JP6135820B2 - 走査型プローブ顕微鏡 - Google Patents

走査型プローブ顕微鏡 Download PDF

Info

Publication number
JP6135820B2
JP6135820B2 JP2016508424A JP2016508424A JP6135820B2 JP 6135820 B2 JP6135820 B2 JP 6135820B2 JP 2016508424 A JP2016508424 A JP 2016508424A JP 2016508424 A JP2016508424 A JP 2016508424A JP 6135820 B2 JP6135820 B2 JP 6135820B2
Authority
JP
Japan
Prior art keywords
sample
thickness
probe
scanning
scanner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016508424A
Other languages
English (en)
Other versions
JPWO2015140996A1 (ja
Inventor
雅人 平出
雅人 平出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2015140996A1 publication Critical patent/JPWO2015140996A1/ja
Application granted granted Critical
Publication of JP6135820B2 publication Critical patent/JP6135820B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/06Circuits or algorithms therefor
    • G01Q10/065Feedback mechanisms, i.e. wherein the signal for driving the probe is modified by a signal coming from the probe itself

Description

本発明は、主として試料表面の3次元形状を観察するために用いられる走査型プローブ顕微鏡(SPM=Scanning Probe Microscope)に関する。
走査型プローブ顕微鏡は、微小な探針(プローブ)により試料の表面を走査しながら試料との間の何らかの相互作用を検出することで、その試料表面について高い倍率の観察画像を取得することができる顕微鏡である。走査型プローブ顕微鏡には、探針と試料との間に流れる電流を相互作用として検出する走査型トンネル顕微鏡(STM=Scanning Tunneling Microscope)や、探針と試料との間に作用する原子間力を相互作用として検出する原子間力顕微鏡(AFM=Atomic Force Microscope)などがある。
従来から知られている原子間力顕微鏡の検出部の原理的構成を図6に示す(例えば特許文献1など参照)。観察対象である試料10は略円筒形状であるピエゾスキャナ11の上に設けられた試料台12の上に保持される。このピエゾスキャナ11は試料10を互いに直交するX、Yの2軸方向に走査するXYスキャナ11aと、X軸及びY軸に対し直交するZ軸方向に微動させるZスキャナ11bとを含んでいる。これらのスキャナ11a、11bは、それぞれ外部から印加される電圧によって所定範囲で変位を生じる圧電素子(ピエゾ素子)を駆動源としている。試料10の上方には先端に探針14を備えるカンチレバー13が配置される。カンチレバー13に取り付けられた尖鋭な探針14の先端を試料10のごく近傍(数nm以下の間隙)に近づけると、探針14の先端と試料10の原子との間には原子間力(引力又は反発力)が作用する。この状態で、試料表面に沿って探針14と試料10とがX−Y平面内で相対移動するようにピエゾスキャナ11により走査を行いつつ、上記原子間力を一定に保つように探針14の試料10からの距離(Z軸方向高さ)をフィードバック制御する。このときのZ軸方向のフィードバック量は試料10の表面の凹凸に応じたものとなるから、これに基づいて試料表面の3次元画像を得ることができる。
図6の構成においては、カンチレバー13のZ軸方向の変位を検出するために、その上部に測光部20が設けられている。すなわち、レーザダイオード15から出射したレーザ光をレンズ16で集光した後にビームスプリッタ17で反射させ、カンチレバー13の先端付近に照射する。そして、その反射光をミラー18を介して光検出器19で検出する。光検出器19はカンチレバー13の変位方向(Z軸方向)に複数(通常二つ又は四つ)に分割された受光面を有する。従って、カンチレバー13が上下に変位すると複数の受光面に入射する光量の割合が変化するから、その複数の受光光量に応じた検出信号を演算処理することでカンチレバー13の変位量を算出することができる。
特開2005-233669号公報
走査型プローブ顕微鏡によって試料表面を走査する際には、上述の通りXYスキャナ11aに含まれる複数の電極にそれぞれ電圧を印加することにより、探針14と試料10とをX−Y平面内で相対移動させる。但し、このときピエゾスキャナ11は圧電素子の変形によって図7のような首振り運動をするため、ピエゾスキャナ11の先端に取り付けられた試料のX−Y平面内における移動量は、該試料の厚みに応じて変動する(なお、同図では簡略化のため試料台の図示を省略している)。例えば、標準的な厚さの試料10aを載置した状態でXYスキャナ11aの圧電素子に所定の電圧を印加したとき、試料表面の任意の点P(例えば中心点)の水平方向の移動量が距離Aであったとする。ここで、同じピエゾスキャナ11に前記試料10aに代えてそれより厚い試料10bを載置した状態でXYスキャナ11aの圧電素子に前記と同じ電圧を印加すると、該試料10b表面の任意の点P’(例えば中心点)の水平方向の移動量である距離Bは先程の距離Aよりも大きくなる。
このため、試料の移動量を正確に制御するためには、試料の厚みに応じてスキャナの走査パラメータ(試料の移動量と圧電素子への印加電圧の関係)を較正する必要がある。こうした走査パラメータの較正を行う際には較正用の標準試料として、例えば精密格子板が用いられる。精密格子板は表面に微細な格子状の溝が刻まれたガラス板であり、該ガラス板の厚さ及び前記溝同士の間隔が既知である。この精密格子板をピエゾスキャナ11に載置し、ピエゾスキャナ11への印加電圧を変化させつつ該精密格子表面の3次元形状を観察することにより、XYスキャナ11aへの印加電圧に対する試料表面の移動量を知ることができる。しかしながら、厚さの異なる試料を測定する度にこうした較正を行うのはユーザにとって非常に煩雑で手間の掛かる作業となる。また、実際に観察したい試料の厚さと較正用の標準試料の厚さとを一致させるのは容易ではないため、正確な較正を行うことが難しいという問題もある。
本発明は上記の点に鑑みてなされたものであり、その目的とするところは、試料表面の正確な観察を試料の厚さにかかわらず簡単に行うことのできる走査型プローブ顕微鏡を提供することにある。
上記課題を解決するために成された本発明に係る走査型プローブ顕微鏡は、微小な探針によって試料の表面を走査することにより、試料表面の3次元形状や物理量を検出する走査型プローブ顕微鏡であって、
a) 円筒形のピエゾスキャナを含み、印加電圧によって前記ピエゾスキャナを屈曲させることにより該ピエゾスキャナの上端面に載置された試料を移動させる試料移動手段と、
b) 前記印加電圧を制御することにより前記探針と前記試料との相対位置を制御する走査制御手段と、
c) 前記試料の厚さ値を取得する試料厚さ取得手段と、
d) 前記厚さ値を用いて、前記ピエゾスキャナへの印加電圧と前記試料の表面の水平方向への変位量との対応関係を表す相関情報を決定する相関情報決定手段と、
を有し、前記走査制御手段が、前記相関情報を用いて前記相対位置の制御を行うことを特徴としている。
また、上記課題を解決するために成された本発明に係る走査型プローブ顕微鏡は、微小な探針によって試料の表面を走査することにより、試料表面の3次元形状や物理量を検出する走査型プローブ顕微鏡であって、
a) 円筒形のピエゾスキャナを含み、印加電圧によって前記ピエゾスキャナを屈曲させることにより該ピエゾスキャナの上端面に載置された試料を移動させる試料移動手段と、
b) 前記試料移動機構により前記探針に対して前記試料を移動させることで収集された前記試料の表面の各位置における所定の物理量を示す3次元分布データを生成する3次元分布データ生成手段と、
c) 前記試料の厚さ値を取得する試料厚さ取得手段と、
d) 前記厚さ値を用いて、前記ピエゾスキャナへの印加電圧と前記試料の表面の水平方向への変位量との対応関係を表す相関情報を決定する相関情報決定手段と、
を有し、前記3次元分布データ生成手段が、前記相関情報を用いて前記3次元分布データの生成を行うことを特徴とするものとしてもよい。
更に、本発明に係る走査型プローブ顕微鏡は、
e) 前記試料の厚さを計測する試料厚さ計測手段、
を有し、前記試料厚さ取得手段が、前記試料厚さ計測手段から前記試料の厚さ値を取得するものとしてもよい。
なお、前記試料厚さ計測手段は、前記試料と前記探針が互いに接近又は離間する方向に前記ピエゾスキャナ及び/又は探針を駆動する機構であって、前記ピエゾスキャナと前記探針とを予め定められた距離だけ離間させた状態から、前記ピエゾスキャナ及び/又は前記探針を駆動して前記ピエゾスキャナの上端面に載置された前記試料の表面と前記探針とを所定の距離まで接近させた状態までの前記ピエゾスキャナ及び/又は探針の駆動量から前記試料の厚さ値を求めるものとすることができる。
また、走査プローブ顕微鏡自体にはこうした試料厚さ計測手段を設けず、走査型プローブ顕微鏡の外部に設けられた他の計測装置(例えばレーザ顕微鏡や段差計)によって計測された試料の厚さ値や、ユーザにより入力された厚さ値を前記試料厚さ取得手段によって取得するようにしてもよい。
すなわち、前記本発明に係る走査プローブ顕微鏡は、更に、
f)ユーザからの試料の厚さ値の入力を受け付けるユーザ入力受付手段、
を有し、前記試料厚さ取得手段が、前記ユーザ入力受付手段から前記試料の厚さ値を取得するものとすることができる。
また、前記本発明に係る走査プローブ顕微鏡は、更に、
g)外部の計測装置からの前記試料厚さの計測値の入力を受け付ける計測値入力受付手段、
を有し、前記試料厚さ取得手段が、前記計測値入力受付手段から前記試料の厚さ値を取得するものとすることもできる。
上記構成を有する本発明に係る走査型プローブ顕微鏡によれば、試料の厚さ値を考慮して生成された前記相関情報に基づいて走査制御手段による制御又は前記3次元分布データ生成手段によるデータ処理が行われる。そのため、測定しようとする試料の厚みに応じてユーザが煩雑な較正作業を行うことなく、簡単に試料表面の正確な観察を行うことが可能となる。
本発明の第1実施例による走査型プローブ顕微鏡の要部の構成図。 相関情報の決定方法の一例を説明する図。 相関情報の決定方法の別の例を説明する図。 本発明の第2実施例による走査型プローブ顕微鏡の要部の構成図。 本発明の第3実施例による走査型プローブ顕微鏡の要部の構成図。 原子間力顕微鏡の検出部の原理的構成を示す図。 試料の厚さと水平方向の変位量との関係を説明する模式図。
[実施例1]
図1は本発明の第1実施例による走査型プローブ顕微鏡の要部の構成図である。既に説明した図6と同一の構成要素については、図6で付与したものと下二桁が共通する符号を付与し、適宜説明を省略する。なお、本実施例(及び後述の実施例2、3)では本発明に係る走査型プローブ顕微鏡を原子間力顕微鏡とするが、その他の走査型プローブ顕微鏡、例えば走査型トンネル顕微鏡にも本発明を同様に適用することができる。
本実施例の走査型プローブ顕微鏡において、探針114の先端を試料110に近接させて表面観察を行うとき、Z軸方向に2分割された光検出器119からの検出信号は変位量算出部131に入力され、変位量算出部131は両受光面における受光光量の差や比などからカンチレバー113の変位量を算出して走査制御部132に入力する。走査制御部132は、探針114と試料110表面との間の原子間力が常に一定になるように、カンチレバー113の変位量に基づいてピエゾスキャナ111をZ軸方向に変位させる電圧値を算出する。そして、算出した値の電圧をスキャナ駆動部133からピエゾスキャナ111に印加することにより、Zスキャナ111bをZ軸方向に微動させる。また、走査制御部132は予め決められた走査パターンに従って、試料110がX−Y平面内で探針114に対して相対移動するようにX軸、Y軸方向の電圧値を算出する。そして、算出した値の電圧をスキャナ駆動部133からピエゾスキャナ111に印加することにより、XYスキャナ111aをX軸及びY軸方向に微動させる。Z軸方向のフィードバック量(スキャナへの印加電圧)を反映した信号はデータ処理部134にも送られ、データ処理部134はX軸、Y軸方向の各位置においてその信号を処理することによって試料表面の3次元画像を再現し、これを表示部135の画面上に描出する。
走査制御部132が上述したようにピエゾスキャナ111を3軸方向に独立に微動させる際に、ピエゾスキャナ111への印加電圧(スキャナ電圧)とそれに対応した試料110の変位量との関係を示す相関情報が必要となる。相関情報は、例えばX軸、Y軸、Z軸方向毎の単位印加電圧当たりの変位量の値や、前記各方向における変位量と印加電圧との関係を表す式、グラフ、又はテーブルであり、走査制御部132の内部メモリに保存され、上記のようなスキャナ駆動制御の際に利用される。
但し、XYスキャナ11aへの印加電圧と前記試料表面のX軸方向及びY軸方向(すなわち水平方向)への移動量との関係は、上述の通り、試料の厚さに応じて変化する(図7参照)。そこで、本実施例の走査型プローブ顕微鏡では、スキャナ駆動のための前記相関情報を次のようにして設定する。
まず、試料厚さ取得部138が以下のようにして試料台112に載置された試料110の厚さを計測する。図1において、上述した測光部120及びカンチレバー113はピエゾスキャナ111の上方に設けられたヘッド部121に収容されており、該ヘッド部121は、送りネジ136とネジ駆動機構137を含む粗動機構によって上下方向に移動可能となっている。ここで、ヘッド部121をある決まった高さ(「初期位置」と呼ぶ)から探針114と試料表面との距離が予め定めた値となる高さ(「観察位置」と呼ぶ)まで下降させたときの該ヘッド部121の移動量は試料の厚さによって変化するため、該移動量に基づいて試料110の厚さを求めることができる。
本実施例の走査プローブ顕微鏡による試料厚さの計測に際しては、予め、ヘッド部121を前記初期位置から探針114と試料台112の表面との距離が所定値になるまで下降させた際のヘッド部121の移動量を「基準移動量」として試料厚さ取得部138に記憶させておく。なお、ヘッド部121の移動量は送りネジ136のピッチとネジ駆動機構137による送りネジ136の駆動量から求めることができる。そして、観察対象の試料110を試料台112に載置した状態でヘッド部121を前記初期位置から前記観察位置まで下降させ、そのときのヘッド部121の移動量と前記基準移動量との差から、試料厚さ取得部138が試料110の厚さを算出する。
なお、粗動機構は、上記のような送りネジ136とネジ駆動機構137を含むものに限らず、例えば、圧電素子を利用してヘッド部121を上下動させるものとしてもよい。この場合、ヘッド部121を初期位置から探針114と試料110(又は試料台112)の表面との距離が所定値となる高さまで降下させる際の、前記圧電素子への印加電圧に基づいてヘッド部121の移動量を求めることができる。
続いて、相関情報決定部139が前記試料厚さ取得部138によって取得された試料厚さの値に基づいてXYスキャナ111aへの印加電圧と試料110のX軸方向及びY軸方向の移動量との関係を表す相関情報を決定する。相関情報の決定方法としては、例えば以下のようなものが考えられる。
A.検量線を用いる方法
この方法では、予め厚さの異なる複数の標準試料(例えば上述の精密格子板)を用いてXYスキャナ111aへの印加電圧と試料表面の移動量との関係を表す複数の検量線(図2参照)を作成して相関情報決定部139に記憶させておく。そして、該複数の検量線に基づき、試料110の厚さに応じた検量線を該試料の観察に適用する相関情報として決定し、走査制御部132の内部メモリに記憶させる。ここで、前記「試料110の厚さに応じた検量線」とは、前記複数の検量線のうち、観察対象の試料110の厚さと同一又は厚さが最も近い標準試料について得られた検量線であってもよく、あるいは前記複数の検量線のうち、観察対象の試料110に近い厚さの複数の標準試料について得られた二つ以上の検量線から演算によって該試料110の厚さにおける検量線を求めたものであってもよい。
B.基準面の移動量と試料厚さから算出する方法
この方法では、予めXYスキャナ111aへの印加電圧と基準面(例えば試料台112の表面)の移動量との関係を表す検量線を作成して相関情報決定部139に記憶させておく。このとき、図3に示すように、基準面の高さ(例えばピエゾスキャナ111の下端面から試料台112の表面までの距離)をh、試料110の厚さをh、ピエゾスキャナ111の中心軸と水平面とがなす角度をθとすると、試料表面の水平方向の移動量Xは次の式で表される。
=(h+h)cosθ …(1)
また、基準面の水平方向の移動量をXとすると、前記θは次の式で表される。
θ=cos−1(X/h) …(2)
従って、式(1)に式(2)を代入することにより、基準面の水平方向の移動量と試料表面の水平方向の移動量との関係を求めることができる。更に、予め相関情報決定部139に記憶された前記検量線により基準面の水平方向の移動量とXYスキャナ111aへの印加電圧との関係が既知であるから、以上よりXYスキャナ111aへの印加電圧と試料110の表面の水平方向の移動量との関係を求めることができる。相関情報決定部139は、この関係を表す情報(式やテーブル)を相関情報として決定し、走査制御部132の内部メモリに記憶させる。
その後、試料110の観察が開始されると、走査制御部132が前記相関情報とX軸及びY軸方向における目的の移動量とに基づいてXYスキャナ111aへの印加電圧の値を決定し、スキャナ駆動部133が該印加電圧をXYスキャナ111aに印加する。これにより、試料110の厚さを考慮した正確なXY走査が行われるため、該走査によって得られたX軸及びY軸方向の各位置における信号(上述のZ軸方向のフィードバック量)をデータ処理部134で処理することにより、歪みのない試料表面の3次元画像を表示部135の画面上に描出させることができる。
なお、上記では探針114が取り付けられたヘッド部121を上下に移動させる粗動機構を利用して試料110の厚さを計測するものとしたが、これに限らず、その他の厚さ計測機構(例えば、段差計やレーザ顕微鏡)を走査プローブ顕微鏡に組み込み、該厚さ計測機構によって計測された試料厚さの値を試料厚さ取得部138に送出するようにしてもよい。
[実施例2]
図4は第2実施例の走査型プローブ顕微鏡の要部の構成図である。既に説明した図1と同一の構成要素については、図1で付与したものと同一の符号を付与し、適宜説明を省略する。
本実施例の走査プローブ顕微鏡は、相関情報決定部139aで決定された相関情報を、走査制御部132aによるピエゾスキャナ111の制御に利用するのではなく、データ処理部134aにおけるデータ処理に利用する点で実施例1と異なっている。
本実施例の走査型プローブ顕微鏡を用いて試料の観察を行う際には、まず、実施例1と同様にして、試料厚さ取得部138で試料110の厚さを取得する。そして、該厚さに基づいて、相関情報決定部139aにてXYスキャナ111aへの印加電圧と試料表面のX軸方向及びY軸方向への移動量との関係を表す相関情報(以下これを「データ処理用相関情報」と呼ぶ)を決定し、データ処理部134aに記憶させる。一方、走査制御部132aの内部メモリには、XYスキャナ111aの制御に用いる情報として、XYスキャナ111aへの印加電圧と基準面(例えば試料台112の表面)のX軸方向及びY軸方向への移動量との関係を表す情報(以下「スキャナ制御用相関情報」と呼ぶ)が予め記憶されている。
続いて、探針114の先端を試料110のごく近傍に近づけた状態で、試料表面に沿って探針114と試料110とが相対移動するようにXYスキャナ111aによる走査を行いつつ、探針114と試料110の間の原子間力を一定に保つように探針114の試料からの距離(Z軸方向高さ)をフィードバック制御する。この試料走査の各時点におけるZスキャナ111bへの印加電圧(すなわちZ軸方向のフィードバック量)及びXYスキャナ111aへの印加電圧を反映した信号はデータ処理部134aにも送られ、データ処理部134aにおける3次元画像の生成に用いられる。
但し、本実施例ではXYスキャナ111aへの印加電圧の制御に、試料台112の表面を基準とした相関情報であるスキャナ制御用相関情報を利用しており、試料110の厚さによるX軸方向及びY軸方向の変位量への影響は考慮されていない。従って、上記信号をそのまま3次元画像の生成に使用すると、得られる3次元画像に歪みが生じることとなる。
そこで本実施例では、データ処理部134aにて、前記データ処理用相関情報(すなわちXYスキャナ111aへの印加電圧と試料表面のX軸及びY軸方向への移動量との関係)と、上記の試料走査の各時点におけるXYスキャナ111aへの印加電圧から、前記各時点における測定点(すなわち前記各フィードバック量が得られた点)の試料110表面における位置を算出する。これにより求められた前記各時点における測定点の位置と、変位量算出部131から与えられた各時点のフィードバック量とを用いて試料表面の3次元画像を構成することにより、試料110の厚さによるX軸方向及びY軸方向の変位量への影響を考慮した歪みのない3次元画像を表示部135の画面上に描出することができる。
[実施例3]
図5は第3実施例の走査型プローブ顕微鏡の要部の構成図である。既に説明した図1と同一の構成要素については、図1で付与したものと同一の符号を付与し、適宜説明を省略する。
本実施例は、試料厚さ取得部138aが、走査プローブ顕微鏡に組み込まれた計測機構から試料厚さの値を取得するのではなく、キーボード等から成る入力部140を介したユーザからの入力により試料厚さの値を取得する点で実施例1と異なっている。試料厚さ取得部138aが取得した試料厚さの値は、実施例1と同様にして相関情報決定部139における相関情報の決定に使用され、該相関情報に基づいて走査制御部132がXYスキャナ111aへの印加電圧を制御する。なお、これに限らず、相関情報決定部139で決定された相関情報を実施例2のようにデータ処理部134におけるデータ処理に使用する構成としてもよい。
以上、本発明を実施するための形態について実施例を挙げて説明を行ったが、本発明は上記の実施例に限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容される。例えば、上記実施例では、試料厚さの値を走査プローブ顕微鏡に組み込まれた計測機構によって計測したり、ユーザからの入力によって取得したりするものとしたが、このほかに、走査プローブ顕微鏡とは別体に構成された計測装置(例えばレーザ顕微鏡や段差計)と接続するためのインターフェースを備え、該インターフェースを介して試料厚さ取得部が前記計測装置による試料厚さの計測値を取得する構成としてもよい。
10、110…試料
11、111…ピエゾスキャナ
11a、111a…XYスキャナ
11b、111b…Zスキャナ
12、112…試料台
13、113…カンチレバー
14、114…探針
15…レーザダイオード
16…レンズ
17…ビームスプリッタ
18…ミラー
19、119…光検出器
20、120…測光部
121…ヘッド部
131…変位量算出部
132、132a…走査制御部
133…スキャナ駆動部
134、134a…データ処理部
135…表示部
136…送りネジ
137…ネジ駆動機構
138、138a…試料厚さ取得部
139…相関情報決定部
140…入力部

Claims (6)

  1. 微小な探針によって試料の表面を走査することにより、試料表面の3次元形状や物理量を検出する走査型プローブ顕微鏡であって、
    a) 円筒形のピエゾスキャナを含み、印加電圧によって前記ピエゾスキャナを屈曲させることにより該ピエゾスキャナの上端面に載置された試料を移動させる試料移動手段と、
    b) 前記印加電圧を制御することにより前記探針と前記試料との相対位置を制御する走査制御手段と、
    c) 前記試料の厚さ値を取得する試料厚さ取得手段と、
    d) 前記厚さ値を用いて、前記ピエゾスキャナへの印加電圧と前記試料の表面の水平方向への変位量との対応関係を表す相関情報を決定する相関情報決定手段と、
    を有し、
    前記走査制御手段が、前記相関情報を用いて前記相対位置の制御を行うことを特徴とする走査型プローブ顕微鏡。
  2. 微小な探針によって試料の表面を走査することにより、試料表面の3次元形状や物理量を検出する走査型プローブ顕微鏡であって、
    a) 円筒形のピエゾスキャナを含み、印加電圧によって前記ピエゾスキャナを屈曲させることにより該ピエゾスキャナの上端面に載置された試料を移動させる試料移動手段と、
    b) 前記試料移動機構により前記探針に対して前記試料を移動させることで収集された前記試料の表面の各位置における所定の物理量を示す3次元分布データを生成する3次元分布データ生成手段と、
    c) 前記試料の厚さ値を取得する試料厚さ取得手段と、
    d) 前記厚さ値を用いて、前記ピエゾスキャナへの印加電圧と前記試料の表面の水平方向への変位量との対応関係を表す相関情報を決定する相関情報決定手段と、
    を有し、
    前記3次元分布データ生成手段が、前記相関情報を用いて前記3次元分布データを生成することを特徴とする走査型プローブ顕微鏡。
  3. e) 前記試料の厚さを計測する試料厚さ計測手段、
    を更に備え、
    前記試料厚さ取得手段が、該試料厚さ計測手段から前記試料の厚さ値を取得することを特徴とする請求項1又は2に記載の走査型プローブ顕微鏡。
  4. 前記試料厚さ計測手段が、前記試料と前記探針が互いに接近又は離間する方向に前記ピエゾスキャナ及び/又は探針を駆動する機構であって、前記ピエゾスキャナ及び前記探針を予め定められた距離だけ離間させた状態から、前記ピエゾスキャナ及び/又は前記探針を駆動して前記ピエゾスキャナの上端面に載置された前記試料の表面と前記探針とを所定の距離まで接近させた状態までの前記ピエゾスキャナ及び/又は探針の駆動量から前記試料の厚さ値を求めることを特徴とする請求項3に記載の走査型プローブ顕微鏡。
  5. f)ユーザからの試料の厚さ値の入力を受け付けるユーザ入力受付手段、
    を更に備え、
    前記試料厚さ取得手段が、前記ユーザ入力受付手段から前記試料の厚さ値を取得することを特徴とする請求項1又は2に記載の走査型プローブ顕微鏡。
  6. g)外部の計測装置からの前記試料厚さの計測値の入力を受け付ける計測値入力受付手段、
    を更に備え、
    前記試料厚さ取得手段が、前記計測値入力受付手段から前記試料の厚さ値を取得することを特徴とする請求項1又は2に記載の走査型プローブ顕微鏡。
JP2016508424A 2014-03-20 2014-03-20 走査型プローブ顕微鏡 Active JP6135820B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057839 WO2015140996A1 (ja) 2014-03-20 2014-03-20 走査型プローブ顕微鏡

Publications (2)

Publication Number Publication Date
JPWO2015140996A1 JPWO2015140996A1 (ja) 2017-04-06
JP6135820B2 true JP6135820B2 (ja) 2017-05-31

Family

ID=54143998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016508424A Active JP6135820B2 (ja) 2014-03-20 2014-03-20 走査型プローブ顕微鏡

Country Status (4)

Country Link
US (1) US9689892B2 (ja)
JP (1) JP6135820B2 (ja)
CN (1) CN106104278B (ja)
WO (1) WO2015140996A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11073535B2 (en) 2019-04-25 2021-07-27 Shimadzu Corporation Scanning probe microscope with case and elastic body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3208956U (ja) * 2016-10-19 2017-03-02 株式会社島津製作所 走査型プローブ顕微鏡
CN106645803B (zh) * 2016-12-14 2019-03-22 国家纳米科学中心 一种双探针原子力显微镜快速逼近装置及方法
JP7048964B2 (ja) * 2018-03-26 2022-04-06 株式会社日立ハイテクサイエンス 走査型プローブ顕微鏡及びその走査方法
JP6631739B1 (ja) * 2019-04-04 2020-01-15 株式会社島津製作所 表面分析装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980060A (ja) * 1995-09-14 1997-03-28 Olympus Optical Co Ltd 走査型プローブ顕微鏡
JPH1090283A (ja) * 1996-09-10 1998-04-10 Olympus Optical Co Ltd 走査型プローブ顕微鏡
US6194813B1 (en) * 1999-09-29 2001-02-27 Jacob Israelachvili Extended-range xyz linear piezo-mechanical scanner for scanning-probe and surface force applications
JP2002125383A (ja) * 2000-10-16 2002-04-26 Japan Science & Technology Corp チューブ型ピエゾアクチュエーター
JP2002350319A (ja) * 2001-03-21 2002-12-04 Seiko Instruments Inc 走査型プローブ顕微鏡
JP4209709B2 (ja) * 2003-03-20 2009-01-14 株式会社キーエンス 変位計
JP2005233669A (ja) 2004-02-17 2005-09-02 Shimadzu Corp 走査型プローブ顕微鏡
KR100687717B1 (ko) * 2004-12-16 2007-02-27 한국전자통신연구원 압전소자를 채용한 마이크로 스테이지
JP4432806B2 (ja) * 2005-03-09 2010-03-17 株式会社島津製作所 走査型プローブ顕微鏡

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11073535B2 (en) 2019-04-25 2021-07-27 Shimadzu Corporation Scanning probe microscope with case and elastic body

Also Published As

Publication number Publication date
US20170131324A1 (en) 2017-05-11
US9689892B2 (en) 2017-06-27
JPWO2015140996A1 (ja) 2017-04-06
WO2015140996A1 (ja) 2015-09-24
CN106104278B (zh) 2019-08-27
CN106104278A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
KR100904390B1 (ko) 주사형 프로브 현미경
JP6135820B2 (ja) 走査型プローブ顕微鏡
US9081028B2 (en) Scanning probe microscope with improved feature location capabilities
WO2010089601A1 (en) Control system for a scanning probe microscope
US9134340B2 (en) Method of investigating a sample surface
JP5410880B2 (ja) 摩擦力測定方法および摩擦力測定装置
JP5121619B2 (ja) プローブ顕微鏡の探針位置合せ方法およびその方法により操作されるプローブ顕微鏡
JP2016017862A (ja) 3次元微動装置
US20150026846A1 (en) Variable Density Scanning
JP5034294B2 (ja) 圧電体薄膜評価装置及び圧電体薄膜の評価方法
WO2010067570A1 (ja) 走査型プローブ顕微鏡の出力処理方法および走査型プローブ顕微鏡
Hausotte et al. Application of a positioning and measuring machine for metrological long-range scanning force microscopy
JP6194863B2 (ja) 走査型プローブ顕微鏡
KR20080110234A (ko) 원자 탐침 현미경의 헤드 모듈부
KR101025657B1 (ko) 원자 현미경 및 이의 영상 보정 방법
Danzebrink et al. Dimensional nanometrology at PTB
KR101587342B1 (ko) 검출기의 좌표보정이 가능한 탐침현미경, 검출기의 좌표보정방법, 탐침현미경 초기화 방법 및 기록매체
JP3892184B2 (ja) 走査型プローブ顕微鏡
Dai et al. True 3D measurements of micro and nano structures
US10697997B2 (en) Scanning probe microscope
JP4448508B2 (ja) 走査型プローブ顕微鏡
KR20240004958A (ko) 크립 보정을 하는 afm 이미징
Sturwald et al. Large scale atomic force microscopy for characterisation of optical surfaces and coatings
Danzebrink et al. Overview of the Metrological Scanning Probe Microscopes at PTB
JP2005069993A (ja) 校正機能付き原子間力/水平力顕微鏡と原子間力/水平力顕微鏡の感度校正方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R151 Written notification of patent or utility model registration

Ref document number: 6135820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151