23と上部電極22に印加する。
図19に示すように、金属筐体24とステージ28を離すことで、ワークシートを下部電極23の上にのせたり、ワークシートを下部電極23から離して取り出したりすることができる。他方、絶縁欠陥測定時には、図20に示すように、金属筐体24をステージ28に接触させることで、外部からの電磁波の測定結果に対する影響を抑制する。配線19は金属筐体24とステージ28の中を通し、第1弾性体25と第2弾性体26に接続する。第1弾性体25と第2弾性体26の伸縮によって、上部電極22と下部電極23の距離を変えることができるので、ワークシートの厚みの変化に対応できる。よって、同一装置で厚みの異なる品種について絶縁欠陥測定を行うことができる。
実施の形態5.
図21は、実施の形態5に係る検査装置の構成例を示す図である。実施の形態5の検査装置と実施の形態4の検査装置は、第1弾性体25と第2弾性体26を備える点で一致している。図21の下部電極33は、第2弾性体26に支持されたベース部分33Aと、スリットを有するスリット部分33Bを備えている。したがって、下部電極33の上部にはスリットが形成されていることになる。このスリットには、スリットベルト32の一部がある。スリットベルト32は、搬送コロ30によって送り又は戻り方向に進展する。スリットベルト32と搬送コロ30は、ワークシートを搬送する搬送ライン31を構成している。図21は絶縁欠陥測定前後の絶縁基板交換時の図である。スリットベルトは、装置構成によっては1枚のベルトで代用してもよい。下部電極33のスリットに設けられたベルトを下部金属15の下面に接触させ、当該ベルトを駆動させることで、絶縁基板を移動させることができる。
図21に示すように、搬送ライン31を金属筐体24の外側にも設置することができる。搬送ライン31による自動搬送により、インラインで上述の絶縁欠陥測定を工程内に組み込むことができる。金属筐体24の外側にある搬送ベルト29はスリットベルトである必要はない。
図22は、絶縁基板の検査時における検査装置を示す図である。絶縁欠陥検査時には、金属筐体24とステージ28とを接触させ、同時にスリット部分33Bをスリットベルト32の上面と同じかそれ以上に上方に位置させ、スリット部分33Bと下部金属15をコンタクトさせる。
図23は、図21に示す装置の側面図である。ワークシートを搬送する際は、スリットベルト32が絶縁基板12に接する。下部電極33がスリットベルト32又は絶縁基板12と接触しないように、下部電極33にスリットを設け、そのスリットの中をベルトが動くようにした。下部電極33にはスリットが複数設けられ、複数のスリットにベルトを設けることで、絶縁基板の搬送を安定させることができる。
図24は、図22に示す装置の側面図である。スリットベルト32を下降させて、下部電極33のスリット部分33Bと、下部金属15を接触させることで、絶縁基板12への電圧印加を可能とする。言い換えると、スリットベルト32の間をスリット部分33Bが上昇することで、スリット部分33Bと下部金属15を接触させることができる。こうして、絶縁基板12の検査装置への出し入れと、絶縁基板12の検査が自動化でき、当該検査を製造工程内で実施することが可能となる。個片化された絶縁基板と、ワークシートのどちらを検査対象としてもよい。
実施の形態5の検査装置は、下部電極33にスリットが形成され、そのスリットにベルトコンベアを設ける別の構成とすることができる。
実施の形態6.
図25は、実施の形態6に係る検査装置の構成例を示す図である。ベルトコンベアは、下部電極23の上に設けられた導電性ベルト59を有する。図25は、装置内におけるワークシートの搬送に導電性ベルト59を使用することを示す。下部金属15に接した導電性ベルト59を駆動させて絶縁基板を移動させることができる。
図26は、絶縁基板の検査時における検査装置の図である。金属筐体24とステージ28を接触させ、導電性ベルト59によって下部電極23と下部金属15とを導通し絶縁基板の検査を実施する。すなわち、電磁波の検出は、導電性ベルト59が下部電極23と下部金属15とに接した状態で行う。これにより、絶縁基板12の検査装置への出し入れと、絶縁基板12の検査が自動化でき、当該検査を製造工程内で実施することが可能となる。個片化された絶縁基板と、ワークシートのどちらを検査対象としてもよい。なお、ここまでで説明した各実施の形態の特徴を組み合わせて用いてもよい。
12 絶縁基板、 13 上部金属、 14 絶縁層、 15 下部金属、 16 絶縁欠陥、 17 電磁波、 18 電源部、 20 アンテナ、 21 測定器、 24 金属筐体、 25 第1弾性体、 26 第2弾性体、 28 ステージ、 37 X線照射装置、 38 上部電極

Claims (20)

  1. 絶縁層と、前記絶縁層の下面に接する下部金属と、前記絶縁層の上面に接する上部金属とを有する絶縁基板の前記下部金属に下部電極を接触させ、前記上部金属に上部電極を接触させることと、
    前記下部電極と前記上部電極に交流電圧をかけて、前記絶縁層の欠陥で生じる電磁波を検出することと、を備えたことを特徴とする絶縁基板の検査方法。
  2. 前記絶縁基板と、前記下部電極と、前記上部電極を金属筐体で覆ったことを特徴とする請求項1に記載の絶縁基板の検査方法。
  3. 前記電磁波を検出するループアンテナのループ面の高さを前記絶縁層の高さと一致させ、
    前記ループ面の接線方向に前記絶縁層があることを特徴とする請求項1又は2に記載の絶縁基板の検査方法。
  4. 前記ループアンテナを複数備え、複数の前記ループアンテナの検出周波数が異なることを特徴とする請求項3に記載の絶縁基板の検査方法。
  5. 前記絶縁基板は複数の単位構造が一体となったワークシートであり、前記上部金属はパターニングされていることを特徴とする請求項1から4のいずれか1項に記載の絶縁基板の検査方法。
  6. 前記絶縁基板は複数の単位構造が一体となったワークシートであり、前記上部金属は前記絶縁層の上面のうち外縁に沿った部分を露出させる1つの金属層であることを特徴とする請求項1から4のいずれか1項に記載の絶縁基板の検査方法。
  7. 前記下部電極、前記上部電極又は前記金属筐体を加熱しながら前記電磁波を検出することを特徴とする請求項2に記載の絶縁基板の検査方法。
  8. 前記電磁波を1−10GHzの周波数で検出することを特徴とする請求項1から7のいずれか1項に記載の絶縁基板の検査方法。
  9. 検出した前記電磁波のエネルギが予め定められた値より大きいときに、前記絶縁基板を不良と判定することを特徴とする請求項1から8のいずれか1項に記載の絶縁基板の検査方法。
  10. 前記絶縁基板は複数の単位構造が一体となったワークシートであり、
    前記絶縁基板の上方から前記絶縁基板に対しX線を走査しながら前記電磁波を検出することで、前記電磁波が検出されたときの前記X線の走査位置から、欠陥の存在する前記単位構造を特定することを特徴とする請求項1から4のいずれか1項に記載の絶縁基板の検査方法。
  11. 前記上部電極は格子状の形状を有することを特徴とする請求項10に記載の絶縁基板の検査方法。
  12. 欠陥の存在する前記単位構造にマーク付けすることを特徴とする請求項10又は11に記載の絶縁基板の検査方法。
  13. 前記金属筐体は、前記上部電極を囲む支持部と、前記支持部の上に設けられた蓋部分を有し、
    前記上部電極は導電性の第1弾性体を介して前記蓋部分に取り付けられ、
    前記下部電極は導電性の第2弾性体を介してステージに取り付けられ、
    前記交流電圧は前記第1弾性体と前記第2弾性体を介して前記下部電極と前記上部電極に印加することを特徴とする請求項2に記載の絶縁基板の検査方法。
  14. 前記下部電極のスリットに設けられ、前記下部金属の下面に接するベルトを駆動させて前記絶縁基板を移動させることを備えたことを特徴とする請求項1から13のいずれか1項に記載の絶縁基板の検査方法。
  15. 前記下部電極には前記スリットが複数設けられ、複数の前記スリットに前記ベルトが設けられたことを特徴とする請求項14に記載の絶縁基板の検査方法。
  16. 前記下部金属に接した導電性ベルトを駆動させて前記絶縁基板を移動させることを備え、
    前記電磁波の検出は、前記導電性ベルトが前記下部電極と前記下部金属とに接した状態で行うことを特徴とする請求項1から13のいずれか1項に記載の絶縁基板の検査方法。
  17. 上面に平坦部分を有する下部電極と、
    前記下部電極の上に設けられ下面に平坦部分を有する上部電極と、
    前記下部電極と前記上部電極に交流電圧を印加する電源部と、
    電磁波を検出して電流に変換するアンテナと、
    前記下部電極、前記上部電極及び前記アンテナを覆う金属筐体と、を備えたことを特徴とする検査装置。
  18. 前記上部電極は平面視で格子状であり、
    前記上部電極の上方に、前記下部電極の方向にX線を照射する走査型のX線照射装置を備えたことを特徴とする請求項17に記載の検査装置。
  19. 前記下部電極にはスリットが形成され、
    前記スリットに設けられたベルトコンベアを備えたとを特徴とする請求項17又は18に記載の検査装置。
  20. 前記下部電極の上に設けられた導電性ベルトを有するベルトコンベアを備えたことを特徴とする請求項17又は18に記載の検査装置。

JP2018099744A 2018-05-24 2018-05-24 絶縁基板の検査方法、検査装置 Active JP7010143B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018099744A JP7010143B2 (ja) 2018-05-24 2018-05-24 絶縁基板の検査方法、検査装置
US16/210,046 US10996257B2 (en) 2018-05-24 2018-12-05 Insulating substrate inspecting method and inspecting apparatus
CN201910415091.8A CN110531226B (zh) 2018-05-24 2019-05-17 绝缘基板的检查方法、检查装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018099744A JP7010143B2 (ja) 2018-05-24 2018-05-24 絶縁基板の検査方法、検査装置

Publications (2)

Publication Number Publication Date
JP2019203820A true JP2019203820A (ja) 2019-11-28
JP7010143B2 JP7010143B2 (ja) 2022-02-10

Family

ID=68614510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018099744A Active JP7010143B2 (ja) 2018-05-24 2018-05-24 絶縁基板の検査方法、検査装置

Country Status (3)

Country Link
US (1) US10996257B2 (ja)
JP (1) JP7010143B2 (ja)
CN (1) CN110531226B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7540210B2 (ja) 2020-06-23 2024-08-27 株式会社プロテリアル 回路基板の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089145B (zh) * 2021-11-19 2023-06-09 西安西电电力系统有限公司 一种可移式多路晶闸管长期耐压试验设备及试验方法
CN114034723A (zh) * 2021-11-25 2022-02-11 华北电力大学 一种基于x射线的xlpe电缆微小电树枝缺陷的检测方法
CN114414597A (zh) * 2022-01-05 2022-04-29 华北电力大学 一种基于x射线的xlpe电缆中间接头气隙缺陷的检测方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147544A (ja) * 1984-12-21 1986-07-05 Toshiba Corp 電気特性測定用ステ−ジ
JPS61167880A (ja) * 1985-01-21 1986-07-29 Hitachi Ltd 部分放電測定装置
JPH0480938A (ja) * 1990-07-24 1992-03-13 Fujitsu Ltd Soi基板検査方法
JPH075223A (ja) * 1993-06-17 1995-01-10 Mitsubishi Cable Ind Ltd 回路基板の絶縁性試験方法
JPH10341520A (ja) * 1997-06-06 1998-12-22 Mitsubishi Electric Corp 部分放電検出装置
JPH11118870A (ja) * 1997-10-20 1999-04-30 Mitsubishi Electric Corp 高電圧電気機器の絶縁試験法および絶縁試験装置
JP2005216993A (ja) * 2004-01-28 2005-08-11 Shin Etsu Handotai Co Ltd シリコンウエーハの評価方法
JP2009115505A (ja) * 2007-11-02 2009-05-28 Mitsubishi Electric Corp 巻線の検査装置及び検査方法
JP2010032457A (ja) * 2008-07-31 2010-02-12 Hioki Ee Corp 絶縁検査装置および絶縁検査方法
US20110037666A1 (en) * 2009-08-13 2011-02-17 Glenn Behrmann Device and method for detecting defects within the insulation of an insulated conductor
JP2011209266A (ja) * 2010-03-08 2011-10-20 Mitsubishi Electric Corp 半導体装置の絶縁欠陥検出装置
JP2011237235A (ja) * 2010-05-10 2011-11-24 Mitsubishi Electric Corp 電力機器の部分放電検出装置
JP2015152407A (ja) * 2014-02-14 2015-08-24 三菱電機株式会社 絶縁欠陥の検査方法
JP2016054189A (ja) * 2014-09-03 2016-04-14 住友電気工業株式会社 半導体素子の耐圧測定方法および半導体素子の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150058A (en) * 1989-05-15 1992-09-22 Johnson Michael J E-field detector and annunciator
JPH0815364A (ja) 1994-06-28 1996-01-19 Toshiba Corp ガス絶縁電気機器
KR20070007124A (ko) * 2004-03-02 2007-01-12 제이에스알 가부시끼가이샤 회로 기판의 검사장치 및 회로 기판의 검사방법
AU2005273202B2 (en) * 2004-08-20 2009-05-21 Kabushiki Kaisha Toshiba Device and method for detecting partial discharge of rotary electric machine
CN102590729B (zh) * 2005-03-07 2014-10-29 株式会社半导体能源研究所 元件基板、检查方法及半导体装置制造方法
US20070170934A1 (en) * 2006-01-23 2007-07-26 Maxmile Technologies, Llc Method and Apparatus for Nondestructive Evaluation of Semiconductor Wafers
KR20080008704A (ko) * 2006-07-21 2008-01-24 삼성전자주식회사 표시기판, 그 제조방법 및 이를 갖는 표시장치
US7714596B2 (en) * 2006-12-15 2010-05-11 Four Dimensions Inc. System and methods of measuring semiconductor sheet resistivity and junction leakage current
US7960916B2 (en) * 2007-05-16 2011-06-14 Advanced Lcd Technologies Development Center Co., Ltd. Display device and electronic device using thin-film transistors formed on semiconductor thin films which are crystallized on insulating substrates
JP2011059021A (ja) * 2009-09-11 2011-03-24 Tokyo Electron Ltd 基板検査装置及び基板検査装置における位置合わせ方法
WO2011040446A1 (ja) * 2009-09-30 2011-04-07 大日本印刷株式会社 絶縁性不良検査装置、及びそれを用いた絶縁性不良検査方法、電気化学セルの製造方法
WO2012081434A1 (ja) * 2010-12-16 2012-06-21 三菱電機株式会社 半導体装置
JP5602095B2 (ja) * 2011-06-09 2014-10-08 三菱電機株式会社 半導体装置
JP5926940B2 (ja) 2011-12-06 2016-05-25 株式会社日本自動車部品総合研究所 絶縁検査装置
JP6363432B2 (ja) * 2013-09-04 2018-07-25 株式会社ユポ・コーポレーション 静電吸着シートおよびそれを用いた表示物
WO2016057165A1 (en) * 2014-10-09 2016-04-14 General Electric Company System and method for detecting an anomaly in a pipe assembly

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147544A (ja) * 1984-12-21 1986-07-05 Toshiba Corp 電気特性測定用ステ−ジ
JPS61167880A (ja) * 1985-01-21 1986-07-29 Hitachi Ltd 部分放電測定装置
JPH0480938A (ja) * 1990-07-24 1992-03-13 Fujitsu Ltd Soi基板検査方法
JPH075223A (ja) * 1993-06-17 1995-01-10 Mitsubishi Cable Ind Ltd 回路基板の絶縁性試験方法
JPH10341520A (ja) * 1997-06-06 1998-12-22 Mitsubishi Electric Corp 部分放電検出装置
JPH11118870A (ja) * 1997-10-20 1999-04-30 Mitsubishi Electric Corp 高電圧電気機器の絶縁試験法および絶縁試験装置
JP2005216993A (ja) * 2004-01-28 2005-08-11 Shin Etsu Handotai Co Ltd シリコンウエーハの評価方法
JP2009115505A (ja) * 2007-11-02 2009-05-28 Mitsubishi Electric Corp 巻線の検査装置及び検査方法
JP2010032457A (ja) * 2008-07-31 2010-02-12 Hioki Ee Corp 絶縁検査装置および絶縁検査方法
US20110037666A1 (en) * 2009-08-13 2011-02-17 Glenn Behrmann Device and method for detecting defects within the insulation of an insulated conductor
JP2011209266A (ja) * 2010-03-08 2011-10-20 Mitsubishi Electric Corp 半導体装置の絶縁欠陥検出装置
JP2011237235A (ja) * 2010-05-10 2011-11-24 Mitsubishi Electric Corp 電力機器の部分放電検出装置
JP2015152407A (ja) * 2014-02-14 2015-08-24 三菱電機株式会社 絶縁欠陥の検査方法
JP2016054189A (ja) * 2014-09-03 2016-04-14 住友電気工業株式会社 半導体素子の耐圧測定方法および半導体素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7540210B2 (ja) 2020-06-23 2024-08-27 株式会社プロテリアル 回路基板の製造方法

Also Published As

Publication number Publication date
JP7010143B2 (ja) 2022-02-10
CN110531226B (zh) 2021-09-14
US10996257B2 (en) 2021-05-04
CN110531226A (zh) 2019-12-03
US20190361067A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
CN110531226B (zh) 绝缘基板的检查方法、检查装置
US6201398B1 (en) Non-contact board inspection probe
Harbaji et al. Design of Hilbert fractal antenna for partial discharge classification in oil-paper insulated system
JP2009545733A (ja) 分離した放射/受信機能により導電部の渦電流検査を行う方法及びデバイス
JP2009545733A5 (ja)
US20130033256A1 (en) Sensor and sensor element
JP2011258591A (ja) 半導体素子の検査方法、半導体素子の検査装置、及び半導体素子
US7993487B2 (en) Plasma processing apparatus and method of measuring amount of radio-frequency current in plasma
US11293993B2 (en) Detection of an electric arc hazard related to a wafer
US7888956B2 (en) Apparatus for testing a semiconductor device and a method of fabricating and using the same
US20040207395A1 (en) Eddy current-capacitance sensor for conducting film characterization
JP5097046B2 (ja) 半導体デバイスの信頼性評価方法、および半導体デバイスの信頼性評価装置
JP4912056B2 (ja) プローバ用チャック
JP5810731B2 (ja) 半導体装置及び検査方法
KR20080056088A (ko) 정전 척의 유전체층의 체적 저항률 측정 장치 및 그 장치를사용한 측정 방법
JPS58153157A (ja) 磁気探傷装置の磁気検出器
KR102263049B1 (ko) Pcb 검사장치 및 그 검사방법
US11017525B2 (en) Semiconductor pattern detecting apparatus
JP4252056B2 (ja) 半導体装置のコンタクト不良検査方法及びその検査方法が適用される半導体装置
JP2008258375A (ja) プラズマダメージ検出測定装置及びプラズマ処理装置
JP5939003B2 (ja) 電極構造の検査方法
Suresh et al. In-situ surface crack detection on metal using a passive wireless RFID-based NDT sensor
CN113218344A (zh) 膜电极构造体的检查方法
JP3080158B2 (ja) プリント基板の検査方法及び検査装置
CN116659367A (zh) 一种pcb及其介质厚度检测方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R150 Certificate of patent or registration of utility model

Ref document number: 7010143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150