WO2015156351A1 - 駆動制御装置 - Google Patents

駆動制御装置 Download PDF

Info

Publication number
WO2015156351A1
WO2015156351A1 PCT/JP2015/061091 JP2015061091W WO2015156351A1 WO 2015156351 A1 WO2015156351 A1 WO 2015156351A1 JP 2015061091 W JP2015061091 W JP 2015061091W WO 2015156351 A1 WO2015156351 A1 WO 2015156351A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
speed
rotation speed
rotational speed
drive
Prior art date
Application number
PCT/JP2015/061091
Other languages
English (en)
French (fr)
Inventor
裕一 宇田
Original Assignee
スズキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スズキ株式会社 filed Critical スズキ株式会社
Priority to DE112015001735.6T priority Critical patent/DE112015001735T5/de
Publication of WO2015156351A1 publication Critical patent/WO2015156351A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1884Avoiding stall or overspeed of the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a drive control device, and more particularly to a drive control device mounted on a hybrid vehicle.
  • a hybrid vehicle has a planetary gear mechanism in which an output shaft of an engine, two rotary shafts of a motor generator as an electric motor, and four rotary shafts of a drive shaft capable of transmitting power to drive wheels are connected.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-153946
  • the hybrid ECU operates the motor rotation speeds N1 and N2 of the two motor generators based on the gear ratio set so that the operating point of the engine is on the optimum fuel consumption line. Is calculated.
  • the gear ratio is uniquely determined according to the engine power. Therefore, the motor rotation speeds N1 and N2 calculated based on the determined gear ratio are determined. One of the rotational speeds may be over-rotated.
  • the hybrid ECU determines whether or not the motor generator is over-rotated. For this reason, when an abnormality or failure occurs in the hybrid ECU, the hybrid ECU cannot determine whether or not the motor generator is over-rotated, and as a result, there is a possibility that over-rotation of the motor generator cannot be suppressed.
  • an object of the present invention is to provide a drive control device that can suppress over-rotation of the electric motor even when it cannot be determined whether or not the electric motor over-rotates.
  • a drive control apparatus includes a gear mechanism in which an output shaft of an internal combustion engine, a rotation shaft of a first motor, a rotation shaft of a second motor, and a drive shaft capable of transmitting power to drive wheels are coupled.
  • a detection unit that detects a current engine rotation speed that is a rotation speed of the internal combustion engine, and the current engine rotation speed detected by the detection unit are the first engine rotation speed and the first engine rotation speed.
  • the internal combustion engine when the first engine rotational speed of the internal combustion engine when the rotational speed of the electric motor becomes a predetermined upper limit rotational speed, and when the rotational speed of the second electric motor becomes a predetermined lower limit rotational speed
  • the current engine rotational speed is reduced when at least one of the second engine rotational speed and the third engine rotational speed that is a predetermined upper limit rotational speed of the internal combustion engine is equal to or higher than the second engine rotational speed. It is characterized in that it comprises a control unit that performs reduction control for.
  • the present invention it is possible to provide a drive control device that can suppress over-rotation of the electric motor even when it is not possible to determine whether or not the electric motor over-rotates.
  • FIG. 1 is a configuration diagram showing a main part of a hybrid vehicle equipped with a drive control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a collinear diagram showing the relationship among the rotational speeds of MG1, engine, wheels, and MG2 when the excessive control of MG1 is suppressed by the drive control apparatus according to the embodiment of the present invention.
  • FIG. 3 is a collinear diagram showing the relationship among the rotational speeds of MG1, engine, wheels, and MG2 when the over-rotation of MG2 is suppressed by the drive control apparatus according to the embodiment of the present invention.
  • FIG. 4 is a collinear diagram showing an example of an upper limit rotation speed by the drive control apparatus according to the embodiment of the present invention.
  • FIG. 5 is a map showing the relationship between the upper limit rotational speed and the engine rotational speed referred to by the drive control apparatus according to the embodiment of the present invention.
  • FIG. 6 is a flowchart showing a flow of processing of motor over-rotation suppression control executed by the engine ECU of the drive control apparatus according to the embodiment of the present invention.
  • FIG. 7 is a flowchart showing a modification of the motor over-rotation suppression control.
  • a hybrid vehicle (hereinafter simply referred to as “vehicle”) 100 equipped with a drive control device according to an embodiment of the present invention includes a drive mechanism 1, a hybrid ECU (Electronic Control Unit) 32, An engine ECU 33 as a control unit, a motor ECU 34, and a brake ECU 35 are provided.
  • a hybrid ECU Electronic Control Unit
  • An engine ECU 33 as a control unit, a motor ECU 34, and a brake ECU 35 are provided.
  • the drive mechanism 1 includes an engine 2 as an internal combustion engine, an output shaft 3 of the engine 2, and a first motor generator (hereinafter referred to as a first electric motor) that generates electric power by generating driving force from electric power and driving. , Simply referred to as “MG1”), a second motor generator (hereinafter simply referred to as “MG2”) as a second electric motor, a drive shaft 7 connected to the drive wheels 6 of the vehicle 100 so that power can be transmitted,
  • the transmission mechanism 10 includes a first planetary gear mechanism 8 and a second planetary gear mechanism 9.
  • the engine 2 includes a four-cycle engine that performs a series of four strokes including an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke, and performs ignition by an ignition device (not shown) during the compression stroke and the expansion stroke.
  • the output shaft 3 of the engine 2 is connected to a first planetary gear mechanism 8 and a second planetary gear mechanism 9.
  • the output shaft 3 may be provided with a one-way clutch that prevents torque due to reverse rotation of the output shaft 3 from being transmitted to the first planetary gear mechanism 8 and the second planetary gear mechanism 9.
  • the MG 1 has a rotor shaft 13 as a rotation shaft connected to the first planetary gear mechanism 8, a rotor 14, and a stator 15.
  • a plurality of permanent magnets are embedded in the rotor 14.
  • the stator 15 has a stator core and a three-phase coil wound around the stator core. The three-phase coil of the stator 15 is connected to the first inverter 19.
  • MG1 When three-phase AC power is supplied to the three-phase coil of the stator 15 of MG1, a rotating magnetic field is formed by the stator 15. When the permanent magnet embedded in the rotor 14 is pulled by this rotating magnetic field, the rotor 14 is driven to rotate around the rotor shaft 13. That is, MG1 functions as an electric motor and generates a driving force for driving vehicle 100.
  • MG1 also functions as a generator and generates electric power for charging the battery 21.
  • the MG 2 has a rotor shaft 16 as a rotation shaft connected to the second planetary gear mechanism 9, a rotor 17, and a stator 18.
  • a plurality of permanent magnets are embedded in the rotor 17.
  • the stator 18 has a stator core and a three-phase coil wound around the stator core. The three-phase coil of the stator 18 is connected to the second inverter 20.
  • MG2 When three-phase AC power is supplied to the three-phase coil of the stator 18 of MG2, a rotating magnetic field is formed by the stator 18.
  • the rotor 17 is driven to rotate around the rotor shaft 16 by pulling the permanent magnet embedded in the rotor 17 to the rotating magnetic field. That is, MG2 functions as an electric motor and generates a driving force for driving vehicle 100.
  • MG2 also functions as a generator and generates electric power for charging the battery 21.
  • the first planetary gear mechanism 8 includes a sun gear 22, a plurality of planetary gears 23 that mesh with the sun gear 22, and a ring gear 25 that meshes with the plurality of planetary gears 23. Yes.
  • the second planetary gear mechanism 9 includes a sun gear 26, a plurality of planetary gears 27 that mesh with the sun gear 26, and a ring gear 29 that meshes with the plurality of planetary gears 27. Yes.
  • the sun gear 22 of the first planetary gear mechanism 8 is connected to the rotor shaft 13 so as to rotate integrally with the rotor 14 of the MG1.
  • the planetary carrier 24 of the first planetary gear mechanism 8 and the sun gear 26 of the second planetary gear mechanism 9 are coupled to the output shaft 3 of the engine 2 so as to be integrally rotatable.
  • the ring gear 25 of the first planetary gear mechanism 8 is connected to the planetary gear 27 of the second planetary gear mechanism 9 via the planetary carrier 28 so as to be able to revolve around the rotor shaft 13.
  • the ring gear 25 of the first planetary gear mechanism 8 is formed to rotate the drive shaft 7 via an output transmission mechanism 31 including a differential gear and other gears.
  • the ring gear 29 of the second planetary gear mechanism 9 is connected to the rotor shaft 16 so as to rotate integrally with the rotor 17 of the MG2.
  • the power transmission mechanism 10 constitutes a gear mechanism in which the output shaft 3 of the engine 2, the rotor shaft 13 of MG1, the rotor shaft 16 of MG2, and the drive shaft 7 are connected.
  • the power transmission mechanism 10 is configured to exchange driving force between the engine 2, MG1, MG2, and the drive shaft 7.
  • the power transmission mechanism 10 is configured to transmit power generated by the engine 2, MG 1, and MG 2 to the drive shaft 7.
  • the hybrid ECU 32 includes a computer unit having a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an input port, and an output port.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an input port, and an output port.
  • a program for causing the computer unit to function as the hybrid ECU 32 is stored in the ROM of the hybrid ECU 32 together with various control constants and various maps.
  • the computer unit functions as the hybrid ECU 32 when the CPU executes a program stored in the ROM.
  • the hybrid ECU 32 is connected to the engine ECU 33 and the motor ECU 34 and exchanges data with these ECUs.
  • the engine ECU 33 includes a computer unit including a CPU, a RAM, a ROM, a flash memory, an input port, and an output port.
  • the ROM of the engine ECU 33 stores a program for causing the computer unit to function as the engine ECU 33 along with various control constants and various maps.
  • the computer unit functions as the engine ECU 33.
  • crank angle sensor 41 Various sensors including the crank angle sensor 41 are connected to the input port of the engine ECU 33.
  • the crank angle sensor 41 detects the rotation angle of the output shaft 3 of the engine 2.
  • the engine ECU 33 includes an engine rotation speed calculation unit 53 that calculates a current engine rotation speed Ne (hereinafter simply referred to as “engine rotation speed”) Ne of the engine 2 based on a detection result input from the crank angle sensor 41.
  • the engine rotation speed Ne of the engine 2 is detected by the crank angle sensor 41 and the engine rotation speed calculation unit 53 of the engine ECU 33.
  • the crank angle sensor 41 and the engine rotation speed calculation unit 53 constitute a detection unit.
  • the output port of the engine ECU 33 is connected to an injector 45 that injects fuel into the combustion chamber of the engine 2 and a throttle valve actuator 46 that adjusts the opening of the throttle valve.
  • the engine ECU 33 is connected to the hybrid ECU 32 and the brake ECU 35, and exchanges data with these ECUs.
  • the brake ECU 35 is connected to a wheel speed sensor 42 as a drive wheel speed detection unit that detects a drive wheel speed Vout that is a rotation speed of the drive wheel 6.
  • the engine ECU 33 can acquire the drive wheel speed Vout detected by the wheel speed sensor 42 via the brake ECU 35.
  • the engine ECU 33 constitutes an engine upper limit rotation speed calculation unit 50 that calculates an engine rotation speed Ne_mg1max and an engine rotation speed Ne_mg2min, which will be described later, based on the drive wheel speed Vout detected by the wheel speed sensor 42.
  • the engine ECU 33 calculates at least the engine rotation speed Ne_mg1max, the engine rotation speed Ne_mg2min, and the engine rotation speed Nemax, which will be described later, as calculated by the engine rotation speed calculation unit 53 based on the detection result of the crank angle sensor 41.
  • An engine rotation speed control unit 51 that performs a reduction control for decreasing the engine rotation speed Ne when any one of the engine rotation speeds or more is configured. Such reduction control is executed through motor over-rotation suppression control described later.
  • the engine ECU 33 can perform so-called fuel cut control, for example, to cut fuel injected from the injector 45 into the combustion chamber.
  • fuel cut control is not limited to the fuel cut control, and may be a control to decrease the engine rotational speed Ne by decreasing the intake air amount of the engine 2 through the control of the throttle valve actuator 46, for example.
  • control for reducing the engine rotation speed Ne by adjusting the ignition timing in an ignition device (not shown) of the engine 2 may be used.
  • the motor ECU 34 includes a computer unit including a CPU, a RAM, a ROM, a flash memory, an input port, and an output port.
  • the ROM of the motor ECU 34 stores a program for causing the computer unit to function as the motor ECU 34 along with various control constants and various maps.
  • the CPU of the motor ECU 34 executes a program stored in the ROM, the computer unit functions as the motor ECU 34.
  • the first inverter 19 and the second inverter 20 are connected to the output port of the motor ECU 34.
  • a battery 21 is connected to the first inverter 19 and the second inverter 20.
  • the motor ECU 34 is connected to the hybrid ECU 32 and exchanges data with each other.
  • 2 to 4 are collinear diagrams in the power transmission mechanism 10 of the present embodiment.
  • each vertical axis represents the rotational speed Nmg1 of the rotor shaft 13 of MG1 from the left (simply indicated as “MG1” in FIGS. 2 to 4) and the output of the engine 2 in the drawings.
  • the rotational speed Nmg2 of the rotor shaft 16 of MG2 (simply referred to as “MG2” in FIGS. 2 to 4).
  • the distance ratio between the horizontal axes is determined by the gear ratio of the first planetary gear mechanism 8 and the second planetary gear mechanism 9.
  • the rotational speeds of the other two axes can be controlled by adjusting the rotational speeds of the two axes among the four axes of MG1, engine, wheel, and MG2.
  • the collinear diagram has a relationship in which if two rotation speeds are determined among the rotation speed Nmg1, the engine rotation speed Ne, the drive wheel speed Vout, and the rotation speed Nmg2, the other two rotation speeds are determined.
  • the drive control apparatus performs over-rotation suppression control described below based on such a collinear relationship.
  • the collinear relationship becomes a collinear relationship in which the MG1 side is lowered as indicated by the broken line in the drawing with the driving wheel speed Vout as a fulcrum from the relationship indicated by the solid line in the drawing.
  • the engine speed Ne is reduced by fuel cut in the overspeed suppression control.
  • the rotational speed Nmg1 also decreases due to the collinear relationship. As a result, excessive rotation of MG1 is suppressed.
  • the engine ECU 33 executes the overspeed suppression control to decrease the engine rotational speed Ne.
  • the collinear relationship becomes a collinear relationship in which the MG2 side is pulled up as shown by the broken line in the drawing with the driving wheel speed Vout as a fulcrum from the relationship shown by the solid line in the drawing.
  • the engine speed Ne is reduced by fuel cut in the overspeed suppression control.
  • the rotational speed Nmg2 also decreases due to the collinear relationship. Since the rotational speed Nmg2 at this time is a negative value, the absolute value of the rotational speed Nmg2 actually decreases. As a result, excessive rotation of MG2 is suppressed.
  • the drive control device of the present embodiment determines whether or not the rotational speed Nmg1 has reached the upper limit rotational speed Nmg1max and whether or not the rotational speed Nmg2 has reached the lower limit rotational speed Nmg2min based on the engine rotational speed Ne.
  • the engine rotation speed Ne when the rotation speed Nmg1 becomes the upper limit rotation speed Nmg1max is determined from the collinear relationship indicated by the solid line in FIG. Specifically, the engine speed Ne when the rotation speed Nmg1 becomes the upper limit rotation speed Nmg1max is determined by determining the upper limit rotation speed Nmg1max and the drive wheel speed Vout.
  • the engine rotation speed Ne when the rotation speed Nmg1 becomes the upper limit rotation speed Nmg1max is defined as the engine rotation speed Ne_mg1max.
  • the engine rotational speed Ne_mg1max in the present embodiment corresponds to the first engine rotational speed.
  • the engine rotational speed Ne when the rotational speed Nmg2 becomes the lower limit rotational speed Nmg2min is determined from the collinear relationship indicated by the broken line in FIG. Specifically, the lower limit rotational speed Nmg2min and the drive wheel speed Vout are determined, whereby the engine rotational speed Ne when the rotational speed Nmg2 becomes the lower limit rotational speed Nmg2min is determined.
  • the engine rotation speed Ne when the rotation speed Nmg2 becomes the lower limit rotation speed Nmg2min is defined as the engine rotation speed Ne_mg2min.
  • the engine rotation speed Ne_mg2min in the present embodiment corresponds to the second engine rotation speed.
  • the engine rotation speed Nemax is defined as the upper limit rotation speed of the engine 2.
  • the engine rotational speed Nemax in the present embodiment corresponds to the third engine rotational speed.
  • the engine rotational speed Ne_mg1max and the engine rotational speed Ne_mg2min described above have a linear relationship with the driving wheel speed Vout, for example, and are experimentally obtained in advance.
  • the engine speed Nemax is defined as a constant, and is experimentally obtained in advance according to the specifications of the engine 2 and the like.
  • the engine rotation speed Nemax is a rotation speed at which it is determined that an excessive rotation has occurred in the engine 2.
  • the engine speed Nemax is not limited to a constant and may be a variable.
  • engine rotational speed Ne_mg1max, engine rotational speed Ne_mg2min, and engine rotational speed Nemax are stored in the ROM of the engine ECU 33 as a map as shown in FIG.
  • the engine ECU 33 refers to the map shown in FIG. 5, and the engine rotation speed Ne calculated by the engine rotation speed calculation unit 53 based on the detection result of the crank angle sensor 41 is the engine rotation speed Ne_mg1max, the engine rotation speed Ne_mg2min, and the engine It can be determined whether or not at least one of the rotational speeds Nemax is equal to or higher than one of the engine rotational speeds. Thereby, it is determined whether MG1, MG2 or engine 2 is over-rotating.
  • the motor over-rotation suppression control includes determination as to whether or not the above-described MG1, MG2, or engine 2 is over-rotating, and reduction control.
  • This motor over-rotation suppression control is repeatedly executed at predetermined time intervals.
  • the engine ECU 33 acquires the drive wheel speed Vout detected by the wheel speed sensor 42 via the brake ECU 35 (step S1).
  • the engine ECU 33 calculates an engine rotation speed Nemax that is the upper limit rotation speed of the engine 2 based on the map shown in FIG. 5 (step S2).
  • the engine ECU 33 calculates an engine rotation speed Ne_mg1max corresponding to the upper limit rotation speed Nmg1max of MG1 based on the drive wheel speed Vout acquired in step S1 and the map shown in FIG. 5 (step S3).
  • the engine ECU 33 calculates an engine rotation speed Ne_mg2min corresponding to the lower limit rotation speed Nmg2min of MG2 based on the drive wheel speed Vout acquired in step S1 and the map shown in FIG. 5 (step S4).
  • the engine ECU 33 calculates the current engine rotation speed Ne by the engine rotation speed calculation unit 53 based on the detection result of the crank angle sensor 41 (step S5). Thereafter, the engine ECU 33 determines whether or not the current engine speed Ne calculated in step S5 is equal to or higher than the engine speed Nemax calculated in step S2 (step S6).
  • step S9 If the engine ECU 33 determines that the current engine rotational speed Ne is equal to or higher than the engine rotational speed Nemax, the engine ECU 33 executes a reduction control for reducing the engine rotational speed Ne (step S9), and ends the motor overspeed suppression control. To do.
  • step S6 when the engine ECU 33 determines that the current engine speed Ne is not equal to or higher than the engine speed Nemax, the current engine speed Ne calculated in step S5 is equal to or higher than the engine speed Ne_mg1max calculated in step S3. It is determined whether or not (step S7).
  • step S7 when the engine ECU 33 determines that the current engine rotational speed Ne is equal to or higher than the engine rotational speed Ne_mg1max, the engine ECU 33 executes a reduction control for decreasing the engine rotational speed Ne (step S9), and the motor overspeed. The suppression control is terminated.
  • step S7 when the engine ECU 33 determines that the current engine speed Ne is not equal to or higher than the engine speed Ne_mg1max, the current engine speed Ne calculated in step S5 is the engine speed Ne_mg2min calculated in step S4. It is determined whether or not the above is true (step S8). Since the engine speed Ne_mg2min is a negative value, in step S8, the above determination is made based on the absolute value of the engine speed Ne_mg2min.
  • step S8 when the engine ECU 33 determines that the current engine rotational speed Ne is equal to or higher than the engine rotational speed Ne_mg2min, the engine ECU 33 executes a reduction control for decreasing the engine rotational speed Ne (step S9), and the motor overspeed. The suppression control is terminated.
  • step S8 when the engine ECU 33 determines that the current engine speed Ne is not equal to or higher than the engine speed Ne_mg2min, the engine ECU 33 determines that none of the MG1, MG2, or the engine 2 is over-rotated, and step S9.
  • the motor over-rotation suppression control is terminated without performing the lowering control.
  • step S6 to step S8 The order of the processes from step S6 to step S8 described above is not limited to the order shown in FIG. Moreover, these steps S6 to S8 may be performed in parallel.
  • the current engine rotation speed Ne is at least one of the engine rotation speeds of the engine rotation speed Ne_mg1max, the engine rotation speed Ne_mg2min, and the engine rotation speed Nemax.
  • the engine speed Ne can be reduced by the reduction control.
  • the rotational speeds Nmg1 and Nmg2 of MG1 and MG2 can also be reduced.
  • the drive control apparatus does not require the actual rotational speeds Nmg1 and Nmg2 of MG1 and MG2, and determines whether or not MG1 and MG2 are over-rotated based on the engine rotational speed Ne. Can be judged.
  • the drive control device When it is determined that the MG1 and MG2 are over-rotating based on the current engine speed Ne, the drive control device according to the present embodiment reduces the engine speed Ne by the reduction control, thereby reducing the MG1 and MG1.
  • the rotational speeds Nmg1 and Nmg2 of MG2 can be reduced. Therefore, the drive control apparatus according to the present embodiment can suppress over-rotation of MG1 and MG2 even if it is not possible to determine whether or not MG1 and MG2 over-rotate.
  • the drive control apparatus can suppress over-rotation of MG1 and MG2 even when the actual rotation speeds Nmg1 and Nmg2 of MG1 and MG2 cannot be grasped as described above.
  • the current engine speed Ne calculated based on the detection result of the crank angle sensor 41 is the engine speed Ne_mg1max, the engine speed Ne_mg2min, and the engine speed.
  • Nemax is at least one of the engine speeds
  • the reduction control for reducing the engine speed Ne is performed.
  • the present invention is not limited to this.
  • the motor overspeed suppression control shown in FIG. Good is not limited to this.
  • the engine ECU 33 reduces the engine speed Ne when the engine speed Ne_mg1max, the engine speed Ne_mg2min, and the engine speed Nemax are equal to or higher than the lowest engine speed. It comes to perform control.
  • step S11 to step S15 which is the same process as each process from step S1 to step S5 in FIG.
  • the engine ECU 33 calculates the lowest engine speed among the engine speed Ne_mg1max, the engine speed Ne_mg2min, and the engine speed Nemax based on the map shown in FIG. 5 (step S16). That is, the engine ECU 33 selects the minimum values of the engine rotation speed Ne_mg1max, the engine rotation speed Ne_mg2min, and the engine rotation speed Nemax.
  • the engine ECU 33 determines whether or not the current engine speed Ne is equal to or higher than the lowest engine speed calculated in step S16 (step S17). If the engine ECU 33 determines that the current engine rotational speed Ne is equal to or higher than the lowest engine rotational speed calculated in step S16, the engine ECU 33 performs a reduction control for reducing the engine rotational speed Ne (step S18). The overspeed suppression control is terminated.
  • step S17 when the engine ECU 33 determines that the current engine speed Ne is not equal to or higher than the lowest engine speed calculated in step S16, none of the MG1, MG2, or the engine 2 is over-rotated. Determination is made, and the motor over-rotation suppression control is terminated without performing the reduction control in step S18.
  • the threshold value used in the determination process is one, and the current engine speed Ne is the engine speed Ne_mg1max, the engine speed Ne_mg2min, and the engine speed Nemax.
  • the judgment process can be simplified compared with the case of comparing with.
  • MG1 and MG2 are configured by a motor generator that can selectively obtain the functions of the motor and the generator.
  • MG1 and MG2 are, for example, only one of the functions of the motor and the generator. You may comprise by the motor or generator which has.
  • MG1 and MG2 may have a configuration in which either one has only the function of the electric motor and the other has only the function of the generator.
  • a motor generator, a motor having only a function of an electric motor, and a generator having only a function of a generator can be arbitrarily selected and used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 エンジン2の出力軸とMG1のロータ軸とMG2のロータ軸と駆動輪に動力を伝達可能な駆動軸とが連結された歯車機構を有するハイブリッド車両に搭載される駆動制御装置において、現在のエンジン回転速度Neが、MG1の回転速度Nmg1が上限回転速度Nmg1maxとなるときのエンジン回転速度Ne_mg1max、MG2の回転速度Nmg2が下限回転速度Nmg2minとなるときのエンジン回転速度Ne_mg2min、及びエンジンの上限回転速度であるエンジン回転速度Nemaxのうち、少なくとも1つのエンジン回転速度以上の場合に、エンジン回転速度Neを低下させる低下制御を行う。

Description

駆動制御装置
 本発明は、駆動制御装置に関し、特に、ハイブリッド車両に搭載される駆動制御装置に関する。
 従来、ハイブリッド車両として、エンジンの出力軸、2つの電動機としてのモータジェネレータの各回転軸、及び駆動輪に動力を伝達可能な駆動軸の4つの回転軸を連結した遊星歯車機構を有するものが知られている(例えば、特開2004-153946号公報(特許文献1)参照)。
 特開2004-153946号公報に記載のハイブリッド車両では、エンジンの動作点が最適燃費線上にくるように設定された変速比に基づいて、ハイブリッドECUが、2つのモータジェネレータのモータ回転速度N1、N2を算出している。
 ところが、上述のようにエンジンの動作点が最適燃費線上に拘束されると、エンジンパワーに応じて変速比が一意に決まるため、決定された変速比に基づき算出されるモータ回転速度N1、N2のうち一方の回転速度が過回転となってしまうことがある。
 このため、特開2004-153946号公報に記載のハイブリッド車両では、算出したモータ回転速度N1、N2のうち一方の回転速度が過回転するとハイブリッドECUが判断する場合には、ハイブリッドECUがエンジンECUに対してエンジン回転速度を低下させるよう指令するようになっている。これにより、モータジェネレータの過回転が抑制されている。
特開2004-153946号公報
 特開2004-153946号公報に記載の従来のハイブリッド車両にあっては、モータジェネレータが過回転するか否かをハイブリッドECUが判断している。このため、ハイブリッドECUに異常や故障が発生した場合には、モータジェネレータが過回転するか否かをハイブリッドECUが判断できなくなり、結果としてモータジェネレータの過回転を抑制できないおそれがあった。
 そこで、本発明は、電動機が過回転するか否かを判断できない場合であっても電動機の過回転を抑制できる駆動制御装置を提供することを目的とする。
 本発明に係る駆動制御装置は、内燃機関の出力軸と第1の電動機の回転軸と第2の電動機の回転軸と駆動輪に動力を伝達可能な駆動軸とが連結された歯車機構を有するハイブリッド車両に搭載される駆動制御装置において、前記内燃機関の回転速度である現在の機関回転速度を検出する検出部と、前記検出部によって検出された前記現在の機関回転速度が、前記第1の電動機の回転速度が予め定められた上限回転速度となるときの前記内燃機関の第1の機関回転速度、前記第2の電動機の回転速度が予め定められた下限回転速度となるときの前記内燃機関の第2の機関回転速度、及び予め定められた前記内燃機関の上限回転速度である第3の機関回転速度のうち、少なくとも1つの機関回転速度以上の場合に、前記現在の機関回転速度を低下させる低下制御を行う制御部と、を備えたことを特徴とするものである。
 本発明によれば、電動機が過回転するか否かを判断できない場合であっても電動機の過回転を抑制できる駆動制御装置を提供することができる。
図1は、本発明の実施の形態に係る駆動制御装置を搭載したハイブリッド車両の要部を示す構成図である。 図2は、本発明の実施の形態に係る駆動制御装置によりMG1の過回転を抑制する際のMG1、エンジン、車輪及びMG2の各回転速度の関係を示す共線図である。 図3は、本発明の実施の形態に係る駆動制御装置によりMG2の過回転を抑制する際のMG1、エンジン、車輪及びMG2の各回転速度の関係を示す共線図である。 図4は、本発明の実施の形態に係る駆動制御装置による上限回転速度の一例を示す共線図である。 図5は、本発明の実施の形態に係る駆動制御装置によって参照される上限回転速度とエンジン回転速度との関係を示すマップである。 図6は、本発明の実施の形態に係る駆動制御装置のエンジンECUによって実行されるモータ過回転抑制制御の処理の流れを示すフローチャートである。 図7は、モータ過回転抑制制御の変形例を示すフローチャートである。
 以下、図面を参照して、本発明の実施の形態について詳細に説明する。図1に示すように、本発明の実施の形態に係る駆動制御装置を搭載したハイブリッド車両(以下、単に「車両」という)100は、駆動機構1と、ハイブリッドECU(Electronic Control Unit)32と、制御部としてのエンジンECU33と、モータECU34と、ブレーキECU35とを備えている。
 駆動機構1は、内燃機関としてのエンジン2と、エンジン2の出力軸3と、電力から駆動力を生成するとともに駆動されることにより電力を生成する第1の電動機としての第1モータジェネレータ(以下、単に「MG1」という)及び第2の電動機としての第2モータジェネレータ(以下、単に「MG2」という)と、車両100の駆動輪6に動力を伝達可能に接続された駆動軸7と、動力伝達機構10を構成する第1遊星歯車機構8及び第2遊星歯車機構9とを含んで構成される。
 エンジン2は、吸気行程、圧縮行程、膨張行程及び排気行程からなる一連の4行程を行うとともに、圧縮行程及び膨張行程の間に図示しない点火装置によって点火を行う4サイクルのエンジンによって構成されている。エンジン2の出力軸3は、第1遊星歯車機構8と第2遊星歯車機構9とに連結されている。なお、出力軸3には、出力軸3の逆回転によるトルクが第1遊星歯車機構8や第2遊星歯車機構9に伝達されることを防止するワンウェイクラッチが設けられていてもよい。
 MG1は、第1遊星歯車機構8に連結された回転軸としてのロータ軸13と、ロータ14と、ステータ15とを有している。ロータ14には、複数の永久磁石が埋め込まれている。ステータ15は、ステータコア及びステータコアに巻き掛けられた三相コイルを有している。ステータ15の三相コイルは、第1インバータ19に接続されている。
 MG1のステータ15の三相コイルに三相交流電力が供給されると、ステータ15によって回転磁界が形成される。この回転磁界にロータ14に埋め込まれた永久磁石が引かれることにより、ロータ14がロータ軸13周りに回転駆動される。すなわち、MG1は、電動機として機能し、車両100を駆動する駆動力を生成する。
 ロータ14がロータ軸13周りに回転すると、ロータ14に埋め込まれた永久磁石によって回転磁界が形成される。この回転磁界によりステータ15の三相コイルに誘導電流が流れることにより、三相コイルの両端に電力が発生する。すなわち、MG1は、発電機としても機能し、バッテリ21を充電する電力を生成する。
 MG2は、第2遊星歯車機構9に連結された回転軸としてのロータ軸16と、ロータ17と、ステータ18とを有している。ロータ17には、複数の永久磁石が埋め込まれている。ステータ18は、ステータコア及びステータコアに巻き掛けられた三相コイルを有している。ステータ18の三相コイルは、第2インバータ20に接続されている。
 MG2のステータ18の三相コイルに三相交流電力が供給されると、ステータ18によって回転磁界が形成される。この回転磁界にロータ17に埋め込まれた永久磁石が引かれることにより、ロータ17がロータ軸16周りに回転駆動される。すなわち、MG2は、電動機として機能し、車両100を駆動する駆動力を生成する。
 ロータ17がロータ軸16周りに回転すると、ロータ17に埋め込まれた永久磁石によって回転磁界が形成される。この回転磁界によりステータ18の三相コイルに誘導電流が流れることにより、三相コイルの両端に電力が発生する。すなわち、MG2は、発電機としても機能し、バッテリ21を充電する電力を生成する。
 第1遊星歯車機構8は、サンギヤ22と、サンギヤ22に噛み合う複数のプラネタリギヤ23と、複数のプラネタリギヤ23に噛み合うリングギヤ25とを有し、プラネタリギヤ23を自転可能に支持するプラネタリキャリア24が設けられている。
 第2遊星歯車機構9は、サンギヤ26と、サンギヤ26に噛み合う複数のプラネタリギヤ27と、複数のプラネタリギヤ27に噛み合うリングギヤ29とを有し、プラネタリギヤ27を自転可能に支持するプラネタリキャリア28が設けられている。
 第1遊星歯車機構8のサンギヤ22は、MG1のロータ14と一体に回転するように、ロータ軸13に連結されている。第1遊星歯車機構8のプラネタリキャリア24と、第2遊星歯車機構9のサンギヤ26とは、エンジン2の出力軸3に一体回転可能に連結されている。
 第1遊星歯車機構8のリングギヤ25は、第2遊星歯車機構9のプラネタリギヤ27にプラネタリキャリア28を介してロータ軸13周りに公転可能に連結されている。第1遊星歯車機構8のリングギヤ25は、デファレンシャルギヤ及びその他のギヤを含む出力伝達機構31を介して駆動軸7を回転させるように形成されている。
 第2遊星歯車機構9のリングギヤ29は、MG2のロータ17と一体に回転するようにロータ軸16に連結されている。動力伝達機構10は、エンジン2の出力軸3と、MG1のロータ軸13と、MG2のロータ軸16と、駆動軸7とが連結された歯車機構を構成する。
 したがって、動力伝達機構10は、エンジン2と、MG1と、MG2と、駆動軸7との間で駆動力を授受させるようになっている。例えば、動力伝達機構10は、エンジン2と、MG1と、MG2とによって生成された動力を駆動軸7に伝達するようになっている。
 ハイブリッドECU32は、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、フラッシュメモリと、入力ポートと、出力ポートとを備えたコンピュータユニットによって構成されている。
 ハイブリッドECU32のROMには、各種制御定数や各種マップ等とともに、当該コンピュータユニットをハイブリッドECU32として機能させるためのプログラムが記憶されている。ハイブリッドECU32において、CPUがROMに記憶されたプログラムを実行することにより、当該コンピュータユニットは、ハイブリッドECU32として機能する。ハイブリッドECU32は、エンジンECU33及びモータECU34に接続され、これら各ECUと相互にデータのやりとりを行う。
 エンジンECU33は、CPUと、RAMと、ROMと、フラッシュメモリと、入力ポートと、出力ポートとを備えたコンピュータユニットによって構成されている。
 エンジンECU33のROMには、各種制御定数や各種マップ等とともに、当該コンピュータユニットをエンジンECU33として機能させるためのプログラムが記憶されている。エンジンECU33において、CPUがROMに記憶されたプログラムを実行することにより、当該コンピュータユニットは、エンジンECU33として機能する。
 エンジンECU33の入力ポートには、クランク角センサ41を含む各種センサ類が接続されている。クランク角センサ41は、エンジン2の出力軸3の回転角度を検出する。エンジンECU33は、クランク角センサ41から入力される検知結果に基づきエンジン2の現在の機関回転速度(以下、単に「エンジン回転速度」という)Neを算出するエンジン回転速度算出部53を備える。
 本実施の形態では、クランク角センサ41及びエンジンECU33のエンジン回転速度算出部53によってエンジン2のエンジン回転速度Neが検出される。クランク角センサ41及びエンジン回転速度算出部53は、検出部を構成する。
 エンジンECU33の出力ポートには、エンジン2の燃焼室内に向けて燃料を噴射するインジェクタ45と、スロットルバルブの開度を調整するスロットルバルブアクチュエータ46とが接続されている。
 エンジンECU33は、ハイブリッドECU32及びブレーキECU35に接続され、これら各ECUと相互にデータのやりとりを行う。ブレーキECU35には、駆動輪6の回転速度である駆動輪速度Voutを検出する駆動輪速度検出部としての車輪速度センサ42が接続されている。
 この構成により、エンジンECU33は、ブレーキECU35を介して、車輪速度センサ42によって検出された駆動輪速度Voutを取得することができる。エンジンECU33は、車輪速度センサ42によって検出された駆動輪速度Voutに基づき、後述するエンジン回転速度Ne_mg1max及びエンジン回転速度Ne_mg2minを算出するエンジン上限回転速度算出部50を構成する。
 また、エンジンECU33は、クランク角センサ41の検出結果に基づきエンジン回転速度算出部53によって算出したエンジン回転速度Neが、後述するエンジン回転速度Ne_mg1max、エンジン回転速度Ne_mg2min及びエンジン回転速度Nemaxのうち、少なくともいずれか1つのエンジン回転速度以上の場合に、エンジン回転速度Neを低下させる低下制御を行うエンジン回転速度制御部51を構成する。こうした低下制御は、後述するモータ過回転抑制制御を通じて実行される。
 エンジン回転速度Neを低下させる低下制御としては、エンジンECU33は、例えばインジェクタ45から燃焼室内に向けて噴射される燃料をカットする、いわゆるフューエルカット制御を行うことができる。こうした低下制御としては、フューエルカット制御に限らず、例えばスロットルバルブアクチュエータ46の制御を通じてエンジン2の吸入空気量を減少させることでエンジン回転速度Neを低下させる制御でもよい。または、エンジン2の図示しない点火装置における点火時期を調節することでエンジン回転速度Neを低下させる制御でもよい。
 モータECU34は、CPUと、RAMと、ROMと、フラッシュメモリと、入力ポートと、出力ポートとを備えたコンピュータユニットによって構成されている。
 モータECU34のROMには、各種制御定数や各種マップ等とともに、当該コンピュータユニットをモータECU34として機能させるためのプログラムが記憶されている。モータECU34のCPUがROMに記憶されたプログラムを実行することにより、当該コンピュータユニットは、モータECU34として機能する。
 モータECU34の出力ポートには、第1インバータ19と第2インバータ20とが接続されている。第1インバータ19及び第2インバータ20には、バッテリ21が接続されている。モータECU34は、ハイブリッドECU32に接続され、相互にデータのやりとりを行う。
 次に、図2~図6を参照して、MG1及びMG2の過回転を抑制する過回転抑制制御について説明する。図2~図4は、本実施の形態の動力伝達機構10における共線図である。
 図2~図4の共線図において、各縦軸は、図中、左からMG1のロータ軸13の回転速度Nmg1(図2~図4では、単に「MG1」と記す)、エンジン2の出力軸3の回転速度すなわちエンジン回転速度Ne(図2~図4では、単に「エンジン」と記す)、駆動軸7の回転速度すなわち駆動輪速度Vout(図2~図4では、単に「車輪」と記す)、MG2のロータ軸16の回転速度Nmg2(図2~図4では、単に「MG2」と記す)をそれぞれ表している。
 図2~図4の共線図において、横軸における各軸間の距離比は、第1遊星歯車機構8及び第2遊星歯車機構9のギヤ比により定まる。図2~図4の共線図においては、MG1、エンジン、車輪及びMG2の4軸のうち2軸の回転速度を調整することで、他の2軸の回転速度を制御することができる。
 具体的には、共線図は、回転速度Nmg1、エンジン回転速度Ne、駆動輪速度Vout、回転速度Nmg2のうち、2つの回転速度が決まれば、他の2つの回転速度が決まる関係にある。本実施の形態の駆動制御装置は、こうした共線関係に基づき、以下に説明する過回転抑制制御を行う。
 図2に示すように、回転速度Nmg1が予め定められたMG1の上限回転速度Nmg1maxとなった場合には、エンジンECU33が過回転抑制制御を実行して、エンジン回転速度Neを低下させる。
 これにより、共線関係が図中、実線で示す関係から駆動輪速度Voutを支点に図中、破線で示すようにMG1側が下がる共線関係となる。例えば、過回転抑制制御における燃料カットによってエンジン回転速度Neを低下させる。このとき、上記共線関係から回転速度Nmg1も低下する。この結果、MG1の過回転が抑制される。
 図3に示すように、回転速度Nmg2が予め定められたMG2の下限回転速度Nmg2minとなった場合には、エンジンECU33が過回転抑制制御を実行して、エンジン回転速度Neを低下させる。
 これにより、共線関係が図中、実線で示す関係から駆動輪速度Voutを支点に図中、破線で示すようにMG2側が引き上げられる共線関係となる。例えば、過回転抑制制御における燃料カットによってエンジン回転速度Neを低下させる。このとき、上記共線関係から回転速度Nmg2も低下する。このときの回転速度Nmg2は、負の値であるため、実際には回転速度Nmg2の絶対値が低下する。この結果、MG2の過回転が抑制される。
 本実施の形態の駆動制御装置は、回転速度Nmg1が上限回転速度Nmg1maxに達したか否か、回転速度Nmg2が下限回転速度Nmg2minに達したか否かは、エンジン回転速度Neによって判断する。
 回転速度Nmg1が上限回転速度Nmg1maxとなるときのエンジン回転速度Neは、図4において実線で示される共線関係から決定される。具体的には、上限回転速度Nmg1maxと駆動輪速度Voutが決まることで、回転速度Nmg1が上限回転速度Nmg1maxとなるときのエンジン回転速度Neが決まる。
 ここでは、回転速度Nmg1が上限回転速度Nmg1maxとなるときのエンジン回転速度Neをエンジン回転速度Ne_mg1maxとする。本実施の形態におけるエンジン回転速度Ne_mg1maxは、第1の機関回転速度に相当する。
 また、回転速度Nmg2が下限回転速度Nmg2minとなるときのエンジン回転速度Neは、図4において破線で示される共線関係から決定される。具体的には、下限回転速度Nmg2minと駆動輪速度Voutが決まることで、回転速度Nmg2が下限回転速度Nmg2minとなるときのエンジン回転速度Neが決まる。
 ここでは、回転速度Nmg2が下限回転速度Nmg2minとなるときのエンジン回転速度Neをエンジン回転速度Ne_mg2minとする。本実施の形態におけるエンジン回転速度Ne_mg2minは、第2の機関回転速度に相当する。
 この他、本実施の形態では、エンジン2の上限回転速度としてエンジン回転速度Nemaxが規定されている。本実施の形態におけるエンジン回転速度Nemaxは、第3の機関回転速度に相当する。
 上述したエンジン回転速度Ne_mg1max及びエンジン回転速度Ne_mg2minは、例えば駆動輪速度Voutに対してリニアな関係を有し、予め実験的に求められている。エンジン回転速度Nemaxは、定数として規定されており、エンジン2の諸元等によって予め実験的に求められている。例えば、エンジン回転速度Nemaxは、エンジン2に過回転が発生したと判断される回転速度である。エンジン回転速度Nemaxは、定数に限らず、変数であってもよい。
 これらエンジン回転速度Ne_mg1max、エンジン回転速度Ne_mg2min及びエンジン回転速度Nemaxは、図5に示すようなマップとしてエンジンECU33のROMに記憶されている。
 エンジンECU33は、図5に示すマップを参照することにより、クランク角センサ41の検出結果に基づきエンジン回転速度算出部53によって算出したエンジン回転速度Neが、エンジン回転速度Ne_mg1max、エンジン回転速度Ne_mg2min及びエンジン回転速度Nemaxのうち、少なくともいずれか1つのエンジン回転速度以上となったか否かを判断することができる。これにより、MG1、MG2又はエンジン2が過回転しているか否かが判断される。
 エンジンECU33は、図5に示すマップに基づき、MG1、MG2又はエンジン2が過回転していると判断した場合には、エンジン回転速度Neを低下させる低下制御を行う。これにより、MG1、MG2又はエンジン2の過回転が抑制される。本実施の形態に係るモータ過回転抑制制御には、上述したMG1、MG2又はエンジン2が過回転しているか否かの判断、及び低下制御が含まれる。
 次に、図6を参照して、本実施の形態に係るエンジンECU33によって実行されるモータ過回転抑制制御の処理の流れについて説明する。このモータ過回転抑制制御は、所定の時間間隔で繰り返し実行される。
 図6に示すように、まず、エンジンECU33は、ブレーキECU35を介して、車輪速度センサ42によって検出された駆動輪速度Voutを取得する(ステップS1)。次いで、エンジンECU33は、図5に示すマップに基づきエンジン2の上限回転速度であるエンジン回転速度Nemaxを算出する(ステップS2)。
 その後、エンジンECU33は、ステップS1で取得した駆動輪速度Voutと図5に示すマップとに基づき、MG1の上限回転速度Nmg1maxに対応するエンジン回転速度Ne_mg1maxを算出する(ステップS3)。
 次いで、エンジンECU33は、ステップS1で取得した駆動輪速度Voutと図5に示すマップとに基づき、MG2の下限回転速度Nmg2minに対応するエンジン回転速度Ne_mg2minを算出する(ステップS4)。
 次いで、エンジンECU33は、クランク角センサ41の検出結果に基づきエンジン回転速度算出部53によって現在のエンジン回転速度Neを算出する(ステップS5)。その後、エンジンECU33は、ステップS5で算出した現在のエンジン回転速度NeがステップS2で算出したエンジン回転速度Nemax以上であるか否かを判断する(ステップS6)。
 エンジンECU33は、現在のエンジン回転速度Neがエンジン回転速度Nemax以上であると判断した場合には、エンジン回転速度Neを低下させる低下制御を実行して(ステップS9)、モータ過回転抑制制御を終了する。
 ステップS6において、エンジンECU33は、現在のエンジン回転速度Neがエンジン回転速度Nemax以上でないと判断した場合には、ステップS5で算出した現在のエンジン回転速度NeがステップS3で算出したエンジン回転速度Ne_mg1max以上であるか否かを判断する(ステップS7)。ステップS7において、エンジンECU33は、現在のエンジン回転速度Neがエンジン回転速度Ne_mg1max以上であると判断した場合には、エンジン回転速度Neを低下させる低下制御を実行して(ステップS9)、モータ過回転抑制制御を終了する。
 ステップS7において、エンジンECU33は、現在のエンジン回転速度Neがエンジン回転速度Ne_mg1max以上ではないと判断した場合には、ステップS5で算出した現在のエンジン回転速度NeがステップS4で算出したエンジン回転速度Ne_mg2min以上であるか否かを判断する(ステップS8)。エンジン回転速度Ne_mg2minは、負の値であるため、ステップS8においては、エンジン回転速度Ne_mg2minの絶対値で上記判断を行う。
 ステップS8において、エンジンECU33は、現在のエンジン回転速度Neがエンジン回転速度Ne_mg2min以上であると判断した場合には、エンジン回転速度Neを低下させる低下制御を実行して(ステップS9)、モータ過回転抑制制御を終了する。
 ステップS8において、エンジンECU33は、現在のエンジン回転速度Neがエンジン回転速度Ne_mg2min以上でないと判断した場合には、MG1、MG2又はエンジン2のいずれも過回転となっていないと判断して、ステップS9の低下制御を行うことなくモータ過回転抑制制御を終了する。
 上述のステップS6からステップS8の各処理の順序は、図6に示す順序に限られない。また、これらステップS6からステップS8は、並行して行われてもよい。
 以上のように、本実施の形態に係る駆動制御装置は、現在のエンジン回転速度Neがエンジン回転速度Ne_mg1max、エンジン回転速度Ne_mg2min及びエンジン回転速度Nemaxのうち、少なくともいずれか1つのエンジン回転速度以上の場合に、低下制御によってエンジン回転速度Neを低下させることができる。これにより、MG1及びMG2の回転速度Nmg1、Nmg2も低下させることができる。
 このように、本実施の形態に係る駆動制御装置は、MG1及びMG2の実際の回転速度Nmg1、Nmg2を要さずに、エンジン回転速度Neに基づきMG1及びMG2が過回転となっているか否かを判断できる。
 本実施の形態に係る駆動制御装置は、現在のエンジン回転速度Neに基づきMG1及びMG2が過回転していると判断した場合には、低下制御によってエンジン回転速度Neを低下させることで、MG1及びMG2の回転速度Nmg1、Nmg2を低下させることができる。したがって、本実施の形態に係る駆動制御装置は、MG1やMG2が過回転するか否かを判断できない場合であってもMG1及びMG2の過回転を抑制できる。
 また、本実施の形態に係る駆動制御装置は、例えばモータECU34によってMG1及びMG2の実際の回転速度Nmg1、Nmg2が把握できない場合であっても、現在のエンジン回転速度NeからMG1やMG2が過回転するか否かを判断できる。これにより、本実施の形態に係る駆動制御装置は、上述のようにMG1及びMG2の実際の回転速度Nmg1、Nmg2が把握できない場合であっても、MG1及びMG2の過回転を抑制できる。
 本実施の形態では、図6に示したモータ過回転抑制制御において、クランク角センサ41の検出結果に基づき算出した現在のエンジン回転速度Neが、エンジン回転速度Ne_mg1max、エンジン回転速度Ne_mg2min及びエンジン回転速度Nemaxのうち、少なくともいずれか1つのエンジン回転速度以上の場合に、エンジン回転速度Neを低下させる低下制御を行う構成としたが、これに限らず、例えば図7に示すモータ過回転抑制制御としてもよい。
 図7に示すモータ過回転抑制制御では、エンジンECU33は、エンジン回転速度Ne_mg1max、エンジン回転速度Ne_mg2min及びエンジン回転速度Nemaxのうち、最も低いエンジン回転速度以上の場合に、エンジン回転速度Neを低下させる低下制御を行うようになっている。
 具体的には、図7に示すように、まず、エンジンECU33は、図6のステップS1からステップS5の各処理と同様の処理であるステップS11からステップS15の各処理を行う。
 その後、エンジンECU33は、図5に示すマップに基づき、エンジン回転速度Ne_mg1max、エンジン回転速度Ne_mg2min及びエンジン回転速度Nemaxのうち、最も低いエンジン回転速度を算出する(ステップS16)。つまり、エンジンECU33は、エンジン回転速度Ne_mg1max、エンジン回転速度Ne_mg2min及びエンジン回転速度Nemaxにおける最小値を選択する。
 次いで、エンジンECU33は、現在のエンジン回転速度NeがステップS16で算出した最も低いエンジン回転速度以上か否かを判断する(ステップS17)。エンジンECU33は、現在のエンジン回転速度NeがステップS16で算出した最も低いエンジン回転速度以上であると判断した場合には、エンジン回転速度Neを低下させる低下制御を実行して(ステップS18)、モータ過回転抑制制御を終了する。
 ステップS17において、エンジンECU33は、現在のエンジン回転速度NeがステップS16で算出した最も低いエンジン回転速度以上でないと判断した場合には、MG1、MG2又はエンジン2のいずれも過回転となっていないと判断して、ステップS18の低下制御を行うことなくモータ過回転抑制制御を終了する。
 図7に示したモータ過回転抑制制御を行う場合には、判断処理に用いられる閾値が1つとなり、現在のエンジン回転速度Neをエンジン回転速度Ne_mg1max、エンジン回転速度Ne_mg2min及びエンジン回転速度Nemaxの全てと比較する場合と比べて判断処理を簡便にすることができる。
 本実施の形態では、MG1及びMG2を電動機及び発電機の機能が選択的に得られるモータジェネレータで構成したが、これに限らず、MG1及びMG2を例えば電動機及び発電機の機能のいずれか一方のみを有するモータあるいはジェネレータで構成してもよい。また、MG1及びMG2は、いずれか一方が電動機の機能のみを有し、他方が発電機の機能のみを有する構成としてもよい。さらに、MG1及びMG2としては、モータジェネレータ、電動機の機能のみを有するモータ、発電機の機能のみを有するジェネレータを任意に選択して用いることも可能である。
 上述の通り、本発明の実施の形態を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。
 2 エンジン(内燃機関)
 3 出力軸
 6 駆動輪
 7 駆動軸
 10 動力伝達機構(歯車機構)
 13、16 ロータ軸(回転軸)
 32 ハイブリッドECU
 33 エンジンECU(制御部、検出部)
 34 モータECU
 35 ブレーキECU
 41 クランク角センサ(検出部)
 42 車輪速度センサ(駆動輪速度検出部)
 45 インジェクタ
 46 スロットルバルブアクチュエータ
 50 エンジン上限回転速度算出部
 51 エンジン回転速度制御部
 53 エンジン回転速度算出部
 100 ハイブリッド車両
 MG1 第1モータジェネレータ(第1の電動機)
 MG2 第2モータジェネレータ(第2の電動機)

Claims (3)

  1.  内燃機関の出力軸と第1の電動機の回転軸と第2の電動機の回転軸と駆動輪に動力を伝達可能な駆動軸とが連結された歯車機構を有するハイブリッド車両に搭載される駆動制御装置において、
     前記内燃機関の回転速度である現在の機関回転速度を検出する検出部と、
     前記検出部によって検出された前記現在の機関回転速度が、前記第1の電動機の回転速度が予め定められた上限回転速度となるときの前記内燃機関の第1の機関回転速度、前記第2の電動機の回転速度が予め定められた下限回転速度となるときの前記内燃機関の第2の機関回転速度、及び予め定められた前記内燃機関の上限回転速度である第3の機関回転速度のうち、少なくとも1つの機関回転速度以上の場合に、前記現在の機関回転速度を低下させる低下制御を行う制御部と、を備えたことを特徴とする駆動制御装置。
  2.  前記駆動輪の回転速度である駆動輪速度を検出する駆動輪速度検出部を備え、
     前記制御部は、前記駆動輪速度検出部によって検出された前記駆動輪速度に基づき、前記第1の機関回転速度、前記第2の機関回転速度を算出することを特徴とする請求項1に記載の駆動制御装置。
  3.  前記制御部は、前記検出部によって検出された前記現在の機関回転速度が、前記駆動輪速度検出部によって検出された駆動輪速度に基づき前記制御部によって算出された前記第1の機関回転速度、前記駆動輪速度検出部によって検出された駆動輪速度に基づき前記制御部によって算出された前記第2の機関回転速度及び前記第3の機関回転速度のなかの最小値以上の場合に、前記低下制御を行うことを特徴とする請求項2に記載の駆動制御装置。
PCT/JP2015/061091 2014-04-10 2015-04-09 駆動制御装置 WO2015156351A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015001735.6T DE112015001735T5 (de) 2014-04-10 2015-04-09 Antriebssteuervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-080684 2014-04-10
JP2014080684A JP2015199463A (ja) 2014-04-10 2014-04-10 駆動制御装置

Publications (1)

Publication Number Publication Date
WO2015156351A1 true WO2015156351A1 (ja) 2015-10-15

Family

ID=54287923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061091 WO2015156351A1 (ja) 2014-04-10 2015-04-09 駆動制御装置

Country Status (3)

Country Link
JP (1) JP2015199463A (ja)
DE (1) DE112015001735T5 (ja)
WO (1) WO2015156351A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6040961B2 (ja) * 2013-10-22 2016-12-07 株式会社デンソー 車両制御システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153946A (ja) * 2002-10-31 2004-05-27 Nissan Motor Co Ltd ハイブリッド車のモータ過回転防止制御装置
JP2011219025A (ja) * 2010-04-13 2011-11-04 Toyota Motor Corp ハイブリッド自動車およびその制御方法
JP2011235809A (ja) * 2010-05-12 2011-11-24 Toyota Motor Corp 車両用制御装置および車両用制御方法
JP2012106636A (ja) * 2010-11-17 2012-06-07 Toyota Motor Corp 車両用駆動装置の制御装置
JP2013189197A (ja) * 2013-04-30 2013-09-26 Denso Corp 車載動力発生装置の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153946A (ja) * 2002-10-31 2004-05-27 Nissan Motor Co Ltd ハイブリッド車のモータ過回転防止制御装置
JP2011219025A (ja) * 2010-04-13 2011-11-04 Toyota Motor Corp ハイブリッド自動車およびその制御方法
JP2011235809A (ja) * 2010-05-12 2011-11-24 Toyota Motor Corp 車両用制御装置および車両用制御方法
JP2012106636A (ja) * 2010-11-17 2012-06-07 Toyota Motor Corp 車両用駆動装置の制御装置
JP2013189197A (ja) * 2013-04-30 2013-09-26 Denso Corp 車載動力発生装置の制御装置

Also Published As

Publication number Publication date
DE112015001735T5 (de) 2017-01-26
JP2015199463A (ja) 2015-11-12

Similar Documents

Publication Publication Date Title
JP4623168B2 (ja) 内燃機関の失火検出装置および失火検出方法
JP6544342B2 (ja) ハイブリッド自動車
JP2013180681A (ja) 車両に搭載される発電電動機の制御装置
US8574120B2 (en) Vehicle driving system control apparatus
WO2015156351A1 (ja) 駆動制御装置
JP5395041B2 (ja) 車両、内燃機関の異常判定方法および内燃機関の異常判定装置
JP2016141236A (ja) 駆動制御装置
JP2010163060A (ja) ハイブリッド自動車
JP6010879B2 (ja) ハイブリッド車両の制御装置
JP4888455B2 (ja) 車両の制御装置および制御方法
JP2009274553A (ja) 車両およびその制御方法
JP6769118B2 (ja) ハイブリッド車両の制御装置
JP6812662B2 (ja) ハイブリッド車両の制御装置
JP6413827B2 (ja) 異常診断装置
JP2016107845A (ja) 駆動制御装置
JP2019073151A (ja) ハイブリッド車両の制御装置
JP2009298365A (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP2009137369A (ja) 車両および駆動装置並びに車両の制御方法
JP2008179291A (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP6459803B2 (ja) ハイブリッド車両の駆動制御装置
JP2018012489A (ja) ハイブリッド車両の制御装置
JP2013056627A (ja) 自動車
JP2017202798A (ja) ハイブリッド車両の制御装置
JP6237287B2 (ja) ハイブリッド車両の駆動制御装置
JP4360343B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015001735

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776401

Country of ref document: EP

Kind code of ref document: A1