JP2019169599A - 太陽電池の製造方法、および、太陽電池 - Google Patents
太陽電池の製造方法、および、太陽電池 Download PDFInfo
- Publication number
- JP2019169599A JP2019169599A JP2018055925A JP2018055925A JP2019169599A JP 2019169599 A JP2019169599 A JP 2019169599A JP 2018055925 A JP2018055925 A JP 2018055925A JP 2018055925 A JP2018055925 A JP 2018055925A JP 2019169599 A JP2019169599 A JP 2019169599A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- layer
- type semiconductor
- conductive
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
特許文献1には、メタルマスクを利用したCVD法により、半導体層パターンを形成する方法が記載されている。
この点に関し、特許文献1に記載の太陽電池では、絶縁層が、p型半導体層の端部上からn型半導体層の端部上まで覆うので、すなわち、絶縁層が、電極の間において半導体層を覆うので、太陽電池の信頼性の低下が抑制されると推測される。
図1は、本実施形態に係る太陽電池モジュールの一例を示す側面図である。図1に示すように、太陽電池モジュール100は、二次元状に配列された複数の太陽電池セル1を備える。
以下、太陽電池セル(以下、太陽電池という。)1について詳細に説明する。
図2は、本実施形態に係る太陽電池を裏面側からみた図である。図2に示す太陽電池1は、裏面電極型の太陽電池である。太陽電池1は、2つの主面を備える半導体基板11を備え、半導体基板11の主面において第1導電型領域7と第2導電型領域8とを有する。
同様に、第2導電型領域8は、いわゆる櫛型の形状であり、櫛歯に相当する複数のフィンガー部8fと、櫛歯の支持部に相当するバスバー部8bとを有する。バスバー部8bは、半導体基板11の一方の辺部に対向する他方の辺部に沿ってX方向(第2方向)に延在し、フィンガー部8fは、バスバー部8bから、Y方向(第1方向)に延在する。
フィンガー部7fとフィンガー部8fとは、Y方向(第1方向)に延在する帯状をなしており、X方向(第2方向)に交互に並んでいる。
なお、第1導電型領域7および第2導電型領域8は、ストライプ状に形成されてもよい。
半導体基板11としては、導電型単結晶シリコン基板、例えばn型単結晶シリコン基板またはp型単結晶シリコン基板が用いられる。これにより、高い光電変換効率が実現する。
半導体基板11は、n型単結晶シリコン基板であると好ましい。これにより、結晶シリコン基板内のキャリア寿命が長くなる。これは、p型単結晶シリコン基板では、光照射によってp型ドーパントであるB(ホウ素)が影響して再結合中心となるLID(Light Induced Degradation)が起こる場合があるが、n型単結晶シリコン基板ではLIDをより抑制するためである。
また、半導体基板11は、受光面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有していてもよい。これにより、受光面において入射光の反射が低減し、半導体基板11における光閉じ込め効果が向上する。
さらに、導電型半導体層を印刷法(詳細は後述)にて形成し絶縁性樹脂の染み出しを利用する場合、ピラミッド構造を有している方が毛細管現象により平坦な表面に比べて染み出しやすい。
半導体基板11の膜厚が上記の上限値以下であると、シリコンの使用量が減少するため、シリコン基板が確保し易くなり、低コスト化が図れる。更に、シリコン基板内で光励起により生成された正孔と電子とを裏面側のみで回収するバックコンタクト構造では、各励起子の自由行程の観点からも、半導体基板11の膜厚が上記の上限値以下であると好ましい。
半導体基板11の膜厚が上記の下限値以上であると、適切な機械的強度が得られ、また外光(太陽光)が十分に吸収され、適切な短絡電流密度が得られる。
半導体基板11の主面にテクスチャ構造が形成されている場合、半導体基板11の膜厚は、受光面側および裏面側のそれぞれの凹凸構造における凸の頂点を結んだ直線間の距離で表される。
反射防止層15は、半導体基板11の受光面側に真性半導体層13を介して形成されている。反射防止層15は、半導体基板11の受光面側に入射する太陽光の反射を抑制する機能を有する。
反射防止層15の材料としては、太陽光を透過させる透光性を有する材料であれば特に限定されず、例えば酸化ケイ素、窒化ケイ素、酸化亜鉛、または酸化チタンが挙げられる。反射防止層15の屈折率および膜厚は、太陽電池モジュールの光学設計に基づいて決定されればよい。
真性半導体層13は、真性シリコン系層で形成される。真性半導体層13は、パッシベーション層として機能し、半導体基板11におけるキャリアの再結合を抑制する。
第1導電型半導体層25は、半導体基板11の裏面側の一部(主に、第1導電型領域7)に真性半導体層(第1真性半導体層)23を介して形成されており、第2導電型半導体層35は、半導体基板11の裏面側の他の一部(主に、第2導電型領域8)に真性半導体層(第2真性半導体層)33を介して形成されている。これにより、第1導電型半導体層25および真性半導体層23と、第2導電型半導体層35および真性半導体層33とは、Y方向(第1方向)に延在する帯状をなしており、X方向(第2方向)に交互に並んでいる。これにより、半導体基板11で生じた光励起キャリアは、各導電型半導体層を介して効率よく回収される。
第2導電型半導体層35(絶縁層35Iを含む)および真性半導体層33の一部は、第1導電型半導体層25および真性半導体層23の一部と重なり合っている。これにより、製造誤差を考慮しても半導体層が形成されない領域が存在することがなく、光電変換効率が高まる。
第1導電型半導体層25を形成するp型シリコン系層およびn型シリコン系層は、非晶質シリコン層、または、非晶質シリコンと結晶質シリコンとを含む微結晶シリコン層で形成される。なお、不純物拡散の抑制または直列抵抗の抑制の観点から、p型シリコン系層およびn型シリコン系層は、非晶質シリコンで形成されると好ましい。p型シリコン系層のドーパント不純物としては、B(ホウ素)が好適に用いられ、n型シリコン系層のドーパント不純物としては、P(リン)が好適に用いられる。
なお、詳細は後述するが、n型シリコン系層を第1導電型半導体層25として用いる場合、アルカリ耐性の観点から、n型酸化シリコン系層が用いられてもよい。
また、第2導電型半導体層35を形成するp型半導体材料およびn型半導体材料についての詳細も、後述する。
一方、第2導電型半導体層35の膜厚は、後述するように印刷法が用いられるため、第1導電型半導体層25および真性半導体層23,33の膜厚よりも厚い。第2導電型半導体層35の膜厚は、10nm以上100nm以下であると好ましく、15nm以上50nm以下であると更に好ましい。
本実施形態では、詳細は後述するが、真性半導体層33は、第2導電型半導体層35および絶縁層35Iから露出した部分をエッチングにより除去することにより形成される。そのため、真性半導体層33の側端は、第2導電型半導体層35における絶縁層35Iの側端と揃っている。そのため、真性半導体層33と第2導電型半導体層35のエッチングレートが近い場合であっても、少なくとも真性半導体層33より第2導電型半導体層35の膜厚が厚いことにより、第2導電型半導体が消失するのを防ぐことができる。
ところで、半導体基板11で生成した光励起子が、第1導電型半導体層25または第2導電型半導体層35を介して取り出される場合、正孔の有効質量は電子の有効質量よりも大きい。そのため、輸送損を低減させる観点から、p型半導体層の幅がn型半導体層の幅よりも細いと好ましい。例えば、p型半導体層の幅が、n型半導体層の幅の0.5倍以上0.9倍以下であると好ましく、n型半導体層の幅の0.6倍以上0.8倍以下であるとより好ましい。
なお、半導体層の幅、および、後述する電極層の幅は、特に断りがない限り、パターン化された各層の一部分の長さで、パターン化により、例えば帯状になった一部分の延び方向と直交する方向の長さである。
第2導電型半導体層35の周縁には、絶縁層35Iが形成される。絶縁層35Iは、第2導電型半導体層35の印刷材料における絶縁性樹脂が偏在して形成される(詳細は後述する)。
真性半導体層23,33は、真性シリコン系層で形成される。真性半導体層23,33は、パッシベーション層として機能し、半導体基板11におけるキャリアの再結合を抑制する。また、真性半導体層23は、第1導電型半導体層25から半導体基板11への不純物の拡散を抑制し、真性半導体層33は、第2導電型半導体層35から半導体基板11への不純物の拡散を抑制する。
なお、「真性(i型)」との用語は、導電型不純物を含まない完全に真性であるものに限られず、シリコン系層が真性層として機能し得る範囲で微量のn型不純物またはp型不純物を含む「弱n型」または「弱p型」の実質的に真性な層も包含する。
真性半導体層23,33の膜厚は、特に限定されないが、2nm以上20nm以下であると好ましい。膜厚が2nm以上であると、パッシベーション層としての効果が高まり、膜厚が20nm以下であると、高抵抗化により生じる変換特性の低下が抑制される。
真性半導体層33の露出した部分をエッチングにより除去する場合、第1導電型半導体層25および第2導電型半導体層35の材料はエッチング液への耐性を有していることが好ましい。一般的に真性半導体である非晶質シリコンを用いる場合、アルカリ溶液によってエッチングされる。この場合、第1導電型半導体層25および第2導電型半導体層35の材料として、アルカリ耐性を有する材料が用いられると好ましい。アルカリ耐性を有する材料としては、p型である場合、ボロン添加非晶質シリコン、酸化シリコン、酸化モリブデン、酸化ニッケル、PEDOT−PSS等が挙げられる。またn型の材料としては、酸化シリコン、酸化チタン、フッ化リチウム等が挙げられる。
第1電極層27は、第1導電型半導体層25上に形成されており、第2電極層37は、第2導電型半導体層35上に形成されている。これにより、第1電極層27および第2電極層37は、Y方向(第1方向)に延在する帯状をなしており、X方向(第2方向)に交互に並んでいる。
第1電極層27は、第1導電型半導体層25で回収されるキャリアを導く輸送層として機能し、第2電極層37は、第2導電型半導体層35で回収されるキャリアを導く輸送層として機能する。
このように、金属電極層29,39と第1導電型半導体層25および第2導電型半導体層35との間に透明電極層28,38が設けられることにより、金属電極層29,39と第1導電型半導体層25および第2導電型半導体層35との電気的接合が向上し、金属電極層29,39から第1導電型半導体層25および第2導電型半導体層35への原子拡散が抑制される。
なお、第1電極層27は、透明電極層28および金属電極層29のうちの何れか一方のみで形成されてもよい。同様に、第2電極層37は、透明電極層38および金属電極層39のうちの何れか一方のみで形成されてもよい。
同様に、第2電極層37の幅(すなわち、透明電極層38の幅および金属電極層39の幅)は、第2導電型半導体層35の幅と略同一であると好ましい。なお、第2電極層37の幅は、第2導電型半導体層35の幅よりも狭くてもよい。また、第1電極層27と第2電極層37との間のリークが防止されていれば、第2電極層37の幅は、第2導電型半導体層35の幅よりも広くてもよい。
透明電極層28,38は、透明導電性材料で形成される。透明導電性材料としては、透明導電性金属酸化物、例えば、酸化インジウム、酸化錫、酸化亜鉛、酸化チタン、酸化タングステン、酸化モリブデン、およびそれらの複合酸化物等が用いられる。これらの中でも、酸化インジウムを主成分とするインジウム系複合酸化物が好ましい。高い導電率と透明性の観点からは、インジウム酸化物が特に好ましい。更に、信頼性またはより高い導電率を確保するため、インジウム酸化物にドーパントを添加すると好ましい。ドーパントとしては、例えば、Sn、W、Zn、Ti、Ce、Zr、Mo、Al、Ga、Ge、As、Si、またはS等が挙げられる。
透明電極層の厚みは、50nm以上200nm以下であると好ましい。
金属電極層29,39は、金属材料で形成される。金属材料としては、例えば、銀、銅、アルミニウム、ニッケル、またはこれらの合金が用いられる。
また、金属電極層の膜厚は、20μm以上80μm以下であると好ましい。
次に、図4A〜図4Fを参照して、本実施形態に係る太陽電池の製造方法について説明する。図4Aおよび図4Bは、本実施形態に係る太陽電池の製造方法における真性半導体層(第1真性半導体層)および第1導電型半導体層の形成工程を示す図であり、図4Cおよび図4Dは、本実施形態に係る太陽電池の製造方法における真性半導体層(第2真性半導体層)および第2導電型半導体層の形成工程を示す図であり、図4Eおよび図4Fは、本実施形態に係る太陽電池の製造方法における電極層の形成工程を示す図である。
まず、図4Aに示すように、少なくとも裏面側に凹凸構造を有する半導体基板(例えば、n型単結晶シリコン基板)11の裏面側の全面に真性半導体材料膜(例えば、真性シリコン系層)23Zを積層する。本実施形態では、このとき、半導体基板11の受光面側の全面に、真性半導体層(例えば、真性シリコン系層)13を積層する。
その後、真性半導体材料膜23Z上に、すなわち半導体基板11の裏面側の全面に、第1導電型半導体材料膜(例えば、p型シリコン系層)25Zを積層する。
第1導電型半導体材料膜25Zのドーパント添加ガスとしては、p型の場合、例えばB2H6またはB(CH3)4が好適に用いられ、n型の場合、例えばPH3が好適に用いられる。なお、B(ホウ素)、P(リン)等の不純物の添加量は微量でよいため、ドーパントガスを原料ガスで希釈させた混合ガスが用いられてもよい。
なお、上記の材料ガスに、CH4、NH3、GeH4等の異種元素を含むガスを添加して、シリコンカーバイド、シリコンナイトライド、または、シリコンゲルマニウム等のシリコン合金を形成することにより、適宜、薄膜のエネルギーギャップを変更してもよい。
また、光の透過性を向上させるために、上記の材料ガスに、例えば酸素または炭素といった不純物を微量添加してもよい。その場合、例えば、CO2またはCH4といったガスをCVD製膜の際に導入する。
第1導電型半導体層25および真性半導体層23の形成方法(パターニング)は特に限定されないが、フォトリソグラフィ技術を用いて生成するマスクまたはメタルマスクを利用したエッチング法を用いると好ましい。フォトリソグラフィ技術によるマスクを用いたエッチング法によれば、高精度なパターニングが可能である。
次に、図4Cに示すように、第1導電型半導体層25、および第1導電型半導体層25の非形成領域における半導体基板11上に、すなわち半導体基板11の裏面側の全面に、真性半導体材料膜(例えば、真性シリコン系層)33Zを積層する。
真性半導体材料膜33Zの形成方法は特に限定されないが、上述した真性半導体材料膜23Zおよび第1導電型半導体材料膜25Zと同様に、CVD法またはPVD法を用いると好ましく、例えばプラズマCVD法を用いると好ましい。
第2導電型半導体層35は、印刷材料(例えば、インク)を印刷することにより形成される。第2導電型半導体層35の形成方法としては、スクリーン印刷法、インクジェット法、グラビアコーティング法、またはディスペンサー法等が挙げられる。これらの中でも、スクリーン印刷法が好ましい。スクリーン印刷法によれば、インクがスクリーン印刷用のスクリーン版を通過する時のせん断力によって、後述する半導体材料が半導体層パターンの厚み方向(基板の平均面に対して垂直方向。平均面とは、基板のテクスチャ構造に依存しない基板面をさす)に配向する。
p型の半導体材料としては、有機化合物であれば、ポリ(3,4−エチレンジオキシチオフェン)ポリスチレン硫化物(PEDOT−PSS)等のポリチオフェン類が代表的な例として挙げられる。また、p型の半導体材料として、無機化合物であれば、酸化銅、酸化ニッケル、および酸化モリブデン等の金属酸化物、または、チオシアン酸銅、銅−インジウム−ガリウム−硫黄、および銅−インジウム−ガリウム−セレン等の金属化合物が挙げられる。
n型の半導体材料としては、無機化合物であれば、酸化チタンおよび酸化亜鉛等の金属酸化物、または、フッ化リチウムが挙げられる。
なお、無機化合物による半導体材料の場合、樹脂内に分散させる観点から、粒子状であることが好ましく、粒子径は、0.001μm以上10.00μm以下であると好ましく、0.05μm以上2.00μm以下であるとより好ましい。粒子径が上記上限値より大きいと、粒子間の接触面積が小さくなり、抵抗による性能低下を招く。
また、半導体材料の形状は、特に限定されず、上述のような粒子状であっても構わないし、液体状であっても構わない。
ここで、絶縁性樹脂として、熱可塑性樹脂、特にガラス転移温度が150℃以下の樹脂を用いない。これは、太陽電池またはモジュール化のプロセスにおける加熱処理時に、樹脂が軟化して流れてしまうおそれがあるためである。また、水酸化ナトリウム水溶液などアルカリ溶液を用いて真性半導体をエッチングする場合、アルカリ耐性の高い樹脂材料を用いることが好ましい。アルカリ耐性の高い材料として、ウレタン樹脂(ポリエステル系ウレタン樹脂、アクリルウレタン樹脂等)、ウレタン結合を有するフッ素系樹脂、エポキシ樹脂(ビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂、アニリン誘導体エポキシ樹脂等)、シリコーンオイル(ジフェニルシロキサン等)が挙げられる。
絶縁性樹脂中の半導体材料の分散度は、例えばスクリーン印刷のスクリーンを通過できないような凝集体が存在しない程度であればよい。
更に、印刷材料は、チキソトロピー性を有すると好ましい。
真性半導体層33の形成方法(パターニング)は特に限定されないが、上述した第1導電型半導体層25および真性半導体層23と同様に、フォトリソグラフィ技術を用いて生成するマスクまたはメタルマスクを利用したエッチング法を用いると好ましい。
このとき、真性半導体層33のパターニングに、例えば、アルカリ性のエッチング溶液(水酸化ナトリウム水溶液等)を使用する場合、第1導電型半導体層25および第2導電型半導体層35がアルカリ耐性を有すると、第1導電型半導体層25および第2導電型半導体層35がエッチングのストップ層として機能し、真性半導体材料膜33Zのエッチングが容易となる。
次に、図4Eに示すように、第1導電型半導体層25および第2導電型半導体層35上に、すなわち半導体基板11の裏面側の全面に、透明電極材料膜28Zを積層する。透明電極材料膜28Zの形成方法としては、例えば、スパッタリング法等のPVD法、または、有機金属化合物と酸素または水との反応を利用したMOCVD法等が用いられる。
その後、図4Fに示すように、第2導電型半導体層35の周縁の一部、すなわち絶縁層35Iにおいて乖離するように、透明電極材料膜28Zの一部をエッチングにより除去し、第1導電型半導体層25上に透明電極層28を形成し、第2導電型半導体層35上に透明電極層38を形成する。
透明電極層28,38の形成方法(パターニング)は特に限定されないが、上述した第1導電型半導体層25および真性半導体層23,33と同様に、フォトリソグラフィ技術を用いて生成するマスクまたはメタルマスクを利用したエッチング法を用いると好ましい。或いは、透明電極層28,38は、レーザ法を用いて切断されてもよい。
アニール処理としては、例えば、各層を配置した半導体基板11を150℃以上200℃以下に過熱したオーブンに投入して加熱する加熱処理が挙げられる。この場合、オーブン内の雰囲気は、大気でも構わないが、水素または窒素を用いることで、より効果的なアニール処理が行える。また、アニール処理は、各層を配置した半導体基板11に対して赤外線ヒーターを用いて赤外線を照射させるRTA(Rapid Thermal Annealing)処理であってもよい。
以上の工程により、本実施形態の裏面電極型の太陽電池1が完成する。
本実施形態の太陽電池の製造方法によれば、第2導電型半導体層35の印刷材料が絶縁性樹脂を含み、電極層層形成工程において、第2導電型半導体層35の周縁、すなわち絶縁層35Iにおいて乖離するように、第1電極層27および第2電極層37を形成する。これにより、第1電極層27と第2電極層37との間において、半導体層が絶縁層35Iで被覆され、露出しないので、太陽電池1の信頼性が高まる。
また、第1電極層27および第2電極層37のパターニングをレーザを用いて行う場合には、絶縁層35Iが保護層となり、レーザによる半導体層のダメージを低減できる。
この点に関し、本実施形態の太陽電池の製造方法によれば、第1導電型半導体層25と第2電極層37との間に、かつ、第2導電型半導体層35と第1電極層27との間に、絶縁層35Iが介在する。これにより、第1導電型半導体層25から第2電極層37への電流リーク、および、第2導電型半導体層35から第1電極層27への電流リークが抑制され、太陽電池1の高性能化が可能である。
これに対して、本実施形態の太陽電池の製造方法によって製造された太陽電池1では、第2導電型半導体層35は、周縁に、印刷材料における絶縁性樹脂が偏在して形成された絶縁層35Iを有し、第1電極層27と第2電極層37とは、絶縁層35Iの一部において乖離する。
例えば図6に示すように、半導体基板11の裏面側の全面に真性半導体層23を積層し、真性半導体層23上の一部に第1導電型半導体層25をパターン印刷し、その後、上述したように真性半導体層23上の他部に第2導電型半導体層35をパターン印刷する。第1導電型半導体層25の印刷方法および印刷材料(絶縁性樹脂、半導体材料等)は、第2導電型半導体層35の印刷方法および印刷材料と同様であればよい。
この場合、第1導電型半導体層25および第2導電型半導体層35の印刷材料が硬化する際に、第1導電型半導体層25および第2導電型半導体層35の周縁に、すなわち第2導電型半導体層35と第1導電型半導体層25との隙間に、絶縁性樹脂材料が染み出し、この隙間に絶縁層35Iが形成される。
この場合、真性半導体層23をエッチングによりパターン処理する必要がない。そのため、第1導電型半導体層25および第2導電型半導体層35の印刷材料は、アルカリ耐性を有さなくてもよい。
これによれば、太陽電池の製造を更に簡易化でき、製造コストを更に削減できる。
更には、真性半導体層23,33の形成方法にも印刷法が用いられてもよい。これによれば、太陽電池の製造を更に簡易化でき、製造コストを更に削減できる。
なお、上述した実施形態のように、第1導電型半導体層25の形成方法としてCVD法またはPVD法が用いられると、半導体層の品質が高まり、太陽電池の高性能化が可能である(実施例を参照)。
以下のとおり、図2および図3に示す太陽電池1を、図4A〜図4Fに示す工程に従って作製した。
以下において、各半導体層の膜厚、および、印刷材料における半導体粒子の粒子径は、SEM(フィールドエミッション型走査型電子顕微鏡S4800、日立ハイテクノロジーズ社製)を用いて、10万倍の倍率で観察されることにより求められた。
まず、半導体基板11として、厚さ200μmの単結晶シリコン基板を採用した。単結晶シリコン基板の表面側をレジスト材料で保護し、単結晶シリコン基板の裏面側に異方性エッチングを行うことにより、裏面側にピラミッド型のテクスチャ構造が形成された半導体基板11を得た。
半導体基板11の表面側のレジスト材料を除去した後、半導体基板11をCVD装置へ導入し、半導体基板11の受光面側に真性半導体層13として水素化非晶質シリコン(a−p―Si:H)を8nmの膜厚で製膜した。また、半導体基板11の裏面側に真性半導体材料膜23Zとして水素化非晶質シリコンを8nmの膜厚で製膜した。
水素化非晶質シリコンの製膜条件は、基板温度150℃、圧力120Pa、SiH4/H2流量比3/10、パワー密度0.011W/cm2であった。
次に、CVD装置において、第1導電型半導体層25、および第1導電型半導体層25の非形成領域における半導体基板11上に、真性半導体材料膜33Zとして水素化非晶質シリコンを8nmの膜厚で製膜した。水素化非晶質シリコンの製膜条件は、上述同様であった。
印刷材料は、以下に示す(C−1)の絶縁性樹脂100重量部に対して、(C−2)を15重量部、(C−3)を0.4重量部加え、更に第2導電型半導体材料としてナノ粒子状のn型半導体材料(酸化チタン:TiO2)を150重量部添加し、混錬して得た。得られた樹脂組成物の粘度は500ポイズであった。
(C−1)アルケニル基を有する化合物:アクリロイル基末端ポリジメチルシロキサン(信越化学工業(株)製アクリル変性シリコーンオイル)
(C−2)ヒドロシリル基を有する化合物:KF−99(信越化学工業(株)製メチルハイドロジェンシリコーンオイル、ヒドロシリル基16.6mmol/g含有)
(C−3)ヒドロシリル化触媒:白金−1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体(3重量%白金イソプロパノール溶液)
次に、マグネトロンスパッタリング装置を用いて、半導体基板11の裏面側の第1導電型半導体層25および第2導電型半導体層35上に、透明電極材料膜として透明導電性酸化物を100nmの膜厚で製膜した。透明導電性酸化物の製膜では、酸化スズを10重量%含有した酸化インジウム(ITO)をターゲットとして使用し、装置のチャンバー内に、アルゴンと酸素との混合ガスを導入させて、そのチャンバー内の圧力を0.6Paとなるように設定した。なお、アルゴンと酸素との混合比率は、抵抗率が最も低くなる条件(いわゆる、ボトム条件)とした。また、透明導電性酸化物の製膜では、直流電源を用いて、0.4W/cm2の電力密度で、製膜を行った。
次に、フォトリソグラフィ法によるマスクを用いて、第2導電型半導体層35の周縁の絶縁層35Iにおいて乖離するように塩酸を用いてエッチングを行い、第1導電型半導体層25上に透明電極層28を形成し、第2導電型半導体層35上に透明電極層38を形成した。このように、透明電極層28と透明電極層38とが離間することにより、これらの透明電極層の間での導通が防止される。また、透明電極層28と透明電極層38との間において、半導体層が絶縁層35Iで被覆され、半導体層の露出が回避される。
印刷材料における第2導電型半導体材料であるナノ粒子状のn型半導体材料(酸化チタン:TiO2)の添加量を、170重量部に変えた点を除いて、実施例1と同様にして太陽電池1を作製した。
第1導電型半導体層25の材料および第2導電型半導体層35の材料を変えた点を除いて、実施例1と同様にして太陽電池1を作製した。
第1導電型半導体層25の材料として、膜厚10nmのn型水素化非晶質酸化シリコン系薄膜(a−n―SiOx:H)を用いた。n型非晶質酸化シリコン系薄膜の製膜条件は、基板温度150℃、圧力60Pa、SiH4/CO2/PH3流量比1/0.2/2、パワー密度0.011W/cm2であった。なお、PH3ガス流量は、PH3がH2により5000ppmまで希釈された希釈ガスの流量である。また、第1導電型半導体材料膜25Zおよび真性半導体材料膜23Zの一部をエッチングするのに使用したエッチング溶液は、オゾンをフッ化水素酸に溶解させた溶液(以下、オゾン/フッ酸液;O 3 /HF水溶液)である。
第2導電型半導体層35の印刷材料における第2導電型半導体材料としては、液体状のp型半導体材料(ポリ(3,4−エチレンジオキシチオフェン)ポリスチレン硫化物:PEDOT−PSS)を用い、その添加量を140重量部とした。
印刷材料における第2導電型半導体材料である液体状のp型半導体材料(ポリ(3,4−エチレンジオキシチオフェン)ポリスチレン硫化物:PEDOT−PSS)の添加量を、170重量部に変えた点を除いて、実施例3と同様にして太陽電池1を作製した。
第2導電型半導体層35の材料を変えた点を除いて、実施例3と同様にして太陽電池1を作製した。
第2導電型半導体層35の印刷材料における第2導電型半導体材料としては、ナノ粒子状のp型半導体材料(酸化銅:CuO)を用い、その添加量を150重量部とした。
第1導電型半導体層25も、第2導電型半導体層35と同様に、印刷材料を印刷した。第1導電型半導体層25と第2導電型半導体層35を印刷にて実施する際は、真性半導体層23をパターン処理する必要がない。つまり、真性半導体層23を半導体基板11に製膜し、その上に第1導電型半導体層25を印刷し、その後、第2導電型半導体層35を印刷して、パターン形成を行った。第2導電型半導体層35の染み出し部分により、少なくとも第1導電型半導体層25との間で真性半導体が剥き出しにならないようにした。
第1導電型半導体層25の印刷材料としては、半導体材料を変えた点を除いて、実施例1の第2導電型半導体層35の印刷材料と同様である。第1導電型半導体層25の印刷材料における第1導電型半導体材料としては、液体状のp型半導体材料(ポリ(3,4−エチレンジオキシチオフェン)ポリスチレン硫化物:PEDOT−PSS)を用い、その添加量を150重量部とした。第1導電型半導体層25の膜厚は、第2導電型半導体層35と同様に、20nmであった。
その結果を表1に示す。
これは、印刷材料よりも、CVD製膜の半導体層の方が、半導体層としての品質がよいためであると考えられる。特に、有効質量が大きく、平均自由工程が短い正孔を輸送するp型半導体層は、CVD法で製膜すると好ましいことがわかる。
2 配線部材
3 受光面保護部材
4 裏面保護部材
5 封止材
7 第1導電型領域
7b,8b バスバー部
7f,8f フィンガー部
8 第2導電型領域
11 半導体基板
13 真性半導体層
15 反射防止層
23 真性半導体層(第1真性半導体層)
25 第1導電型半導体層
27 第1電極層
28,38 透明電極層
29,39 金属電極層
33 真性半導体層(第2真性半導体層)
35 第2導電型半導体層
35I 絶縁層
37 第2電極層
100 太陽電池モジュール
Claims (9)
- 2つの主面を有する半導体基板と、前記半導体基板の一方の主面側に配置された第1導電型半導体層および第2導電型半導体層と、前記第1導電型半導体層に対応する第1電極層および前記第2導電型半導体層に対応する第2電極層とを備える裏面電極型の太陽電池の製造方法であって、
前記半導体基板の前記一方の主面側の一部に、前記第1導電型半導体層を形成する第1導電型半導体層形成工程と、
前記半導体基板の前記一方の主面側の他の一部に、前記第2導電型半導体層を形成する第2導電型半導体層形成工程と、
前記第1導電型半導体層上に前記第1電極層を形成し、前記第2導電型半導体層上に前記第2電極層を形成する電極層形成工程と、
を含み、
前記第2導電型半導体層形成工程では、第2導電型半導体材料、絶縁性樹脂および溶媒を含む印刷材料を印刷して硬化させることにより、前記第2導電型半導体層を形成し、
前記電極層形成工程では、前記第2導電型半導体層の周縁の一部において乖離するように、前記第1電極層および前記第2電極層を形成する、
太陽電池の製造方法。 - 前記印刷材料は、チキソトロピー性を有する、請求項1に記載の太陽電池の製造方法。
- 前記印刷材料の粘度は、200Pa・s以上600Pa・s以下である、請求項1または2に記載の太陽電池の製造方法。
- 前記印刷材料における前記第2導電型半導体材料の含有量は、前記絶縁性樹脂100重量部に対して120重量部以上である、請求項1〜3のいずれか1項に記載の太陽電池の製造方法。
- 前記第1導電型半導体層形成工程では、前記半導体基板の前記一方の主面側の一部に、第1真性半導体層を介して前記第1導電型半導体層を形成し、
前記第2導電型半導体層形成工程では、前記半導体基板の前記一方の主面側の他の一部に、第2真性半導体層を介して前記第2導電型半導体層を形成した後、前記第2導電型半導体層から露出した第2真性半導体層をエッチングにより除去する、
請求項1〜4のいずれか1項に記載の太陽電池の製造方法。 - 前記第1導電型半導体層および前記第2導電型半導体層は、アルカリ耐性を有する、請求項5に記載の太陽電池の製造方法。
- 2つの主面を有する半導体基板と、前記半導体基板の一方の主面側に配置された第1導電型半導体層および第2導電型半導体層と、前記第1導電型半導体層に対応する第1電極層および前記第2導電型半導体層に対応する第2電極層とを備える裏面電極型の太陽電池であって、
前記第2導電型半導体層は、周縁に、印刷材料における絶縁性樹脂が偏在して形成された絶縁層を有し、
前記第1電極層と前記第2電極層とは、前記絶縁層の一部において乖離する、
太陽電池。 - 前記第1導電型半導体層と前記半導体基板との間に配置された第1真性半導体層と、
前記第2導電型半導体層と前記半導体基板との間に配置された第2真性半導体層と、
を備え、
前記第2真性半導体層の側端と前記第2導電型半導体層の前記絶縁層の側端とは、揃っている、
請求項7に記載の太陽電池。 - 前記第2導電型半導体層は、前記第2真性半導体層よりも厚い、請求項8に記載の太陽電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018055925A JP7043308B2 (ja) | 2018-03-23 | 2018-03-23 | 太陽電池の製造方法、および、太陽電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018055925A JP7043308B2 (ja) | 2018-03-23 | 2018-03-23 | 太陽電池の製造方法、および、太陽電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019169599A true JP2019169599A (ja) | 2019-10-03 |
JP7043308B2 JP7043308B2 (ja) | 2022-03-29 |
Family
ID=68106894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018055925A Active JP7043308B2 (ja) | 2018-03-23 | 2018-03-23 | 太陽電池の製造方法、および、太陽電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7043308B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021106526A1 (ja) * | 2019-11-27 | 2021-06-03 | 株式会社カネカ | 太陽電池の製造方法 |
WO2021166748A1 (ja) * | 2020-02-17 | 2021-08-26 | パナソニック株式会社 | 太陽電池セル |
JP2021153132A (ja) * | 2020-03-24 | 2021-09-30 | 株式会社カネカ | 太陽電池の製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003298078A (ja) * | 2002-03-29 | 2003-10-17 | Ebara Corp | 光起電力素子 |
JP2005101240A (ja) * | 2003-09-24 | 2005-04-14 | Sanyo Electric Co Ltd | 光起電力素子およびその製造方法 |
JP2008021993A (ja) * | 2006-06-30 | 2008-01-31 | General Electric Co <Ge> | 全背面接点構成を含む光起電力デバイス及び関連する方法 |
JP2008034592A (ja) * | 2006-07-28 | 2008-02-14 | Sanyo Electric Co Ltd | 光起電力素子及びその製造方法 |
JP2009200419A (ja) * | 2008-02-25 | 2009-09-03 | Seiko Epson Corp | 太陽電池の製造方法 |
US20130133728A1 (en) * | 2011-11-29 | 2013-05-30 | Industrial Technology Research Institute | Back-contact heterojunction solar cell |
JP2016012623A (ja) * | 2014-06-27 | 2016-01-21 | シャープ株式会社 | 光電変換装置およびその製造方法 |
-
2018
- 2018-03-23 JP JP2018055925A patent/JP7043308B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003298078A (ja) * | 2002-03-29 | 2003-10-17 | Ebara Corp | 光起電力素子 |
JP2005101240A (ja) * | 2003-09-24 | 2005-04-14 | Sanyo Electric Co Ltd | 光起電力素子およびその製造方法 |
JP2008021993A (ja) * | 2006-06-30 | 2008-01-31 | General Electric Co <Ge> | 全背面接点構成を含む光起電力デバイス及び関連する方法 |
JP2008034592A (ja) * | 2006-07-28 | 2008-02-14 | Sanyo Electric Co Ltd | 光起電力素子及びその製造方法 |
JP2009200419A (ja) * | 2008-02-25 | 2009-09-03 | Seiko Epson Corp | 太陽電池の製造方法 |
US20130133728A1 (en) * | 2011-11-29 | 2013-05-30 | Industrial Technology Research Institute | Back-contact heterojunction solar cell |
JP2016012623A (ja) * | 2014-06-27 | 2016-01-21 | シャープ株式会社 | 光電変換装置およびその製造方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021106526A1 (ja) * | 2019-11-27 | 2021-06-03 | 株式会社カネカ | 太陽電池の製造方法 |
JP7539407B2 (ja) | 2019-11-27 | 2024-08-23 | 株式会社カネカ | 太陽電池の製造方法 |
WO2021166748A1 (ja) * | 2020-02-17 | 2021-08-26 | パナソニック株式会社 | 太陽電池セル |
JP2021153132A (ja) * | 2020-03-24 | 2021-09-30 | 株式会社カネカ | 太陽電池の製造方法 |
JP7397732B2 (ja) | 2020-03-24 | 2023-12-13 | 株式会社カネカ | 太陽電池の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7043308B2 (ja) | 2022-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5425349B1 (ja) | 太陽電池およびその製造方法、ならびに太陽電池モジュール | |
JP5695283B1 (ja) | 太陽電池およびその製造方法、ならびに太陽電池モジュール | |
JP6404474B2 (ja) | 太陽電池および太陽電池モジュール | |
EP3540785B1 (en) | Method for manufacturing a solar cell | |
JP5694620B1 (ja) | 結晶シリコン系太陽電池の製造方法、および結晶シリコン系太陽電池モジュールの製造方法 | |
US20190088805A1 (en) | Solar cell | |
WO2011061011A2 (en) | Holey electrode grids for photovoltaic cells with subwavelength and superwavelength feature sizes | |
JP7356445B2 (ja) | 太陽電池の製造方法、太陽電池、および太陽電池モジュール | |
JPWO2014192739A1 (ja) | 太陽電池およびその製造方法、ならびに太陽電池モジュールおよびその製造方法 | |
JP5640948B2 (ja) | 太陽電池 | |
JP7043308B2 (ja) | 太陽電池の製造方法、および、太陽電池 | |
JP2014103259A (ja) | 太陽電池、太陽電池モジュールおよびその製造方法 | |
US9761752B2 (en) | Solar cell, solar cell module, method for manufacturing solar cell, and method for manufacturing solar cell module | |
JP7228561B2 (ja) | 太陽電池の製造方法 | |
JP2019079916A (ja) | バックコンタクト型太陽電池モジュール | |
WO2019181834A1 (ja) | 太陽電池の製造方法、および、太陽電池 | |
JP2019036652A (ja) | バックコンタクト型太陽電池の製造方法 | |
JP6564219B2 (ja) | 結晶シリコン太陽電池およびその製造方法、ならびに太陽電池モジュール | |
JPWO2019163648A1 (ja) | 太陽電池の製造方法 | |
KR20130040015A (ko) | 태양전지 및 이의 제조방법 | |
CN111095572A (zh) | 双面电极型太阳能电池和太阳能电池模块 | |
JP6938304B2 (ja) | バックコンタクト型太陽電池 | |
JP7183245B2 (ja) | 太陽電池の製造方法 | |
JPWO2019163784A1 (ja) | 太陽電池の製造方法 | |
JP2014232820A (ja) | 太陽電池およびその製造方法、ならびに太陽電池モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220316 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7043308 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |