JP2019181506A - 平角線のレーザ溶接方法 - Google Patents

平角線のレーザ溶接方法 Download PDF

Info

Publication number
JP2019181506A
JP2019181506A JP2018074553A JP2018074553A JP2019181506A JP 2019181506 A JP2019181506 A JP 2019181506A JP 2018074553 A JP2018074553 A JP 2018074553A JP 2018074553 A JP2018074553 A JP 2018074553A JP 2019181506 A JP2019181506 A JP 2019181506A
Authority
JP
Japan
Prior art keywords
laser beam
loop
welding method
laser welding
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018074553A
Other languages
English (en)
Other versions
JP7063693B2 (ja
Inventor
飛 湯
Fei Tang
飛 湯
祐治 坂田
Yuji Sakata
祐治 坂田
洋明 武田
Hiroaki Takeda
洋明 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2018074553A priority Critical patent/JP7063693B2/ja
Publication of JP2019181506A publication Critical patent/JP2019181506A/ja
Application granted granted Critical
Publication of JP7063693B2 publication Critical patent/JP7063693B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

【課題】スパッタの発生を抑制することが可能な平角線のレーザ溶接方法を提供する。【解決手段】平角線のレーザ溶接方法は、第1及び第2の平角線20a,20bの接合対象面(端部側面23a,23b)同士を突き合わせ、第1及び第2の平角線20a,20bにおける、上記接合対象面にそれぞれ連なる他の面(端面24a,24b)にレーザビームを照射することにより、第1の平角線20aと第2の平角線20bとを溶接する。この方法は、第1ステップと第2ステップとを有する。第1ステップは、レーザビームの走査軌跡が一方の平角線20bの上記他の面(端面24b)内で所定の回転径のループを描くように、レーザビームを走査させる。第2ステップは、第1ステップの後、レーザビームの走査軌跡が上記接合対象面(端部側面23a,23b)同士を突き合わせた境界面を横切る上記所定の回転径のループを描くように、レーザビームを走査させる。【選択図】図2

Description

本発明は、平角線のレーザ溶接方法に関する。
モータ用のステータ(固定子)は、ステータコアと、ステータコアのスロットに装着された複数のセグメントコイルとを備えている。通常、個々のセグメントコイルは絶縁被覆された平角線である。セグメントコイルの端部同士は、溶接等により接合されている。
特許文献1には、例えばセグメントコイルに用いられる平角線のレーザ溶接方法が開示されている。特許文献1に記載の方法では、第1及び第2の平角線の端部側面同士を突き合わせ、第1の平角線の端面内にループ状のレーザビームを照射し、レーザビームの走査軌跡を徐々に大きくしていき、第1及び第2の平角線の突き合わせ面に到達させて接合している。上記方法では、このように第1及び第2の平角線を接合することで、突き合わせ面の隙間が溶融池により充填できるため、突き合わせ面間の隙間にレーザビームが侵入することによる平角線の絶縁被膜の損傷を抑制することができる。
特開2018−020340号公報
発明者は、特許文献1に記載の平角線のレーザ溶接方法に関し、以下の問題点を見いだした。
図6は、特許文献1に記載された平角線のレーザ溶接方法を示す平面図で、図7は、ループ状に走査する際の回転径と発生するスパッタの数との関係性を示すグラフである。ここで、回転径は、ループが楕円の場合には長軸の長さに相当し、ループが円の場合には直径に相当する。
特許文献1に記載の方法では、まず、図6に示すように、接合部25において、絶縁被膜21aが剥離された平角線20aの突き合わせ面(端部側面)23aと、絶縁被膜21bが剥離された平角線20bの突き合わせ面(端部側面)23bと、を突き合わせる。そして、レーザビームを平角線20aの端面24aに対して、鉛直下向き(z軸マイナス方向)に照射する。次に、図6に示すように、平角線20aの端面24a内において、レーザビームの走査軌跡の径すなわち楕円の径を大きくしていき、溶融池60を端部側面23a,23bに到達させる。その結果、突き合わせ面である端部側面23a,23b間の隙間が溶融池60により充填される。
このように、特許文献1に記載の方法では、ループ状に走査する際の回転径が最終的な大きさに比べて小さい状態で走査を開始する必要があるため、開始時の回転径を小さくせざるを得ない場合がある。
そして、上記回転径が小さい場合、レーザビームの照射範囲のエネルギー密度が高くなりキーホール溶接を行う状態となるため、金属が蒸発し易くなり、発生する金属蒸気にレーザビームが当たってスパッタが発生する恐れがある。実際、図7において回転径と発生するスパッタの数との関係性を示すように、回転径が小さくなるに連れてスパッタ数が増加する。よって、特許文献1に記載の方法では、スパッタ数が増加する恐れがある。
本発明は、このような事情に鑑みなされたものであって、その目的は、スパッタの発生を抑制することが可能な平角線のレーザ溶接方法を提供することにある。
本発明の一態様に係る平角線のレーザ溶接方法は、
第1及び第2の平角線の接合対象面同士を突き合わせ、前記第1及び第2の平角線における、前記接合対象面にそれぞれ連なる他の面にレーザビームを照射することにより、前記第1の平角線と前記第2の平角線とを溶接する平角線のレーザ溶接方法であって、
前記レーザビームの走査軌跡が前記第1の平角線の前記他の面内で所定の回転径のループを描くように、前記レーザビームを走査させる第1ステップと、
前記第1ステップの後、前記レーザビームの走査軌跡が前記接合対象面同士を突き合わせた境界面を横切る前記所定の回転径のループを描くように、前記レーザビームを走査させる第2ステップと、
を有するものである。
本発明の一態様に係る平角線のレーザ溶接方法では、まず第1の平角線の上記他の面内において所定の回転径のループを描くようにレーザビームを走査させ、その後、接合対象面同士を突き合わせた境界面を横切る上記所定の回転径のループを描くようにレーザビームを走査させる。本発明の一態様に係る平角線のレーザ溶接方法では、このような構成により、レーザビームの照射範囲のエネルギー密度を低く抑えることができるため、スパッタの発生を抑制することができる。
本発明によれば、スパッタの発生を抑制することが可能な平角線のレーザ溶接方法を提供することができる。
ステータの概略構成を示す斜視図である。 本発明の実施形態に係る平角線のレーザ溶接方法を示す平面図である。 ループの回転径と溶融量との関係性の一例を示すグラフである。 図2のレーザ溶接方法で溶接した部分の溶融形状の一例を示す図である。 図2のレーザ溶接方法で溶接する場合の、レーザビームの出力値と円周数との関係性の一例を示すグラフである。 特許文献1に記載された平角線のレーザ溶接方法を示す平面図である。 回転径と発生するスパッタの数との関係性を示すグラフである。
以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。但し、本発明が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
まず、本実施形態に係る平角線のレーザ溶接方法を用いて溶接されたセグメントコイルを備えるステータの構成の一例について、図1を参照しながら説明する。図1は、ステータの概略構成を示す斜視図である。
図1に示すように、モータの固定子であるステータ1は、ステータコア10と複数のセグメントコイル20とを有する。
ステータコア10は、環状の電磁鋼板がステータ1の軸方向(図1におけるz軸方向)に積層されたものであり、全体として略円筒形状を有している。ステータコア10の内周面には、内周側に突出すると共にステータ1の軸方向に延設されたティース11と、隣接するティース11間に形成された溝部であるスロット12と、が設けられている。各スロット12には、セグメントコイル20が装着されている。
セグメントコイル20は、断面矩形状の電線すなわち平角線である。通常、セグメントコイル20は、純銅製であるが、アルミニウム、銅やアルミニウムを主成分とする合金等の高導電率を有する金属材料から構成してもよい。
それぞれのセグメントコイル20は略U字形状に成形されている。図1に示すように、セグメントコイル20の端部(コイルエンド)は、いずれもステータコア10の上端面から突出している。接合部25は、径方向に隣接したセグメントコイル20の端部同士が溶接された部位である。複数の接合部25がステータコア10の周方向に円環状に配列されている。図1の例では、48個の接合部25が円環状に配列されている。また、この円環状に配列された接合部25が径方向に4列配置されている。
次に、図2〜図5を併せて参照しながら、本実施形態に係る平角線のレーザ溶接方法について説明する。図2は、本実施形態に係る平角線のレーザ溶接方法を示す平面図である。なお、当然のことながら、図2に示した右手系xyz座標は、構成要素の位置関係を説明するための便宜的なものである。図1のz軸方向と図2のz軸方向は一致している。通常、z軸プラス向きが鉛直上向き、xy平面が水平面である。
本実施形態に係る平角線のレーザ溶接方法(以下、本レーザ溶接方法と称す)を用いて、図1に示したセグメントコイル20の接合部25をレーザ溶接することができる。本レーザ溶接方法は、ステータに用いる平角線のコイル同士を接合するため、ステータコイル接合方法と称することもできる。なお、説明を省略するが、本レーザ溶接方法に用いるレーザ溶接装置は、例えば特許文献1に記載のレーザ溶接装置などを使用することができる。例えば、レーザ溶接装置において、以下のような手順でレーザビームを照射するようにプログラムしておくことで、本レーザ溶接方法が実行できる。
本レーザ溶接方法では、まず、図2に示すように、接合部25において、絶縁被膜21aが剥離された平角線(セグメントコイル)20aの端部側面23aと、絶縁被膜21bが剥離された平角線(セグメントコイル)20bの端部側面23bと、を突き合わせる。
そして、本レーザ溶接方法では、最終的に平角線20a,20bのそれぞれの端面24a,24bにレーザビームを照射することにより、平角線20aと平角線20bとを溶接する。このように、本レーザ溶接方法では、突き合わせ面となる端部側面23a,23bを接合対象面とし、端面24a,24bにレーザビームが照射される。
本レーザ溶接方法は、このレーザビームの走査方法に主たる特徴を有する。この主たる特徴について、以下に説明する。本レーザ溶接方法は、端部側面23a,23b同士を突き合わせた状態で実行される、次の第1ステップ及び第2ステップを有する。
第1ステップは、レーザビームの走査軌跡が一方の平角線(図2の例では平角線20bであり以下同様とする)の端面24b内で所定の回転径のループを描くように、レーザビームを走査させる。つまり、第1ステップでは、レーザビームを平角線20bの端面24bに対して、鉛直下向き(z軸マイナス方向)に照射し、上記所定の回転径でループ状にそのレーザビームを走査させる。
ループとは、環状ループ(閉ループ)もしくは螺旋状ループ(開ループ)であることを意味する。図2では、レーザビームの走査軌跡が楕円状のループである例を挙げている。なお、図2において、走査開始位置(矢印で示したSTART)を含むループである最初のループを太い線で描いているが、視覚的に分かり易く描いたに過ぎず、他のループと同じビーム径での走査がなされるものとする。
また、平角線20a,20bの導体部22a,22bは、高導電率を有する金属材料から構成されているため、熱伝導性にも優れている。そのため、レーザビームを照射することにより溶融した箇所が、速やかに凝固してしまう。しかし、レーザビームの走査軌跡をループ状にすることで、形成した溶融池を成長させることができる。つまり、第1ステップでは、平角線20bの端面24b内(端部側面23a,23b間の境界線に当たらない領域)で溶融池を形成し成長させることができる。なお、上記所定の回転径については後述する。
第2ステップは、第1ステップの後に実行されるステップであり、レーザビームの走査軌跡が端部側面23a,23b同士を突き合わせた境界面を横切るループを描くように、レーザビームを走査させる。上記境界面は、端部側面23aと端部側面23bとを突き合わせた状態で、端部側面23aと端部側面23bとの中間に位置する平面とすることができる。この平面(上記境界面)は、図2における端部側面23a,23b間の境界線を含むことになる。そして、第2ステップにおけるループも、第1ステップにおけるループと同じ回転径(つまり上記所定の回転径)のループとする。
つまり、第2ステップでは、第1ステップの後、レーザビームの走査軌跡が上記境界面を横切るループになるように、上記所定の回転径を保ちながらループを移動させる。移動後のループは、上記境界面を横切るため、平角線20aの端面24a内と平角線20bの端面24b内とに跨がるループとなる。第2ステップでは、このようなループを描くように、レーザビームが平角線20bの端面24b及び平角線20aの端面24aに対して鉛直下向き(z軸マイナス方向)に照射される。
このように、本レーザ溶接方法では、常に一定の回転径において片側の平角線20bを溶融させた後、突き合わせ面側へループを移動させ、両側の平角線20a,20bに跨がるループを描くようにレーザビームを照射する。
本レーザ溶接方法では、このような手順により、レーザビームの照射範囲のエネルギー密度を低く抑えることができるため、スパッタの発生を抑制することができる。そして、このレーザ溶接方法では、このようにしてスパッタの発生を抑制することで、溶接欠陥による品質低下を抑制することができる。また、回転径が小さい領域においてスパッタが多発してしまう対策として、レーザビームの出力を下げることも考えられるが、それにより加工時間の増加、及び加工時間増加に伴いエナメル等の絶縁被膜のダメージにつながってしまう。しかし、本レーザ溶接方法によれば、加工時間を増やすことなくスパッタ量を低減することができる。
また、第2ステップの前に実行される第1ステップでは、図2に走査軌跡の例を示したように、最初のループから第2ステップに係る上記境界面を横切るようなループになるまで、段階的にループを移動させるように走査を行うことができる。
また、第2ステップは、図2に走査軌跡の例を示したように、端部側面23a,23b同士の境界面に沿って(x軸プラス方向に)、ループを平行移動させるようにレーザビームを走査させる第3ステップを含むことができる。これにより、図2で図示したように上記所定の回転径に対して上記境界面が長い場合(突き合わせ面が長い場合)にも、対応することができる。
なお、走査開始位置及び走査終了位置(図2において矢印で示したEND)は、図2で示した位置に限ったものではない。一方の平角線20bの端面24b上におけるループの一点から走査が開始され、双方の平角線20a,20bの端面24a,24b上におけるループの一点で走査が終了されるようにすればよい。
次に、第1,第2ステップにおける共通のループ径である上記所定の回転径について説明する。本レーザ溶接方法では、ループの回転径は一定(上記所定の回転径)であるため、上記所定の回転径として、スパッタ発生を抑制でき且つ溶融池を形成できるような大きさを選択するとよい。特に、上記所定の回転径は、溶融が最も大きくなる最適な大きさを選択することが好ましい。
この最適な大きさの選択について、図3を併せて参照しながら説明する。図3は、ループの回転径(ここでは楕円形状のループにおける長軸の長さ)と溶融量(溶融断面積)との関係性の一例を示すグラフである。なお、例えば、ループが円形の場合には回転径は直径を指す。
図3に示すように、回転径が小さいとスパッタが多く発生する上に溶融量も少なく、一方で、レーザビームを照射することにより溶融した箇所が速やかに凝固してしまうため、回転径が大き過ぎると溶融量が減少し、溶融池を形成することができない。実際、図3において破線円で示す箇所のように、ある一定の回転径にて溶融量が最大となる。なお、図3に示すように、溶融断面積は、近似的に回転径を変数とする上に凸な2次関数で表現することができると言える。
よって、図3の例の場合、上記破線円で示す付近の回転径(より好ましくは上記2次関数の頂点で示される溶融量が最大となる回転径)を上記所定の回転径として選択することで、スパッタの発生を最大限抑制しつつ広い溶融池を形成することができる。実際には、使用するレーザ溶接装置の性能、そのレーザ溶接装置から実際に出力するレーザビームの条件(出力値、ビーム径等)、及び平角線20a,20bをセットするワークの形状などに合わせ、最も溶融量が大きくなる回転径を選定することができる。
また、図2の例のように突き合わせ面に隙間がある場合には、レーザビームが下方に突き抜ける可能性があり、突き抜けてしまうと、下方に存在する平角線20a,20bの絶縁被膜21a,21bにダメージを与えてしまう。以下に、この対策について説明する。
最初から突き合わせ面にレーザビームを照射するとスパッタの発生が多くなる。しかし、上述したように、本レーザ溶接方法では、端部側面23a,23b同士の突き合わせ面を最初に照射しないように、第1ステップにて片側の平角線20bの端面24bを溶融させ、端面24b上で溶融池を形成させる。
そして、上述したように、第2ステップの前に実行される第1ステップでは、最初のループから上記境界面を横切るようなループになるまで、段階的にループを移動させるように走査を行い、上記境界面の一部に到達するような溶融池を形成させる。
具体的には、レーザビームを走査開始位置(図2において矢印で示したSTART)から1又は複数回同じループで照射した後、y軸プラス方向にスライドさせ、スライドさせた位置を基点とした同じループで1又は複数回照射し、これを繰り返していく。これにより、平角線20bの端面24b内でレーザビームを走査している段階で、溶融池が突き合わせ面である端部側面23a,23bに到達する。なお、この時、上述したように回転径が小さすぎるとスパッタが多発、また大き過ぎると溶融量が減少するため、溶融量が最大となる最適な大きさにする。
このような走査により、第2ステップの実行前に、平角線20bの端面24bに形成された溶融池が隙間に入り込み、隙間がその溶融池により充填されることになる。これにより、端部側面23a,23b間の隙間にレーザビームが侵入することを抑制でき、レーザビームが下方に突き抜けて絶縁被膜21a,21bにダメージを与えることを防ぐことができる。特に、図2の例では、楕円状の走査軌跡の長軸を、端部側面23a,23bと平行にしているため、端部側面23a,23b間の隙間の広い範囲に短時間で溶融池を到達させることができる。
その後、上述したように、本レーザ溶接方法では、突き合わせ面側へループを移動させ、第2ステップにて両側の平角線20a,20bに跨がるループを描くように(つまり突き合わせ面を溶接するように)、レーザビームを照射する。以上のような処理により、本実施形態によれば、スパッタの発生を抑制しつつ、突き合わせ面間の隙間にレーザビームが侵入することによる悪影響を抑制することができる。
次に、上述した第3ステップの好ましい例について説明する。
本レーザ溶接方法では、x軸方向に端から溶接しても溶融が均等になるよう出力を調整することが好ましい。そのため、本レーザ溶接方法では、レーザビームの出力を溶接したい部分の中央付近で最大になるように調整していく(変化させる)ことが好ましい。
このような調整の一例について、図4及び図5を併せて参照しながら説明する。図4は、本レーザ溶接方法で溶接した部分の溶融形状の一例を示す図で、図5は、本レーザ溶接方法で溶接する場合の、レーザビームの出力値と円周数(同じループを1回とし、何番目のループであるかを示す数)との関係性の一例を示すグラフである。なお、図4の例では、図2に示した例と異なり、平角線20a,20bの使用量を削減すると共にステータ1を小型化するために、突き合わせ面を略三角形状にした平角線40a,40bを用いている。
図4において必要な溶融形状を示すように、溶接ビードの中央部において最も溶け込みが必要となる。なお、中央部以外の部分、つまり図4において隙間として示した部分は、隙間が存在してもよい。
このような溶融形状を得るために、図5に例示するレーザ出力値(W)のように、中央部において最も出力値を高くしておき、照射の終盤は銅の熱伝導により平角線20a,20b又は平角線40a,40bが溶融し易いため溶け過ぎないよう出力を低く調整する。
(代替例)
次に、本実施形態における代替例について説明する。
本レーザ溶接方法について説明したが、平角線の形状、ループの形状等は例示したものに限らない。例えば、ループの形状は楕円状、円形状に限らず、矩形状のループであってもよい。但し、ループの形状が楕円状や円状である方が、角部を有する矩形状である場合に比べて、常にレーザビームを滑らかに走査させることができるため、スパッタの発生を抑制することができる。また、ループの移動軌跡も第1ステップ及び第2ステップの条件を満たしていれば例示したものに限ったものではない。無論、ステータの構成も図示したものに限ったものではない。
また、本レーザ溶接方法では、第1及び第2の平角線が絶縁被覆されたものであり、第1及び第2の平角線において絶縁被膜がそれぞれ剥離された端部側面同士を突き合わせ、第1及び第2の平角線の端面にレーザビームを照射することを前提として説明した。しかしながら、接合対象面(つまり突き合わせ面)は、上記端部側面に限ったものではない。その場合、上記端面は、この接合対象面に連なる他の面(例えば、実質的にこの接合対象面に垂直な面)に該当することになる。
さらに、本レーザ溶接方法は、ステータに用いる平角線同士(平角線のコイル同士)を接合する際に実行することを前提としたが、接合する対象の平角線はステータ以外に使用されるものであってもよい。
以上に、本実施形態について説明したが、上記実施形態は、以下の特徴を有する。
即ち、上記実施形態に係る平角線のレーザ溶接方法は、第1及び第2の平角線20a,20bの接合対象面(端部側面23a,23b)同士を突き合わせ、第1及び第2の平角線20a,20bにおける、上記接合対象面にそれぞれ連なる他の面(端面24a,24b)にレーザビームを照射することにより、第1の平角線20aと第2の平角線20bとを溶接する。この方法は、第1ステップと第2ステップとを有する。第1ステップは、レーザビームの走査軌跡が一方の平角線20bの上記他の面(端面24b)内で所定の回転径のループを描くように、レーザビームを走査させる。第2ステップは、第1ステップの後、レーザビームの走査軌跡が上記接合対象面(端部側面23a,23b)同士を突き合わせた境界面を横切る上記所定の回転径のループを描くように、レーザビームを走査させる。
上記のレーザ溶接方法では、まず一方の平角線の上記他の面内において所定の回転径のループを描くようにレーザビームを走査させ、その後、接合対象面同士を突き合わせた境界面を横切る上記所定の回転径のループを描くようにレーザビームを走査させる。そのため、上記のレーザ溶接方法では、レーザビームの照射範囲のエネルギー密度を低く抑えることができるため、スパッタの発生を抑制することができ、溶接欠陥による品質低下を抑制することができる。
なお、本発明は上記実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
1 ステータ
10 ステータコア
11 ティース
12 スロット
20 セグメントコイル
20a、20b、40a、40b 平角線
21a、21b 絶縁被膜
22a、22b 導体部
23a、23b 端部側面
24a、24b 端面
25 接合部
60 溶融池

Claims (1)

  1. 第1及び第2の平角線の接合対象面同士を突き合わせ、前記第1及び第2の平角線における、前記接合対象面にそれぞれ連なる他の面にレーザビームを照射することにより、前記第1の平角線と前記第2の平角線とを溶接する平角線のレーザ溶接方法であって、
    前記レーザビームの走査軌跡が前記第1の平角線の前記他の面内で所定の回転径のループを描くように、前記レーザビームを走査させる第1ステップと、
    前記第1ステップの後、前記レーザビームの走査軌跡が前記接合対象面同士を突き合わせた境界面を横切る前記所定の回転径のループを描くように、前記レーザビームを走査させる第2ステップと、
    を有する、
    平角線のレーザ溶接方法。
JP2018074553A 2018-04-09 2018-04-09 平角線のレーザ溶接方法 Active JP7063693B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018074553A JP7063693B2 (ja) 2018-04-09 2018-04-09 平角線のレーザ溶接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018074553A JP7063693B2 (ja) 2018-04-09 2018-04-09 平角線のレーザ溶接方法

Publications (2)

Publication Number Publication Date
JP2019181506A true JP2019181506A (ja) 2019-10-24
JP7063693B2 JP7063693B2 (ja) 2022-05-09

Family

ID=68338801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018074553A Active JP7063693B2 (ja) 2018-04-09 2018-04-09 平角線のレーザ溶接方法

Country Status (1)

Country Link
JP (1) JP7063693B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021053685A (ja) * 2019-10-01 2021-04-08 フタバ産業株式会社 部材の製造方法
JP2021145478A (ja) * 2020-03-12 2021-09-24 株式会社アイシン 回転電機用ステータ製造方法
WO2022211133A1 (ja) * 2021-04-02 2022-10-06 古河電気工業株式会社 レーザ溶接方法およびレーザ溶接装置
WO2023135859A1 (ja) * 2022-01-14 2023-07-20 パナソニックIpマネジメント株式会社 レーザ溶接装置
JP7460403B2 (ja) 2020-03-12 2024-04-02 株式会社アイシン 回転電機用ステータ製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212711A (ja) * 2010-03-31 2011-10-27 Sanyo Electric Co Ltd 密閉型電池の製造方法
JP2014161904A (ja) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd 加工装置、加工方法
WO2015129248A1 (ja) * 2014-02-25 2015-09-03 パナソニックIpマネジメント株式会社 レーザ溶接方法
CN104999179A (zh) * 2015-08-04 2015-10-28 大族激光科技产业集团股份有限公司 一种大间隙焊缝的激光焊接方法
JP2016521208A (ja) * 2013-03-29 2016-07-21 フォトン・オートメイション・インコーポレイテッド レーザ溶接システムおよび方法
JP2017170493A (ja) * 2016-03-24 2017-09-28 トヨタ自動車株式会社 溶接加工部材の製造方法
JP2018020340A (ja) * 2016-08-02 2018-02-08 トヨタ自動車株式会社 平角線のレーザ溶接方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212711A (ja) * 2010-03-31 2011-10-27 Sanyo Electric Co Ltd 密閉型電池の製造方法
JP2014161904A (ja) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd 加工装置、加工方法
JP2016521208A (ja) * 2013-03-29 2016-07-21 フォトン・オートメイション・インコーポレイテッド レーザ溶接システムおよび方法
WO2015129248A1 (ja) * 2014-02-25 2015-09-03 パナソニックIpマネジメント株式会社 レーザ溶接方法
CN104999179A (zh) * 2015-08-04 2015-10-28 大族激光科技产业集团股份有限公司 一种大间隙焊缝的激光焊接方法
JP2017170493A (ja) * 2016-03-24 2017-09-28 トヨタ自動車株式会社 溶接加工部材の製造方法
JP2018020340A (ja) * 2016-08-02 2018-02-08 トヨタ自動車株式会社 平角線のレーザ溶接方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021053685A (ja) * 2019-10-01 2021-04-08 フタバ産業株式会社 部材の製造方法
JP2021145478A (ja) * 2020-03-12 2021-09-24 株式会社アイシン 回転電機用ステータ製造方法
JP7410757B2 (ja) 2020-03-12 2024-01-10 株式会社アイシン 回転電機用ステータ製造方法
JP7460403B2 (ja) 2020-03-12 2024-04-02 株式会社アイシン 回転電機用ステータ製造方法
WO2022211133A1 (ja) * 2021-04-02 2022-10-06 古河電気工業株式会社 レーザ溶接方法およびレーザ溶接装置
WO2023135859A1 (ja) * 2022-01-14 2023-07-20 パナソニックIpマネジメント株式会社 レーザ溶接装置

Also Published As

Publication number Publication date
JP7063693B2 (ja) 2022-05-09

Similar Documents

Publication Publication Date Title
JP7063693B2 (ja) 平角線のレーザ溶接方法
JP6390672B2 (ja) 平角線のレーザ溶接方法
JP6593280B2 (ja) 平角線のレーザ溶接方法
JP5958109B2 (ja) 回転電機の導体接合方法
CN110977160B (zh) 定子线圈的激光焊接方法
CN110893517B (zh) 线圈线的激光焊接方法
JP6086226B2 (ja) 回転電機の導体接合方法
WO2019159737A1 (ja) レーザ溶接方法及びレーザ溶接システム
US11271459B2 (en) Rotor manufacturing method
JP2011208620A (ja) タービンローターの製造方法
US20230088160A1 (en) Method for manufacturing stator for rotary electric machine
WO2020170413A1 (ja) 銅を含む部材の溶接方法、および回転電機の製造方法
JP7181171B2 (ja) 導線の接合方法
JP2021044883A (ja) 導線の接合方法
WO2024080097A1 (ja) 回転電機用ステータ製造方法及び回転電機用ステータ製造装置
JP2022177664A (ja) レーザ溶接方法
WO2022196822A1 (ja) 回転電機用ステータ製造方法
JP6059107B2 (ja) 原子炉用制御棒の製造方法
JP7460403B2 (ja) 回転電機用ステータ製造方法
JP2022148331A (ja) レーザ溶接装置の制御装置
JP2022022880A (ja) 導体接合方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220421

R151 Written notification of patent or utility model registration

Ref document number: 7063693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151