JP2019139987A - 燃料電池の検査方法および検査システム - Google Patents

燃料電池の検査方法および検査システム Download PDF

Info

Publication number
JP2019139987A
JP2019139987A JP2018022906A JP2018022906A JP2019139987A JP 2019139987 A JP2019139987 A JP 2019139987A JP 2018022906 A JP2018022906 A JP 2018022906A JP 2018022906 A JP2018022906 A JP 2018022906A JP 2019139987 A JP2019139987 A JP 2019139987A
Authority
JP
Japan
Prior art keywords
fuel cell
pressure loss
impact
parameter value
loss parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018022906A
Other languages
English (en)
Other versions
JP7062993B2 (ja
Inventor
啓 榎本
Hiroshi Enomoto
啓 榎本
利之 戸沼
Toshiyuki Tonuma
利之 戸沼
真也 佐野
Shinya Sano
真也 佐野
兼仁 井田
Kanehito Ida
兼仁 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018022906A priority Critical patent/JP7062993B2/ja
Priority to US16/256,176 priority patent/US10930954B2/en
Priority to DE102019102038.7A priority patent/DE102019102038A1/de
Priority to CN201910098483.6A priority patent/CN110165254B/zh
Publication of JP2019139987A publication Critical patent/JP2019139987A/ja
Application granted granted Critical
Publication of JP7062993B2 publication Critical patent/JP7062993B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/24Measuring arrangements characterised by the use of fluids for measuring the deformation in a solid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04417Pressure; Ambient pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04432Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】衝撃に起因する燃料電池の変形を、より簡便に検出する。【解決手段】燃料電池15における変形の発生を検査する検査方法は、衝撃前の圧損パラメータ値に対する衝撃後の圧損パラメータ値の変化量を求め、圧力損失の増加を示す前記変化量が、予め定めた基準値以上であれば、燃料電池の内部に変形が生じていると判断する。前記判断では、ガス流路74,75における圧損パラメータ値である第1圧損パラメータ値の変化量が第1基準値以上である場合と、冷媒流路77における圧損パラメータ値である第2圧損パラメータ値の変化量が第2基準値以上である場合と、の少なくともいずれかであれば、衝撃に起因して燃料電池の内部に変形が生じていると判断する。【選択図】図4

Description

本発明は、燃料電池の検査方法および検査システムに関する。
燃料電池に衝撃が加えられると、燃料電池が変形して、発電性能の低下などが生じる可能性がある。従来、衝撃に起因する燃料電池の変形等を検出する方法として、燃料電池スタックの側面に積層方向に延びるマークをつけると共に、スタックケースにスリットを設け、スリットを介して外部から上記マークの形状を視認することにより、積層ずれの発生を検査する方法が提案されていた(例えば、特許文献1参照)。
特開2009−266537号公報
しかしながら、燃料電池の周りには、通常、燃料電池に対する反応ガスや冷媒の供給・排出に係る配管を含む種々の装置等が配置されている。そのため、上記配管を含む装置等を取り外すことなく、スタックケースの外部から、内部の燃料電池スタックに付されたマークを視認することには困難を伴う。そのため、衝撃に起因する燃料電池の変形を、より簡便に検出する技術が望まれていた。
本発明は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、複数の単セルを積層して形成され、積層面に平行に流体が流れる流体流路として、反応ガスが流れるガス流路と冷媒が流れる冷媒流路とが内部に設けられた燃料電池における、変形の発生を検査する検査方法が提供される。この検査方法は;前記燃料電池内部に設けられた前記流体流路における圧力損失と相関する圧損パラメータ値であって、予め定めた流量の前記流体を前記流体流路に流すときの圧損パラメータ値として、前記燃料電池に衝撃が加えられる前の圧損パラメータ値と、前記燃料電池に衝撃が加えられた後の圧損パラメータ値とを取得し;取得した前記衝撃前の圧損パラメータ値に対する、前記衝撃後の圧損パラメータ値の変化量を求め;前記圧力損失の増加を示す前記変化量が、予め定めた基準値以上であれば、前記燃料電池の内部に変形が生じていると判断する。前記判断では、前記ガス流路における前記圧損パラメータ値である第1圧損パラメータ値の前記変化量が第1基準値以上である場合と、前記冷媒流路における前記圧損パラメータ値である第2圧損パラメータ値の前記変化量が第2基準値以上である場合と、の少なくともいずれかであれば、前記衝撃に起因して前記燃料電池の内部に変形が生じていると判断する。
この形態の検査方法によれば、燃料電池に衝撃が加えられる前の圧損パラメータ値に対する、燃料電池に衝撃が加えられた後の圧損パラメータ値の変化量に基づいて、衝撃に起因する燃料電池の内部の変形を判断している。そのため、燃料電池内の流体流路に流体を流して、上記圧損パラメータ値の変化量を求め、変化量と基準値とを比較するという簡便な方法により、衝撃に起因して燃料電池内に変形が生じていることを判断することができる。また、ガス流路における第1圧損パラメータ値と、冷媒流路における第2圧損パラメータ値とを用いて判断するため、積層方向の衝撃に起因する変形と、直交方向の衝撃に起因する変形とについての判断が可能になる。
(2)上記形態の検査方法において、前記判断は;前記単セルの積層方向の衝撃が前記燃料電池に加えられたときに、前記第1圧損パラメータ値の前記変化量が前記第1基準値以上であれば、前記積層方向の衝撃に起因する変形が生じているとする第1の判断と;前記積層方向に直交する直交方向の衝撃が前記燃料電池に加えられたときに、前記第2圧損パラメータ値の前記変化量が前記第2基準値以上であれば、前記直交方向の衝撃に起因する変形が生じているとする第2の判断と;のうちの少なくとも一方を含むこととしてもよい。この形態の検査方法によれば、衝撃の方向に応じて、燃料電池において変形が発生したか否かを適切に判断することができる。
(3)上記形態の検査方法において、さらに、前記燃料電池に前記衝撃が加えられた後に、前記衝撃の方向を取得し;前記衝撃の方向が、前記積層方向の場合には、前記第1の判断を行ない;前記衝撃の方向が、前記直交方向の場合には、前記第2の判断を行なうこととしてもよい。この形態の検査方法によれば、衝撃の方向に応じて、燃料電池において変形が発生したか否かを適切に判断することができる。
(4)上記形態の検査方法において、前記判断では、前記第1圧損パラメータ値における前記変化量が前記第1基準値以上であれば、前記単セルの積層方向の衝撃に起因する変形が生じていると判断し、前記第2圧損パラメータ値における前記変化量が前記第2基準値以上であれば、前記積層方向に直交する直交方向の衝撃に起因する変形が生じていると判断することとしてもよい。この形態の検査方法によれば、予め衝撃の方向を取得しなくても、衝撃に起因して燃料電池に変形が生じたか否かに係る判断と共に、衝撃の方向を知ることができる。
(5)上記形態の検査方法において;前記燃料電池には、前記燃料電池に供給する燃料ガスの流量調節に係る燃料ガス供給装置として、前記燃料電池に前記燃料ガスを供給する燃料ガス供給流路に前記燃料ガスを吐出するインジェクタであって、該インジェクタの開弁デューティー比によって、前記燃料ガス供給流路に供給する前記燃料ガスの量を調節するインジェクタと、前記燃料電池から排出される燃料排ガスを前記燃料ガス供給流路に再循環させる循環流路に設けられた燃料ガスポンプと、を含む燃料ガス供給装置が接続され;前記第1圧損パラメータ値は;前記燃料ガス供給装置に含まれる前記燃料ガスポンプ以外の機器の駆動量が一定であるときに、前記燃料電池内に形成される前記燃料ガスの流路における前記燃料ガスの流量が、予め定めた流量となるときの、前記燃料ガスポンプにおける消費電力の値と;前記燃料ガス供給装置に含まれる前記インジェクタ以外の機器の駆動量が一定であるときに、前記燃料電池内に形成される前記燃料ガスの流路における前記燃料ガスの流量が、予め定めた流量となるときの、前記インジェクタにおける開弁デューティー比の値と;前記燃料電池内に形成される前記燃料ガスの流路における前記燃料ガスの流量が予め定めた流量となるように、予め定めた指令値にて、前記燃料ガスポンプおよび前記インジェクタを含む前記燃料ガス供給装置を駆動したときに、前記燃料ガスの流路内を実際に流れた前記燃料ガスの流量の値と;のうちの少なくともいずれか一つを含むこととしてもよい。この形態の検査方法によれば、上記燃料ガスポンプにおける消費電力の値と、上記インジェクタにおける開弁デューティー比の値と、上記指令値にて燃料ガス供給装置を駆動したときに燃料ガスの流路内を実際に流れた燃料ガスの流量の値と、のうちの少なくともいずれか一つを用いて、積層方向の衝撃に起因する燃料電池の変形を検出することができる。
(6)上記形態の検査方法において;前記燃料電池には、前記燃料電池に供給する酸化ガスの流量調節に係る酸化ガス供給装置として、前記燃料電池に前記酸化ガスを供給する酸化ガス供給流路に前記酸化ガスを吐出するコンプレッサと、前記燃料電池から排出される酸化排ガスが流れる酸化ガス排出流路の開度を調節する調節弁と、を含む酸化ガス供給装置が接続され;前記第1圧損パラメータ値は;前記酸化ガス供給装置に含まれる前記コンプレッサ以外の機器の駆動量が一定であるときに、前記燃料電池内に形成される前記酸化ガスの流路における前記酸化ガスの流量が、予め定めた流量となるときの、前記コンプレッサにおける消費電力の値と;前記酸化ガス供給装置に含まれる前記調節弁以外の機器の駆動量が一定であるときに、前記燃料電池内に形成される前記酸化ガスの流路における前記酸化ガスの流量が、予め定めた流量となるときの、前記調節弁の開度の値と;前記燃料電池内に形成される前記酸化ガスの流路における前記酸化ガスの流量が予め定めた流量となるように、予め定めた指令値にて、前記コンプレッサおよび前記調節弁を含む前記酸化ガス供給装置を駆動したときに、前記酸化ガスの流路内を実際に流れた前記酸化ガスの流量の値と;のうちの少なくともいずれか一つを含むこととしてもよい。この形態の検査方法によれば、上記コンプレッサの消費電力の値と、上記調節弁の開度の値と、上記指令値にて酸化ガス供給装置を駆動したときに酸化ガスの流路内を実際に流れた酸化ガスの流量の値と、のうちの少なくともいずれか一つを用いて、積層方向の衝撃に起因する燃料電池の変形を検出することができる。
(7)上記形態の検査方法において;前記燃料電池には、前記燃料電池内に形成される前記冷媒流路に供給する冷媒の流量調節に係る冷媒供給装置として、前記冷媒流路内で前記冷媒を流すための駆動力を生じる冷媒ポンプを含む冷媒供給装置が接続され;前記第2圧損パラメータ値は;前記冷媒供給装置に含まれる前記冷媒ポンプ以外の機器の駆動量が一定であるときに、前記燃料電池内に形成される前記冷媒流路における前記冷媒の流量が、予め定めた流量となるときの、前記冷媒ポンプにおける消費電力の値と;前記燃料電池内に形成される前記冷媒流路における前記冷媒の流量が予め定めた流量となるように、予め定めた指令値にて、前記冷媒ポンプを含む前記冷媒供給装置を駆動したときに、前記冷媒流路内を実際に流れた前記冷媒の流量の値と;のうちの少なくともいずれか一つを含むこととしてもよい。この形態の検査方法によれば、上記冷媒ポンプの消費電力の値と、上記指令値にて冷媒供給装置を駆動したときに冷媒流路内を実際に流れた冷媒の流量の値と、のうちの少なくともいずれか一つを用いて、直交方向の衝撃に起因する燃料電池の変形を検出することができる。
本発明は、上記以外の種々の形態で実現可能であり、例えば、衝撃に起因する燃料電池の変形の発生を検査する検査システム等の形態で実現することができる。
燃料電池システムの概略構成を表わす説明図である。 単セルの構成の概略を表わす分解斜視図である。 図2における3−3断面の様子を表わす断面模式図である。 燃料電池検査処理ルーチンを表わすフローチャートである。 燃料電池の概略構成を表わす断面模式図である。 積層方向の衝撃を受けた燃料電池の様子を表わす断面模式図である。 直交方向の衝撃を受けた燃料電池の様子を表わす断面模式図である。 衝撃前における単セルが隣接する様子を表わす断面模式図である。 衝撃後における単セルが隣接する様子を表わす断面模式図である。 燃料電池検査処理ルーチンを表わすフローチャートである。 燃料電池システムの概略構成を表わす説明図である。 燃料電池検査処理ルーチンを表わすフローチャートである。
A.第1実施形態:
(A−1)燃料電池システムの構成:
図1は、本発明の第1実施形態としての燃料電池システム10の概略構成を表わす説明図である。本実施形態の燃料電池システム10は、電気自動車に搭載されて駆動用電源として用いている。本実施形態の燃料電池システム10は、燃料電池15と、燃料ガス系20と、酸化ガス系30と、冷媒系60と、制御部50と、を備える。
燃料電池15は、固体高分子形燃料電池であるが、固体酸化物形燃料電池等、他種の燃料電池とすることもできる。燃料電池15は、発電体としての単セル70を複数積層したスタック構造を有すると共に、水素を含有する燃料ガスと、酸素を含有する酸化ガスとの供給を受けて発電する。
図2は、単セル70の構成の概略を表わす分解斜視図である。また、図3は、図2における3−3断面の様子を表わす断面模式図である。以下では、図2および図3に基づいて、単セル70の構成を説明する。単セル70は、一対のガスセパレータ80,81と、一対のガスセパレータ80,81の間に配置された膜電極ガス拡散層接合体(MEGA)91と、ガスセパレータ80,81の間において、MEGA91の外周に接してMEGA91の外側に配置された樹脂フレーム82と、を備えている。
MEGA91は、図3に示すように、電解質層84と、アノード85と、カソード86と、を含む。アノード85、電解質層84、カソード86をこの順で積層した構造を、膜電極接合体(MEA)90とも呼ぶ。MEGA91では、アノード85上にはさらにガス拡散層87が配置されており、カソード86上にはさらにガス拡散層88が配置されている。電解質層84は、高分子電解質材料、例えばフッ素樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好なプロトン伝導性を示す。アノード85およびカソード86は、例えば白金、あるいは白金合金等の触媒を担持した導電性粒子、例えばカーボン粒子を、プロトン伝導性を有する高分子電解質で被覆して形成される。ガス拡散層87,88は、ガス透過性および電子伝導性を有する部材によって構成されており、例えば、発泡金属や金属メッシュなどの金属製部材や、カーボンクロスやカーボンペーパなどのカーボン製部材により形成することができる。
ガスセパレータ80,81は、ガス不透過な導電性部材、例えば、カーボンを圧縮してガス不透過とした緻密質カーボン等のカーボン製部材や、プレス成形したステンレス鋼などの金属製部材により形成されている。図3に示すように、ガスセパレータ80,81には、電気化学反応に供する反応ガスが流れる流路を形成するための凹凸形状が形成されている。ガスセパレータ80とMEA90との間には、水素を含む燃料ガスが流れるセル内燃料ガス流路74が形成され、ガスセパレータ81とMEA90との間には、酸素を含む酸化ガスが流れるセル内酸化ガス流路75が形成される。セル内燃料ガス流路74およびセル内酸化ガス流路75は、単セル70の積層方向(単に、積層方向とも呼ぶ)に平行に流体が流れる流体流路である。なお、図2では、ガスセパレータ80,81における凹凸形状の記載は省略している。
樹脂フレーム82は、熱可塑性樹脂を用いて枠状に成形され、その中央の開口部をMEGA91の保持領域とする。図2に示すように、樹脂フレーム82には複数のスリット部83が設けられているが、スリット部83については、後に詳しく説明する。図3に示すように、MEGA91において、電解質層84の周縁部には、カソード86およびガス拡散層88に覆われない露出領域が形成されており、電解質層84は、上記露出領域において、接着層89を介して樹脂フレーム82に接合されている。なお、本実施形態では、樹脂フレーム82と、ガスセパレータ80,81との間も、接着剤等を用いて接着されている。ここで、積層される2つの部材が接着されるとは、上記2つの部材間に接着剤を有する接着層が設けられることにより、あるいは、少なくとも一方の部材(本実施形態では樹脂フレーム82)が接着剤を含むことにより、上記2つの部材の積層面に化学結合(共有結合や水素結合)が形成されて、強固に固着されることをいう。
ガスセパレータ80,81および樹脂フレーム82には、各々の外周近傍において、単セル70の積層方向に互いに重なる位置に、マニホールドを形成するためのマニホールド孔71a〜73a、および71b〜73bが設けられている。マニホールドは、ガスセパレータ80,81および樹脂フレーム82を貫通し、反応ガスまたは冷媒が流れる流路である。マニホールド孔71a,71bは、セル内酸化ガス流路75との間で酸化ガスの給排を行なう流路を形成する。マニホールド孔73a,73bは、セル内燃料ガス流路74との間で燃料ガスの給排を行なう流路を形成する。また、マニホールド孔72a,72bは、単セル70間に形成される冷媒流路との間で冷媒の給排を行なう流路を形成する。
樹脂フレーム82には、マニホールド孔71a,71b,73a,73bの各々の近傍において、各マニホールド孔からMEGA91の外周に向かって延びる細長い複数のスリットを備えるスリット部83が形成されている。スリット部83を構成する各スリットは、樹脂フレーム82を貫通している。そして、各スリットの端部は、樹脂フレーム82がガスセパレータ80,81に挟持されたときに、近傍のマニホールド孔と積層方向に重なる。そして、各スリット部83によって、近傍のマニホールドと、このマニホールドに対応するセル内ガス流路とが連通される。なお、マニホールドとセル内ガス流路との間は、樹脂フレーム82に設けたスリット部83以外の構造により連通させてもよい。
ガスセパレータ80において、MEGA91と接する面の裏面には、ガスケット76が接着されている。燃料電池15を組み立てる際には、図3に示す単セル70を複数積層して、積層方向に締結荷重を加えつつ、全体を固定する。このような燃料電池15では、隣接する単セル70間に、既述したように冷媒流路が形成される。ガスケット76は、隣接する単セル70のガスセパレータ81と接することにより、上記冷媒流路をシールする。
図1に戻り、燃料ガス系20は、水素タンク21と、燃料ガス供給流路22と、燃料ガス排出流路23と、燃料ガス循環流路24と、可変調圧弁40と、インジェクタ42と、気液分離器45と、燃料ガスポンプ44と、流量計26と、を備える。本実施形態では、燃料電池15に供給する燃料ガスの流量調節に係る燃料ガス供給装置は、燃料ガスポンプ44と、インジェクタ42と、を含む。水素タンク21は、燃料ガスとしての水素ガスが貯蔵される貯蔵装置である。水素タンク21に貯蔵された水素ガスは、可変調圧弁40によって減圧されて、インジェクタ42を介して、燃料電池15のセル内燃料ガス流路に接続される燃料ガス供給流路22に供給される。インジェクタ42における開弁デューティー比の値によって、燃料ガス供給流路22に供給する燃料ガスの量を調節することができる。その結果、燃料電池15内を流れる燃料ガスの流量を変更することができる。
燃料ガス排出流路23は、燃料電池15から排出される燃料排ガスが流れる流路である。燃料ガス循環流路24は、燃料ガス排出流路23と、燃料ガス供給流路22におけるインジェクタ42よりも下流側の部位とに接続されており、燃料排ガスを燃料ガス供給流路22に再循環させる。すなわち、燃料電池15から燃料ガス排出流路23に排出された燃料排ガスは、燃料ガス循環流路24を経由して、再び燃料ガス供給流路22に導かれる。そのため、燃料電池システム10において、燃料ガスは、発電により水素が消費されつつ、燃料ガス排出流路23、燃料ガス循環流路24、燃料ガス供給流路22の一部、および、燃料電池15内に形成される燃料ガスの流路を循環する。燃料ガス循環流路24には、燃料排ガスを燃料ガス供給流路22に流入させるための駆動力を生じる燃料ガスポンプ44が設けられている。燃料ガスポンプ44の駆動量によって、燃料電池15内を流れる燃料ガスの流量を変更することができる。また、燃料ガス排出流路23には、流路内を循環する燃料ガスの流量を検出する流量計26が設けられている。流量計26は、燃料電池15内の燃料ガスの流量を取得するために用いることができる。
燃料ガス排出流路23と燃料ガス循環流路24との接続部には、気液分離器45が設けられている。燃料排ガスには、発電で消費されなかった水素と共に、窒素や水蒸気等の不純物が含まれる。気液分離器45は、燃料排ガス中の水と、ガス(水素および窒素等)とを分離する。気液分離器45には、パージ弁46を備える燃料ガス放出流路25が接続されており、パージ弁46を開弁することにより、気液分離器45から水とガスとが排出される。
酸化ガス系30は、エアコンプレッサ31と、酸化ガス供給流路32と、酸化ガス排出流路33と、流量計36と、調節弁39と、を備える。本実施形態では、燃料電池15に供給する酸化ガスの流量調節に係る酸化ガス供給装置は、エアコンプレッサ31と、調節弁39と、を含む。本実施形態の燃料電池システム10は、酸化ガスとして、空気を用いる。エアコンプレッサ31は、空気を圧縮し、酸化ガス供給流路32を介して、燃料電池15のセル内酸化ガス流路に向かって空気を吐出する装置である。エアコンプレッサ31の駆動量によって、燃料電池15内を流れる酸化ガスの流量を変更することができる。燃料電池15から排出される酸化排ガスは、酸化ガス排出流路33を介して、燃料電池システム10の外部に排出される。酸化ガス排出流路33には、酸化ガスの流路の開度を調節する調節弁39が設けられており、調節弁39の開度を調節することによって、燃料電池15内における酸化ガスの圧力(背圧)および流量を変更することができる。酸化ガス排出流路33において調節弁39よりも上流側に設けられた流量計36は、燃料電池15内の酸化ガスの流量を取得するために用いることができる。
冷媒系60は、ラジエータ61と、冷媒ポンプ62と、流量計63と、冷媒流路64と、を備える。本実施形態では、燃料電池15に供給する冷媒の流量調節に係る冷媒供給装置は、冷媒ポンプ62を含む。冷媒流路64は、ラジエータ61と、燃料電池15内の冷媒流路とを接続する流路であり、ラジエータ61と燃料電池15との間で冷媒を循環させる。ラジエータ61は、冷媒流路62内を流れる冷媒を冷却する。冷媒ポンプ62は、冷媒流路64内で冷媒を流すための駆動力を生じる。冷媒ポンプ62の駆動量によって、燃料電池15内を流れる冷媒の流量を変更することができる。流量計63は、燃料電池15内の冷媒の流量を取得するために用いることができる。
制御部50は、マイクロコンピュータを中心とした論理回路として構成され、詳しくは、予め設定された制御プログラムに従って演算などを実行するCPUと、CPUで各種演算処理を実行するのに必要な制御プログラムや制御データ等が予め格納されたROMと、同じくCPUで各種演算処理をするのに必要な各種データが一時的に読み書きされるRAMと、各種信号を入出力する入出力ポート等を備える。制御部50は、燃料電池システム10の発電制御を行なう。例えば、制御部50は、負荷要求に応じた電力を燃料電池15から得るために、燃料ガス、酸化ガス、および冷媒の流量を設定する。そして、燃料ガス、酸化ガス、および冷媒の流量を、設定した値とするために、燃料ガスポンプ44、インジェクタ42、エアコンプレッサ31、調節弁39、および冷媒ポンプ62に対して、駆動信号を出力する。上記燃料ガスポンプ44等の駆動量と、燃料ガス、酸化ガス、および冷媒の目標流量とは、例えば、燃料電池15で発電すべき電力量に応じて、予め設定することができる。制御部50は、さらに、流量計26、36、63の検出信号を用いたフィードバック制御により、燃料ガスポンプ44、インジェクタ42、エアコンプレッサ31、調節弁39、および冷媒ポンプ62から選択される少なくとも一部の駆動量をさらに調節して、各流体の流量が、発電量に応じた目標流量となるように制御する。
(A−2)燃料電池の検査システムの構成:
本実施形態では、燃料電池15に衝撃が加わったとき、例えば、燃料電池システム10を搭載する車両が衝突したときに、衝撃に起因する燃料電池15における変形の発生の有無を検査する。このような検査を行なうための検査システム12は、図1に示すように、発電に係る燃料電池システム10と共通する構成を有している。本実施形態では、制御部50は、燃料電池システム10の一部として燃料電池15の発電制御に係る機能の他に、検査システム12の一部として燃料電池15の検査を行なうための機能を有している。
図1では、検査システム12が上記した検査を行なう際の制御部50の機能ブロックを示している。具体的には、制御部50は、機能ブロックとして、記憶部51、検出部52、導出部53、判断部54、取得部55、駆動制御部56を備える。これらの各機能ブロックの動作については後述する。
(A−3)燃料電池の検査方法:
図4は、制御部50のCPUにおいて実行される燃料電池検査処理ルーチンを表わすフローチャートである。本ルーチンは、車両衝突などにより燃料電池15に衝撃が加わった後に、既述した検査を行なう際に、制御部50に対して検査開始に係る指示が入力されることにより、実行される。検査開始に係る指示は、例えば、車載された燃料電池システム10の制御部50に対して、検査システム12を取り扱う検査者が入力することとしてもよい。また、検査時に、検査に係る指示入力を受け付けるための入力装置等を燃料電池システム10に接続する場合には、検査開始に係る指示は、上記入力装置を介して検査者が入力することとしてもよい。あるいは、制御部50が、上記入力装置が接続されたことを検知することによって、検査開始に係る指示が入力されたと判断してもよい。
このような衝撃後の検査は、燃料電池システム10を車両に搭載した状態で、燃料電池システム10全体を検査システム12として利用して行なえばよい。燃料電池検査処理ルーチンを実行する際には、既述した燃料ガス供給装置、酸化ガス供給装置、および冷媒供給装置が、制御部50の駆動制御部56によって駆動される。駆動制御部56は、上記燃料ガス供給装置等の各部に対して、燃料電池15内の各流体流路における流量の目標値に対応する駆動信号を出力する。そして、流量計26,36,63から検出信号を取得して、既述したフィードバック制御を行なう。このように各流路に流体を流しつつ行なう検査の際には、燃料電池15の発電を行なうこととしてもよく、発電を行なわないこととしてもよい。燃料電池15の発電を行なう際には、車両を走行状態にしてもよく、あるいは、燃料電池15を検査用の負荷に接続して、発電した電力を消費してもよい。
本ルーチンが実行されると、制御部50のCPUは、衝撃の前後における圧損パラメータ値を取得する(ステップS100)。圧損パラメータ値とは、燃料電池15の内部に設けられた流体の流路における圧力損失と相関するパラメータである圧損パラメータの値である。本実施形態のステップS100では、燃料ガスの流路における圧損パラメータ値と酸化ガスの流路における圧損パラメータ値とのうちの少なくとも一方、および、冷媒の流路における圧損パラメータ値、の各々の値を取得している。本実施形態の検査を行なう際に、燃料電池15に供給する各流体の流量は、常に一定であっても変動させてもよいが、ステップS100で取得する圧損パラメータ値は、予め定めた流量の流体を燃料電池15に流すときの値とすればよい。
具体的には、燃料ガスの流路における圧損パラメータ値は、例えば、燃料ガス供給装置に含まれる燃料ガスポンプ44以外の機器の駆動量が一定であるときに、燃料電池15内に形成される燃料ガスの流路における燃料ガスの流量が、予め定めた流量となるときの、燃料ガスポンプ44における消費電力の値とすることができる。また、燃料ガス供給装置に含まれるインジェクタ42以外の機器の駆動量が一定であるときに、燃料電池15内に形成される燃料ガスの流路における燃料ガスの流量が、予め定めた流量となるときの、インジェクタ42における開弁デューティー比の値とすることができる。また、燃料電池15内に形成される燃料ガスの流路における燃料ガスの流量が予め定めた流量となるように、予め定めた指令値にて燃料ガス供給装置を駆動したときに、燃料ガスの流路内を実際に流れた燃料ガスの流量の値とすることができる。すなわち、上記燃料ガスポンプ44における消費電力の値と、上記インジェクタ42における開弁デューティー比の値と、上記実際に流れた燃料ガスの流量の値と、のうちの少なくともいずれか一つとすることができる。
燃料ガス流路における燃料ガスの流量が設定値となるように燃料ガス供給装置を駆動する際には、既述したように流量計26の検出信号を用いてフィードバック制御が行なわれる。そのため、燃料ガス流路における圧損が上昇したときに、燃料ガスの流量が予め定めた設定値になるように制御すると、上記燃料ガスポンプ44の消費電力の値や、上記インジェクタ42における開弁デューティー比の値が増加する。また、燃料電池15内の燃料ガスの流路における燃料ガスの流量が予め定めた流量となるように、予め定めた指令値にて燃料ガス供給装置を駆動したときに、燃料ガス流路における圧損が上昇していれば、上記指令値に対して実際に燃料ガス流路内を流れた燃料ガスの流量の値は減少する。
酸化ガスの流路における圧損パラメータ値は、例えば、酸化ガス供給装置に含まれるコンプレッサ31以外の機器の駆動量が一定であるときに、燃料電池15内に形成される酸化ガスの流路における酸化ガスの流量が、予め定めた流量となるときの、コンプレッサ31における消費電力の値とすることができる。また、酸化ガス供給装置に含まれる調節弁39以外の機器の駆動量が一定であるときに、燃料電池内に形成される酸化ガスの流路における酸化ガスの流量が、予め定めた流量となるときの、調節弁39の開度の値とすることができる。また、燃料電池15内に形成される酸化ガスの流路における酸化ガスの流量が予め定めた流量となるように、予め定めた指令値にて酸化ガス供給装置を駆動したときに、酸化ガスの流路内を実際に流れた酸化ガスの流量の値とすることができる。すなわち、上記コンプレッサ31における消費電力の値と、上記調節弁39の開度の値と、上記実際に流れた酸化ガスの流量の値と、のうちの少なくともいずれか一つとすることができる。
酸化ガス流路における酸化ガスの流量が設定値となるように酸化ガス供給装置を駆動する際には、既述したように流量計36の検出信号を用いてフィードバック制御が行なわれる。そのため、酸化ガス流路における圧損が上昇したときに、酸化ガスの流量が予め定めた設定値になるように制御すると、エアコンプレッサ31における消費電力の値や、調節弁39の開度の値が増加する。また、燃料電池15内の酸化ガスの流路における酸化ガスの流量が予め定めた流量となるように、予め定めた指令値にて酸化ガス供給装置を駆動したときに、酸化ガス流路における圧損が上昇していれば、上記指令値に対して実際に酸化ガス流路内を流れた酸化ガスの流量の値は減少する。
冷媒の流路における圧損パラメータ値としては、例えば、冷媒供給装置に含まれる冷媒ポンプ62以外の機器の駆動量が一定であるときに、燃料電池15内に形成される冷媒流路における冷媒の流量が、予め定めた流量となるときの、冷媒ポンプ62における消費電力の値とすることができる。また、燃料電池15内に形成される冷媒流路における冷媒の流量が予め定めた流量となるように、予め定めた指令値にて冷媒供給装置を駆動したときに、冷媒流路内を実際に流れた冷媒の流量の値とすることができる。すなわち、上記冷媒ポンプ62における消費電力の値と、上記実際に流れた冷媒の流量の値と、のうちの少なくともいずれか一つとすることができる。
冷媒流路における冷媒の流量が設定値となるように冷媒供給装置を駆動する際には、既述したように流量計63の検出信号を用いてフィードバック制御が行なわれる。そのため、冷媒流路における圧損が上昇したときに、冷媒の流量が予め定めた設定値になるように制御すると、冷媒ポンプ62における消費電力の値が増加する。また、燃料電池15内の冷媒流路における冷媒の流量が予め定めた流量となるように、予め定めた指令値にて冷媒供給装置を駆動したときに、冷媒流路における圧損が上昇していれば、上記指令値に対して実際に冷媒流路内を流れた冷媒の流量の値は減少する。
燃料ガスの流路における圧損パラメータ値、酸化ガスの流路における圧損パラメータ値、および冷媒の流路における圧損パラメータ値としては、上記以外のパラメータ値を用いてもよく、各々の流体流路における圧力損失と相関するパラメータの値であればよい。例えば、燃料ガス供給装置、酸化ガス供給装置、あるいは冷媒供給装置の構成を、図1の燃料電池システム10とは異ならせる場合には、採用する流体供給装置の構成に応じて、用いる圧損パラメータ値を適宜選択すればよい。燃料ガスの流路における圧損パラメータ値と、酸化ガスの流路における圧損パラメータ値とは、第1圧損パラメータ値とも呼ぶ。冷媒の流路における圧損パラメータ値は、第2圧損パラメータ値とも呼ぶ。
衝撃が加えられる前の圧損パラメータ値としては、例えば、燃料電池システム10の製造当初における各圧損パラメータ値を、予め記憶部51内に記憶しておけばよい。ステップS100において、制御部50は、制御部50内の記憶部51に記憶された情報を読み出すことによって、衝撃が加えられる前の圧損パラメータ値を取得する。
ステップS100において、衝撃が加えられた後の圧損パラメータ値の取得は、制御部50内の検出部52が行なう。圧損パラメータ値が、既述した燃料ガスポンプ44の消費電力の値、インジェクタ42における開弁デューティー比の値、エアコンプレッサ31の消費電力の値、調節弁39の開度の値、および冷媒ポンプ62の消費電力の値から選択される値である場合には、衝撃が加えられた後の圧損パラメータ値は、フィードバック制御の結果、流体流量が予め定めた流量となったときの駆動制御部56における駆動指令値から知ることができる。圧損パラメータ値が、予め定めた流量にて燃料電池15内の流体(燃料ガス、酸化ガス、冷媒)流路に流体が流れるように予め定めた指令値にて流体供給装置を駆動したときに、流体流路内を実際に流れた流体の流量の値である場合には、衝撃が加えられた後の圧損パラメータ値は、検査開始時に、上記予め定めた指令値にて流体供給装置を駆動したときの流量計26,36,63の検出値から知ることができる。ステップS100では、検出部52は、衝撃後の圧損パラメータ値を、駆動制御部56や流量計26,36,63から取得する。
ステップS100の後、制御部50のCPUは、燃料電池15に加えられた衝撃の方向を取得する(ステップS110)。衝撃の方向の取得は、制御部50の取得部55が行なう。衝撃の方向は、例えば、衝撃後の燃料電池15の外観を検査者が目視して確認し、既述した入力装置を介して入力することとしてもよい。あるいは、燃料電池システム10を搭載する車両に設けられたセンサ、例えば、エアバッグ用の圧力センサや加速度センサが検出した情報を、上記センサから取得することによって、衝撃の方向を取得してもよい。
ステップS110の後、制御部50のCPUは、ステップS110で取得した方向に基づいて、燃料電池15に対して積層方向の衝撃が加えられたか否かを判定する(ステップS120)。積層方向の衝撃が加えられていない場合には(ステップ120:NO)、制御部50のCPUは、積層方向の衝撃に起因する変形が燃料電池15に生じていないと判断する(ステップS140)。
積層方向の衝撃が加えられた場合には(ステップS120:YES)、制御部50のCPUは、衝撃前の第1圧損パラメータ値と衝撃後の第1圧損パラメータ値とを比較し、衝撃の前後における圧力損失の増加を示す第1圧損パラメータ値の変化量を求め、求めた変化量を、予め定めた第1基準値と比較する(ステップS130)。第1圧損パラメータ値の変化量が第1基準値未満であれば(ステップS130:NO)、制御部50のCPUは、積層方向の衝撃に起因する変形が燃料電池15に生じていないと判断する(ステップS140)。第1圧損パラメータ値の変化量が第1基準値以上であれば(ステップS130:YES)、制御部50のCPUは、積層方向の衝撃に起因する変形が燃料電池15に生じたと判断する(ステップS150)。ステップS150における判断は、第1の判断とも呼ぶ。
衝撃前の第1圧損パラメータ値に対する、衝撃後の第1圧損パラメータ値の変化量を導出する動作は、制御部50の導出部53が行なう。第1圧損パラメータ値の変化量と第1基準値とを比較して、積層方向の衝撃に起因する変形の有無を判断する動作は、制御部50の判断部54が行なう。
ステップS130で用いる第1基準値は、積層方向の衝撃に起因する燃料電池15の変形の有無を判断する基準値として、予め定められて制御部50の記憶部51内に記憶されている。第1圧損パラメータ値として、複数種類の第1圧損パラメータ値を用いる場合には、第1圧損パラメータ値の種類ごとに、第1基準値が定められている。第1基準値は、例えば交換を要する程度の変形が燃料電池15に生じていることを判断可能になるように、予め実験的に、あるいは、予めシミュレーションによって、定められている。
図5は、燃料電池15の概略構成を表わす断面模式図である。燃料電池15では、複数の単セル70が積層された燃料電池スタックが、スタックケース16内に収納されている。図5、および、後述する図6、図7において、積層方向はX方向であり、積層方向に直交する直交方向はY方向である。
図6は、燃料電池15が積層方向の衝撃、より具体的には、−X方向の衝撃を受けた後の、燃料電池15の様子を表わす断面模式図である。積層方向の衝撃が加えられると、衝撃が加えられる前方側において、単セル70を積層方向に圧縮する力が加わる。このとき、上記前方側に配置される各単セル70内では、比較的柔らかい部材であるガス拡散層87,88や、樹脂フレーム82が積層方向に潰れる。その結果、ガス拡散層87,88によって形成されるセル内燃料ガス流路やセル内酸化ガス流路、あるいは、樹脂フレーム82のスリット部83が形成するガス流路が潰れる。中でも、ガス拡散層87,88が潰れやすい。その結果、セル内燃料ガス流路やセル内酸化ガス流路における圧損が上昇する。そのため、燃料電池15に積層方向の衝撃が加えられたときには、燃料ガスの流路および酸化ガスの流路における圧損パラメータ値である第1圧損パラメータ値の変化量を、第1基準値と比較することにより、積層方向の衝撃に起因する変形が燃料電池15に生じているか否かを判断することができる。
図4に戻り、ステップS140あるいはステップS150の判断の後、制御部50のCPUは、ステップS110で取得した方向に基づいて、燃料電池15に対して、直交方向の衝撃が加えられたか否かを判定する(ステップS160)。直交方向の衝撃が加えられていない場合には(ステップ160:NO)、制御部50のCPUは、直交方向の衝撃に起因する変形が燃料電池15に生じていないと判断し(ステップS180)、検査処理を終了する。
直交方向の衝撃が加えられた場合には(ステップS160:YES)、制御部50のCPUは、衝撃前の第2圧損パラメータ値と衝撃後の第2圧損パラメータ値とを比較し、衝撃の前後における圧力損失の増加を示す第2圧損パラメータ値の変化量を求め、求めた変化量を、予め定めた第2基準値と比較する(ステップS170)。第2圧損パラメータ値の変化量が第2基準値未満であれば(ステップS170:NO)、制御部50のCPUは、直交方向の衝撃に起因する変形が燃料電池15に生じていないと判断し(ステップS180)、検査処理を終了する。第2圧損パラメータ値の変化量が第2基準値以上であれば(ステップS170:YES)、制御部50のCPUは、直交方向の衝撃に起因する変形が燃料電池15に生じたと判断し(ステップS190)、検査処理を終了する。ステップS190の判断は、第2の判断とも呼ぶ。
衝撃前の第2圧損パラメータ値に対する、衝撃後の第2圧損パラメータ値の変化量を導出する動作は、制御部50の導出部53が行なう。第2圧損パラメータ値の変化量と第2基準値とを比較して、直交方向の衝撃に起因する変形の有無を判断する動作は、制御部50の判断部54が行なう。
ステップS170で用いる第2基準値は、直交方向の衝撃に起因する燃料電池15の変形の有無を判断する基準値として、予め定められて制御部50の記憶部51内に記憶されている。第2圧損パラメータ値として、複数種類の第2圧損パラメータ値を用いる場合には、第2圧損パラメータ値の種類ごとに、第2基準値が定められている。第2基準値は、例えば交換を要する程度の変形が燃料電池15に生じていることを判断可能になるように、予め実験的に、あるいは、予めシミュレーションによって、定められている。
図7は、燃料電池15が直交方向の衝撃、より具体的には、−Y方向の衝撃を受けた後の、燃料電池15の様子を表わす断面模式図である。また、図8Aおよび図8Bは、隣り合う単セル70間に形成されるセル間冷媒流路77の近傍の様子を表わす断面模式図である。図8Aは衝撃が加えられる前を表わし、図8Bは衝撃が加えられた後を表わす。
直交方向の衝撃が加えられると、図7に示すように、衝撃が加えられた箇所(図7では燃料電池スタックにおける積層方向の中ほどの箇所)において、積層された単セル70が、衝撃の向きに従って積層ずれを起こす。既述したように、単セル70は、ガスセパレータ80,81を含む部材、具体的には、樹脂フレーム82とガスセパレータ80,81との間を接着することにより、全体が一体化されている。これに対して、隣り合う単セル70間は、一方の単セル70に接着されたガスケット76が配置された状態で、積層方向の締結荷重を加えることによって固定されている。そのため、直交方向の衝撃が加えられると、固定の力がより弱い、隣り合う単セル70間において積層ずれが生じる。その結果、単セル70間に形成されたセル間冷媒流路77が変形する。
図8Aに示すように、衝撃が加えられる前は、隣り合う一方の単セル70のガスセパレータ80と、他方の単セル70のガスセパレータ81とは、セル間冷媒流路77を形成するための凹凸形状の凸部の頭頂部同士が互いに接して、双方に設けられた凹部によって、セル間冷媒流路77が形成されている。直交方向の衝撃が加わると、図8Bに示すように、上記した互いに接する凸部の頭頂部が、直交方向にずれる。その結果、セル間冷媒流路77の断面形状が変形し、セル間冷媒流路77における流路抵抗が増加する。そのため、燃料電池15に直交方向の衝撃が加えられたときには、冷媒の流路における圧損パラメータ値である第2圧損パラメータ値の変化量を第2基準値と比較することにより、直交方向の衝撃に起因する変形が燃料電池15に生じているか否かを判断することができる。
以上のように構成された第1実施形態によれば、燃料電池15に衝撃が加えられる前の圧損パラメータ値に対する、燃料電池15に衝撃が加えられた後の圧損パラメータ値の変化量に基づいて、衝撃に起因する燃料電池15の内部の変形を判断している。そのため、燃料電池15内の流路に流体を流して圧損パラメータ値を取得して、燃料電池15に衝撃が加えられる前後における圧損パラメータ値の変化量と基準値とを比較するという簡便な方法により、衝撃に起因して燃料電池15内に変形が生じていることを判断することができる。すなわち、このような検査方法は、燃料電池システム10の構成を利用して実行されるため、検査のための特別な構成、例えば燃料電池15の変形を検出するためのマーク等を燃料電池15に設け、これを観察する等の煩雑な動作を行なうことなく、簡便な構成及び動作により、衝撃に起因する燃料電池15の変形を検出することができる。その結果、衝撃に起因して燃料電池15が変形したときには、例えば、燃料電池15の交換の要否に関して適切に判断することができる。
また、本実施形態では、燃料電池15が受けた衝撃が積層方向であれば、ガス流路に係る第1圧損パラメータ値を用いて変形の有無を判断し、燃料電池15が受けた衝撃が直交方向であれば、冷媒流路に係る第2圧損パラメータ値を用いて変形の有無を判断している。そのため、衝撃の方向に応じて、燃料電池15において変形が発生したか否かを適切に判断することができる。また、衝撃とは異なる要因により流体流路が閉塞した場合等に、衝撃の方向に対応しない圧損パラメータ値が変化しても、誤って衝撃に起因する変形が生じたと判断することを抑え、検査の精度を向上させることができる。
さらに、本実施形態によれば、燃料電池15の変形を引き起こした衝撃の方向が特定されるため、燃料電池15全体を交換するのではなく、積層された単セル70の部分的な交換を適切に行なうことが可能になる。例えば、図6のように、−X方向の衝撃を受けた場合には、衝撃が加えられた前方側、例えば図6に範囲Aとして示す範囲に積層される単セル70において、特に、ガス拡散層87,88等の潰れが大きくなる。そのため、積層方向の衝撃が加えられた場合には、上記した衝撃が加えられた前方側の単セル70のみを交換することとしてもよい。また、図7のように、−Y方向の衝撃を受けた場合には、燃料電池スタックの中ほどの衝撃が加えられた箇所、例えば図7に範囲Bとして示す範囲に積層される単セル70において、大きな積層ずれを起こす。このように積層ずれが大きい箇所では、単セル70の外周がスタックケース16の内壁面に当接すること等により変形し得る。そのため、直交方向の衝撃が加えられた場合には、上記した衝撃が加えられた範囲Bにおける単セル70のみを交換することとしてもよい。
なお、燃料電池15に加えられた衝撃の方向が、積層方向に対して斜めとなる方向である場合には、ステップS120では積層方向の衝撃有りと判断し、ステップS160では直交方向の衝撃有りと判断すればよい。そして、第1圧損パラメータ値を用いた判断と、第2圧損パラメータ値を用いた判断との両方を行なえばよい。あるいは、受けた衝撃における積層方向成分と直交方向成分とのうちのいずれがより大きいのかを判断可能であれば、より大きな成分の方向に対応する圧損パラメータ値のみを用いた判断を行ない、検査を効率化してもよい。
さらに、本実施形態では、圧損パラメータ値を用い、流体流路における圧損の上昇に基づいて、燃料電池15における変形の有無を判断するため、燃料電池15の変形に係る判断の精度を高めることができる。燃料電池の変形を判断する方法としては、例えば、燃料電池の側面上において積層方向に延びるマークを付して、マークのずれをスタックケース外から視認する方向があるが、マークのずれが視認により判別し難い程度のずれ量であっても、燃料電池全体の変形によって内部の流路全体としては圧損が上昇している場合が有り得る。このような場合であっても、本実施形態の検査方法によれば、燃料電池の変形を精度良く判定し、電池性能が低下した燃料電池に関して、より適切に交換の判断をすることができる。
また、燃料電池が衝撃を受けた後に交換の要否等を判断する方法として、燃料電池車両に設けられたエアバッグ用の圧力センサや加速度センサが検出した情報を用いる方法も考えられる。しかしながら、このような他の目的で設けられたセンサは、一般に、燃料電池からは離間した位置に設けられており、燃料電池15が受けた衝撃を検出する精度が不十分になる場合も有り得る。本実施形態によれば、燃料電池15における圧損パラメータ値を用いているため、燃料電池15が受けた衝撃に起因する燃料電池15の変形を、精度良く検出することができる。
なお、ステップS130で複数種類の第1圧損パラメータ値を用いる場合、あるいは、ステップS170で複数種類の第2圧損パラメータ値を用いる場合には、例えば、判断に用いる全ての圧損パラメータ値が対応する基準値以上である場合に、対応する方向の衝撃に起因する変形有りと判断することができる。また、判断に用いる複数種類の圧損パラメータ値のうちの少なくとも1種でも基準値以上であれば、衝撃に起因する変形有りと判断してもよい。これにより、より小さな衝撃が加えられた場合であっても、燃料電池15の変形を検出することができる。
B.第2実施形態:
図9は、本発明の第2実施形態としての検査システム12において、制御部50のCPUが実行する燃料電池検査処理ルーチンを表わすフローチャートである。第2実施形態の検査システム12は、第1実施形態と同様の構成であるため、同じ参照番号を付して詳しい説明は省略する。また、図9において、図4と共通する工程には同じステップ番号を付して、詳しい説明は省略する。図9の燃料電池検査処理ルーチンは、検査システム12において、図4に示す検査処理ルーチンに代えて実行される。
本ルーチンが実行されると、制御部50のCPUは、衝撃の前後における圧損パラメータ値を取得し(ステップS100)、燃料電池15に加えられた衝撃の方向を取得する(ステップS110)。そして、ステップS110の結果に基づいて、衝撃の方向を判定する(ステップS220)。なお、燃料電池15に加えられた衝撃の方向が、積層方向に対して斜めとなる方向である場合には、ステップS220では、受けた衝撃における積層方向成分と直交方向成分とのうちの大きい方に対応する方向を、衝撃の方向として判定すればよい。
ステップS220において、衝撃の方向が積層方向であると判定された場合には、制御部50のCPUは、第1圧損パラメータ値の変化量を、第1基準値と比較する(ステップS130)。そして、第1圧損パラメータ値の変化量が第1基準値未満であれば、積層方向の衝撃に起因する変形無しと判断し(ステップS140)、本ルーチンを終了する。また、ステップS130において、第1圧損パラメータ値の変化量が第1基準値以上であれば、積層方向の衝撃に起因する変形有りと判断して(ステップS150)本ルーチンを終了する。
ステップS220において、衝撃の方向が直交方向であると判定された場合には、制御部50のCPUは、第2圧損パラメータ値の変化量を、第2基準値と比較する(ステップS170)。そして、第2圧損パラメータ値の変化量が第2基準値未満であれば、直交方向の衝撃に起因する変形無しと判断し(ステップS180)、本ルーチンを終了する。また、ステップS170において、第2圧損パラメータ値の変化量が第2基準値以上であれば、直交方向の衝撃に起因する変形有りと判断して(ステップS190)、本ルーチンを終了する。
以上のように構成された第2実施形態によれば、第1実施形態と同様の効果が得られる。また、予め衝撃の方向を判定して、衝撃の方向に応じた圧損パラメータ値についてのみ、変形に係る判断を行なうため、検査処理を効率化することができる。
なお、図9では、まず、衝撃の前後における第1圧損パラメータ値および第2圧損パラメータ値を取得して(ステップS100)、その後、衝撃の方向を取得しているが(ステップS110)、異なる構成としてもよい。例えば、最初に衝撃の方向を取得し(ステップS110)、その後、積層の方向を判定し(ステップS220)、衝撃の方向が積層方向である場合には、衝撃の前後における第1圧損パラメータ値を取得して、ステップS130〜S150の処理を実行してもよい。また、上記ステップS220において、衝撃の方向が直交方向であると判定される場合には、衝撃の前後における第2圧損パラメータ値を取得して、ステップS170〜S190の処理を実行してもよい。
C.第3実施形態:
図10は、本発明の第3実施形態としての検査システム112の概略構成を表わす説明図である。検査システム112は、制御部50が取得部55を有しない点以外は、第1実施形態の検査システム12と同様の構成を有する。そのため、検査システム12と共通する部分には同じ参照番号を付して、詳しい説明は省略する。
図11は、第3実施形態としての検査システム112において、制御部50のCPUが実行する燃料電池検査処理ルーチンを表わすフローチャートである。図11において、図4と共通する工程には同じステップ番号を付して、詳しい説明は省略する。図11の燃料電池検査処理ルーチンは、第1実施形態と同様に、燃料電池システム10を搭載する車両の衝突などにより燃料電池15に衝撃が加わった後に、制御部50に対して検査開始に係る指示が入力されることにより、実行される。
本ルーチンが実行されると、制御部50のCPUは、衝撃の前後における圧損パラメータ値を取得する(ステップS100)。その後、制御部50のCPUは、第1圧損パラメータ値の変化量を、第1基準値と比較する(ステップS130)。そして、第1圧損パラメータ値の変化量が第1基準値未満であれば、積層方向の衝撃に起因する変形無しと判断し(ステップS140)、第1圧損パラメータ値の変化量が第1基準値以上であれば、積層方向の衝撃に起因する変形有りと判断する(ステップS150)。
また、制御部50のCPUは、第2圧損パラメータ値の変化量を、第2基準値と比較する(ステップS170)。そして、第2圧損パラメータ値の変化量が第2基準値未満であれば、直交方向の衝撃に起因する変形無しと判断して(ステップS180)、本ルーチンを終了する。ステップS170において、第2圧損パラメータ値の変化量が第2基準値以上であれば、直交方向の衝撃に起因する変形有りと判断して(ステップS190)、本ルーチンを終了する。
以上のように構成された第3実施形態によれば、第1実施形態と同様に、検査のための特別な構成を燃料電池15に設けることなく、簡便な構成および動作により、衝撃に起因する燃料電池15の変形を検出することができる。また、第1圧損パラメータ値の変化量および第2圧損パラメータ値の変化量の双方を用いて、衝撃に起因する燃料電池15の変形に係る判断を行なうため、衝撃の方向を取得して判定する必要が無く、検査処理の動作を簡素化できる。すなわち、第1圧損パラメータ値は、主として積層方向の衝撃に起因する変形により変化し、第2圧損パラメータ値は、主として直交方向の衝撃に起因する変形により変化する。そのため、双方の圧損パラメータ値を用いて判断することで、いずれの方向の衝撃が加えられた場合であっても、衝撃の方向を予め判断することなく、衝撃に起因する燃料電池15の変形を精度良く検出することができる。
第1あるいは第2実施形態のように、衝撃の方向を予め判定する場合には、衝撃の方向は、例えば、衝撃後の燃料電池15の外観を検査者が目視することにより知ることができる。しかしながら、外観上は損傷が見られない方向であっても、燃料電池15が衝撃を受けている場合がある。また、衝撃の方向は、燃料電池車両に搭載したエアバッグ用のセンサ等が検出した情報から知ることも可能であるが、車両が衝撃を受けた後に燃料電池15が車両内の周囲の部材に衝突することにより、さらに衝撃を受ける場合もある。本実施形態によれば、このような場合であっても、燃料電池15に加えられた衝撃に起因して発生した燃料電池15の変形を、精度良く検出することができる。
また、第3実施形態によれば、衝撃の方向を予め判定しなくても、衝撃の方向を特定することができるため、図6および図7に基づいて説明したように、衝撃に起因して燃料電池15が変形したときに、単セル70の部分交換を適切に行なうことが可能になる。
D.他の実施形態:
第1ないし第3実施形態の燃料電池15は、車両の駆動用電源としたが、異なる構成としてもよい。車両以外の移動体の駆動用電源として用いる場合や、定置型電源として用いる場合であっても、燃料電池15が外部から衝撃を受ける場合には、同様の検査方法を採用することができる。
第1および第2実施形態では、予め衝撃の方向を取得して、積層方向の衝撃と直交方向の衝撃の各々に起因する変形の発生を検出可能にしたが、異なる構成としてもよい。例えば、燃料電池15に加えられる衝撃の方向が一定であると考えられる場合には、衝撃の方向の取得、および、衝撃が加わらない方向に係る圧損パラメータ値を用いた判断を行なわないこととしてもよい。あるいは、積層方向と直交方向のうちのいずれか一方の方向の衝撃に起因する燃料電池の変形の検出に関して、圧損パラメータ値を用いる方法とは異なる方法を採用する場合には、圧損パラメータ値としては、積層方向と直交方向のうちの他方の方向の衝撃に対応する圧損パラメータ値のみを用いることとすればよい。
また、第3実施形態のステップS150およびステップS190において、基準値以上となった圧損パラメータ値の種類に応じて燃料電池15が受けた衝撃の向きを判断することなく、単に、第1圧損パラメータ値の変化量と第2圧損パラメータ値の変化量との双方について、各々に対応する基準値との比較により、燃料電池15における変形の発生を判断することとしてもよい。衝撃の方向を特定しなくても、積層方向の衝撃に対応して変化する第1圧損パラメータ値と、直交方向の衝撃に対応して変化する第2圧損パラメータ値と、を用いることで、いずれの方向の衝撃が加わったときにも、燃料電池15が変形したことを精度良く検出することができる。
本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10…燃料電池システム
12,112…検査システム
15…燃料電池
16…スタックケース
20…燃料ガス系
21…水素タンク
22…燃料ガス供給流路
23…燃料ガス排出流路
24…燃料ガス循環流路
25…燃料ガス放出流路
26…流量計
30…酸化ガス系
31…エアコンプレッサ
32…酸化ガス供給流路
33…酸化ガス排出流路
36…流量計
39…調節弁
40…可変調圧弁
42…インジェクタ
44…燃料ガスポンプ
45…気液分離器
46…パージ弁
50…制御部
51…記憶部
52…検出部
53…導出部
54…判断部
55…取得部
56…駆動制御部
60…冷媒系
61…ラジエータ
62…冷媒ポンプ
63…流量計
64…冷媒流路
70…単セル
71a〜73a,71b〜73b…マニホールド孔
74…セル内燃料ガス流路
75…セル内酸化ガス流路
76…ガスケット
77…セル間冷媒流路
80,81…ガスセパレータ
82…樹脂フレーム
83…スリット部
84…電解質層
85…アノード
86…カソード
87,88…ガス拡散層
89…接着層
90…MEA
91…MEGA

Claims (8)

  1. 複数の単セルを積層して形成され、積層面に平行に流体が流れる流体流路として、反応ガスが流れるガス流路と冷媒が流れる冷媒流路とが内部に設けられた燃料電池における、変形の発生を検査する検査方法であって、
    前記燃料電池内部に設けられた前記流体流路における圧力損失と相関する圧損パラメータ値であって、予め定めた流量の前記流体を前記流体流路に流すときの圧損パラメータ値として、前記燃料電池に衝撃が加えられる前の圧損パラメータ値と、前記燃料電池に衝撃が加えられた後の圧損パラメータ値とを取得し、
    取得した前記衝撃前の圧損パラメータ値に対する、前記衝撃後の圧損パラメータ値の変化量を求め、
    前記圧力損失の増加を示す前記変化量が、予め定めた基準値以上であれば、前記燃料電池の内部に変形が生じていると判断し、
    前記判断では、前記ガス流路における前記圧損パラメータ値である第1圧損パラメータ値の前記変化量が第1基準値以上である場合と、前記冷媒流路における前記圧損パラメータ値である第2圧損パラメータ値の前記変化量が第2基準値以上である場合と、の少なくともいずれかであれば、前記衝撃に起因して前記燃料電池の内部に変形が生じていると判断する
    検査方法。
  2. 請求項1に記載の検査方法であって、
    前記判断は、
    前記単セルの積層方向の衝撃が前記燃料電池に加えられたときに、前記第1圧損パラメータ値の前記変化量が前記第1基準値以上であれば、前記積層方向の衝撃に起因する変形が生じているとする第1の判断と、
    前記積層方向に直交する直交方向の衝撃が前記燃料電池に加えられたときに、前記第2圧損パラメータ値の前記変化量が前記第2基準値以上であれば、前記直交方向の衝撃に起因する変形が生じているとする第2の判断と、
    のうちの少なくとも一方を含む検査方法。
  3. 請求項2に記載の検査方法であって、さらに、
    前記燃料電池に前記衝撃が加えられた後に、前記衝撃の方向を取得し、
    前記衝撃の方向が、前記積層方向の場合には、前記第1の判断を行ない、
    前記衝撃の方向が、前記直交方向の場合には、前記第2の判断を行なう
    検査方法。
  4. 請求項1に記載の検査方法であって、
    前記判断では、
    前記第1圧損パラメータ値における前記変化量が前記第1基準値以上であれば、前記単セルの積層方向の衝撃に起因する変形が生じていると判断し、
    前記第2圧損パラメータ値における前記変化量が前記第2基準値以上であれば、前記積層方向に直交する直交方向の衝撃に起因する変形が生じていると判断する
    検査方法。
  5. 請求項1から請求項4までのいずれか一項に記載の検査方法であって、
    前記燃料電池には、前記燃料電池に供給する燃料ガスの流量調節に係る燃料ガス供給装置として、前記燃料電池に前記燃料ガスを供給する燃料ガス供給流路に前記燃料ガスを吐出するインジェクタであって、該インジェクタの開弁デューティー比によって、前記燃料ガス供給流路に供給する前記燃料ガスの量を調節するインジェクタと、前記燃料電池から排出される燃料排ガスを前記燃料ガス供給流路に再循環させる循環流路に設けられた燃料ガスポンプと、を含む燃料ガス供給装置が接続され、
    前記第1圧損パラメータ値は、
    前記燃料ガス供給装置に含まれる前記燃料ガスポンプ以外の機器の駆動量が一定であるときに、前記燃料電池内に形成される前記燃料ガスの流路における前記燃料ガスの流量が、予め定めた流量となるときの、前記燃料ガスポンプにおける消費電力の値と、
    前記燃料ガス供給装置に含まれる前記インジェクタ以外の機器の駆動量が一定であるときに、前記燃料電池内に形成される前記燃料ガスの流路における前記燃料ガスの流量が、予め定めた流量となるときの、前記インジェクタにおける開弁デューティー比の値と、
    前記燃料電池内に形成される前記燃料ガスの流路における前記燃料ガスの流量が予め定めた流量となるように、予め定めた指令値にて、前記燃料ガスポンプおよび前記インジェクタを含む前記燃料ガス供給装置を駆動したときに、前記燃料ガスの流路内を実際に流れた前記燃料ガスの流量の値と、
    のうちの少なくともいずれか一つを含む検査方法。
  6. 請求項1から請求項5までのいずれか一項に記載の検査方法であって、
    前記燃料電池には、前記燃料電池に供給する酸化ガスの流量調節に係る酸化ガス供給装置として、前記燃料電池に前記酸化ガスを供給する酸化ガス供給流路に前記酸化ガスを吐出するコンプレッサと、前記燃料電池から排出される酸化排ガスが流れる酸化ガス排出流路の開度を調節する調節弁と、を含む酸化ガス供給装置が接続され、
    前記第1圧損パラメータ値は、
    前記酸化ガス供給装置に含まれる前記コンプレッサ以外の機器の駆動量が一定であるときに、前記燃料電池内に形成される前記酸化ガスの流路における前記酸化ガスの流量が、予め定めた流量となるときの、前記コンプレッサにおける消費電力の値と、
    前記酸化ガス供給装置に含まれる前記調節弁以外の機器の駆動量が一定であるときに、前記燃料電池内に形成される前記酸化ガスの流路における前記酸化ガスの流量が、予め定めた流量となるときの、前記調節弁の開度の値と、
    前記燃料電池内に形成される前記酸化ガスの流路における前記酸化ガスの流量が予め定めた流量となるように、予め定めた指令値にて、前記コンプレッサおよび前記調節弁を含む前記酸化ガス供給装置を駆動したときに、前記酸化ガスの流路内を実際に流れた前記酸化ガスの流量の値と、
    のうちの少なくともいずれか一つを含む検査方法。
  7. 請求項1から請求項6までのいずれか一項に記載の検査方法であって、
    前記燃料電池には、前記燃料電池内に形成される前記冷媒流路に供給する冷媒の流量調節に係る冷媒供給装置として、前記冷媒流路内で前記冷媒を流すための駆動力を生じる冷媒ポンプを含む冷媒供給装置が接続され、
    前記第2圧損パラメータ値は、
    前記冷媒供給装置に含まれる前記冷媒ポンプ以外の機器の駆動量が一定であるときに、前記燃料電池内に形成される前記冷媒流路における前記冷媒の流量が、予め定めた流量となるときの、前記冷媒ポンプにおける消費電力の値と、
    前記燃料電池内に形成される前記冷媒流路における前記冷媒の流量が予め定めた流量となるように、予め定めた指令値にて、前記冷媒ポンプを含む前記冷媒供給装置を駆動したときに、前記冷媒流路内を実際に流れた前記冷媒の流量の値と、
    のうちの少なくともいずれか一つを含む検査方法。
  8. 複数の単セルを積層して形成され、積層面に平行に流体が流れる流体流路として、反応ガスが流れるガス流路と冷媒が流れる冷媒流路とが内部に設けられた燃料電池における、変形の発生を検査する検査システムであって、
    前記燃料電池内部に設けられた前記流体流路における圧力損失と相関する圧損パラメータ値であって、予め定めた流量の前記流体を前記流体流路に流すときの圧損パラメータ値として、前記燃料電池に衝撃が加えられる前の圧損パラメータ値を記憶する記憶部と、
    前記燃料電池に衝撃が加えられた後に、前記予め定めた流量の前記流体を前記流体流路に流したときの前記圧損パラメータ値を検出する検出部と、
    前記記憶部に記憶された前記衝撃前の圧損パラメータ値に対する、前記検出部が検出した前記衝撃後の圧損パラメータ値の変化量を導出する導出部と、
    前記圧力損失の増加を示す変化量が、予め定めた基準値以上であれば、前記燃料電池の内部に変形が生じていると判断する判断部と、
    を備え、
    前記判断部は、前記ガス流路における前記圧損パラメータ値である第1圧損パラメータ値の前記変化量が第1基準値以上である場合と、前記冷媒流路における前記圧損パラメータ値である第2圧損パラメータ値の前記変化量が第2基準値以上である場合と、の少なくともいずれかであれば、前記燃料電池の内部に変形が生じていると判断する
    検査システム。
JP2018022906A 2018-02-13 2018-02-13 燃料電池の検査方法および検査システム Active JP7062993B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018022906A JP7062993B2 (ja) 2018-02-13 2018-02-13 燃料電池の検査方法および検査システム
US16/256,176 US10930954B2 (en) 2018-02-13 2019-01-24 Inspection method of fuel cell and inspection system thereof
DE102019102038.7A DE102019102038A1 (de) 2018-02-13 2019-01-28 Prüfverfahren für brennstoffzelle und prüfsystem dafür
CN201910098483.6A CN110165254B (zh) 2018-02-13 2019-01-31 燃料电池的检查方法及其检查系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018022906A JP7062993B2 (ja) 2018-02-13 2018-02-13 燃料電池の検査方法および検査システム

Publications (2)

Publication Number Publication Date
JP2019139987A true JP2019139987A (ja) 2019-08-22
JP7062993B2 JP7062993B2 (ja) 2022-05-09

Family

ID=67400041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018022906A Active JP7062993B2 (ja) 2018-02-13 2018-02-13 燃料電池の検査方法および検査システム

Country Status (4)

Country Link
US (1) US10930954B2 (ja)
JP (1) JP7062993B2 (ja)
CN (1) CN110165254B (ja)
DE (1) DE102019102038A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103626A (ja) * 2019-12-25 2021-07-15 トヨタ自動車株式会社 燃料電池
CN113847546A (zh) * 2021-06-10 2021-12-28 潍柴动力股份有限公司 一种检测储氢气瓶的方法及设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903954A (zh) * 2021-11-17 2022-01-07 中汽研新能源汽车检验中心(天津)有限公司 一种氢燃料电池水故障在线诊断测试装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115512A (ja) * 2005-10-20 2007-05-10 Toyota Motor Corp 燃料電池の診断方法および当該診断方法を実施するための手段を備えた燃料電池システム
JP2009022129A (ja) * 2007-07-13 2009-01-29 Toyota Motor Corp 移動体
JP2009277501A (ja) * 2008-05-14 2009-11-26 Toyota Motor Corp 燃料電池の検査装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264567A (ja) * 1986-05-12 1987-11-17 Toshiba Corp 燃料電池冷却水システム
US20030077495A1 (en) * 2001-10-19 2003-04-24 Scartozzi John P. Fuel cell system, and method of testing a fuel cell for a gas leak
JP2006040618A (ja) * 2004-07-23 2006-02-09 Nissan Motor Co Ltd 燃料電池システム
JP4936504B2 (ja) 2005-09-26 2012-05-23 キヤノン株式会社 クレードル装置と操作端末とのそのプログラム、及びカメラシステム
JP4965569B2 (ja) * 2006-07-28 2012-07-04 パナソニック株式会社 燃料電池及びそれを備える燃料電池システム
FR2915552B1 (fr) * 2007-04-27 2009-11-06 Technip France Conduite tubulaire flexible pour le transport d'hydrocarbures gazeux.
JP2009266537A (ja) 2008-04-24 2009-11-12 Toyota Motor Corp 燃料電池の検査方法及び検査装置
JP5176986B2 (ja) * 2008-05-09 2013-04-03 日産自動車株式会社 エバポパージシステムのリーク診断装置
DE102009029118A1 (de) * 2009-09-02 2011-03-03 Loi Thermprocess Gmbh Strahlheizvorrichtung
WO2012035585A1 (ja) * 2010-09-16 2012-03-22 トヨタ自動車株式会社 燃料電池用セパレータ、燃料電池、燃料電池の製造方法
CN103477379B (zh) * 2011-04-18 2015-01-21 丰田自动车株式会社 车辆用碰撞检测装置
JP5935778B2 (ja) * 2013-09-27 2016-06-15 トヨタ自動車株式会社 ダミーセル及び燃料電池スタック
JP6003863B2 (ja) * 2013-10-02 2016-10-05 トヨタ自動車株式会社 セパレータおよび燃料電池
JP6036652B2 (ja) * 2013-11-11 2016-11-30 トヨタ自動車株式会社 燃料電池に用いられるセパレータおよび燃料電池
JP6020421B2 (ja) * 2013-11-15 2016-11-02 トヨタ自動車株式会社 燃料電池用セパレータおよび燃料電池スタックの製造方法
JP5910640B2 (ja) * 2014-01-15 2016-04-27 トヨタ自動車株式会社 燃料電池
JP6201869B2 (ja) * 2014-04-02 2017-09-27 トヨタ自動車株式会社 電動車両の制御装置及び制御方法
JP5831597B1 (ja) 2014-06-06 2015-12-09 トヨタ自動車株式会社 電動車両
JP6229203B2 (ja) 2014-08-29 2017-11-15 トヨタ車体株式会社 燃料電池スタック
JP6137128B2 (ja) * 2014-11-13 2017-05-31 トヨタ自動車株式会社 燃料電池の反応ガスの漏洩を検出する方法および燃料電池システム
JP6314799B2 (ja) * 2014-11-13 2018-04-25 トヨタ自動車株式会社 燃料電池システム及び燃料電池の制御方法
JP6183417B2 (ja) * 2015-06-26 2017-08-23 トヨタ自動車株式会社 燃料電池システム
JP6387928B2 (ja) * 2015-09-03 2018-09-12 トヨタ自動車株式会社 燃料電池システム
JP6308189B2 (ja) * 2015-09-08 2018-04-11 トヨタ自動車株式会社 燃料電池システム
JP6593057B2 (ja) * 2015-09-17 2019-10-23 ブラザー工業株式会社 燃料電池、制御方法、及びコンピュータプログラム
DE102015222635A1 (de) * 2015-11-17 2017-05-18 Volkswagen Ag Brennstoffzellensystem sowie Verfahren zum Zurückführen von Wasser in einem Brennstoffzellensystem
JP6451668B2 (ja) * 2016-03-04 2019-01-16 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
JP6565865B2 (ja) * 2016-10-27 2019-08-28 トヨタ自動車株式会社 燃料電池システムおよび車両
US20180323452A1 (en) * 2017-05-05 2018-11-08 GM Global Technology Operations LLC Modeling and use of virtual temperature sensor at fuel cell stack active area outlet with stack coolant bypass
US10638674B2 (en) * 2017-12-26 2020-05-05 Earth Purified LLC System and method for reclaiming and optimizing land

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115512A (ja) * 2005-10-20 2007-05-10 Toyota Motor Corp 燃料電池の診断方法および当該診断方法を実施するための手段を備えた燃料電池システム
JP2009022129A (ja) * 2007-07-13 2009-01-29 Toyota Motor Corp 移動体
JP2009277501A (ja) * 2008-05-14 2009-11-26 Toyota Motor Corp 燃料電池の検査装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103626A (ja) * 2019-12-25 2021-07-15 トヨタ自動車株式会社 燃料電池
JP7238761B2 (ja) 2019-12-25 2023-03-14 トヨタ自動車株式会社 燃料電池
CN113847546A (zh) * 2021-06-10 2021-12-28 潍柴动力股份有限公司 一种检测储氢气瓶的方法及设备
CN113847546B (zh) * 2021-06-10 2023-01-06 潍柴动力股份有限公司 一种检测储氢气瓶的方法及设备

Also Published As

Publication number Publication date
US20190252703A1 (en) 2019-08-15
JP7062993B2 (ja) 2022-05-09
CN110165254B (zh) 2022-03-18
CN110165254A (zh) 2019-08-23
US10930954B2 (en) 2021-02-23
DE102019102038A1 (de) 2019-08-14

Similar Documents

Publication Publication Date Title
EP2070145B1 (en) Fuel cell system
JP5155997B2 (ja) 燃料電池、燃料電池システム、および、燃料電池システムの制御方法
JP7062993B2 (ja) 燃料電池の検査方法および検査システム
JP2009110806A (ja) 燃料電池システム、および、燃料電池システムの起動制御方法
JP2016038981A (ja) 燃料電池のリーク検査方法
JP2017045648A (ja) 診断装置
JP2013258043A (ja) 燃料電池診断装置
US20140057198A1 (en) Device and method for stacking fuel cell stack
WO2013180080A1 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP6240936B2 (ja) 燃料電池システムの運転方法および燃料電池システム
JP5876318B2 (ja) 燃料電池システム
JP6299585B2 (ja) 燃料電池システム
JP5773084B2 (ja) 燃料電池システム
JP2011258396A (ja) 燃料電池システム
JP5013034B2 (ja) 燃料電池システム
JP4734829B2 (ja) 燃料電池システム
JP6028347B2 (ja) 燃料電池システム
JP2009145046A (ja) 水素脆化センサ
JP2006286273A (ja) 燃料電池システム
JP7338597B2 (ja) バルブ異常判定装置およびその方法
JP5223203B2 (ja) 燃料電池
JP2006244856A (ja) セル積層体に含まれるセルの診断方法
JP5119571B2 (ja) 燃料電池システムおよび反応ガス流量算出方法
JP2009252654A (ja) 燃料電池システム、循環流量の推定方法及びこれを用いた運転方法
JP2017195030A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220404

R151 Written notification of patent or utility model registration

Ref document number: 7062993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151