JP2019073151A - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP2019073151A
JP2019073151A JP2017200336A JP2017200336A JP2019073151A JP 2019073151 A JP2019073151 A JP 2019073151A JP 2017200336 A JP2017200336 A JP 2017200336A JP 2017200336 A JP2017200336 A JP 2017200336A JP 2019073151 A JP2019073151 A JP 2019073151A
Authority
JP
Japan
Prior art keywords
rotational speed
motor generator
engine
feedback torque
engine rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017200336A
Other languages
English (en)
Inventor
皓介 大竹
Kosuke Otake
皓介 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2017200336A priority Critical patent/JP2019073151A/ja
Publication of JP2019073151A publication Critical patent/JP2019073151A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Abstract

【課題】フィードバックトルクが原因で目標エンジン回転速度に対して実エンジン回転速度が乖離することを抑制することができるハイブリッド車両の制御装置を提供すること。【解決手段】エンジンと第1のモータジェネレータと第2のモータジェネレータとの動力を、動力伝達機構を介して駆動軸に出力するハイブリッド車両の制御装置において、実エンジン回転速度を目標エンジン回転速度に追従させるために第1のモータジェネレータ及び第2のモータジェネレータが出力するそれぞれのフィードバックトルクのうち、共線図上において駆動軸を挟んでエンジンと反対側に配置されたリングギアに連結された第2のモータジェネレータから出力されるMG2フィードバックトルクの値を制限する。【選択図】図9

Description

本発明は、ハイブリッド車両の制御装置に関する。
エンジンと第1のモータジェネレータと第2のモータジェネレータとの動力を、作動歯車機構を介して駆動軸に出力するハイブリッド車両において、目標エンジン回転速度に実エンジン回転速度を収束させるように第1及び第2のモータジェネレータにフィードバックトルクを出力させる技術が特許文献1に開示されている。
この特許文献1に記載のハイブリッド車両においては、エンジンに連結された回転要素、第1のモータジェネレータに連結された回転要素、第2のモータジェネレータに連結された回転要素及び駆動軸に連結された回転要素の4つの回転要素を、共線図上で、第1のモータジェネレータ、エンジン、駆動軸、第2のモータジェネレータの順になるように作動歯車機構に連結している。
特許第5818231号公報
特許文献1に記載のハイブリッド車両では、共線図上において駆動軸を挟んでエンジンと反対側に配置された第2のモータジェネレータが出力するフィードバックトルクがエンジンに連結された回転要素に伝達される。
ところが、エンジンに連結された回転要素に伝達される上記フィードバックトルクは、実エンジン回転速度が目標エンジン回転速度からかけ離れるよう作用する場合がある。
例えば、駆動軸の回転速度が所定の回転速度に維持されている場合、実エンジン回転速度と目標エンジン回転速度との差が大きくなるほど第1のモータジェネレータの回転速度が上昇する。第1のモータジェネレータの回転速度が上昇してもモータパワーは変わらないため、回転速度が上昇した分だけ第1のモータジェネレータが出力可能なトルクが小さくなる。
第1のモータジェネレータの回転速度がさらに上昇すると、要求されたフィードバックトルクを第1のモータジェネレータがいずれ出力できなくなる。この場合、結果として第1のモータジェネレータではフィードバックトルクが制限されることとなる。第1のモータジェネレータのフィードバックトルクが制限される例としては、上記の他、例えば第1のモータジェネレータに発生する熱等が要因でフィードバックトルクが制限される場合がある。
このように、要求されたフィードバックトルクを第1のモータジェネレータが出力できない場合、第2のモータジェネレータの出力するフィードバックトルクがエンジンに連結された回転要素に必要以上に作用することとなる。
この場合、第2のモータジェネレータでは、目標エンジン回転速度に実エンジン回転速度を収束させるためのフィードバックトルクを出力しているにも関わらず、実エンジン回転速度が目標エンジン回転速度からかけ離れるといった事態が生じ得る。
このように、特許文献1に記載のハイブリッド車両においては、実エンジン回転速度の目標エンジン回転速度への追従性を向上させることに関して未だ改善の余地があった。
本発明は、上述のような事情に鑑みてなされたもので、フィードバックトルクが原因で目標エンジン回転速度に対して実エンジン回転速度が乖離することを抑制することができるハイブリッド車両の制御装置を提供することを目的とする。
本発明は、上記目的を達成するため、エンジンと第1のモータジェネレータと第2のモータジェネレータとの動力を、動力伝達機構を介して駆動軸に出力するハイブリッド車両の制御装置において、前記エンジンの実エンジン回転速度を目標エンジン回転速度に追従させるために前記第1のモータジェネレータ及び前記第2のモータジェネレータが出力するそれぞれのフィードバックトルクのうち、前記エンジンと前記第1のモータジェネレータと前記第2のモータジェネレータと前記駆動軸との回転速度の関係を示す共線図上において前記駆動軸を挟んで前記エンジンと反対側に配置された回転要素に連結されたモータジェネレータから出力されるフィードバックトルクの値を制限する制御部を備えた構成を有する。
本発明によれば、フィードバックトルクが原因で目標エンジン回転速度に対して実エンジン回転速度が乖離することを抑制することができるハイブリッド車両の制御装置を提供することができる。
図1は、本発明の一実施例に係るハイブリッド車両の構成図である。 図2は、本発明の一実施例に係るハイブリッド車両の各軸の回転速度の第1の関係を示す共線図である。 図3は、本発明の一実施例に係るハイブリッド車両の各軸の回転速度の第2の関係を示す共線図である。 図4は、本発明の一実施例に係るハイブリッド車両の制御装置における目標エンジン回転速度及び目標エンジントルクの算出に関する機能ブロック図である。 図5は、本発明の一実施例に係るハイブリッド車両の制御装置におけるモータトルク指令値の算出に関する機能ブロック図である。 図6は、本発明の一実施例に係るハイブリッド車両の制御装置によって参照される目標駆動トルク検索マップを示す図である。 図7は、本発明の一実施例に係るハイブリッド車両の制御装置によって参照される目標充放電パワー検索マップを示す図である。 図8は、本発明の一実施例に係るハイブリッド車両の制御装置によって参照される目標動作点検索マップを示す図である。 図9は、本発明の一実施例に係るハイブリッド車両の制御装置によって参照されるフィードバックトルクの上下限設定マップの一例を示す図である。 図10は、本発明の一実施例に係るハイブリッド車両のエンジン、駆動軸、第1のモータジェネレータ、第2のモータジェネレータの各回転速度の関係を示す共線図であって、停車から後退に移行しようとするときの共線図である。 図11は、本発明の一実施例に係るハイブリッド車両のエンジン、駆動軸、第1のモータジェネレータ、第2のモータジェネレータの各回転速度の関係を示す共線図であって、前進走行中の共線図である。 図12は、フィードバックトルクを制限するために用いられる係数マップである。 図13は、フィードバックトルクを制限するために用いられる所定値マップである。
本発明の一実施の形態に係るハイブリッド車両の制御装置は、エンジンと第1のモータジェネレータと第2のモータジェネレータとの動力を、動力伝達機構を介して駆動軸に出力するハイブリッド車両の制御装置において、エンジンの実エンジン回転速度を目標エンジン回転速度に追従させるために第1のモータジェネレータ及び第2のモータジェネレータが出力するそれぞれのフィードバックトルクのうち、エンジンと第1のモータジェネレータと第2のモータジェネレータと駆動軸との回転速度の関係を示す共線図上において駆動軸を挟んでエンジンと反対側に配置された回転要素に連結されたモータジェネレータから出力されるフィードバックトルクの値を制限する制御部を備えた構成を有する。これにより、本発明の一実施の形態に係るハイブリッド車両の制御装置は、フィードバックトルクが原因で目標エンジン回転速度に対して実エンジン回転速度が乖離することを抑制することができる。
以下、本発明の一実施例に係るハイブリッド車両について図面を参照して説明する。
図1に示すように、本実施例に係るハイブリッド車両1は、内燃機関型のエンジン2と、第1モータジェネレータ4と、第2モータジェネレータ5と、駆動輪6と、駆動輪6に動力を伝達可能に連結された駆動軸7と、第1遊星歯車機構8と、第2遊星歯車機構9と、第3遊星歯車機構10と、第1インバータ19と、第2インバータ20と、ハイブリッドECU(Electronic Control Unit)52と、エンジンECU(Electronic Control Unit)53と、モータECU(Electronic Control Unit)54と、バッテリECU(Electronic Control Unit)55とを含んで構成される。本実施例に係るハイブリッド車両1は、エンジン2と、第1モータジェネレータ4及び第2モータジェネレータ5の少なくとも1つのモータジェネレータとの動力を、後述する動力伝達機構11を介して駆動軸7に出力するようになっている。
(エンジン)
エンジン2は、吸気行程、圧縮行程、膨張行程及び排気行程からなる一連の4行程を行う4サイクルのエンジンによって構成されている。エンジン2の出力軸3は、第1遊星歯車機構8と第2遊星歯車機構9とに連結されている。
(第1モータジェネレータ)
第1モータジェネレータ4は、ロータ軸13と、ロータ14と、ステータ15とを有している。ロータ14には、複数の永久磁石が埋め込まれている。ステータ15は、ステータコア及びステータコアに巻き掛けられた三相コイルを有している。ステータ15の三相コイルは、第1インバータ19に接続されている。
このように構成された第1モータジェネレータ4において、ステータ15の三相コイルに三相交流電力が供給されると、ステータ15によって回転磁界が形成される。この回転磁界にロータ14に埋め込まれた永久磁石が引かれることにより、ロータ14がロータ軸13周りに回転駆動される。すなわち、第1モータジェネレータ4は、電動機として機能し、ハイブリッド車両1を駆動する駆動力を生成することができる。
また、ロータ14がロータ軸13周りに回転すると、ロータ14に埋め込まれた永久磁石によって回転磁界が形成され、この回転磁界によりステータ15の三相コイルに誘導電流が流れることにより、三相の交流電力が発生する。すなわち、第1モータジェネレータ4は、発電機としても機能する。
(第1インバータ)
第1インバータ19は、モータECU54の制御により、バッテリ21などから供給された直流の電力を三相の交流電力に変換する。この三相の交流電力は、第1モータジェネレータ4のステータ15の三相コイルに供給される。
第1インバータ19は、モータECU54の制御により、第1モータジェネレータ4によって生成された三相の交流電力を直流の電力に変換する。この直流の電力は、例えば、バッテリ21を充電する。
(第2モータジェネレータ)
第2モータジェネレータ5は、ロータ軸16と、ロータ17と、ステータ18とを有している。ロータ17には、複数の永久磁石が埋め込まれている。ステータ18は、ステータコア及びステータコアに巻き掛けられた三相コイルを有している。ステータ18の三相コイルは、第2インバータ20に接続されている。
このように構成された第2モータジェネレータ5において、ステータ18の三相コイルに三相交流電力が供給されると、ステータ18によって回転磁界が形成される。この回転磁界にロータ17に埋め込まれた永久磁石が引かれることにより、ロータ17がロータ軸16周りに回転駆動される。すなわち、第2モータジェネレータ5は、電動機として機能し、ハイブリッド車両1を駆動する駆動力を生成することができる。
また、ロータ17がロータ軸16周りに回転すると、ロータ17に埋め込まれた永久磁石によって回転磁界が形成され、この回転磁界によりステータ18の三相コイルに誘導電流が流れることにより、三相の交流電力が発生する。すなわち、第2モータジェネレータ5は、発電機としても機能する。
(第2インバータ)
第2インバータ20は、モータECU54の制御により、バッテリ21などから供給された直流の電力を三相の交流電力に変換する。この三相の交流電力は、第2モータジェネレータ5のステータ18の三相コイルに供給される。
第2インバータ20は、モータECU54の制御により、第2モータジェネレータ5によって生成された三相の交流電力を直流の電力に変換する。この直流の電力は、例えば、バッテリ21を充電する。
(第1遊星歯車機構)
第1遊星歯車機構8は、サンギア22と、サンギア22の外歯に噛み合う複数のプラネタリギア23と、複数のプラネタリギア23に内歯が噛み合うリングギア25と、プラネタリギア23を自転可能に支持するプラネタリキャリア24とを備えている。
(第2遊星歯車機構)
第2遊星歯車機構9は、サンギア26と、サンギア26の外歯に噛み合う複数のプラネタリギア27と、複数のプラネタリギア27に内歯が噛み合うリングギア29と、プラネタリギア27を自転可能に支持するプラネタリキャリア28とを備えている。
(第3遊星歯車機構)
第3遊星歯車機構10は、サンギア30と、サンギア30の外歯に噛み合う複数のプラネタリギア31と、複数のプラネタリギア31に内歯が噛み合うリングギア32と、プラネタリギア31を自転可能に支持するプラネタリキャリア33とを備えている。
第1遊星歯車機構8のサンギア22は、第1モータジェネレータ4のロータ14と一体に回転するように、中空のロータ軸13に連結されている。第1遊星歯車機構8のプラネタリキャリア24と、第2遊星歯車機構9のサンギア26とは、エンジン2の出力軸3と一体に回転するように連結されている。
第1遊星歯車機構8のリングギア25には、第2遊星歯車機構9のプラネタリギア27がロータ軸13周りに公転するようにプラネタリキャリア28を介して連結されている。また、第1遊星歯車機構8のリングギア25は、デファレンシャルギア及びその他のギアを含むギア機構35を介して駆動軸7を回転させるように設けられている。
第2遊星歯車機構9のリングギア29には、第3遊星歯車機構10のプラネタリギア31がロータ軸16周りに公転するようにプラネタリキャリア33を介して連結されている。
第3遊星歯車機構10のリングギア32は、ケース34に固定されている。第3遊星歯車機構10のサンギア30は、第2モータジェネレータ5のロータ17と一体に回転するようにロータ軸16に連結されている。
第1遊星歯車機構8、第2遊星歯車機構9及び第3遊星歯車機構10は、動力伝達機構11を構成する。動力伝達機構11は、エンジン2の出力軸3と、第1モータジェネレータ4の出力軸としてのロータ軸13と、第2モータジェネレータ5の出力軸としてのロータ軸16と、ギア機構35を介して駆動軸7とが連結された遊星歯車機構を構成する。
このように、動力伝達機構11は、エンジン2と、第1モータジェネレータ4と、第2モータジェネレータ5と、駆動軸7との間で駆動力を授受させるようになっている。例えば、動力伝達機構11は、エンジン2と、第1モータジェネレータ4と、第2モータジェネレータ5とによって生成された動力を駆動軸7に伝達するようになっている。
図2に示すように、第2モータジェネレータ5のロータ軸16の回転速度と、第2遊星歯車機構9のリングギア29の回転速度と、第3遊星歯車機構10のリングギア32の回転速度との関係は、共線図で表すことができる。図2に示す共線図において、各縦軸は、図中、左から第3遊星歯車機構10のリングギア32の回転速度(図中、R3)、第2遊星歯車機構9のリングギア29の回転速度(図中、R2)、第2モータジェネレータ5のロータ軸16の回転速度(図中、MG2)をそれぞれ表している。
第3遊星歯車機構10のリングギア32は、固定されているため、第3遊星歯車機構10は、第2モータジェネレータ5のロータ軸16の駆動力を減速して第2遊星歯車機構9のリングギア29に伝達するリダクションギアを構成する。
第3遊星歯車機構10のリングギア32の歯数をZR3とし、第3遊星歯車機構10のサンギア30の歯数をZS3とすると、第3遊星歯車機構10のレバー比、すなわち、リダクションギア比Krは、ZR3/ZS3となる。
以上より、第2遊星歯車機構9のリングギア29の回転速度Nmg2_rgと、第2モータジェネレータ5のロータ軸16の回転速度(以下、「MG2回転速度」という)Nmg2との関係は、以下の式(1)で表すことができる。
Nmg2_rg=Nmg2/(1+Kr)・・・(1)
図3に示すように、第1モータジェネレータ4のロータ軸13の回転速度と、エンジン2の出力軸3の回転速度と、ギア機構35を介して駆動輪6に動力を伝達する第1遊星歯車機構8のリングギア25の回転速度と、第2遊星歯車機構9のリングギア29の回転速度との関係は、共線図で表すことができる。
図3に示す共線図において、各縦軸は、図中、左から第1モータジェネレータ4のロータ軸13の回転速度(図中、MG1)と、エンジン2の出力軸3の回転速度(図中、ENG)と、第1遊星歯車機構8のリングギア25の回転速度(図中、OUT)と、第2遊星歯車機構9のリングギア29の回転速度(図中、R2)をそれぞれ表している。ここで、第1遊星歯車機構8のリングギア25の回転速度(図中、OUT)は、後述するように駆動軸7の回転速度に比例することから、共線図上において「駆動軸」と称すことがある。
第1遊星歯車機構8のサンギア22の歯数をZS1とし、第1遊星歯車機構8のリングギア25の歯数をZR1とすると、第1遊星歯車機構8のレバー比K1は、ZR1/ZS1となる。
第2遊星歯車機構9のサンギア26の歯数をZS2とし、第2遊星歯車機構9のリングギア29の歯数をZR2とすると、第2遊星歯車機構9のレバー比K2は、ZS2/ZR2となる。
以上より、駆動軸7の回転速度に比例する第1遊星歯車機構8のリングギア25の回転速度(以下、駆動回転速度Noutという。)と、第1モータジェネレータ4のロータ軸13の回転速度(以下、「MG1回転速度」という)Nmg1と、第2遊星歯車機構9のリングギア29の回転速度Nmg2_rgとの関係は、以下の式(2)で表すことができる。
Nout=(K2×Nmg1+(1+K1)×Nmg2_rg)/(1+K1+K2)・・・(2)
ハイブリッドECU52、エンジンECU53、モータECU54及びバッテリECU55は、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、バックアップ用のデータなどを保存するフラッシュメモリと、入力ポートと、出力ポートとを備えたコンピュータユニットによってそれぞれ構成されている。
これらのコンピュータユニットのROMには、各種定数や各種マップ等とともに、当該コンピュータユニットをハイブリッドECU52、エンジンECU53、モータECU54及びバッテリECU55としてそれぞれ機能させるためのプログラムが格納されている。
すなわち、CPUがRAMを作業領域としてROMに格納されたプログラムを実行することにより、これらのコンピュータユニットは、本実施例におけるハイブリッドECU52、エンジンECU53、モータECU54及びバッテリECU55としてそれぞれ機能する。
ハイブリッド車両1には、CAN(Controller Area Network)等の規格に準拠した車内LAN(Local Area Network)を形成するためのCAN通信線39が設けられている。ハイブリッドECU52、エンジンECU53、モータECU54及びバッテリECU55は、CAN通信線39を介して制御信号等の信号の送受信を相互に行う。
ハイブリッドECU52は、エンジンECU53、モータECU54及びバッテリECU55などの各種ECUを統括的に制御する。エンジンECU53は、主として、エンジン2を制御する。また、ハイブリッドECU52は、後述する方法で算出した駆動回転速度から車速を算出する。ここで、車速とは、ハイブリッド車両1が前進方向に進んでいる場合は正の値であり、ハイブリッド車両1が後進方向に進んでいる場合は負の値であるものとする。
モータECU54は、第1インバータ19及び第2インバータ20を介して第1モータジェネレータ4及び第2モータジェネレータ5をそれぞれ制御する。バッテリECU55は、バッテリ21の状態を管理する。
また、モータECU54は、第1インバータ19及び第2インバータ20を介して実際のMG1回転速度Nmg1及び実際のMG2回転速度Nmg2を算出する。
ハイブリッドECU52は、モータECU54によって算出された実際のMG1回転速度Nmg1及び実際のMG2回転速度Nmg2から式(1)及び(2)を用いて実際の駆動回転速度(以下、「実駆動回転速度」という)Noutを算出する。
また、ハイブリッドECU52は、モータECU54によって算出された実際のMG1回転速度Nmg1及び実際のMG2回転速度Nmg2から式(3)を用いて実際のエンジン回転速度(以下、「実エンジン回転速度」という)Negを算出する。
Neg=((1+K2)×Nmg1+K1×Nmg2)/(1+K1+K2)・・・(3)
バッテリECU55の入力ポートには、バッテリ状態検出センサ60が接続されている。バッテリ状態検出センサ60は、バッテリ21の充放電電流、電圧及びバッテリ温度を検出する。バッテリECU55は、バッテリ状態検出センサ60から入力される充放電電流の値、電圧の値及びバッテリ温度の値に基づき、バッテリ21の残容量(以下、「SOC」という)などを検出する。
バッテリ状態検出センサ60は、例えば、バッテリ21の充放電電流を検出する電流センサと、バッテリ21の電圧を検出する電圧センサと、バッテリ温度を検出する温度センサとを含んで構成される。なお、電流センサと電圧センサと温度センサとは、個別に設けてもよい。
ハイブリッドECU52の入力ポートには、アクセルペダル61の操作量(以下、単に「アクセル開度」という)を検出するアクセル開度センサ62が接続されている。
次に、図4から図8を用いて、エンジン2、第1モータジェネレータ4及び第2モータジェネレータ5の出力制御について説明する。
ハイブリッドECU52は、算出した実駆動回転速度Noutとタイヤ外径とギア機構35のギア比とを乗算することにより車速を算出する。ハイブリッドECU52は、アクセル開度センサ62によって検出されたアクセル開度と、上述の通り算出した車速と、バッテリ21のSOCとに基づいて、エンジン動作点の目標値(以下、「エンジン目標動作点」という)である目標エンジン回転速度Negreqと目標エンジントルクTegとを算出する。
ハイブリッドECU52のROM又はフラッシュメモリには、図6に示すような目標駆動トルク検索マップが格納されている。目標駆動トルク検索マップでは、アクセル開度と車速とに対してハイブリッド車両1の目標駆動トルクが対応付けられている。
ハイブリッドECU52は、アクセル開度センサ62によって検出されたアクセル開度と、算出された車速とに対して、この目標駆動トルク検索マップによって対応付けられた目標駆動トルクTaを特定する(目標駆動トルク算出部201)。
ハイブリッドECU52は、特定した目標駆動トルクTaと車速とギア機構35のギア比を乗算することにより、目標駆動パワーPreqを算出する(目標駆動パワー算出部202)。ギア機構35のギア比は、ハイブリッドECU52のROM又はフラッシュメモリに格納されている。
また、ハイブリッドECU52のROM又はフラッシュメモリには、図7に示すような目標充放電パワー検索マップが格納されている。目標充放電パワー検索マップでは、バッテリ21のSOCに対して、目標充放電パワーが対応付けられている。
ハイブリッドECU52は、バッテリECU55から送信されたバッテリ21のSOCに対して、目標充放電パワー検索マップによって対応付けられた目標充放電パワーPcrgを特定する(目標充放電パワー算出部203)。なお、目標充放電パワーPcrgは、放電側が正の値であり、充電側が負の値となるよう設定される。
ハイブリッドECU52は、目標駆動パワーPreqから目標充放電パワーPcrgを減算した値を目標エンジンパワーPegとして算出する(目標エンジンパワー算出部204)。このとき、算出された目標エンジンパワーPegが、ハイブリッド車両1の運転状態に応じたエンジンパワーの最大値より大きい値である場合は、ハイブリッド車両1の運転状態に応じたエンジンパワーの最大値を目標エンジンパワーPegとする。
ハイブリッドECU52は、算出された車速と目標エンジンパワーPegに基づいて図8に示すような目標動作点検索マップを参照してエンジン目標動作点を算出する(目標エンジン動作点算出部205)。ここでいう動作点とは、エンジン2の回転速度とエンジントルクの組み合わせを表すものである。具体的には、等パワーラインと車速に応じた動作点ラインとの交点をエンジン目標動作点とし、目標エンジン回転速度Negreqと目標エンジントルクTegとを算出する。
上述したように、ハイブリッドECU52は、目標駆動トルク算出部201、目標駆動パワー算出部202、目標充放電パワー算出部203、目標エンジンパワー算出部204、目標エンジン動作点算出部205としての機能を有する。
図5に示すように、ハイブリッドECU52は、目標電力Pmgと目標エンジントルクTegとモータECU54によって算出された実際のMG1回転速度Nmg1、MG2回転速度Nmg2と後述するロスパワーとモータ補償出力とに基づいて、基本MGトルクを算出する(基本MGトルク算出部301)。基本MGトルクには、第1モータジェネレータ4の基本トルクTmg1i、及び第2モータジェネレータ5の基本トルクTmg2iが含まれる。
ここで、目標電力Pmgとは、目標エンジンパワーPegと目標駆動パワーPreqとの偏差を示すものである。目標電力Pmgは、第1モータジェネレータ4及び第2モータジェネレータ5の出力により充電または消費される電力を表すものであり、以下の電力バランス式として式(4)で表すことができる。
Pmg=Nmg1×Tmg1i+Nmg2×Tmg2i・・・(4)
また、図2及び図3の共線図を参照したときの、駆動軸を基準とするトルクバランス式として、エンジン2、第1モータジェネレータ4及び第2モータジェネレータ5のトルクと回転速度の関係を以下の式(5)で表すことができる。
Teg+Tmg1i×(1+K1)=Tmg2i×(1+Kr)×K2・・・(5)
ハイブリッドECU52は、式(4)、(5)を用いて第1モータジェネレータ4の基本トルクTmg1i、第2モータジェネレータ5の基本トルクTmg2i、すなわち基本MGトルクを算出する。この基本MGトルクを算出するにあたっては、モータ補償出力とロスパワーとが加味される。基本MGトルクは、バッテリ保護の観点から、バッテリ21が出力可能な電力値とモータ補償出力と、ロスパワーとに応じて制限される場合がある。なお、ここでロスパワーとは第1インバータ19、第2インバータ20のロスパワーを示す。具体的には、バッテリ21が出力可能な電力値にモータ補償出力を加算した値からロスパワーを減算した値を前述した上下限値として、算出された各モータジェネレータの基本トルクと回転速度との乗算値を前述した上下限値と比較して、該乗算値が該上下限値を超えている場合は該乗算値が制限される。これにより、式(4)、(5)によって算出された基本MGトルクが制限される場合がある。これは、例えば低温時などバッテリ21が出力可能な電力量が小さい場合に、モータジェネレータの出力を制限することを目的として実行される基本MGトルクの制限である。
ハイブリッドECU52は、後述する最終フィードバックトルクに基づいて、モータ補償出力を算出する(モータ補償出力算出部302)。具体的には、各モータジェネレータの現在の回転速度に応じたフリクショントルクと最終フィードバックトルクとを加算した値に各モータジェネレータの回転速度と所定の係数とを乗算した値をモータジェネレータ毎に算出し、両者を加算した値をモータ補償出力とする。モータ補償出力とは、各モータジェネレータが基本トルク以外で消費する電力の総和を示す。
また、ハイブリッドECU52は、実エンジン回転速度Negと目標エンジン回転速度Negreqとに基づいて、これらの間の差異を補正するためのモータトルクであるフィードバックトルクを算出する(フィードバックトルク算出部303)。
具体的には、ハイブリッドECU52は、目標エンジン回転速度Negreqと、実エンジン回転速度Negから式(6)及び(7)を用いて、実エンジン回転速度Negを目標エンジン回転速度Negreqに追従させるために第1モータジェネレータ4が出力するフィードバックトルク(以下、「MG1フィードバックトルク」とする)Tmg1fb、及び第2モータジェネレータ5が出力するフィードバックトルク(以下、「MG2フィードバックトルク」とする)Tmg2fbを算出する。なお、ここでフィードバックゲインGは、実エンジン回転速度Negを目標エンジン回転速度Negreqに追従させるために、出力軸3に出力されるトルクを算出するための係数である。
Tmg1fb=(Negreq−Neg)×G×(1+K2)/(1+K1+K2)・・・(6)
Tmg2fb=(Negreq−Neg)×G×K1/(1+K1+K)・・・(7)
また、ハイブリッドECU52は、実エンジン回転速度Negと目標エンジン回転速度Negreqとに基づいて、上述のように算出したフィードバックトルクの上限及び下限の少なくとも一方を算出する(フィードバックトルク上下限算出部304)。
具体的には、ハイブリッドECU52は、MG1フィードバックトルクTmg1fb及びMG2フィードバックトルクTmg2fbのうち、図3に示す共線図上において駆動軸(図中、OUT)を挟んでエンジンと反対側に配置された回転要素としてのリングギア29に連結されたモータジェネレータ(本実施例では、第2のモータジェネレータ5)から出力されるMG2フィードバックトルクTmg2fbの値を制限するよう、MG2フィードバックトルクTmg2fbの上限値及び下限値の少なくとも一方を算出する。
図9は、フィードバックトルクの上限値及び下限値を設定するための上下限設定マップの一例を示す図である。
図9において、縦軸はフィードバックトルクの値を示し、横軸は目標エンジン回転速度Negreqから実エンジン回転速度Negを減算した値を回転速度差として示している。本実施例では、回転速度差は、目標エンジン回転速度Negreqから実エンジン回転速度Negを減算した値として定義したため正と負の値をとる。このため、回転速度差が負のときは、回転速度差が小さいほど、すなわち回転速度差=0から離れるほど、実際の実エンジン回転速度Negと目標エンジン回転速度Negreqとの差は大きくなる。
なお、本実施例では、目標エンジン回転速度Negreqから実エンジン回転速度Negを減算した値を回転速度差として定義したが、実エンジン回転速度Negから目標エンジン回転速度Negreqを減算した値を回転速度差として定義してもよいし、目標エンジン回転速度Negreqから実エンジン回転速度Negを減算した値、あるいは実エンジン回転速度Negから目標エンジン回転速度Negreqを減算した値の絶対値を回転速度差として定義してもよい。実エンジン回転速度Negから目標エンジン回転速度Negreqを減算した値を回転速度差として定義した場合には、図9に示す回転速度差の(正)と(負)を逆にすればよい。また、上述のように絶対値を回転速度差として定義した場合には、例えば、図9に示す上下限設定マップを、上限設定用のマップと下限設定用のマップとに分割すればよい。
図9に示すように、フィードバックトルクの上限値は、回転速度差がΔ2以下の領域では一定であり、回転速度差がΔ2を超える領域では回転速度差が大きくなるほど小さな値に設定されるようになっている。ただし、回転速度差がΔ3を超える領域においては、フィードバックトルクの上限値は「0」に設定される。
一方、フィードバックトルクの下限値は、回転速度差が−Δ2以上の領域では一定であり、回転速度差が−Δ2を下回る領域では回転速度差が小さくなるほど、すなわち実際の実エンジン回転速度Negと目標エンジン回転速度Negreqとの差が大きくなるほど大きな値に設定されるようになっている。ただし、回転速度差−Δ3を下回る領域においては、フィードバックトルクの下限値は「0」に設定される。
図9に示す太実線は、上下限設定マップによってMG2フィードバックトルクTmg2fbが制限される例を示したものである。また、図9に示す破線は、フィードバックトルクの上限値及び下限値によって制限しないとした場合のMG2フィードバックトルクTmg2fbの推移である。
回転速度差が(正)の領域では、MG2フィードバックトルクTmg2fbは、回転速度差がΔ1を超える領域において上限値によってそれ以上、上がらないように制限される。一方、回転速度差が(負)の領域では、MG2フィードバックトルクTmg2fbは、回転速度差が−Δ1を下回る領域において下限値によってそれ以上、下がらないように制限される。
このように、ハイブリッドECU52は、実際の実エンジン回転速度Negと目標エンジン回転速度Negreqとの差に基づき、図9に示す上下限設定マップを参照して設定したフィードバックトルクの上限値及び下限値の少なくとも一方によってMG2フィードバックトルクTmg2fbを制限する制御部50(図1参照)としての機能を有する。
図5に戻り、ハイブリッドECU52は、実エンジン回転速度Negと目標エンジン回転速度Negreqとに基づき算出したフィードバックトルクと、図9に示す上下限設定マップを参照して設定したフィードバックトルクの上限値及び下限値の少なくとも一方とに基づき、最終フィードバックトルクを算出する(最終フィードバックトルク算出部305)。
具体的には、ハイブリッドECU52は、MG1フィードバックトルクTmg1fbの値をそのまま第1のモータジェネレータ4の最終フィードバックトルク(以下、「MG1最終フィードバックトルク」という)として算出し、上述の上限値及び下限値の少なくとも一方によって制限したMG2フィードバックトルクTmg2fbの値を最終フィードバックトルク(以下、「MG2最終フィードバックトルク」という)として算出する。
MG2フィードバックトルクTmg2fbについては、図9に示すように上限値及び下限値によって制限されていない回転速度差の範囲(−Δ1からΔ1の範囲)においては制限前のMG2フィードバックトルクTmg2fbがそのままMG2最終フィードバックトルクとして算出される。
また、ハイブリッドECU52は、目標エンジン回転速度Negreqに基づいてエンジン2のイナーシャを補正するためのモータトルクを、イナーシャ補正用トルクとして算出する(イナーシャ補正用トルク算出部306)。
さらに、ハイブリッドECU52は、基本MGトルクと、最終フィードバックトルクと、イナーシャ補正用トルクとに基づいて、第1のモータジェネレータ4、第2のモータジェネレータ5のモータトルクの指令値を、MGトルク指令値として算出する(MGトルク指令値算出部307)。
具体的には、ハイブリッドECU52は、基本トルクTmg1iとMG1最終フィードバックトルクとイナーシャ補正用トルクとを合算した値を第1のモータジェネレータ4のMGトルク指令値として算出し、基本トルクTmg2iとMG2最終フィードバックトルクとイナーシャ補正用トルクとを合算した値を第2のモータジェネレータ5のMGトルク指令値として算出する。
上述したように、ハイブリッドECU52は、基本MGトルク算出部301、モータ補償出力算出部302、フィードバックトルク算出部303、フィードバックトルク上下限算出部304、最終フィードバックトルク算出部305、イナーシャ補正用トルク算出部306、MGトルク指令値算出部307としての機能を有する。
次に、図10及び図11を参照して、本実施例のハイブリッド車両の制御装置の作用について説明する。
図10及び図11に示す共線図においては、エンジン2の回転方向を正回転方向とし、正回転方向の回転速度を正の回転速度と定義する。また、各軸に入出力されるトルクは、エンジン2のトルクと同じ向きのトルクが入力される方向を正として定義する。
図10及び図11中、太矢印は、トルクを示しており、各軸において正回転方向に作用するトルクが正のトルク(図中、上向きの太矢印で示す)であり、その逆が負のトルク(図中、下向きの太矢印で示す)である。また、太矢印の長さは、トルクの大きさを示しており、長いほどトルクの絶対値が大きいことを示している。
本実施例においては、実エンジン回転速度Negを目標エンジン回転速度Negreqに追従させるよう2つのモータジェネレータを制御する。このとき、MG1フィードバックトルクTmg1fbは実エンジン回転速度Negが目標エンジン回転速度Negreqに近づく方向に作用し、MG2フィードバックトルクTmg2fbは実エンジン回転速度Negが目標エンジン回転速度Negreqから遠ざかる方向に作用する。各モータジェネレータのフィードバックトルクがこのような向きに出力されるのは、各モータジェネレータがフィードバックを出力する際、実エンジン回転速度Negを目標エンジン回転速度Negreqに追従させることと同時に、駆動軸の回転速度を保持する必要があるためである。このように、本実施例では駆動軸の回転速度が急変しないようにしつつ実エンジン回転速度Negが目標エンジン回転速度Negreqに近づくよう、MG1フィードバックトルクTmg1fbとMG2フィードバックトルクTmg2fbを出力する。
図10に示す共線図は、ハイブリッド車両1が停車から後退に移行しようとするときの共線図であり、図中、白丸で示す目標エンジン回転速度が黒丸で示す実エンジン回転速度よりも小さい場合の共線図である。なお、図10の共線図において、実線で示す共線は、本実施例の共線であり、破線で示す共線は、MG2フィードバックトルクTmg2fbが制限されない比較例の共線である。図10の共線図では、本実施例及び比較例のいずれにおいてもMG1フィードバックトルクTmg1fbが制限されているものとする。
図10に示すように、目標エンジン回転速度Negreqが実エンジン回転速度Negよりも小さい場合、比較例では、MG1フィードバックトルクTmg1fbが制限されているが、MG2フィードバックトルクTmg2fbが制限されていないため、第2のモータジェネレータが本実施例と比較して大きな負のMG2フィードバックトルクTmg2fbを出力することとなる。これにより、駆動軸を支点にエンジン及び第1のモータジェネレータの正の回転速度が上昇してしまう。この結果、比較例では、実エンジン回転速度Negが目標エンジン回転速度Negreqからさらに乖離してしまう。このように、実エンジン回転速度Negが目標エンジン回転速度Negreqから大きく乖離すると、エンジンや第1のモータジェネレータが正回転方向において過回転となってしまうおそれがある。
これに対して、本実施例では、目標エンジン回転速度Negreqが実エンジン回転速度Negよりも小さい場合、図7の上下限設定マップに基づき設定されたフィードバックトルクの下限値によって負のMG2フィードバックトルクTmg2fbが比較例と比較して小さな値に制限される。この結果、本実施例では、MG1フィードバックトルクTmg1fbが制限されている場合であっても、目標エンジン回転速度Negreqに対して実エンジン回転速度Negが乖離してしまうことが抑制される。これにより、本実施例では、エンジン2や第1のモータジェネレータ4が正回転方向において過回転となってしまうことが防止される。
図11に示す共線図は、ハイブリッド車両1が前進走行中であるときの共線図であり、図中、白丸で示す目標エンジン回転速度Negreqが黒丸で示す実エンジン回転速度Negよりも大きい場合の共線図である。なお、図11の共線図において、実線で示す共線は、本実施例の共線であり、破線で示す共線は、MG2フィードバックトルクTmg2fbが制限されない比較例の共線である。図11の共線図では、本実施例及び比較例のいずれにおいてもMG1フィードバックトルクTmg1fbが制限されているものとする。
図11に示すように、目標エンジン回転速度Negreqが実エンジン回転速度Negよりも大きい場合、比較例では、MG1フィードバックトルクTmg1fbが制限されているが、MG2フィードバックトルクTmg2fbが制限されていないため、第2のモータジェネレータが本実施例と比較して大きな正のMG2フィードバックトルクTmg2fbを出力することとなる。これにより、駆動軸を支点にエンジンの回転速度が低下してしまう。また、第1のモータジェネレータの負の回転速度が上昇してしまう。この結果、比較例では、実エンジン回転速度Negが目標エンジン回転速度Negreqからさらに乖離してしまう。このように、実エンジン回転速度Negが目標エンジン回転速度Negreqから大きく乖離すると、エンジンがストール状態になったり、第1のモータジェネレータが負方向において過回転となったりしてしまうおそれがある。
これに対して、本実施例では、目標エンジン回転速度Negreqが実エンジン回転速度Negよりも大きい場合、図9の上下限設定マップに基づき設定されたフィードバックトルクの上限値によって正のMG2フィードバックトルクTmg2fbが比較例と比較して小さな値に制限される。この結果、本実施例では、MG1フィードバックトルクTmg1fbが制限されている場合であっても、目標エンジン回転速度Negreqに対して実エンジン回転速度Negが乖離してしまうことが抑制される。これにより、本実施例では、エンジン2がストール状態になったり、第1のモータジェネレータ4が負方向において過回転となったりしてしまうことが防止される。
以上のように、本実施例に係るハイブリッド車両の制御装置は、MG1フィードバックトルクTmg1fb及びMG2フィードバックトルクTmg2fbのうち、共線図上において駆動軸7を挟んでエンジン2と反対側に配置されたリングギア29に連結された第2のモータジェネレータ5から出力されるMG2フィードバックトルクTmg2fbの値を制限することが可能である。
このため、本実施例に係るハイブリッド車両の制御装置は、第1のモータジェネレータ4が要求されたフィードバックトルクを出力できない場合には、MG2フィードバックトルクTmg2fbの値を制限することで実エンジン回転速度Negが目標エンジン回転速度Negreqから乖離してしまうことを抑制することができる。
また、本実施例に係るハイブリッド車両の制御装置は、目標エンジン回転速度Negreqと実エンジン回転速度Negとの差に応じてMG2フィードバックトルクTmg2fbの値を制限するので、MG2フィードバックトルクTmg2fbに対して目標エンジン回転速度Negreqと実エンジン回転速度Negとの差に応じた適切な制限を行うことができる。
また、本実施例に係るハイブリッド車両の制御装置は、目標エンジン回転速度Negreqが実エンジン回転速度Negよりも小さい場合、目標エンジン回転速度Negreqと実エンジン回転速度Negとの差が大きいほど大きな値に設定されるフィードバックトルクの下限値によって、MG2フィードバックトルクTmg2fbの値を制限する。
このため、本実施例に係るハイブリッド車両の制御装置は、実エンジン回転速度Negを上昇させる向きに作用する負のMG2フィードバックトルクTmg2fbを、目標エンジン回転速度Negreqと実エンジン回転速度Negとの差が大きくなるほど厳しく、すなわち小さい値(負の値)となるよう制限することができる。これにより、エンジン2や第1のモータジェネレータ4が正回転方向において過回転となってしまうことを防止することができる。
また、本実施例に係るハイブリッド車両の制御装置は、目標エンジン回転速度Negreqが実エンジン回転速度Negよりも大きい場合、目標エンジン回転速度Negreqと実エンジン回転速度Negとの差が大きいほど小さな値に設定されるフィードバックトルクの上限値によって、MG2フィードバックトルクTmg2fbの値を制限する。
このため、本実施例に係るハイブリッド車両の制御装置は、実エンジン回転速度Negを低下させる向きに作用する正のMG2フィードバックトルクTmg2fbを、目標エンジン回転速度Negreqと実エンジン回転速度Negとの差が大きくなるほど厳しく、すなわち小さい値(正の値)となるよう制限することができる。これにより、エンジン2がストール状態になったり、第1のモータジェネレータ4が負方向において過回転となったりしてしまうことを防止することができる。
なお、本実施例では、図9に示す上下限設定マップを参照して設定したフィードバックトルクの上限値及び下限値を用いてMG2フィードバックトルクTmg2fbを制限する例について説明したが、これに限らず、以下に示すように、MG2フィードバックトルクTmg2fbに係数を乗算又は減算することによりMG2フィードバックトルクTmg2fbを制限してもよい。
例えば、ハイブリッドECU52は、実エンジン回転速度Negと目標エンジン回転速度Negreqとの差に基づき設定される係数αを制限前のMG2フィードバックトルクTmg2fbに乗算することにより、MG2フィードバックトルクTmg2fbを制限してもよい。係数αは、図12に示す係数マップに基づき算出される。図12における回転速度差は、本実施例と同一である。
また、ハイブリッドECU52は、実エンジン回転速度Negと目標エンジン回転速度Negreqとの差に基づき設定される所定値βを制限前のMG2フィードバックトルクTmg2fbから減算することにより、MG2フィードバックトルクTmg2fbを制限してもよい。所定値βは、図13に示す所定値マップに基づき算出される。図13における回転速度差は、本実施例と同一である。
また、本実施例では、第1のモータジェネレータ4及び第2のモータジェネレータの回転速度から駆動回転速度を算出する例について説明したが、例えば、図示しない車速センサから駆動軸7の回転速度を検出し、タイヤ外径やギヤ機構31のギヤ比を用いて車速及び駆動回転速度を算出するものであってもよい。さらに、本実施例では、実際のMG1回転速度Nmg1及び実際のMG2回転速度Nmg2から式(3)を用いて実エンジン回転速度を算出する例について説明したが、例えば、エンジン2に図示しないクランク角センサを設け、当該クランク角センサからの検出情報に基づき実エンジン回転速度を算出してもよい。
本発明の実施例を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。
1 ハイブリッド車両
2 エンジン
4 第1のモータジェネレータ
5 第2のモータジェネレータ
7 駆動軸
11 動力伝達機構
29 リングギア(回転要素)
50 制御部
52 ハイブリッドECU
53 エンジンECU
54 モータECU
55 バッテリECU

Claims (4)

  1. エンジンと第1のモータジェネレータと第2のモータジェネレータとの動力を、動力伝達機構を介して駆動軸に出力するハイブリッド車両の制御装置において、
    前記エンジンの実エンジン回転速度を目標エンジン回転速度に追従させるために前記第1のモータジェネレータ及び前記第2のモータジェネレータが出力するそれぞれのフィードバックトルクのうち、前記エンジンと前記第1のモータジェネレータと前記第2のモータジェネレータと前記駆動軸との回転速度の関係を示す共線図上において前記駆動軸を挟んで前記エンジンと反対側に配置された回転要素に連結されたモータジェネレータから出力されるフィードバックトルクの値を制限する制御部を備えたことを特徴とするハイブリッド車両の制御装置。
  2. 前記制御部は、前記目標エンジン回転速度と前記実エンジン回転速度との差に応じて、前記共線図上において前記駆動軸を挟んで前記エンジンと反対側に配置された回転要素に連結されたモータジェネレータから出力される前記フィードバックトルクの値を制限することを特徴とする請求項1に記載のハイブリッド車両の制御装置。
  3. 前記制御部は、前記目標エンジン回転速度が前記実エンジン回転速度よりも小さい場合、前記目標エンジン回転速度と前記実エンジン回転速度との差が大きいほど大きな値に設定されるフィードバックトルクの下限値によって、前記共線図上において前記駆動軸を挟んで前記エンジンと反対側に配置された回転要素に連結されたモータジェネレータから出力される前記フィードバックトルクの値を制限することを特徴とする請求項2に記載のハイブリッド車両の制御装置。
  4. 前記制御部は、前記目標エンジン回転速度が前記実エンジン回転速度よりも大きい場合、前記目標エンジン回転速度と前記実エンジン回転速度との差が大きいほど小さな値に設定されるフィードバックトルクの上限値によって、前記共線図上において前記駆動軸を挟んで前記エンジンと反対側に配置された回転要素に連結されたモータジェネレータから出力される前記フィードバックトルクの値を制限することを特徴とする請求項2に記載のハイブリッド車両の制御装置。
JP2017200336A 2017-10-16 2017-10-16 ハイブリッド車両の制御装置 Pending JP2019073151A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017200336A JP2019073151A (ja) 2017-10-16 2017-10-16 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017200336A JP2019073151A (ja) 2017-10-16 2017-10-16 ハイブリッド車両の制御装置

Publications (1)

Publication Number Publication Date
JP2019073151A true JP2019073151A (ja) 2019-05-16

Family

ID=66543674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017200336A Pending JP2019073151A (ja) 2017-10-16 2017-10-16 ハイブリッド車両の制御装置

Country Status (1)

Country Link
JP (1) JP2019073151A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062927A1 (zh) * 2019-09-30 2021-04-08 苏州益高电动车辆制造有限公司 混合动力汽车、控制方法、计算机设备及可读存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062927A1 (zh) * 2019-09-30 2021-04-08 苏州益高电动车辆制造有限公司 混合动力汽车、控制方法、计算机设备及可读存储介质

Similar Documents

Publication Publication Date Title
JP4888154B2 (ja) 車両およびその制御方法
JP2017001593A (ja) ハイブリッド車両の制御装置
JP4365354B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2019073151A (ja) ハイブリッド車両の制御装置
JP2016141236A (ja) 駆動制御装置
JP6443229B2 (ja) ハイブリッド車両の制御装置
JP2009280010A (ja) 車両およびその制御方法並びに駆動装置
JP6812662B2 (ja) ハイブリッド車両の制御装置
JP4270195B2 (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP6747065B2 (ja) ハイブリッド車両の制御装置
JP2006144641A (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP6769118B2 (ja) ハイブリッド車両の制御装置
JP6458667B2 (ja) ハイブリッド車両の駆動制御装置
JP2018012489A (ja) ハイブリッド車両の制御装置
JP2009161132A (ja) 車両および駆動装置並びにこれらの制御方法
JP2009137369A (ja) 車両および駆動装置並びに車両の制御方法
JP6790576B2 (ja) ハイブリッド車両の制御装置
JP6459803B2 (ja) ハイブリッド車両の駆動制御装置
JP2018043582A (ja) ハイブリッド車両の制御装置
WO2015156351A1 (ja) 駆動制御装置
JP2019081411A (ja) ハイブリッド車両の制御装置
JP6780435B2 (ja) ハイブリッド車両
JP2017210093A (ja) ハイブリッド車両の制御装置
JP2006254568A (ja) 電動車両およびその制御方法
JP2017210091A (ja) ハイブリッド車両の制御装置