JP2019117111A - 原子間力顕微鏡及び原子間力顕微鏡の位置設定方法 - Google Patents

原子間力顕微鏡及び原子間力顕微鏡の位置設定方法 Download PDF

Info

Publication number
JP2019117111A
JP2019117111A JP2017250994A JP2017250994A JP2019117111A JP 2019117111 A JP2019117111 A JP 2019117111A JP 2017250994 A JP2017250994 A JP 2017250994A JP 2017250994 A JP2017250994 A JP 2017250994A JP 2019117111 A JP2019117111 A JP 2019117111A
Authority
JP
Japan
Prior art keywords
cantilever
unit
imaging
force microscope
atomic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017250994A
Other languages
English (en)
Other versions
JP7031852B2 (ja
Inventor
信義 山岸
Nobuyoshi Yamagishi
信義 山岸
隆史 森居
Takashi Morii
隆史 森居
孝夫 岡田
Takao Okada
孝夫 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Res Institute Of Biomolecule Metrology Co Ltd
Research Institute of Biomolecule Metrology Co Ltd
Original Assignee
Res Institute Of Biomolecule Metrology Co Ltd
Research Institute of Biomolecule Metrology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Res Institute Of Biomolecule Metrology Co Ltd, Research Institute of Biomolecule Metrology Co Ltd filed Critical Res Institute Of Biomolecule Metrology Co Ltd
Priority to JP2017250994A priority Critical patent/JP7031852B2/ja
Publication of JP2019117111A publication Critical patent/JP2019117111A/ja
Application granted granted Critical
Publication of JP7031852B2 publication Critical patent/JP7031852B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】計測開始前のアライメント設定を自動で行うことが可能な原子間力顕微鏡及び原子間力顕微鏡の位置設定方法を提供する。【解決手段】第1の方向に撮像方向が設定され、カンチレバー13、試料台11、及びレーザ光を撮像する上下方向カメラ32と、前記第1の方向とは異なる第2の方向に撮像方向が設定され、カンチレバー13、試料台11、及びレーザ光を撮像する側方カメラ31を有する。上下方向カメラ32と側方カメラ31で撮像された画像に基づいて、カンチレバー13及び試料台11の位置を自動設定する。【選択図】図1

Description

本発明は、原子間力顕微鏡及びその位置設定方法に係り、特に、測定に用いる各機器の位置を設定する技術に関する。
原子間力顕微鏡(AFM:Atomic Force Microscope)は、カンチレバーの先端に設けた探針と試料に作用する原子間力を計測し、試料の形状を測定する。カンチレバーは、片持ちバネ構造を有し、探針と試料表面を微小な力で接触させ、カンチレバーのたわみ量が一定になるように探針・試料間距離(Z軸方向の距離)をフィードバック制御しながら、水平面上(X−Y軸平面上)に走査することで、表面形状を画像化する。
このような原子間力顕微鏡においては、試料の測定を開始する前に、各機器のアライメント設定を行う必要がある。例えば、特許文献1には、レーザビームアライメントを調整するために、音響光学変調器を用いて、レーザビームをX−Y方向に偏向させることが記載されている。しかし、特許文献1では、試料台、カンチレバー、フォトディテクタ(検出器)のアライメント設定について開示されていない。従来は、上下方向(探針から試料に向く方向)に撮像軸を有するカメラを設置し、該カメラで撮影される画像をモニタ等に表示して、操作者が手動操作で、各機器のアライメント設定を行っている。
特開平10−104245号公報
しかしながら、従来における原子間力顕微鏡では、計測開始前のアライメント設定時に、操作者がモニタを視認しながらアライメント設定を行うので、熟練した操作者と経験の少ない操作者で、アライメント設定に要する時間が大きく変化する。このため、計測に多くの時間を要することがあり、操作者の熟練度によらないアライメント設定が望まれていた。
本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、計測開始前のアライメント設定を自動で行うことが可能な原子間力顕微鏡及び原子間力顕微鏡の位置設定方法を提供することにある。
上記目的を達成するため、本願発明は、カンチレバー、測定対象となる試料を載置する試料台、及び、前記カンチレバーに照射するレーザ光の位置を合わせて、前記試料の形状を測定する原子間力顕微鏡において、第1の方向に撮像方向が設定され、前記カンチレバー、前記試料台、及び前記レーザ光を撮像する第1の撮像部と、前記第1の方向とは異なる第2の方向に撮像方向が設定され、前記カンチレバー、前記試料台、及び前記レーザ光を撮像する第2の撮像部と、前記第1の撮像部、及び第2の撮像部で撮像された画像に基づいて、前記カンチレバー及び前記試料台の位置を設定する位置設定部と、を備えたことを特徴とする。
本発明に係る原子間力顕微鏡は、第1の撮像部、及び第2の撮像部で撮像された画像に基づいて、カンチレバー及び試料台の位置を設定するので、計測開始前のアライメント設定を自動で行うことができる。このため、初心者でも長時間を要することなく容易にアライメント設定が可能となる。
図1は、本発明の一実施形態に係る原子間力顕微鏡の構成を示すブロック図である。 図2は、フォトダイオードの構成を模式的に示す説明図である。 図3は、側方カメラで撮像されたカンチレバー付近の画像を示す説明図である。 図4は、上下方向カメラで撮像されたカンチレバー付近の画像を示す説明図である。 図5Aは、本発明の一実施形態に係る原子間力顕微鏡の位置設定方法を示すフローチャートの第1の分図である。 図5Bは、本発明の一実施形態に係る原子間力顕微鏡の位置設定方法を示すフローチャートの第2の分図である。
以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係る原子間力顕微鏡の構成を示すブロック図である。本実施形態に係る原子間力顕微鏡100は、スキャナ12(試料台移動部)、カンチレバー13、レーザダイオード14、及びフォトダイオード15(検出器)を備えており、カンチレバー13のたわみ量が一定になるように、スキャナ12を上下方向(第1の方向)に変位させ、この変位量に基づいて試料の形状を測定するものである。
図1に示すように、本実施形態に係る原子間力顕微鏡100は、計測対象となる試料10を載置する試料台11と、該試料台11の下方に設けられて試料台11を支持するスキャナ12を備えている。即ち、試料台11は、第1の方向、及び第1の方向を法線方向とする平面方向に移動可能な試料台移動部(スキャナ12)に設けられている。スキャナ12は、ピエゾアクチュエータを備えており、試料台11を水平方向(X−Y平面)、及び鉛直方向(Z方向)にナノメートル(nm)のオーダーで微細にスライド移動させることができる。
試料台11の上部近傍には、片持ちバネ構造を有するカンチレバー13が設けられている。カンチレバー13は、後端が支持部材41に接続され、更に、該支持部材41は水平面方向(X−Y平面方向)に移動可能なカンチレバー移動ステージ16(カンチレバー移動部)に接続されている。従って、カンチレバー移動ステージ16を水平方向に移動させることにより、カンチレバー13の探針13aを水平方向の所望の位置へ移動させることが可能である。
カンチレバー13の上方には、ダイクロミラー19が設けられ、更に該ダイクロミラー19の側方にはレーザダイオード14が設けられている。レーザダイオード14とダイクロミラー19との間には、偏向ビームスプリッタ20が設けられ、該偏向ビームスプリッタ20の上方にはフォトダイオード15が設けられている。
レーザダイオード14は、例えば半導体レーザでありレーザ光を照射する。ダイクロミラー19は、レーザ光の照射方向に対し側面視で略45度傾いて配置されており、レーザ光を反射してカンチレバー13の先端部(探針13aの背面側)に照射する。更に、ダイクロミラー19は、カンチレバー13の先端部で反射した反射光を偏向ビームスプリッタ20の方向に反射させる。偏向ビームスプリッタ20に導入された反射光は、該偏向ビームスプリッタ20にて再度反射され、フォトダイオード15に導入される。更に、図では省略しているが、フォトダイオード15に導入される光を集光するレンズを設ける構成としてもよい。
フォトダイオード15は、水平方向(X−Y平面方向)に移動可能なフォトダイオード移動ステージ17(検出器移動部)に固定されている。従って、フォトダイオード移動ステージ17を作動することにより、フォトダイオード15を水平方向(X−Y平面の方向)の適切な位置に移動させることができる。
フォトダイオード15は、図2(a)に示すように2ブロックに分割されたフォトディテクタ15a(第1の検出部)、15b(第2の検出部)を有している。なお、フォトディテクタは、2分割に限定されず、4分割のフォトディテクタを用いることもできる。フォトダイオード15は、差動増幅器18に接続され、差動増幅器18は、コントローラ23に接続されている。
差動増幅器18は、各フォトディテクタ15a、15bで検出された信号の和信号、差信号を検出して、コントローラ23に出力する。例えば、図2(b)に示すように、フォトダイオード15に入射するレーザ光Q1の一部がフォトダイオード15から外れている場合には、検出信号Sa、Sbの和信号が小さくなる。図2(c)に示すように、レーザ光の中心がフォトダイオード15の中心から外れている場合には、検出信号Sa、Sbの差信号が大きくなる。従って、和信号、差信号をフィードバックすることにより、フォトダイオード15が適切な位置に来るようにレーザ光の位置を設定する。その結果、図2(a)に示すようにフォトダイオード15の中心にレーザ光Q1が照射されるようになる。
また、図1に示すように、カンチレバー13の上方には、カンチレバー13と、カンチレバー13に照射されるレーザ光、及び試料台11を撮影可能な上下方向カメラ32(第1の撮像部)が設けられている。該上下方向カメラ32は、撮像軸がZ方向(第1の方向、カンチレバー13の曲げ変位方向)とされている。なお、カンチレバー13が試料台11の下方に設置される構成(図1の上下が逆転する構成)の場合には、上下方向カメラ32は、カンチレバー13の下方に設けられることになる。上下方向カメラ32で撮像された画像データは、コントローラ23に出力される。
上下方向カメラ32とカンチレバー13との間には、カンチレバー13の探針13aを撮像した画像の焦点を合わせるための対物レンズ21が設けられている。該対物レンズ21は、Z方向(上下方向)に移動可能な対物レンズ移動ステージ22(対物レンズ移動部)に設けられている。従って、該対物レンズ移動ステージ22をZ方向に移動させることにより、対物レンズ21をZ方向に変位させることができ、上下方向カメラ32で撮像される画像の焦点を合わせることができる。
カンチレバー13の側方には、カンチレバー13と、該カンチレバー13に照射されるレーザ光、及び試料台11を撮像可能な側方カメラ31(第2の撮像部)が設けられている。該側方カメラ31は、撮像軸がX−Y平面上で、カンチレバー13の長手方向に直交する方向(第2の方向)となるように配置されている。即ち、図1の紙面に直交する方向が撮像方向となるように配置されている。側方カメラ31の撮像軸は、上下方向カメラ32の撮像軸に対して直交する。従って、側方カメラ31で撮像される画像から、カンチレバー13の探針13aの位置、該カンチレバー13に照射されるレーザの位置、試料台11の位置を認識することができる。
コントローラ23は、フォトダイオード差分検出部231と、画像処理部232と、対物レンズ駆動部233と、焦点検出部234と、移動量演算部235、及び駆動信号発生部236を備えている。移動量演算部235、及び駆動信号発生部236は、上下方向カメラ32、及び側方カメラ31で撮像された画像に基づいて、カンチレバー13及び試料台11の位置を設定する位置設定部としての機能を有している。
フォトダイオード差分検出部231は、差動増幅器18より出力される和信号、差信号を取得して、フォトダイオード15のずれ方向、ずれ量を演算する。例えば、図2に示す2つのフォトディテクタ15a、15bによる検出信号をそれぞれSa、Sbとすると、和信号(Sa+Sb)、差信号(Sa−Sb)が得られる。そして、和信号(Sa+Sb)が予め設定した閾値よりも大きくなり、且つ、差信号(Sa−Sb)の絶対値がほぼゼロとなるように、フォトダイオード15の位置ずれを補正する。
即ち、フォトダイオード差分検出部231は、2つのフォトディテクタ15a、15bの検出値の和信号、及び差信号に基づいて、フォトダイオード15の位置ずれ量を検出する位置ずれ量検出部としての機能を備えている。
画像処理部232は、上下方向カメラ32で撮像された画像データ、及び側方カメラ31で撮像された画像データに基づいて、カンチレバー13の位置、該カンチレバー13に照射されるレーザの位置、及び試料台11の位置を検出する。
移動量演算部235は、画像処理部232で検出されたカンチレバー13、レーザ光、及び試料台11の位置に基づいて、それぞれが適正な位置関係となるように、カンチレバー13、及び試料台11の移動量を演算する。更に、演算した移動量に基づいて、それぞれが適正な位置に設定されるように、スキャナ12、及びカンチレバー移動ステージ16に出力する駆動信号を生成する。更に、上記したように、2つのフォトディテクタ15a、15bの検出信号Sa、Sbの和信号(Sa+Sb)を最大とし、差信号(Sa−Sb)が最小値或いはゼロとするための、フォトダイオード移動ステージ17の移動量を演算する。そして、フォトダイオード15を適正な位置とするための駆動信号を生成する。
焦点検出部234は、上下方向カメラ32で撮像される画像に基づき、画像の焦点が合っているか否かを判断し、焦点が合っていない場合には、焦点補正量を演算する。
対物レンズ駆動部233は、焦点検出部234で演算された焦点補正量に基づき、対物レンズ移動ステージ22に駆動信号を出力する。従って、上下方向カメラ32で撮像される画像の焦点が合うように、対物レンズ移動ステージ22が駆動することになる。
なお、図1に示すコントローラ23は、試料の測定を開始する前に、各機器の位置合わせを行うアライメント時に要する構成要素のみを示しており、試料を計測する際に用いるフィードバック回路等の制御回路の記載を省略している。また、コントローラ23は、例えば、CPU、メモリ、及び入出力部を備える汎用のマイクロコントローラ等で構成することができる。
[アライメント方法の説明]
次に、原子間力顕微鏡100を構成する各機器の位置を調整するアライメント方法について説明する。原子間力顕微鏡100は、試料の測定精度を向上させるために、試料10、カンチレバー13、レーザ光の位置関係を正確に設定する必要がある。本実施形態では、上下方向カメラ32及び側方カメラ31でカンチレバー13、試料台11、及びレーザ光を撮像し、撮像した各画像を用いることにより、測定開始時に自動で各機器のアライメントを行う。
具体的には、上下方向カメラ32で撮像した画像、及び側方カメラ31で撮像した画像を取得することにより、試料台11、カンチレバー13、及びレーザ光の三次元的な位置関係を認識する。そして、各機器間のずれ量を三次元的に計測し、このずれ量を補正する。
更に、上下方向カメラ32で撮像された画像の焦点が合うように対物レンズ21のZ方向の位置を調整し、焦点ずれを防止する。
[処理手順の説明の説明]
次に、本実施形態に係る原子間力顕微鏡100におけるアライメントの処理手順を、図5A、図5Bに示すフローチャートを参照して説明する。
初めに、図5AのステップS11において、画像処理部232は、上下方向カメラ32及び側方カメラ31で撮像された画像データを取得する。図3は、側方カメラ31で撮像された画像の例を示す説明図であり、図3に示すように、試料台11、及びその上に載置された試料10、及びカンチレバー13が含まれる。図4は、上下方向カメラ32で撮像された画像の例を示す説明図であり、図4に示すように、試料台11、カンチレバー、及び支持部材41が含まれる。更に図示を省略するが、各画像にはレーザ光が含まれる。ステップS12において、各画像データからカンチレバー13、レーザ光の画像を認識する。
ステップS13において、焦点検出部234は、上下方向カメラ32で撮像された画像の焦点を検出し、ステップS14において、焦点が合っているか否かを判断する。焦点が合っていなければステップS15において、対物レンズ駆動部233は、対物レンズ移動ステージ22を上下方向に駆動して焦点合わせを行う。焦点が合った場合には、ステップS16において、対物レンズ駆動部233は、この位置に対物レンズ21を固定する。
ステップS17において、位置検出部193は、カンチレバー13、及びレーザ光のX、Y、Z軸の位置座標を求める。即ち、撮像方向が異なる2台のカメラ31、32で撮像しているので、三次元位置座標を求めることができる。
ステップS18において、カンチレバー13のレーザ光照射位置(探針13aの背面に設定した位置)の座標と、レーザ光が照射される位置の座標の、X−Y平面上の差分ΔX(cy)、ΔY(cy)を計算する。
ステップS19において、駆動信号発生部236は、上記の差分ΔX(cy)、ΔY(cy)がゼロとなるように、カンチレバー移動ステージ16をX−Y平面方向に移動させる。
ステップS20において、駆動信号発生部236は、上記の差分ΔX(cy)、ΔY(cy)が共にゼロになったか否かを判断し、ゼロでない場合には(ステップS20でNO)、ステップS17に処理を戻す。ゼロである場合には(ステップS20でYES)、図5Bに示すステップS21に処理を進める。
ステップS21において、フォトダイオード差分検出部231は、差動増幅器18で演算されるフォトダイオード15の2つのフォトディテクタ15a、15bでの検出データの和信号、差信号を取得する。
ステップS22において、移動量演算部235は、検出データの和信号、差信号に基づいて、フォトディテクタ15a、15bとレーザ光の照射点との相対位置を検出する。更に、ステップS23において、フォトダイオード15と、該フォトダイオード15に照射されるレーザ光の、X−Y平面上の差分ΔX(fr)、ΔY(fr)を計算する。
ステップS24において、駆動信号発生部236は、上記の差分ΔX(fr)、ΔY(fr)がゼロとなるように、フォトダイオード移動ステージ17を駆動する駆動信号を生成し、この駆動信号を出力してフォトダイオード移動ステージ17をX−Y平面方向に移動させる。
ステップS25において、駆動信号発生部236は、上記の差分ΔX(fr)、ΔY(fr)が共にゼロになったか否かを判断し、ゼロでない場合には(ステップS25でNO)、ステップS22に処理を戻す。ゼロである場合には(ステップS25でYES)、ステップS26に処理を進める。
ステップS26において、画像処理部232は、上下方向カメラ32及び側方カメラ31で撮像された画像データを取得し、ステップS27において、各画像データからカンチレバー13、及び試料10の画像を認識する。
ステップS28において、移動量演算部235は、カンチレバー13、及び試料10のX、Y、Z軸の位置座標を求める。即ち、撮像方向が異なる2台のカメラ31、32で撮像しているので、三次元位置座標を求めることができる。
ステップS29において、カンチレバー13の座標と、試料10の座標の、X−Y平面上の差分ΔX(cs)、ΔY(cs)を演算する。
ステップS30において、移動量演算部235は、上記の差分ΔX(cs)、ΔY(cs)がゼロとなるように、スキャナ12をX−Y平面方向に移動させる。
ステップS31において、移動量演算部235は、上記の差分ΔX(cs)、ΔY(cs)が共にゼロになったか否かを判断し、ゼロでない場合には(ステップS31でNO)、ステップS28に処理を戻す。ゼロである場合には、各機器の位置合わせは終了したものと判断してアライメントを終了する。
こうして、カンチレバー13、レーザ光、及び試料台11の相対的な位置を合わせることができるのである。
このようにして、本実施形態に係る原子間力顕微鏡では、カンチレバー13近傍の上方或いは下方に上下方向カメラ32を設け、更に、カンチレバー13の側方に側方カメラ31を設けている。そして、各カメラ31、32で撮像された画像に基づいて、カンチレバー13、レーザ光、試料10の三次元座標を検出する。従って、検出した三次元座標に基づいて、カンチレバー13、レーザ光、及び試料10を所望の位置に合わせることができる。
また、フォトダイオード15の2つのフォトディテクタ15a、15bで検出される検出信号に基づいて、フォトダイオードの位置を合わせることができる。
従って、従来のように測定開始前のアライメントに高度な技術が必要とされず、初心者でも高精度に位置設定することができ、アライメントに長時間を要するという従来の課題を解決することが可能になる。
なお、上述した実施形態では、2分割のフォトダイオード15を用いる例について説明したが、例えば4分割のフォトダイオード15を用いる構成とすることも可能である。
以上、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
11 試料台
12 スキャナ
13 カンチレバー
13a 探針
14 レーザダイオード
15 フォトダイオード
15a、15b フォトディテクタ
16 カンチレバー移動ステージ(カンチレバー移動部)
17 フォトダイオード移動ステージ(検出器移動部)
18 差動増幅器
19 ダイクロミラー
20 偏向ビームスプリッタ
21 対物レンズ
22 対物レンズ移動ステージ(対物レンズ移動部)
23 コントローラ
31 側方カメラ(第2の撮像部)
32 上下方向カメラ(第1の撮像部)
41 支持部材
100 原子間力顕微鏡
231 フォトダイオード差分検出部
232 画像処理部
233 対物レンズ駆動部
234 焦点検出部
235 移動量演算部(位置設定部)
236 駆動信号発生部(位置設定部)

Claims (7)

  1. カンチレバー、試料を載置する試料台、及び、前記カンチレバーに照射するレーザ光の位置を合わせて、前記試料の形状を測定する原子間力顕微鏡であって、
    第1の方向に撮像方向が設定され、前記カンチレバー、前記試料台、及び前記レーザ光を撮像する第1の撮像部と、
    前記第1の方向とは異なる第2の方向に撮像方向が設定され、前記カンチレバー、前記試料台、及び前記レーザ光を撮像する第2の撮像部と、
    前記第1の撮像部、及び第2の撮像部で撮像された画像に基づいて、前記カンチレバー及び前記試料台の位置を設定する位置設定部と、
    を備えたことを特徴とする原子間力顕微鏡。
  2. 前記第1の方向は、前記カンチレバーの曲げ変位方向であり、
    前記試料台は、前記第1の方向、及び第1の方向を法線方向とする平面方向に移動可能な試料台移動部に設けられており、
    前記位置設定部は、前記試料台移動部を作動して、前記試料台の位置を設定すること
    を特徴とする請求項1に記載の原子間力顕微鏡。
  3. 前記カンチレバーは、前記第1の方向を法線方向とする平面方向に移動可能なカンチレバー移動部に設けられており、
    前記位置設定部は、前記カンチレバー移動部を作動して、前記カンチレバーの位置を設定すること
    を特徴とする請求項1または2に記載の原子間力顕微鏡。
  4. 前記第1の撮像部と前記カンチレバーとの間に設けられ、前記第1の撮像部で撮像する画像の焦点を合わせる対物レンズと、
    前記第1の撮像部で撮像された画像の焦点を検出する焦点検出部と、
    前記焦点検出部で検出される焦点が適正となるように、前記対物レンズを前記第1の方向に変位させる対物レンズ駆動部と、を更に備えたこと
    を特徴とする請求項1〜3のいずれか1項に記載の原子間力顕微鏡。
  5. 第1の検出部と第2の検出部の少なくとも2つの検出部を有し、前記カンチレバーで反射したレーザ光を検出する検出器と、
    前記第1の検出部の検出値と第2の検出部の検出値の和信号、及び差信号に基づいて、前記検出器の位置ずれ量を検出する位置ずれ量検出部と、
    前記検出器を移動可能な検出器移動部と、を更に備え、
    前記位置設定部は、前記位置ずれ量がゼロとなるように前記検出器移動部を制御すること
    を特徴とする請求項1〜4のいずれか1項に記載の原子間力顕微鏡。
  6. 前記第1の方向は鉛直方向であり、前記第2の方向は前記第1の方向に直交すること
    を特徴とする請求項1〜5のいずれか1項に記載の原子間力顕微鏡。
  7. 原子間力顕微鏡に設けられるカンチレバー、試料台、及び前記カンチレバーに照射するレーザ光の位置を合わせる原子間力顕微鏡の位置設定方法であって、
    撮像方向が第1の方向に設定された第1の撮像部により、前記カンチレバー、前記試料台、及び前記レーザ光を撮像するステップと、
    撮像方向が前記第1の方向とは異なる第2の方向に設定された第2の撮像部により、前記カンチレバー、前記試料台、及び前記レーザ光を撮像するステップと、
    前記第1の撮像部、及び第2の撮像部で撮像された画像に基づいて、前記カンチレバー及び前記試料台の位置を設定するステップと、
    を備えたことを特徴とする原子間力顕微鏡の位置設定方法。
JP2017250994A 2017-12-27 2017-12-27 原子間力顕微鏡及び原子間力顕微鏡の位置設定方法 Active JP7031852B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017250994A JP7031852B2 (ja) 2017-12-27 2017-12-27 原子間力顕微鏡及び原子間力顕微鏡の位置設定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250994A JP7031852B2 (ja) 2017-12-27 2017-12-27 原子間力顕微鏡及び原子間力顕微鏡の位置設定方法

Publications (2)

Publication Number Publication Date
JP2019117111A true JP2019117111A (ja) 2019-07-18
JP7031852B2 JP7031852B2 (ja) 2022-03-08

Family

ID=67304319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250994A Active JP7031852B2 (ja) 2017-12-27 2017-12-27 原子間力顕微鏡及び原子間力顕微鏡の位置設定方法

Country Status (1)

Country Link
JP (1) JP7031852B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104245A (ja) * 1996-09-27 1998-04-24 Nikon Corp 微小変位測定装置
JP2007170862A (ja) * 2005-12-19 2007-07-05 Keyence Corp 走査型プローブ顕微鏡装置
JP2010190590A (ja) * 2009-02-16 2010-09-02 Jeol Ltd 走査プローブ顕微鏡及びその動作方法
JP2013058288A (ja) * 2011-09-09 2013-03-28 Hitachi High-Technologies Corp 磁気ヘッド素子検査方法及びその装置
JP2014044075A (ja) * 2012-08-24 2014-03-13 Hitachi High-Tech Science Corp 走査型プローブ顕微鏡

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101923A (ja) 2014-03-05 2017-06-08 株式会社日立製作所 走査プローブ顕微鏡及び、これを用いた試料測定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104245A (ja) * 1996-09-27 1998-04-24 Nikon Corp 微小変位測定装置
JP2007170862A (ja) * 2005-12-19 2007-07-05 Keyence Corp 走査型プローブ顕微鏡装置
JP2010190590A (ja) * 2009-02-16 2010-09-02 Jeol Ltd 走査プローブ顕微鏡及びその動作方法
JP2013058288A (ja) * 2011-09-09 2013-03-28 Hitachi High-Technologies Corp 磁気ヘッド素子検査方法及びその装置
JP2014044075A (ja) * 2012-08-24 2014-03-13 Hitachi High-Tech Science Corp 走査型プローブ顕微鏡

Also Published As

Publication number Publication date
JP7031852B2 (ja) 2022-03-08

Similar Documents

Publication Publication Date Title
JP6363382B2 (ja) 膜厚測定装置及び方法
JP6685849B2 (ja) 光干渉測定装置及び光干渉測定方法
CN112748510A (zh) 一种兼具自动调平功能的扫描式自动对焦方法及装置
JPS58181005A (ja) 自動焦点位置合せ及び測定装置並びに方法
JP6135820B2 (ja) 走査型プローブ顕微鏡
JP2006118867A (ja) 走査型プローブ顕微鏡及びそれを用いた計測方法
JP5121619B2 (ja) プローブ顕微鏡の探針位置合せ方法およびその方法により操作されるプローブ顕微鏡
JP6643328B2 (ja) リソグラフィ構造を生成するための光学系
JP5096852B2 (ja) 線幅測定装置および線幅測定装置の検査方法
JP2007218846A (ja) 寸法計測方法、撮像装置、制御装置および寸法計測装置
JP7031852B2 (ja) 原子間力顕微鏡及び原子間力顕微鏡の位置設定方法
WO2014112085A1 (ja) 画像取得装置及び画像取得装置のフォーカス方法
JP4197340B2 (ja) 三次元形状測定装置
JP6014902B2 (ja) 焦点制御装置及びその方法
JP2001311866A (ja) 顕微鏡のオートフォーカス方法及び装置
JP2019155402A (ja) レーザ光の芯出し方法及びレーザ加工装置
JP2018066767A (ja) 形状測定装置、構造物製造システム、及び形状測定方法
WO2016189651A1 (ja) 走査型プローブ顕微鏡
JP2005172610A (ja) 3次元測定装置
JP5359778B2 (ja) オートフォーカス制御装置およびその制御を用いた計測処理装置、ならびにオートフォーカス制御方法
JP2009258135A (ja) 3次元測定装置
JP2007139557A (ja) 複合型顕微鏡
JP2791121B2 (ja) 微細表面形状計測装置
JP6389759B2 (ja) 非接触エッジ形状測定方法及びその装置
JP6945244B2 (ja) レーザ処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220216

R150 Certificate of patent or registration of utility model

Ref document number: 7031852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150