JP2019190453A - 噴射制御装置 - Google Patents

噴射制御装置 Download PDF

Info

Publication number
JP2019190453A
JP2019190453A JP2018230007A JP2018230007A JP2019190453A JP 2019190453 A JP2019190453 A JP 2019190453A JP 2018230007 A JP2018230007 A JP 2018230007A JP 2018230007 A JP2018230007 A JP 2018230007A JP 2019190453 A JP2019190453 A JP 2019190453A
Authority
JP
Japan
Prior art keywords
solenoid
switch
upstream
transistor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018230007A
Other languages
English (en)
Other versions
JP7135809B2 (ja
Inventor
雅司 稲葉
Masashi Inaba
雅司 稲葉
昇 長瀬
Noboru Nagase
昇 長瀬
太一 渡邊
Taichi Watanabe
太一 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to US16/382,438 priority Critical patent/US10957474B2/en
Publication of JP2019190453A publication Critical patent/JP2019190453A/ja
Application granted granted Critical
Publication of JP7135809B2 publication Critical patent/JP7135809B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】熱損失の低減を図ることができる噴射制御装置を提供する。【解決手段】噴射制御装置1は、内燃機関に燃料を噴射する噴射弁が有するソレノイド2、3の駆動を制御する。噴射制御装置1は、直流電源線L1からソレノイド2、3へと至る給電経路の上流側に設けられるトランジスタQ1と、昇圧電源線L2からソレノイド2、3へと至る給電経路の上流側に設けられるトランジスタQ3と、給電経路の下流側に共通に設けられるトランジスタQ4、Q5と、ソレノイド2、3の上流側端子とグランドとの間に設けられるダイオードD2と、ダイオードD2と並列に設けられるトランジスタQ2と、駆動制御部10と、を備える。駆動制御部10は、トランジスタQ1〜Q5のオンとオフを制御するものであり、トランジスタQ4またはQ5をオンするとともにトランジスタQ1およびQ3のうち一方をオンすることによりソレノイド2、3を駆動する。【選択図】図1

Description

本発明は、内燃機関に燃料を噴射する噴射弁が有するソレノイドの駆動を制御する噴射制御装置に関する。
例えば特許文献1に開示されるような内燃機関の燃料噴射を制御する噴射制御装置は、噴射弁が備えるソレノイドの駆動を制御する機能を有している。このような噴射制御装置は、設定された駆動期間の開始時、ソレノイドに対してバッテリ電圧を昇圧して得られる昇圧電圧を印加することによりピーク電流を供給する。このようなピーク電流制御により、噴射弁が速やかに開弁される。その後、噴射制御装置は、駆動期間が終了するまで、ソレノイドに対してバッテリ電圧を印加することによりピーク電流よりも低い一定の電流を供給する。このような定電流制御により、噴射弁の開弁状態が保持される。
このような噴射制御装置は、バッテリ電圧が供給される直流電源線からソレノイドへと至る給電経路のうち上流側に設けられた第1上流側スイッチと、昇圧電圧が供給される昇圧電源線からソレノイドへと至る給電経路のうち上流側に設けられた第2上流側スイッチとを備えている。このような構成によれば、第1上流側スイッチがオンされることによりソレノイドにバッテリ電圧が印加され、第2上流側スイッチがオンされることによりソレノイドに昇圧電圧が印加される。
特開2016−160920号公報
上記構成では、第1上流側スイッチおよび第2上流側スイッチの双方がオフされてソレノイドへの電流供給が遮断された際に還流電流を流すための還流用ダイオードが設けられる。この場合、還流電流が流れる期間、還流用ダイオードに順方向電流が流れることから、還流用ダイオードにより熱損失が生じる。この熱損失は、還流用ダイオードの順方向電圧に応じた比較的大きなものとなるため、噴射制御装置の設計上において問題となる可能性がある。
本発明は上記事情に鑑みてなされたものであり、その目的は、熱損失の低減を図ることができる噴射制御装置を提供することにある。
請求項1に記載の噴射制御装置は、内燃機関に燃料を噴射する噴射弁が有するソレノイド(2、3)の駆動を制御するものであり、第1上流側スイッチ(Q1)、第2上流側スイッチ(Q3)、下流側スイッチ(Q4、Q5)、還流用ダイオード(D2)、短絡スイッチ(Q2)および駆動制御部(10)を備える。第1上流側スイッチは、直流電圧が供給される直流電源線(L1)からソレノイドへと至る給電経路のうち上流側に設けられる。第2上流側スイッチは、直流電圧を昇圧して得られる昇圧電圧が供給される昇圧電源線(L2)からソレノイドへと至る給電経路のうち上流側に設けられる。下流側スイッチは、2つの給電経路の下流側に共通に設けられる。
還流用ダイオードは、ソレノイドの上流側端子とグランドとの間にグランド側をアノードとして設けられる。短絡スイッチは、ソレノイドの上流側端子とグランドとの間に還流用ダイオードと並列に設けられる。駆動制御部は、第1上流側スイッチ、第2上流側スイッチ、下流側スイッチおよび短絡スイッチのオンとオフを制御するものであり、下流側スイッチをオンするとともに第1上流側スイッチおよび第2上流側スイッチのうち一方をオンすることによりソレノイドを駆動する。
上記構成では、第1上流側スイッチおよび下流側スイッチがオンされるとソレノイドに直流電圧が印加され、第2上流側スイッチおよび下流側スイッチがオンされるとソレノイドに昇圧電圧が印加される。また、上記構成では、短絡スイッチがオフされると還流用ダイオードの両端が短絡されていない状態となり、短絡スイッチがオンされると還流用ダイオードの両端が短絡された状態となる。
そこで、上記構成において、第1上流側スイッチおよび第2上流側スイッチの双方がオフされてソレノイドへの電流供給が遮断された際、短絡スイッチがオンされるようにすれば、オンされた短絡スイッチを介して還流電流が流れることになる。このようにすれば、還流電流が流れる期間、還流用ダイオードに順方向電流が流れることがない。そのため、上記構成によれば、還流電流が流れる期間、還流用ダイオードによる熱損失が生じることがない。したがって、上記構成によれば、従来の構成に比べ、熱損失の低減を図ることができるという優れた効果が得られる。
第1実施形態に係る噴射制御装置の構成を模式的に示す図 第1実施形態に係るソレノイド電流、ソレノイドへの印加電圧および各トランジスタの駆動状態を模式的に示すタイミングチャート 第2実施形態に係るソレノイド電流、ソレノイドへの印加電圧および各トランジスタの駆動状態を模式的に示すタイミングチャート 第3実施形態に係るソレノイド電流、ソレノイドへの印加電圧および各トランジスタの駆動状態を模式的に示すタイミングチャート
以下、本発明の複数の実施形態について図面を参照して説明する。なお、各実施形態において実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
以下、第1実施形態について図1および図2を参照して説明する。
図1に示す噴射制御装置1は、車両に搭載される複数の電子制御装置、つまり複数のECUのうちの1つである。噴射制御装置1は、車両に搭載された内燃機関に相当するエンジンの燃料噴射を制御するもので、エンジンECUに相当する。エンジンECUは、車両の様々な運転状態における各種センサ信号に基づいて各種アクチュエータを統合的に制御し、最適なエンジン状態での動作を実現するものである。
噴射制御装置1は、エンジンの気筒内に高圧に圧縮された燃料を噴射供給するインジェクタの駆動を制御する。この場合、インジェクタは、ソレノイド式電磁弁を備えている。なお、以下では、ソレノイド式電磁弁のことをソレノイドと呼ぶこととする。噴射制御装置1は、インジェクタが有するソレノイド2、3への通電電流を制御して電磁弁を開閉駆動する。
噴射制御装置1は、ソレノイド2、3の駆動を制御する機能を有している。なお、図1では、2つのソレノイド2、3だけを図示しているが、実際には、エンジンの気筒数に応じた数のソレノイドが存在しており、噴射制御装置1には、それら複数のソレノイドを駆動するための構成が設けられている。
噴射制御装置1には、図示しない車載バッテリから出力されるバッテリ電圧VBが直流電源線L1を介して供給されている。なお、バッテリ電圧VBは直流電圧に相当する。噴射制御装置1は、ソレノイド2、3を接続するための端子P1〜P3を備えている。端子P1には、ソレノイド2、3の各上流側端子が接続されている。端子P2には、ソレノイド2の下流側端子が接続されている。端子P3には、ソレノイド3の下流側端子が接続されている。
この場合、噴射制御装置1は、設定された駆動期間の開始時、ソレノイド2、3に対してピーク電流を供給するピーク電流制御を行い、電磁弁を速やかに開弁させる。その後、噴射制御装置1は、駆動期間が終了するまでソレノイド2、3に対してピーク電流よりも低い一定の電流を供給する定電流制御を行い、電磁弁の開弁状態を保持する。
噴射制御装置1は、駆動回路4および制御IC5を備えている。駆動回路4は、トランジスタQ1〜Q5、ダイオードD1〜D5、抵抗R1〜R4、コンデンサC1、C2などを備えている。トランジスタQ1〜Q5は、Nチャネル型のMOSトランジスタであり、いずれもドレイン・ソース間にソース側をアノードとして接続されたボディダイオードを備えている。なお、図1では、トランジスタQ1、Q2のボディダイオードであるダイオードD1、D2だけを示し、他のボディダイオードの図示は省略している。
トランジスタQ1のドレインは、バッテリ電圧VBが供給される直流電源線L1に接続され、そのソースはダイオードD3を順方向に介して端子P1に接続されている。トランジスタQ1は、直流電源線L1からソレノイド2、3へと至る給電経路のうち上流側に設けられるものであり、第1上流側スイッチに相当する。
トランジスタQ3のドレインは、バッテリ電圧VBを昇圧して得られる昇圧電圧Vboostが供給される昇圧電源線L2に接続され、そのソースは端子P1に接続されている。トランジスタQ3は、昇圧電源線L2からソレノイド2、3へと至る給電経路のうち上流側に設けられる第2上流側スイッチに相当する。昇圧電圧Vboostは、ソレノイド2、3に前述したピーク電流を流すためのものであり、図示しない昇圧回路により生成される。その昇圧回路は、例えば昇圧型のスイッチング電源回路として構成されており、バッテリ電圧VBを昇圧することにより昇圧電圧Vboostを生成する。
前述したダイオードD3は、ソレノイド2、3に昇圧電圧Vboostが印加される際、昇圧電源線L2から直流電源線L1へと流れる逆流の発生を防止するために設けられている。したがって、ダイオードD3は、ソレノイド2、3の上流側端子とトランジスタQ1との間に接続された逆流防止用ダイオードに相当する。
ダイオードD2のカソードは端子P1に接続され、そのアノードは回路の基準電位となるグランド電位(0V)が与えられるグランドに接続されている。ダイオードD2は、トランジスタQ1、Q3の双方がオフされてソレノイド2、3への電流供給が遮断された際に還流電流を流すために設けられている。したがって、ダイオードD2は、ソレノイド2、3の上流側端子とグランドとの間に接続された還流用ダイオードに相当する。トランジスタQ2のソースは、グランドに接続され、そのドレインは端子P1に接続されている。トランジスタQ2は、ソレノイド2、3の上流側端子とグランドとの間にダイオードD2と並列に設けられた短絡スイッチに相当する。
トランジスタQ4のドレインは端子P2に接続され、そのソースは抵抗R1を介してグランドに接続されている。トランジスタQ5のドレインは端子P3に接続され、そのソースは抵抗R2を介してグランドに接続されている。トランジスタQ4、Q5は、上記各給電経路のうち下流側に共通に設けられる下流側スイッチに相当する。トランジスタQ1〜Q5の各ゲートには、制御IC5から出力される駆動信号がそれぞれ与えられており、それによりトランジスタQ1〜Q5のオンとオフが制御される。つまり、この場合、トランジスタQ1〜Q5は、それぞれ独立した駆動信号により駆動される。
抵抗R1、R2は、ソレノイド2、3に流れる電流を検出するためのシャント抵抗に相当する。抵抗R1、R2の各端子電圧は、制御IC5に入力されている。制御IC5が備える電流検出部6は、例えば増幅回路などを備えた構成となっている。電流検出部6は、抵抗R1の端子電圧を増幅した電圧に基づいてソレノイド2に流れる電流であるソレノイド電流を検出する。また、電流検出部6は、抵抗R2の端子電圧を増幅した電圧に基づいてソレノイド3に流れる電流であるソレノイド電流を検出する。
端子P1〜P3の電圧は、制御IC5に入力されている。制御IC5が備える電圧検出部7は、例えば分圧回路などを備えた構成となっている。電圧検出部7は、端子P1の電圧を分圧した電圧に基づいてソレノイド2、3の上流側端子の電圧を検出する。また、電圧検出部7は、端子P2、P3の各電圧を分圧した電圧に基づいてソレノイド2、3の各下流側端子の電圧を検出する。さらに、電圧検出部7は、上述したように検出されるソレノイド2、3の上流側端子の電圧および下流側端子の電圧から、ソレノイド2、3に印加される印加電圧を検出する。したがって、電圧検出部7は、端子電圧検出部および印加電圧検出部に相当する。
ダイオードD4のアノードは端子P2に接続され、そのカソードは昇圧電源線L2に接続されている。ダイオードD5のアノードは端子P3に接続され、そのカソードは昇圧電源線L2に接続されている。つまり、ダイオードD4、D5は、昇圧電源線L2とソレノイド2、3の下流側端子との間にソレノイド2、3の下流側端子側をアノードとして接続されている。ダイオードD4、D5は、トランジスタQ4、Q5がオフしている期間にソレノイド2、3に流れる電流を昇圧電源線L2、ひいては図示しない昇圧回路が有するコンデンサへと回生させるように作用するもので、回生用ダイオードに相当する。
コンデンサC1の一方の端子は制御IC5のブートストラップ用端子に接続され、その他方の端子は抵抗R3を介してトランジスタQ1のソースに接続されている。トランジスタQ1のソースは、制御IC5のブートストラップ用端子に接続されている。コンデンサC1および抵抗R3は、制御IC5に内蔵される図示しないダイオードとともに、トランジスタQ1をオン駆動するためのオン駆動電圧を生成するブートストラップ回路8を構成する。
コンデンサC2の一方の端子は制御IC5のブートストラップ用端子に接続され、その他方の端子は抵抗R4を介してトランジスタQ3のソースに接続されている。トランジスタQ3のソースは、制御IC5のブートストラップ用端子に接続されている。コンデンサC2および抵抗R4は、制御IC5に内蔵される図示しないダイオードとともに、トランジスタQ3をオン駆動するためのオン駆動電圧を生成するブートストラップ回路9を構成する。
制御IC5が備える駆動制御部10は、図示しない外部のマイコンから与えられる指令、電流検出部6による電流検出の結果、電圧検出部7による電圧検出の結果などに基づいて、駆動回路4の動作、つまりトランジスタQ1〜Q5のオンとオフを制御する。具体的には、制御IC5は、上記マイコンから与えられる指令に基づいて複数のソレノイドの中から通電を行うものを選択し、設定された駆動期間、トランジスタQ4、Q5のうち選択されたソレノイドに対応して設けられたトランジスタをオン駆動する。
そして、制御IC5は、ピーク電流制御が行われる期間にトランジスタQ3をオン駆動し、定電流制御が行われる期間にトランジスタQ1をオンオフ駆動する。また、この際、制御IC5は、電流検出部6による電流検出の結果に基づいて、ソレノイド電流が所望する電流値となるようにトランジスタQ1、Q3の駆動を制御する。
このように、駆動制御部10は、トランジスタQ4をオンするとともに、トランジスタQ1およびQ3のうち一方をオンすることによりソレノイド2を駆動する。また、駆動制御部10は、トランジスタQ5をオンするとともに、トランジスタQ1およびQ3のうち一方をオンすることによりソレノイド3を駆動する。
トランジスタQ1は、Nチャネル型のMOSトランジスタであるため、それをオン駆動するためのオン駆動電圧としては、バッテリ電圧VBよりも高い電圧が必要となる。一方、駆動制御部10が設けられる制御IC5に供給される電源電圧は、例えば5Vであり、バッテリ電圧VBよりも低い電圧となっている。そこで、駆動制御部10は、前述したブートストラップ回路8を用いてトランジスタQ1のオン駆動電圧を生成するようになっている。
また、トランジスタQ3は、Nチャネル型のMOSトランジスタであるため、それをオン駆動するためのオン駆動電圧としては、昇圧電圧Vboostよりも高い電圧が必要となる。一方、駆動制御部10が設けられる制御IC5に供給される電源電圧は、例えば5Vであり、昇圧電圧よりも低い電圧となっている。そこで、駆動制御部10は、前述したブートストラップ回路9を用いてトランジスタQ3のオン駆動電圧を生成するようになっている。
次に、上記構成の作用について図2を参照して説明する。
ここでは、ソレノイド2を駆動する際における制御ロジックを説明するが、ソレノイド3を駆動する際における制御ロジックも同様のものとなる。駆動制御部10は、設定された駆動期間TQの開始時点である時刻t1において、トランジスタQ3およびトランジスタQ4をオン駆動する。これにより、ソレノイド2に対し昇圧電圧Vboostが印加され、ソレノイド電流が増加に転じる。また、駆動制御部10は、時刻t1において、トランジスタQ2をオフ駆動する。これにより、ダイオードD2の両端が短絡されていない状態となる。
駆動制御部10は、ソレノイド電流がピーク電流の目標値に応じて設定された遮断電流値に達した時刻t2において、トランジスタQ3をオフ駆動する。これにより、ソレノイド2への印加電圧が0Vになり、ソレノイド電流が減少に転じる。このように、トランジスタQ3がオン駆動されている期間はピーク電流制御が行われる放電期間に相当する。
駆動制御部10は、このような放電期間中、つまり時刻t1〜t2の期間、トランジスタQ2をオフ駆動している。言い換えると、駆動制御部10は、トランジスタQ3をオン駆動する期間、トランジスタQ2をオフ駆動する。なお、放電期間中、ソレノイド2への印加電圧が漸減しているのは、前述した昇圧回路のコンデンサでの放電がその充電よりも大きくなっているためである。
駆動制御部10は、放電期間が経過した後、駆動期間TQが終了するまでの定電流期間にトランジスタQ1をオンオフ駆動することにより、電磁弁を開弁状態に保つための一定の電流をソレノイド2に供給する。具体的には、駆動制御部10は、放電期間が経過した後、ソレノイド電流が減少して定電流下限値に達した時点、例えば時刻t3の時点でトランジスタQ1をオン駆動する。これにより、ソレノイド2に対しバッテリ電圧VBが印加され、ソレノイド電流が再び増加に転じる。
駆動制御部10は、ソレノイド電流が増加して定電流上限値に達した時点、例えば時刻t4の時点でトランジスタQ1をオフ駆動する。これにより、ソレノイド2への印加電圧が0Vになり、ソレノイド電流が再び減少に転じる。このような制御が繰り返されることによりソレノイド2に対し一定の電流が供給される。
この場合、駆動制御部10は、ソレノイド電流が遮断電流値に達してトランジスタQ3がオフ駆動される時刻t2の時点において、トランジスタQ2をオン駆動する。その後、駆動制御部10は、駆動期間TQが終了するまでの定電流期間にトランジスタQ2をオンオフ駆動する。具体的には、駆動制御部10は、ソレノイド電流が減少して定電流下限値に達した時点、例えば時刻t3の時点でトランジスタQ2をオフ駆動する。また、駆動制御部10は、ソレノイド電流が増加して定電流上限値に達した時点、例えば時刻t4の時点でトランジスタQ2をオン駆動する。
駆動制御部10は、駆動期間TQの終了時点である時刻t5において、トランジスタQ1、Q3およびQ4をオフ駆動する。これにより、ソレノイド電流が時間の経過とともに減少して時刻t6においてゼロとなり、電磁弁が閉弁状態となる。駆動制御部10は、ソレノイド電流がゼロになる時点である時刻t6において、トランジスタQ2をオフ駆動する。このように、駆動制御部10は、ソレノイド電流がゼロよりも大きい電流である間、つまりソレノイド2に正方向の電流が流れている間、トランジスタQ1およびQ3の双方がオフされてソレノイド2への電流供給が遮断された際、トランジスタQ2をオン駆動するようになっている。これにより、ソレノイド2への電流供給が遮断された際、ダイオードD2の両端が短絡された状態となり、オンされたトランジスタQ2を介して還流電流が流れることになる。なお、上述した正方向の電流とは、ソレノイドの上流側端子から下流側端子に向けて流れる電流のことを意味している。
この場合、駆動期間TQにおいて、トランジスタQ2がオンされてダイオードD2の両端が短絡される期間Tsは、下記(1)式に示すように、駆動期間TQからトランジスタQ1がオンされる期間Tq1およびトランジスタQ3がオンされる期間Tq3を減算した期間となる。
Ts=TQ−(Tq1+Tq3) …(1)
以上説明した本実施形態によれば、次のような効果が得られる。
本実施形態の噴射制御装置1では、トランジスタQ1およびトランジスタQ4またはQ5がオンされるとソレノイド2または3にバッテリ電圧VBが印加され、トランジスタQ3およびトランジスタQ4またはQ5がオンされるとソレノイド2または3に昇圧電圧Vboostが印加される。また、噴射制御装置1では、トランジスタQ2がオフされるとダイオードD2の両端が短絡されていない状態となり、トランジスタQ2がオンされるとダイオードD2の両端が短絡された状態となる。
そして、噴射制御装置1では、駆動期間TQの開始時点である時刻t1からソレノイド電流がゼロになる時点である時刻t6までの期間、つまりソレノイド2、3に正方向の電流が流れる期間において、トランジスタQ1およびトランジスタQ3の双方がオフされた際、トランジスタQ2がオンされるようになっている。このようにすれば、ソレノイド2、3への電流供給が遮断された際、オンされたトランジスタQ2を介して還流電流が流れることになる。そのため、還流電流が流れる期間、ダイオードD2に順方向電流が流れることがなく、ダイオードD2による熱損失が生じることがない。なお、この場合、トランジスタQ2による熱損失が生じることになるが、MOSトランジスタであるトランジスタQ2による熱損失はダイオードD2による熱損失に比べて格段に小さいものとなる。
したがって、上記構成によれば、従来の構成に比べ、熱損失の低減を図ることができるという優れた効果が得られる。このような熱損失の増加は、ソレノイド2、3に供給される電流が大きくなるほど、一層顕在化する。したがって、エンジンの性能アップに伴いソレノイド2、3に流す電流が大電流化すればするほど、本実施形態により得られる熱損失の低減効果が一層有益なものとなる。
駆動制御部10は、ソレノイド2、3に正方向の電流が流れる期間において、トランジスタQ1およびトランジスタQ3のうち少なくとも一方がオンする期間には、トランジスタQ2がオフするように、それらトランジスタQ1〜Q3のオンとオフを制御するようになっている。トランジスタQ1またはQ3がオンしているときにトランジスタQ2がオンすると、直流電源線L1または昇圧電源線L2からグランドへと過大な短絡電流が流れるおそれがある。上述したようにトランジスタQ1〜Q3のオンとオフを制御することにより、このような短絡電流の発生を確実に防止することができる。
噴射制御装置1は、トランジスタQ4、Q5がオフしている期間にソレノイド2、3に流れる電流を昇圧電源線L2へと回生させるためのダイオードD4、D5を備えている。そして、駆動制御部10は、トランジスタQ4、Q5がオフする期間には、トランジスタQ1、Q3がいずれもオフするように、それらトランジスタQ1、Q3のオンとオフを制御するようになっている。このようにすれば、ダイオードD4、D5による回生の作用を確実に得ることができる。
なお、本実施形態の制御ロジックは、次のように変形することが可能である。すなわち、駆動制御部10は、電圧検出部7により検出されるソレノイド2、3への印加電圧がゼロ(0V)より高い電圧である期間にトランジスタQ2がオフするように制御するとともに、上記印加電圧がゼロ以下である期間にトランジスタQ2がオンするように制御してもよい。このようにした場合でも、駆動期間TQにおいて、トランジスタQ2がオンされてダイオードD2の両端が短絡される期間Tsは、上記(1)式に示した期間と同様のものとなる。
あるいは、駆動制御部10は、電圧検出部7により検出されるソレノイド2、3の上流側端子の電圧が下流側端子の電圧より低い電圧である期間にトランジスタQ2がオンするように制御してもよい。このようにした場合でも、駆動期間TQにおいて、トランジスタQ2がオンされてダイオードD2の両端が短絡される期間Tsは、上記(1)式に示した期間と同様のものとなる。
したがって、このような各変形例によっても、上述した実施形態と同様の効果が得られる。さらに、上記各変形例では、ソレノイド2、3への印加電圧の検出値またはソレノイド2、3の上流側端子の電圧の検出値および下流側端子の電圧の検出値に基づいてトランジスタQ2を制御するようになっている。そのため、上記各変形例によれば、ソレノイド電流の検出値に基づいてトランジスタQ2を制御するものに比べ、一層確実に、トランジスタQ2を用いて還流電流を流すことが可能となり、その結果、熱損失の低減効果を一層確実に得ることができる。
(第2実施形態)
以下、第2実施形態について図3を参照して説明する。
第2実施形態では、ソレノイド2、3を駆動する際における制御ロジックの内容が第1実施形態と異なっている。なお、噴射制御装置1の構成は、第1実施形態と共通する。
本実施形態の制御ロジックでは、第1実施形態の制御ロジックに対し、トランジスタQ2のオンとオフの制御が異なっている。すなわち、本実施形態では、駆動制御部10は、第1実施形態と同様、放電期間中にはトランジスタQ2をオフ駆動し、放電期間が終了する時刻t2の時点でトランジスタQ2をオン駆動する。
そして、駆動制御部10は、ソレノイド電流が減少して最初に定電流下限値に達した時刻t3の時点でトランジスタQ2をオフ駆動する。その後、駆動制御部10は、少なくとも駆動期間TQが終了するまでトランジスタQ2をオフし続ける。このように、本実施形態では、トランジスタQ2は、時刻t2においてオフからオンに転じるとともに、時刻t3においてオンからオフに転じる。つまり、駆動期間TQにおいて、トランジスタQ2がオンされてダイオードD2の両端が短絡される期間Tsは、下記(2)式に示すように、駆動期間TQから放電期間Tdおよび定電流期間Tcを減算した期間となる。
Ts=TQ−(Td+Tc) …(2)
以上説明した本実施形態によっても、ソレノイド2、3に正方向の電流が流れる期間において、トランジスタQ1およびトランジスタQ3の双方がオフされた際にトランジスタQ2がオンされるようになっているため、第1実施形態と同様、熱損失低減の効果が得られる。なお、この場合、ピーク電流制御から定電流制御へと遷移する遷移期間の還流電流はオンされたトランジスタQ2を介して流れるものの、定電流期間中の還流電流はダイオードD2を介して流れることになる。
上記遷移期間には、ソレノイド2、3に比較的高い昇圧電圧Vboostが印加された状態から還流が行われることから、その還流電流も大きなものとなる。したがって、本実施形態のように、還流電流が流れる遷移期間および定電流期間のうち、比較的大きくなる遷移期間中の還流電流だけをトランジスタQ2を介して流すようにした場合でも、従来の構成に比べ、熱損失を十分に低減することができる。
(第3実施形態)
以下、第3実施形態について図4を参照して説明する。
第3実施形態では、ソレノイド2、3を駆動する際における制御ロジックの内容が第1実施形態と異なっている。なお、噴射制御装置1の構成は、第1実施形態と共通する。
本実施形態の制御ロジックでは、第1実施形態の制御ロジックに対し、トランジスタQ2のオンとオフの制御が異なっている。すなわち、本実施形態では、駆動制御部10は、第1実施形態と同様、放電期間中にはトランジスタQ2をオフ駆動する。また、この場合、駆動制御部10は、ピーク電流制御から定電流制御へと遷移する遷移期間、つまり時刻t2〜t3の期間にもトランジスタQ2をオフ駆動する。
その後、駆動制御部10は、第1実施形態と同様、駆動期間TQが終了するまでの定電流期間にトランジスタQ2をオンオフ駆動する。この場合、駆動期間TQにおいて、トランジスタQ2がオンされてダイオードD2の両端が短絡される期間Tsは、下記(3)式に示すように、放電期間Td、駆動期間TQから遷移期間Tt、トランジスタQ1がオンされる期間Tq1およびトランジスタQ3がオンされる期間Tq3を減算した期間となる。
Ts=TQ−(Td+Tt+Tq3) …(3)
以上説明した本実施形態によっても、ソレノイド2、3に正方向の電流が流れる期間において、トランジスタQ1およびトランジスタQ3の双方がオフされた際にトランジスタQ2がオンされるようになっているため、第1実施形態と同様、熱損失低減の効果が得られる。なお、この場合、定電流期間中の還流電流はオンされたトランジスタQ2を介して流れるものの、ピーク電流制御から定電流制御へと遷移する遷移期間の還流電流はダイオードD2を介して流れることになる。
一般に、定電流期間は、遷移期間よりも長い期間となる。したがって、本実施形態のように、還流電流が流れる遷移期間および定電流期間のうち、比較的長い定電流期間中の還流電流だけをトランジスタQ2を介して流すようにした場合でも、従来の構成に比べ、熱損失を十分に低減することができる。
(その他の実施形態)
なお、本発明は上記し且つ図面に記載した各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で任意に変形、組み合わせ、あるいは拡張することができる。
上記各実施形態で示した数値などは例示であり、それに限定されるものではない。
本発明は、エンジンの燃料噴射を制御するエンジンECUに適用される噴射制御装置に限らず、内燃機関に燃料を噴射する噴射弁が有するソレノイドの駆動を制御する噴射制御装置全般に適用することができる。
トランジスタQ1〜Q5としては、Nチャネル型のMOSトランジスタに限らずとよく、様々な種類の半導体スイッチング素子を用いることができる。
還流用ダイオードとしては、トランジスタQ2のボディダイオードにより構成するものに限らずともよく、別途ダイオードを追加してもよい。
駆動制御部10は、駆動期間TQの終了時点である時刻t5からソレノイド電流がゼロになる時点である時刻t6までの期間、トランジスタQ2をオフ駆動するようにしてもよい。この場合、駆動期間TQの終了時点からソレノイド電流がゼロになる時点までの期間の還流電流はダイオードD2を介して流れることになる。ただし、上記期間はソレノイド電流がゼロへと漸減する期間であることから、その還流電流も比較的小さいものとなる。したがって、このようにした場合でも、従来の構成に比べ、熱損失を十分に低減することができる。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
1…噴射制御装置、2、3…ソレノイド、7…電圧検出部、10…駆動制御部、D2、D4、D5…ダイオード、L1…直流電源線、L2…昇圧電源線、Q1〜Q5…トランジスタ。

Claims (6)

  1. 内燃機関に燃料を噴射する噴射弁が有するソレノイド(2、3)の駆動を制御する噴射制御装置であって、
    直流電圧が供給される直流電源線(L1)から前記ソレノイドへと至る給電経路のうち上流側に設けられる第1上流側スイッチ(Q1)と、
    前記直流電圧を昇圧して得られる昇圧電圧が供給される昇圧電源線(L2)から前記ソレノイドへと至る給電経路のうち上流側に設けられる第2上流側スイッチ(Q3)と、
    2つの前記給電経路の下流側に共通に設けられる下流側スイッチ(Q4、Q5)と、
    前記ソレノイドの上流側端子とグランドとの間に前記グランド側をアノードとして設けられる還流用ダイオード(D2)と、
    前記ソレノイドの上流側端子と前記グランドとの間に前記還流用ダイオードと並列に設けられる短絡スイッチ(Q2)と、
    前記第1上流側スイッチ、前記第2上流側スイッチ、前記下流側スイッチおよび前記短絡スイッチのオンとオフを制御するものであり、前記下流側スイッチをオンするとともに前記第1上流側スイッチおよび前記第2上流側スイッチのうち一方をオンすることにより前記ソレノイドを駆動する駆動制御部(10)と、
    を備える噴射制御装置。
  2. 前記駆動制御部は、前記ソレノイドに正方向の電流が流れる期間であり、且つ前記第1上流側スイッチおよび前記第2上流側スイッチのうち少なくとも一方がオンする期間には、前記短絡スイッチがオフするように、それらスイッチのオンとオフを制御する請求項1に記載の噴射制御装置。
  3. さらに、前記昇圧電源線と前記ソレノイドの下流側端子との間に前記ソレノイドの下流側端子側をアノードとして接続された回生用ダイオード(D4、D5)を備え、
    前記駆動制御部は、前記下流側スイッチがオフする期間には、前記第1上流側スイッチおよび前記第2上流側スイッチがいずれもオフするように、それらスイッチのオンとオフを制御する請求項1または2に記載の噴射制御装置。
  4. さらに、前記ソレノイドに印加される印加電圧を検出する印加電圧検出部(7)を備え、
    前記駆動制御部は、前記印加電圧検出部により検出される前記印加電圧がゼロより高い電圧である期間には、前記短絡スイッチがオフするように制御する請求項1から3のいずれか一項に記載の噴射制御装置。
  5. さらに、前記ソレノイドに印加される印加電圧を検出する印加電圧検出部(7)を備え、
    前記駆動制御部は、前記印加電圧検出部により検出される前記印加電圧がゼロ以下の電圧である期間には、前記短絡スイッチがオンするように制御する請求項1から4のいずれか一項に記載の噴射制御装置。
  6. さらに、前記ソレノイドの端子電圧を検出する端子電圧検出部(7)を備え、
    前記駆動制御部は、前記端子電圧検出部により検出される前記ソレノイドの上流側端子の電圧が前記ソレノイドの下流側端子の電圧より低い電圧である期間には、前記短絡スイッチがオンするように制御する請求項1から4のいずれか一項に記載の噴射制御装置。
JP2018230007A 2018-04-20 2018-12-07 噴射制御装置 Active JP7135809B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/382,438 US10957474B2 (en) 2018-04-20 2019-04-12 Injection control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018081375 2018-04-20
JP2018081375 2018-04-20

Publications (2)

Publication Number Publication Date
JP2019190453A true JP2019190453A (ja) 2019-10-31
JP7135809B2 JP7135809B2 (ja) 2022-09-13

Family

ID=68389280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018230007A Active JP7135809B2 (ja) 2018-04-20 2018-12-07 噴射制御装置

Country Status (1)

Country Link
JP (1) JP7135809B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020096125A (ja) * 2018-12-14 2020-06-18 株式会社ケーヒン ソレノイド駆動装置
WO2021075100A1 (en) 2019-10-17 2021-04-22 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Image processing device and image processing program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184695A (ja) * 1998-12-18 2000-06-30 Fuji Xerox Co Ltd 電源装置
JP2004124890A (ja) * 2002-10-07 2004-04-22 Hitachi Ltd 燃料供給装置
US20050140351A1 (en) * 2003-10-31 2005-06-30 Michele Cagnoni Method for controlling an injector with verification that plunger movement has occurred
JP2006269540A (ja) * 2005-03-22 2006-10-05 Hitachi Ltd ソレノイド駆動回路
JP2007259515A (ja) * 2006-03-20 2007-10-04 Ricoh Co Ltd 高効率電源回路および該高効率電源回路を組み込んだ電子機器
JP2013093669A (ja) * 2011-10-24 2013-05-16 Keihin Corp 誘導性負荷駆動装置
JP2014225780A (ja) * 2013-05-16 2014-12-04 株式会社デンソー 負荷駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184695A (ja) * 1998-12-18 2000-06-30 Fuji Xerox Co Ltd 電源装置
JP2004124890A (ja) * 2002-10-07 2004-04-22 Hitachi Ltd 燃料供給装置
US20050140351A1 (en) * 2003-10-31 2005-06-30 Michele Cagnoni Method for controlling an injector with verification that plunger movement has occurred
JP2006269540A (ja) * 2005-03-22 2006-10-05 Hitachi Ltd ソレノイド駆動回路
JP2007259515A (ja) * 2006-03-20 2007-10-04 Ricoh Co Ltd 高効率電源回路および該高効率電源回路を組み込んだ電子機器
JP2013093669A (ja) * 2011-10-24 2013-05-16 Keihin Corp 誘導性負荷駆動装置
JP2014225780A (ja) * 2013-05-16 2014-12-04 株式会社デンソー 負荷駆動装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020096125A (ja) * 2018-12-14 2020-06-18 株式会社ケーヒン ソレノイド駆動装置
WO2021075100A1 (en) 2019-10-17 2021-04-22 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Image processing device and image processing program

Also Published As

Publication number Publication date
JP7135809B2 (ja) 2022-09-13

Similar Documents

Publication Publication Date Title
JP7110613B2 (ja) 負荷駆動装置
JP6717176B2 (ja) 噴射制御装置
JP2019190307A (ja) 噴射制御装置
JP2019190453A (ja) 噴射制御装置
US20100059023A1 (en) Circuit Arrangement and Method for Operating an Inductive Load
JP2018096229A (ja) 噴射制御装置
US11466650B2 (en) Fuel injection valve driving device
JP2018031294A (ja) 電磁弁駆動装置
JP2021099069A (ja) 噴射制御装置
EP1669577B1 (en) Inductive load driver with overcurrent detection
US20050017583A1 (en) Circuit for controlling inductive loads, in particular of electro actuators, at high efficiency
CN112840116B (zh) 电子控制装置
JP2020096125A (ja) ソレノイド駆動装置
JP7135810B2 (ja) 噴射制御装置
JP2021099070A (ja) 噴射制御装置
JP2021085378A (ja) 噴射制御装置
US10957474B2 (en) Injection control device
JP4379384B2 (ja) 電気負荷の駆動装置
JP2018100642A (ja) 噴射制御装置
US10961963B2 (en) Injection control device
JP6171977B2 (ja) 燃料噴射制御装置
JP2022056767A (ja) 電磁弁駆動装置
JP4432624B2 (ja) アクチュエータ駆動回路
JP2020176553A (ja) 燃料噴射制御装置
JP2013221415A (ja) 負荷駆動回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R151 Written notification of patent or utility model registration

Ref document number: 7135809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151