JP2019003821A - 燃料電池およびその製造方法 - Google Patents

燃料電池およびその製造方法 Download PDF

Info

Publication number
JP2019003821A
JP2019003821A JP2017117306A JP2017117306A JP2019003821A JP 2019003821 A JP2019003821 A JP 2019003821A JP 2017117306 A JP2017117306 A JP 2017117306A JP 2017117306 A JP2017117306 A JP 2017117306A JP 2019003821 A JP2019003821 A JP 2019003821A
Authority
JP
Japan
Prior art keywords
fuel cell
sealant
electrode assembly
gas diffusion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017117306A
Other languages
English (en)
Other versions
JP6855950B2 (ja
Inventor
佐藤 克己
Katsumi Sato
克己 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017117306A priority Critical patent/JP6855950B2/ja
Priority to US16/005,846 priority patent/US10797325B2/en
Priority to DE102018114003.7A priority patent/DE102018114003A1/de
Priority to CN201810606372.7A priority patent/CN109148913B/zh
Publication of JP2019003821A publication Critical patent/JP2019003821A/ja
Application granted granted Critical
Publication of JP6855950B2 publication Critical patent/JP6855950B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/861Porous electrodes with a gradient in the porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】ガスシール性を確保しつつ、燃料電池の使用時にもガスシール性が維持される技術を提供する。
【解決手段】膜電極接合体10と樹脂フレーム20と、を備える燃料電池の製造方法は、前記膜電極接合体を得るために用いられ、前記電解質膜の少なくとも一方の面上に、少なくとも前記触媒電極層を含む多孔質層が設けられた膜電極接合体シート60において、前記多孔質層上から、前記膜電極接合体の外周となる部位を含む領域に対して封止剤を塗布して、前記多孔質層の気孔を封止する第1の工程と、前記封止剤を塗布した領域において前記膜電極接合体シートを切断して、前記膜電極接合体を含む積層部材64を得る第2の工程と、前記積層部材が備える前記多孔質層における前記封止剤が塗布された部位と、前記樹脂フレームとを、接着剤によって接着する第3の工程と、を備える。
【選択図】図3

Description

本発明は、燃料電池、およびその製造方法に関する。
燃料電池は、電解質膜の異なる面に形成したアノードおよびカソードのそれぞれに、異なる反応ガスを供給することにより、電気化学反応を進行して起電力を得る。そのため、燃料電池において十分な発電性能を確保するためには、電解質膜の両面上に形成される各々の反応ガスの流路が気密にシールされて、各々の反応ガスが混合されないことが重要である。電解質膜を間に挟んで電解質膜の各々の面上に設けられる反応ガスの流路のシール性を確保するための構成の一例として、電解質膜の一方の面の外周部において、触媒電極層に覆われることなく電解質膜が露出する露出領域を設け、この露出領域において接着剤を用いたガスシールを行なう構成が知られている(例えば、特許文献1参照)。
図19は、上記した従来知られるシール構造の概略を表わす断面模式図である。図19では、燃料電池を構成する単セルの外周部の構造を示している。図19の燃料電池は、電解質膜11、電解質膜11の各々の面に設けられたアノード12とカソード13、および、アノード12とカソード13のさらに外側に積層されたガス拡散層14とガス拡散層15、から成る積層体を備える。そして、この積層体の外周を囲むように配置された樹脂フレーム20をさらに備える。電解質膜11の一方の面(図19ではカソード13側の面)の外周部には、カソード13が形成されない露出領域αが設けられている。図19の燃料電池では、電解質膜11は、上記露出領域αにおいて、接着剤122を介して樹脂フレーム20に接合されている。このような構成では、アノード12やカソード13、あるいはガス拡散層14,15等の多孔質体を介することなく、電解質膜11と樹脂フレーム20とを接合することができる。そのため、接着剤122によって電解質膜11と樹脂フレーム20とを十分に密着させることにより、電解質膜11の外周部において、電解質膜11の各々の面上に設けられる反応ガスの流路間で十分なガスシール性を実現することが可能になる。
特開2015−115131号公報 特開2017−004607号公報
しかしながら、図19に示すように電解質膜11と樹脂フレーム20とを接着する場合には、電解質膜11の露出領域αにおいて、カソード13やガス拡散層15、あるいは接着剤122や樹脂フレーム20によって覆われない露出箇所が生じる。このような露出箇所を、図19では矢印βによって示す。燃料電池の使用時には、昇温と降温、あるいは、加湿と乾燥が繰り返されて、電解質膜11が膨潤と収縮とを繰り返すことにより、上記露出箇所βに応力が集中して、電解質膜11が損傷し易くなる。電解質膜11が損傷すると、電解質膜11の損傷部分において、ガスシール性が損なわれる可能性がある。そのため、電解質膜の外周部においてガスシール性を確保しつつ、燃料電池の使用時にも当該ガスシール性が維持される技術が望まれていた。
本発明は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、気孔を有する触媒電極層が電解質膜の両面に形成された膜電極接合体と、前記膜電極接合体の外周部に接合された樹脂フレームと、を備える燃料電池の製造方法が提供される。この燃料電池の製造方法は;前記膜電極接合体を得るために用いられ、前記電解質膜と前記触媒電極層とを備える膜電極接合体シートであって、前記電解質膜の少なくとも一方の面上に、少なくとも前記触媒電極層を含む多孔質層が設けられた膜電極接合体シートにおいて、前記多孔質層上から、前記膜電極接合体の外周となる部位を含む領域に対して封止剤を塗布して、前記封止剤を塗布した領域における前記多孔質層の気孔を封止する第1の工程と;前記封止剤を塗布した領域において前記膜電極接合体シートを切断して、前記膜電極接合体を含む積層部材を得る第2の工程と;前記積層部材と前記樹脂フレームとを接合する工程であって、前記積層部材が備える前記多孔質層における前記封止剤が塗布された部位と、前記樹脂フレームとを、接着剤によって接着する第3の工程と;を備える。
この形態の燃料電池の製造方法によれば、膜電極接合体の外周部、すなわち電解質膜の外周部において、積層部材と樹脂フレームとが接着される箇所におけるガスシールの信頼性を高めることができる。また、燃料電池の使用時に電解質膜が膨潤と収縮とを繰り返す場合であっても、電解質膜の損傷を抑えて、ガスシール性を維持することができる。
(2)上記形態の燃料電池の製造方法において;前記燃料電池は、さらに、前記膜電極接合体における各々の前記触媒電極層上に積層されたガス拡散層を備え;前記膜電極接合体シートおよび前記積層部材は、前記多孔質層として、前記触媒電極層に加えて、該触媒電極層上に積層された前記ガス拡散層を備え;前記第1の工程は、前記封止剤の塗布により、前記封止剤を塗布した領域における前記触媒電極層および前記ガス拡散層の気孔を封止することとしてもよい。この形態の燃料電池の製造方法によれば、電解質膜の外周部におけるガスシールの信頼性を高めることができる。
(3)上記形態の燃料電池の製造方法において、前記第1の工程は;前記封止剤として第1の封止剤を前記膜電極接合体シートに塗布して、前記第1の封止剤を塗布した領域における前記触媒電極層の気孔を封止する第4の工程と;前記第4の工程の後に、前記膜電極接合体シートにおける前記第1の封止剤を塗布した領域上に、前記封止剤として前記第1の封止剤よりも粘度が高い第2の封止剤を塗布して、前記第2の封止剤を塗布した領域における前記ガス拡散層の気孔を封止する第5の工程と、を備えることとしてもよい。この形態の燃料電池の製造方法によれば、第1の封止剤の粘度を第2の封止剤の粘度よりも低くしているため、ガス拡散層上から第1の封止剤を塗布して触媒電極層の気孔を封止する動作の信頼性を高めることができる。さらに、第2の封止剤の粘度を第1の封止剤の粘度よりも高くしているため、膜電極接合体シートに第2の封止剤を塗布したときに、第2の封止剤が、所望の範囲を超えてガス拡散層中に広がることを抑えることができる。そのため、燃料電池の発電時に、触媒電極層に対する反応ガスの供給が封止部によって妨げられることを、抑えることができる。
(4)上記形態の燃料電池の製造方法において、前記第1の工程は、前記膜電極接合体シートとして、前記電解質膜の両面に前記多孔質層が設けられた膜電極接合体シートを用い、各々の前記多孔質層に対して前記封止剤を塗布することとしてもよい。この形態の燃料電池の製造方法によれば、電解質膜の外周部におけるガスシールの信頼性を、さらに高めることができる。
本発明は、燃料電池の製造方法以外の種々の形態で実現することも可能である。例えば、燃料電池、樹脂フレーム一体型膜電極接合体、およびその製造方法、並びに、樹脂フレーム一体型膜電極ガス拡散層接合体、およびその製造方法等の形態で実現することができる。
燃料電池の構成の概略を表わす分解斜視図である。 燃料電池の概略構成を表わす断面模式図である。 MEGAと樹脂フレームの接合部の様子を表わす断面模式図である。 燃料電池の製造方法を表わすフローチャートである。 燃料電池の製造途中の各工程の様子を表わす断面模式図である。 燃料電池の製造途中の各工程の様子を表わす平面図である。 製造装置の構成を模式的に示す説明図である。 燃料電池の製造途中の各工程の様子を表わす断面模式図である。 燃料電池の製造途中の各工程の様子を表わす断面模式図である。 製造装置の構成を模式的に示す説明図である。 燃料電池の製造方法を表わすフローチャートである。 燃料電池の製造途中の各工程の様子を表わす断面模式図である。 燃料電池の製造途中の様子を表わす断面模式図である。 製造装置の構成を模式的に示す説明図である。 燃料電池の製造途中の各工程の様子を表わす断面模式図である。 燃料電池の製造途中の様子を表わす断面模式図である。 燃料電池の製造途中の各工程の様子を表わす断面模式図である。 燃料電池の製造途中の各工程の様子を表わす断面模式図である。 燃料電池のシール構造の従来例を示す断面模式図である。
A.第1実施形態:
(A−1)燃料電池の全体構成:
図1は、本発明の第1実施形態としての燃料電池の構成の概略を表わす分解斜視図である。また、図2は、第1実施形態の燃料電池の概略構成を表わす断面模式図である。以下では、図1および図2に基づいて、燃料電池の全体構成を説明する。図1および図2では、燃料電池セル(単セル)100の構成を表わしており、本実施形態の燃料電池は、燃料電池セル100を複数積層してスタック構造を形成している。本願明細書では、燃料電池セル、および、燃料電池セルを積層した燃料電池スタックのいずれも、燃料電池と呼ぶ。本実施形態の燃料電池は、固体高分子形燃料電池であるが、固体酸化物形燃料電池等、他種の燃料電池とすることもできる。
燃料電池セル100は、膜電極接合体10(Membrane Electrode Assembly10、以後、MEA10と呼ぶ)と、ガス拡散層14,15と、ガスセパレータ40,50と、樹脂フレーム20と、を備えている。図2示すように、MEA10は、電解質膜11と、電解質膜11の各々の面に形成された触媒電極層であるアノード12およびカソード13と、によって構成される。MEA10は、ガス拡散層14,15によって挟持されている。MEA10にガス拡散層14,15が積層された構造を、膜電極ガス拡散層接合体(Membrane Electrode Gas diffusion layer Assembly:MEGA)18とも呼ぶ。MEGA18は、さらに両側からガスセパレータ40,50によって挟持されている。樹脂フレーム20は、ガスセパレータ40,50の間に配置されて、MEA10(MEGA18)の外周部に接合されている。なお、図2には、樹脂フレーム20は表われていない。
電解質膜11は、高分子電解質材料、例えばフッ素樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好なプロトン伝導性を示す。アノード12およびカソード13は、気孔を有する多孔質体であり、例えば白金、あるいは白金合金等の触媒を担持した導電性粒子、例えばカーボン粒子を、プロトン伝導性を有する高分子電解質で被覆して形成される。アノード12およびカソード13が備える高分子電解質は、電解質膜11を構成する高分子電解質と同種のポリマであっても良く、異種のポリマであっても良い。
ガス拡散層14,15は、ガス透過性および電子伝導性を有する部材によって構成されており、例えば、発泡金属や金属メッシュなどの金属製部材、あるいは、カーボンクロスやカーボンペーパなどのカーボン製部材により形成することができる。
ガスセパレータ40,50は、ガス不透過な導電性部材、例えば、カーボンを圧縮してガス不透過とした緻密質カーボン等のカーボン製部材や、プレス成形したステンレス鋼などの金属製部材により形成されている。ガスセパレータ40,50において、MEGA18と対向する表面には、反応ガスが流れる流路溝28,29が形成されている。なお、図1では、ガスセパレータ40の表面において、流路溝28の記載は省略している。また、ガスセパレータ40,50とガス拡散層14,15との間に、セル内ガス流路を形成するための多孔質体を配置しても良く、この場合には、流路溝28,29を省略しても良い。
樹脂フレーム20は、熱可塑性樹脂を用いて枠状に成形され、その中央の開口部20aをMEA10(MEGA18)の保持領域とする。樹脂フレーム20を構成する材料としては、例えば、ポリプロピレン(PP)、フェノール樹脂、エポキシ樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)から選択される樹脂を用いることができる。樹脂フレーム20とMEA10(MEGA18)との接合部の態様については、後に詳しく説明する。樹脂フレーム20と、この樹脂フレーム20に隣接するガスセパレータ40,50との間は、例えば図示しないシール部材を配置することによりシールされる。
燃料電池の内部には、さらに、セル間冷媒流路が形成されている(図示せず)。このような冷媒流路は、例えば、積層されたすべての単セル間に形成しても良く、あるいは、単セルを所定数積層する毎に形成しても良い。
また、ガスセパレータ40,50および樹脂フレーム20には、各々の外周近傍において、MEA10およびガスセパレータ40,50を含む部材の積層方向(燃料電池セル100の積層方向でもあり、単に積層方向とも呼ぶ)に互いに重なる位置に、マニホールドを形成するためのマニホールド孔31〜36が設けられている。すなわち、マニホールド孔31〜36は、ガスセパレータ40,50および樹脂フレーム20を貫通する流路として、各セルとの間で反応ガスを供給・排出するための流路(ガスマニホールド)や、既述した冷媒流路との間で冷媒を供給・排出するための流路(冷媒マニホールド)を形成する。
(A−2)樹脂フレームとMEAの接合部の構造:
図3は、第1実施形態の燃料電池におけるMEGA18と樹脂フレーム20とが接合される接合部の様子を表わす断面模式図である。図3に示す断面の位置を、図1においてIII−III断面として示す。なお、本実施形態では、MEGA18と樹脂フレーム20との接合部は、MEGA18の外周全体において、図3と同様の構造を有している。
本実施形態では、MEGA18と樹脂フレーム20とは、接着剤によって構成される接着部22を介して接合されている。接着部22を構成する接着剤としては、例えば、光硬化型、より具体的にはUV(紫外線)硬化型の接着剤を用いることができる。UV硬化型の接着剤を用いる場合には、MEGA18と樹脂フレーム20とを接合する際に、接着剤の硬化のための加熱を抑えることができ、MEGA18が望ましくない高温に曝されることを抑制できるため望ましい。UV硬化型の接着剤としては、具体的には、例えば、ポリイソブチレン(PIB)系接着剤や、シリコーンゴム系接着剤を用いることができる。なお、MEGA18と樹脂フレーム20との接合時に接着剤を硬化させる際の加熱の程度が許容範囲であれば、接着部22を構成する接着剤として、熱可塑性樹脂あるいは熱硬化性樹脂を含む接着剤を用いてもよい。
また、本実施形態では、一方の触媒電極層であるカソード13の外周部には、封止剤によって気孔が封止された封止部25が形成されている。すなわち、本実施形態では、カソード13が、「課題を解決するための手段」における「多孔質層」に相当する。図3では、上記多孔質層である触媒電極層がカソード13である様子を示すが、アノード12を多孔質層として、アノード12に封止部25を設けることとしてもよい。樹脂フレーム20は、このような封止部25が設けられた触媒電極層の外周部に対して、接着剤(接着部22)を介して接着されている。
封止部25において、カソード13の気孔を封止するために用いる封止剤としては、例えば、熱硬化性樹脂を用いることができる。封止剤を硬化させる際にMEGA18に加えられる熱を抑える観点からは、熱硬化のための加熱温度がより低いことが望ましく、燃料電池の生産性向上の観点からは、硬化の速度がより速いことが望ましい。また、硬化後の封止剤は、柔軟性がより高いことが望ましい。燃料電池の使用時には、燃料電池において、昇温と降温、あるいは、加湿と乾燥が繰り返されるため、電解質膜11が膨潤と収縮とを繰り返し、電解質膜11の端部に応力がかかる。このとき、電解質膜11の外周部に設けられた封止部25が備える封止剤の硬度が高いと、電解質膜11の外周部は、封止部25との界面において損傷し易くなる。そのため、電解質膜11において上記した応力が発生する場合にも電解質膜11の損傷を抑える観点から、硬化後の封止剤の柔軟性が高いことが望まれる。上記のような観点から、封止剤としては、例えば、ポリイソブチレン(PIB)やシリコーンゴムを挙げることができる。また、接着部22との間の接着性を高める観点から、封止剤は、接着部22を構成する接着剤に含まれる樹脂と同じ系統の樹脂を用いる(例えば、接着剤と封止剤の双方がPIBを含む、あるいは、双方がシリコーンゴムを含む)ことが望ましい。なお、封止剤を硬化させる際にMEA10に加えられる温度が許容範囲であれば、封止剤として、熱可塑性樹脂を用いてもよい。
図3に示すように、本実施形態のMEGA18では、カソード13側のガス拡散層15の外周は、MEA10の外周から離間して、MEGA18の中央部寄りに配置されている。そのため、カソード13における積層方向に垂直な外表面では、カソード13の外周部に形成された封止部25の少なくとも一部が、ガス拡散層15に覆われることなくMEGA18の表面に露出している。本実施形態では、MEGA18の外周部において、封止部25と接着部22とが接合されることにより、MEGA18の外周におけるガスシール性が確保されている。接着部22および封止部25を介した、樹脂フレーム20とMEGA18との間の接合の方法については、後に詳しく説明する。
なお、本実施形態の燃料電池では、ガス拡散層14におけるアノード12側の面、および、ガス拡散層15におけるカソード13側の面には、それぞれ、マイクロポーラスレイヤー(MPL:Micro Porous Layer)16,17が設けられている。MPL16,17は、例えば、カーボン粒子などの導電性粒子と、ポリテトラフルオロエチレン(PTFE)等の撥水性樹脂とを含むペーストを、ガス拡散層14,15の表面に塗布することにより形成することができる。MPL16,17は、触媒電極層および電解質膜11を保護すると共に、触媒電極層側からガス拡散層14,15の内部に向かって気孔率を漸増させて、発電に伴う生成水をガス拡散層14,15内に導いて触媒電極層から排出させる機能を有する。なお、MPL16,17は必須ではないため、本実施形態、および後述する第2実施形態以降の実施形態において、ガス拡散層14,15の表面に、MPL16,17を設けないこととしてもよい。
(A−3)燃料電池の製造方法:
図4は、本実施形態の燃料電池の製造方法を表わすフローチャートである。図5は、図4に示す方法で燃料電池を製造する際の、製造途中の各工程の様子を表わす断面模式図である。図6は、燃料電池の製造途中の各工程の様子を表わす平面図である。図7は、図4に示すステップS100からステップS130までの工程を実行する製造装置70の構成を模式的に示す説明図である。製造装置70は、封止剤塗布部72、硬化部74、および切断部75を備える。図7に示すように、製造装置70は、MEA10を含む帯状の層である膜電極接合体シート60を、ロールツーロール方式によって連続搬送しつつ、上記した各部で各種の処理を実行する。以下では、図4から図7に基づいて、燃料電池の製造方法を説明する。
燃料電池を製造する際には、まず、膜電極接合体シート60を用意する(ステップS100)。本実施形態の膜電極接合体シート60は、MEA10に加えてガス拡散層14を備えるが、ガス拡散層15は備えていない(図5参照)。ステップS100では、膜電極接合体シート60として、膜電極接合体シートロール62を用意している(図7参照)。膜電極接合体シートロール62は、MEA10およびガス拡散層14を備える積層構造が連続した帯状に形成された膜電極接合体シート60が、ロール状に巻かれたものであり、複数のMEA10を連続的に得るためのものである。
ステップS100の後、封止剤塗布部72において、膜電極接合体シート60が備えるカソード13上から封止剤を塗布する(ステップS110)。ステップS110の工程は、第1の工程とも呼ぶ。図6は、膜電極接合体シート60を、カソード13が形成された面側から見た様子を表わす。図5および図6では、ステップS110においてカソード13に封止剤を塗布した領域を、封止剤塗布領域24として示している。
ステップS110における封止剤の塗布は、MEA10の外周となる部位を含む領域に対して行なわれる。MEA10の外周となる部位とは、帯状の膜電極接合体シート60から複数のMEA10を得る際に、個々のMEA10の外周となる部位である。より具体的には、後述するように帯状の膜電極接合体シート60を切断して個々のMEA10を得る際に、個々のMEA10を得るために膜電極接合体シート60を切断する部位である。これにより、図6に示すように、矩形枠状の複数の封止剤塗布領域24が、隣接する封止剤塗布領域24同士で1辺を共有しつつ、膜電極接合体シート60の搬送方向に連続して形成される。
封止剤としては、既述した封止剤を用いることができ、ステップS110では、封止剤が流動性を有する状態で塗布を行なう。これにより、カソード13における封止剤塗布領域24では、カソード13の気孔が封止剤によって封止される。
図7では、封止剤塗布部72において、ロール状のスクリーンおよびスキージ72aを備えて封止剤の印刷を行なうロールスクリーン印刷装置を用いて塗布を行なう様子を表わしているが、所望の形状の封止剤塗布領域24を形成可能であれば、塗布の方法は特に限定されない。例えば、封止剤の塗布の方法としては、ロールコータを用いる方法、通常のスクリーン印刷装置を用いる方法、ダイコータを用いる方法、あるいは、封止部25を設けるべき領域を金型で押さえた状態で、当該領域に封止剤を押し出す方法、などを採用することができる。
次に、製造装置70の硬化部74において、ステップS110で塗布した封止剤を硬化させる(ステップS120)。封止剤が硬化することにより、封止剤塗布領域24は、封止部25となる(図5および図6参照)。図7に示すように、本実施形態の製造装置70は、硬化部74において、膜電極接合体シート60を加熱プレスして、封止剤を硬化させる。
ステップS120の後、製造装置70の切断部75において、膜電極接合体シート60を切断する(ステップS130)。切断は、封止剤を塗布した領域で行なわれ、その結果、個別の燃料電池(単セル)に対応する単一のMEA10を含む積層部材64が得られる(図6および図7参照)。得られる積層部材64では、切断面を含む外周部分に封止部25が形成されている(図5の(D)参照)。ステップS130の工程は、第2の工程とも呼ぶ。
ステップS130の後、個々の積層部材64のカソード13上に、ガス拡散層15を積層して(ステップS140)、MEGA18を得る。本実施形態では、積層部材64およびガス拡散層15は、平面視矩形形状であり、ガス拡散層15は、積層部材64よりも一回り小さい。そして、ステップS140でガス拡散層15を積層する際には、ガス拡散層15の外周の四辺が、積層部材64の外周の四辺から離間するように配置される。その結果、得られるMEGA18の外表面では、カソード13の外周部に設けられた封止部25の少なくとも一部が露出した状態となる(図5参照)。
ステップS140の後、積層部材64を含むMEGA18と樹脂フレーム20とを接合する(ステップS150)。すなわち、MEGA18における切断面を含む端部と樹脂フレーム20とを、接着剤を用いて接着する。これにより、MEGA18における封止剤が塗布された部位である封止部25と、樹脂フレーム20とが接着される。ステップS150の工程は、第3の工程とも呼ぶ。
接着剤としては、既述した接着剤を用いることができる。MEGA18と樹脂フレーム20とを接合可能であれば、接着剤による接着の方法は特に限定されない。例えば、スクリーン印刷装置を用いて、MEGA18と樹脂フレーム20との間に接着剤を配置することができる。あるいは、金型を使用して、MEGA18の外周部および樹脂フレーム20の内周部を金型内に配置して、金型内に接着剤を充填することとしてもよい。そして、その後に接着剤を硬化させればよい。例えば、接着剤としてUV(紫外線)硬化型の接着剤を用いる場合には、UV照射を行なえばよい。
既述したように、MEGA18では、カソード13の外周部に設けられた封止部25の少なくとも一部が露出している。そのため、接着部22は、封止部25の露出した部位、すなわち、積層方向に垂直な面と、積層方向に平行な面(厚み方向の面)の双方において、封止部25と接着する(図5の(F)参照)。これにより、MEGA18の外周部が、樹脂フレーム20との間で気密にシールされる。
ステップS150の後、樹脂フレーム20が接合されたMEGA18を用いて燃料電池が組み立てられ(ステップS160)、燃料電池が完成される。具体的には、樹脂フレーム20が接合されたMEGA18、およびガスセパレータ40,50を含む部材を積層して燃料電池セル100が組み立てられ、複数の燃料電池セル100が積層されて、燃料電池スタックが製造される。
以上のように構成された本実施形態の燃料電池および燃料電池の製造方法によれば、MEGA18と樹脂フレーム20とを接合する際に、カソード13における気孔が封止された封止部25と樹脂フレーム20とが、接着剤によって接着される。そのため、封止部25と樹脂フレーム20とが接着される箇所において、多孔質層(カソード13)を介したガスの漏れが抑えられ、ガスシールの信頼性を高めることができる。その結果、アノード側とカソード側との間のガスの混合を抑えることができる。また、電解質膜11の外周部は、封止部25を含む触媒電極層および接着部22によって、隙間無く覆われて保護されている。そのため、燃料電池の使用時に電解質膜11が膨潤と収縮を繰り返して、電解質膜11で応力が発生する場合であっても、電解質膜11の損傷を抑えてガスシール性を維持することができる。
また、本実施形態では、ロールツーロール方式によって膜電極接合体シート60を連続搬送しつつ、複数の積層部材64を連続的に製造しているため、燃料電池の製造効率を向上させることができる。このようにして積層部材64を製造する際に、本実施形態では、封止部25で膜電極接合体シート60を切断することによって、隣接する積層部材64同士を分離している。したがって、膜電極接合体シート60において、積層部材64として利用されない領域の発生を抑え、燃料電池の材料の利用効率を高めることができる。ただし、ステップS130で切断する際の切断箇所は、MEGA18の外周と一致していなくてもよく、切断後に、さらに積層部材64の外周をトリミングすることとしてもよい。
B.第2実施形態:
図8は、第2実施形態の燃料電池の製造途中の各工程の様子を、図5と同様にして表わす断面模式図である。第2実施形態の燃料電池は、第1実施形態の燃料電池と同様の構成を有しているため、第1実施形態と共通する部分には同じ参照番号を付して、詳しい説明は省略する。また、第2実施形態の燃料電池の製造方法において、第1実施形態と共通する工程には同じステップ番号を付して、詳しい説明は省略する。第2実施形態においても、第1実施形態のように、図7に示す製造装置70と同様の製造装置を用いて、ロールツーロール方式により、複数の積層部材を連続的に製造する。
第2実施形態の燃料電池を製造する際には、まず、膜電極接合体シート160を用意する(ステップS100)。第2実施形態の膜電極接合体シート160は、第1実施形態とは異なり、ガス拡散層14だけでなくガス拡散層15も積層されたMEGA様の構造を有している(図8の(A)参照)。
次に、膜電極接合体シート160が備えるガス拡散層のうちの一方のガス拡散層(本実施形態では、ガス拡散層15)上から封止剤を塗布する(ステップS110)。封止剤を塗布する領域の配置は、図6に示した第1実施形態における配置と同様である。これにより、カソード13およびガス拡散層15における封止剤が塗布された領域である封止剤塗布領域124では、カソード13およびガス拡散層15が備える気孔が封止剤によって封止される。すなわち、本実施形態では、カソード13およびガス拡散層15が、「課題を解決するための手段」における「多孔質層」に相当する。なお、ステップS110において、アノード12側のガス拡散層14上から封止剤を塗布してアノード12およびガス拡散層14の気孔を封止することとしてもよい。
封止剤としては、第1実施形態と同様の封止剤を用いることができ、第1実施形態と同様の方法により、封止剤を塗布することができる。第2実施形態では、ガス拡散層上から封止剤を塗布することにより、ガス拡散層と触媒電極層の双方の気孔を封止する必要がある。そのため、ステップS110では、ガス拡散層と触媒電極層の双方の気孔を封止可能となるように、封止剤の流動性(粘度)を調節すればよい。封止剤の粘度の調節は、例えば、封止剤に混合する溶媒の量(封止剤中の樹脂濃度)を変更することにより行なうことができる。また、塗布時の封止剤の温度によって、封止剤の粘度を調節することもできる。
膜電極接合体シート160において、ガス拡散層14,15の気孔率は、例えば70〜80%とすることができる。ガス拡散層14,15にMPL16,17を設ける場合には、MPL16,17の気孔率は、例えば30〜40%とすることができる。触媒電極層(アノード12およびカソード13)の気孔率は、例えば10〜30%とすることができる。このような膜電極接合体シート160において、ガス拡散層上から封止剤を塗布する場合には、封止剤の粘度は、例えば、10000〜20000mPa・sとすることができる。
また、ステップS110において、封止剤を塗布する際の圧力を調節することによって、ガス拡散層から触媒電極層までの気孔を封止する動作の信頼性を高めてもよい。例えば、図7に示すロールスクリーン印刷装置を用いる場合のように、スクリーン印刷により封止剤を塗布する場合には、印刷装置のスキージ72aの速度や角度によって押し込み圧力を調整することができる。あるいは、ダイコータを用いる場合や、金型内に膜電極接合体シート160を配置して、金型内に封止剤を押し出して封止剤塗布領域124を形成する場合には、封止剤の射出圧を調節することにより、上記した気孔を封止する動作の信頼性を高めることとしてもよい。この場合、封止剤の射出圧は、例えば0.2〜0.5MPaとすることができる。
次に、ステップS110で塗布した封止剤を硬化させて、封止剤塗布領域124から封止部125を形成する(ステップS120)。封止剤の硬化は、第1実施形態と同様に、例えば加熱プレスによって行なうことができる。ステップS120の後、膜電極接合体シート160を切断して(ステップS130)、積層部材164を得る。
第2実施形態の積層部材164は、MEGA18に相当するため、第2実施形態では、ガス拡散層をさらに積層する図4のステップS140は行なわれない。ステップS130の後、積層部材164と樹脂フレーム20とを接合する(ステップS150)。積層部材164の外表面では、カソード13およびガス拡散層15の外周部に設けられた封止部125が露出している。そのため、接着部22は、封止部125の露出した部位、すなわち、積層方向に垂直な面と、積層方向に平行な面(厚み方向の面)の双方において、封止部125と接着する。これにより、積層部材164(MEGA18)の外周部が、樹脂フレーム20との間で気密にシールされる。ステップS150の後、樹脂フレーム20が接合されたMEGA18を用いて燃料電池が組み立てられ(ステップS160)、燃料電池が完成される。
以上のように構成された本実施形態の燃料電池および燃料電池の製造方法によれば、第1実施形態と同様の効果に加えて、さらに、以下の効果を奏することができる。すなわち、触媒電極層(カソード13)だけでなくガス拡散層も封止部125によって封止されており、この封止部125において接着部22と接着するため、MEGA18の外周部におけるシールの信頼性を高めることができる。
さらに、MEA10の両面に予め連続的にガス拡散層を積層した膜電極接合体シート160を用いているため、第1実施形態のようにガス拡散層15を個別にカソード13上に積層する必要がない。そのため、製造工程を、より簡素化することができる。
なお、第1および第2実施形態では、ステップS120の封止剤の硬化を、加熱プレスによって行なっているが、異なる方法により封止剤を硬化させてもよい。例えば、常温で硬化可能な封止剤を用いる場合には、特別な加熱の工程を行なわないこととしてもよい。ただし、特に、本実施形態のように、触媒電極層に加えてガス拡散層においても封止部125を形成する場合には、硬化の際に封止剤塗布領域124を加圧することにより、得られる封止部125の厚みを、より薄くすることができる(図8の(C)参照)。MEGA18が備えるガス拡散層において、より剛性が高くなる封止部125の厚みを薄くするならば、MEGA18を含む各部材を積層して燃料電池を組み立てる際に、封止部125によって囲まれる内側の領域、すなわち発電領域における面圧を、より容易に確保することができる。
C.第3実施形態:
図9は、第3実施形態の燃料電池の製造途中の各工程の様子を、図5と同様にして表わす断面模式図である。また、図10は、製造工程のステップS100からステップS130までの工程を実行する製造装置270の構成を模式的に示す説明図である。製造装置270は、封止剤塗布部272、硬化部74、および切断部75を備える。図10に示すように、製造装置270は、MEA10を含む帯状の層を、ロールツーロール方式によって連続搬送しつつ、上記した各部で各種の処理を実行する。第3実施形態の燃料電池は、第1実施形態の燃料電池と同様の構成を有しているため、第1実施形態および第2実施形態と共通する部分には同じ参照番号を付して、詳しい説明は省略する。また、第3実施形態の燃料電池の製造方法において、第1実施形態および第2実施形態と共通する工程には同じステップ番号を付して、詳しい説明は省略する。
第3実施形態の燃料電池を製造する際には、まず、第2実施形態と同様の膜電極接合体シート160を、膜電極接合体シートロール162として用意する(ステップS100)。次に、封止剤塗布部272において、膜電極接合体シート160が備える一対のガス拡散層の各々の上から、封止剤を塗布する(ステップS110)。封止剤を塗布する領域の配置は、図6に示した第1実施形態における配置と同様であり、各々の面から封止剤を塗布して形成された各々の封止剤塗布領域124は、積層方向に一致する位置に設けられている(図9の(B)参照)。これにより、カソード13およびガス拡散層15、並びに、アノード12およびガス拡散層14では、封止剤塗布領域124において、気孔が封止剤によって封止される。すなわち、本実施形態では、カソード13およびガス拡散層15、並びに、アノード12およびガス拡散層14が、「課題を解決するための手段」における「多孔質層」に相当する。ガス拡散層上からの封止剤の塗布は、第2実施形態と同様にして行なうことができる。
次に、ステップS110で塗布した封止剤を硬化させて、封止剤塗布領域124から封止部125を形成する(ステップS120)。封止剤の硬化は、第1実施形態と同様に、例えば加熱プレスによって行なうことができる。ステップS120の後、封止部125において膜電極接合体シート160を切断して(ステップS130)、積層部材264を得る。
ステップS130以後の工程は、第2実施形態と同様に行なわれる。なお、第3実施形態の積層部材264では、アノード側とカソード側の双方の外表面において、封止部125が露出している。そのため、ステップS150において、接着部22は、双方の封止部125の露出した部位において、封止部125と接着する。これにより、積層部材264(MEGA18)の外周部が、樹脂フレーム20との間で気密にシールされる。
以上のように構成された本実施形態の燃料電池および燃料電池の製造方法によれば、第1実施形態および第2実施形態と同様の効果に加えて、さらに、以下の効果を奏することができる。すなわち、MEGA18の両面において、触媒電極層およびガス拡散層が封止部125によって封止されており、これら双方の封止部125において接着部22と接着するため、MEGA18の外周部におけるシールの信頼性を、より高めることができる。
D.第4実施形態:
図11は、第4実施形態の燃料電池の製造方法を表わすフローチャートである。図12および図13は、図11に示す方法で燃料電池を製造する際の、製造途中の各工程の様子を、図5と同様にして表わす断面模式図である。図14は、図11に示すステップS100からステップS130までの工程を実行する製造装置370の構成を模式的に示す説明図である。製造装置370は、封止剤塗布部372,373、硬化部74、および切断部75を備える。図14に示すように、製造装置370は、MEA10を含む帯状の層を、ロールツーロール方式によって連続搬送しつつ、上記した各部で各種の処理を実行する。第4実施形態の燃料電池は、第1実施形態の燃料電池と同様の構成を有しているため、第1実施形態とおよび第2実施形態と共通する部分には同じ参照番号を付して、詳しい説明は省略する。また、第4実施形態の燃料電池の製造方法において、第1実施形態と共通する工程には同じステップ番号を付して、詳しい説明は省略する。
本実施形態では、封止剤として、第1の封止剤および第2の封止剤を用いている。第4実施形態の燃料電池を製造する際には、まず、第2実施形態と同様の膜電極接合体シート160を用意する(ステップS100)。次に、封止剤塗布部372において、膜電極接合体シート160が備える一対のガス拡散層の各々の上から、第1の封止剤を塗布する(ステップS112)。塗布された第1の封止剤は、ガス拡散層から触媒電極層へと浸透する。これにより、アノード12およびカソード13に封止剤塗布領域326が形成され、アノード12およびカソード13の気孔が、第1の封止剤によって封止される(図12(B)参照)。その後、封止剤塗布部373において、膜電極接合体シート160が備える一対のガス拡散層の各々の上から、ステップS112において第1の封止剤を塗布した領域上に、第2の封止剤を塗布する(ステップS114)。これにより、ガス拡散層14,15に封止剤塗布領域327が形成され、ガス拡散層14,15の気孔が、第2の封止剤によって封止される(図12(C)参照)。すなわち、本実施形態では、カソード13およびガス拡散層15、並びに、アノード12およびガス拡散層14が、「課題を解決するための手段」における「多孔質層」に相当する。また、ステップS112の工程は、第1の工程中の第4の工程とも呼び、ステップS114の工程は、第1の工程中の第5の工程とも呼ぶ。
ステップS112で用いられる第1の封止剤は、ガス拡散層14,15上から塗布したときに、アノード12およびカソード13にまで浸透し、アノード12およびカソード13の気孔を封止可能となるように、粘度が調整されている。そして、ステップS114で用いられる第2の封止剤は、第1の封止剤よりも粘度が高く調整されている。第1および第2の封止剤としては、第1実施形態と同様の封止剤を用いることができ、第1実施形態と同様の方法により、封止剤を塗布することができる。第1の封止剤と第2の封止剤とは、異なる種類の封止剤を用いてもよいが、同種の封止剤(同じ系統の樹脂を含む封止剤)を用いることが好ましい。例えば、第1および第2の封止剤の双方がPIBを含む、あるいは、双方がシリコーンゴムを含むことが望ましい。第1および第2の封止剤の粘度は、例えば、封止剤に混合する溶媒の量(封止剤中の樹脂濃度)を変更することにより行なうことができる。また、塗布時の封止剤の温度によって、封止剤の粘度を調節することもできる。
図14では、封止剤塗布部372,373において、ロール状のスクリーンおよびスキージ72a,73aを備えて封止剤の印刷を行なうロールスクリーン印刷装置を用いて塗布を行なう様子を表わしているが、所望の形状の封止部25を形成可能であれば、塗布の方法は特に限定されない。また、ステップS112およびステップS114において、封止剤を塗布する際の圧力を調節してもよい。これにより、ガス拡散層14,15を経由した第1の封止剤がアノード12およびカソード13の気孔を封止する動作、並びに、より粘度が高い第2の封止剤によってガス拡散層14,15の気孔を封止する動作の信頼性を高めることができる。例えば、図14に示すロールスクリーン印刷装置を用いる場合のように、スクリーン印刷により封止剤を塗布する場合には、印刷装置のスキージ72a,73aの速度や角度によって押し込み圧力を調整することができる。あるいは、ダイコータを用いる場合や、金型内に膜電極接合体シート160を配置して、金型内に封止剤を押し出して封止剤塗布領域124を形成する場合には、封止剤の射出圧を調節することにより、上記した気孔を封止する動作の信頼性を高めてもよい。
次に、ステップS112およびステップS114で塗布した第1および第2の封止剤を硬化させて、封止剤塗布領域326,327から封止部325を形成する(ステップS120)。封止剤の硬化は、第1実施形態と同様に、例えば加熱プレスによって行なうことができる。ステップS120の後、膜電極接合体シート160を切断して(ステップS130)、積層部材364を得る(図12(E)および図14参照)。
ステップS130以後の工程は、第2実施形態と同様に行なわれる。なお、第4実施形態の積層部材364では、アノード側とカソード側の双方の外表面において、封止部325が露出している。そのため、ステップS150において、接着部22は、双方の封止部325の露出した部位において、封止部325と接着する(図13参照)。これにより、積層部材364(MEGA18)の外周部が、樹脂フレーム20との間で気密にシールされる。
以上のように構成された本実施形態の燃料電池および燃料電池の製造方法によれば、第1〜第3実施形態と同様の効果に加えて、さらに、以下の効果を奏することができる。すなわち、第1の封止剤の粘度を第2の封止剤の粘度よりも低くしているため、ガス拡散層14,15上から第1の封止剤を塗布して触媒電極層の気孔を封止する動作の信頼性を高めることができる。さらに、第2の封止剤の粘度を第1の封止剤の粘度よりも高くしているため、一般に触媒電極層に比べて気孔率がより高く、また、触媒電極層に比べて気孔の細孔径がより大きなガス拡散層に第2の封止剤を塗布したときに、第2の封止剤が、所望の範囲を超えてガス拡散層中に広がることを抑えることができる。そのため、燃料電池の発電時に、触媒電極層に対する反応ガスの供給が封止部によって妨げられることを、抑えることができる。
E.第5実施形態:
図15および図16は、第5実施形態の燃料電池の製造途中の各工程の様子を、図5と同様にして表わす断面模式図である。第5実施形態の燃料電池は、封止部325が、一方の触媒電極層およびガス拡散層(図15および図16では、カソード13およびガス拡散層15)のみに形成される点以外は、第4実施形態の燃料電池と同じ構成を有する。第5実施形態では、カソード13およびガス拡散層15のみに封止部325が形成された積層部材464を作製し(図15の(E)参照)、封止部325および接着部22を介して、積層部材464と樹脂フレーム20とを接合する(図16参照)。このように、電解質膜11の一方の面側の触媒電極層およびガス拡散層のみに封止部325を設ける場合であっても、第1および第4実施形態と同様の効果を得ることができる。
F.第6実施形態:
図17は、第6実施形態の燃料電池の製造途中の各工程の様子を、図5と同様にして表わす断面模式図である。第6実施形態の燃料電池は、第1ないし第3実施形態の燃料電池と同様の構成を有しているため、第1ないし第3実施形態と共通する部分には同じ参照番号を付して、詳しい説明は省略する。また、第6実施形態の燃料電池の製造方法において、第1ないし第3実施形態と共通する工程には同じステップ番号を付して、詳しい説明は省略する。
第6実施形態の燃料電池を製造する際には、まず、第1ないし第3実施形態における膜電極接合体シート60,160に代えて、膜電極接合体シート560を用意する(ステップS100)。第6実施形態の膜電極接合体シート560は、MEA10様の構造を有しており、ガス拡散層は有していない(図17の(A)参照)。
次に、膜電極接合体シート560が備える一対の触媒電極層の各々の上から、封止剤を塗布する(ステップS110)。封止剤を塗布する領域の配置は、図6に示した第1実施形態における配置と同様であり、各々の面から封止剤を塗布して形成された各々の封止剤塗布領域24は、積層方向に一致する位置に設けられている。これにより、カソード13およびアノード12では、封止剤塗布領域24において、気孔が封止剤によって封止される。すなわち、本実施形態では、カソード13およびアノード12が、「課題を解決するための手段」における「多孔質層」に相当する。封止剤としては、第1実施形態と同様の封止剤を用いることができ、第1実施形態と同様の方法により、封止剤を塗布することができる。
次に、ステップS110で塗布した封止剤を硬化させて、封止剤塗布領域24から封止部25を形成する(ステップS120)。封止剤の硬化は、第1実施形態と同様に、例えば加熱プレスによって行なうことができる。
本実施形態では、ステップS120の後、膜電極接合体シート560の各々の面上に、ガス拡散層14,15となる多孔質層を積層する(図17の(D)参照)。その後、ガス拡散層14,15を積層した膜電極接合体シート560を切断して(ステップS130)、積層部材564を得る(図17の(E)参照)。そして、ステップS130の後、積層部材564と樹脂フレーム20とを接合する(ステップS150)。積層部材564では、積層部材564の切断面において、アノード12およびカソード13の外周部に設けられた封止部25が露出している。そのため、接着部22は、封止部25の露出した部位、すなわち、積層方向に平行な面(厚み方向の面)において、封止部25と接着する。これにより、積層部材564(MEGA18)の外周部が、樹脂フレーム20との間で気密にシールされる。ステップS150の後、樹脂フレーム20が接合されたMEGA18を用いて燃料電池が組み立てられ(ステップS160)、燃料電池が完成される。
以上のように構成された本実施形態の燃料電池および燃料電池の製造方法によれば、第1実施形態と同様に、MEGA18の外周部におけるガスシールの信頼性を確保すると共に、燃料電池の使用時における電解質膜11の損傷を抑えることができる。また、ステップS130の切断の工程の前に、ロールツーロール方式によってガス拡散層14,15の積層を行なうため、MEA10上にガス拡散層を積層する動作を、個々のMEA10毎に行なう必要が無く、ガス拡散層の積層の動作を簡素化することができる。また、電解質膜11の各々の面側において、封止部25と接着部22とを接着させて、ガスシール性を高めることができる。
G.第7実施形態:
図18は、第7実施形態の燃料電池の製造途中の各工程の様子を、図5と同様にして表わす断面模式図である。第7実施形態の燃料電池は、一方の触媒電極層(図18ではカソード13)に封止部25を形成した後に、上記一方の触媒電極層上にガス拡散層を積層した後に、ステップS130の切断の工程を行なう点以外は、第1実施形態と同じ構成を有する。すなわち、第7実施形態では、封止部25を形成した膜電極接合体シート60上に帯状のガス拡散層15を積層した後にステップS130の切断の工程を行なって積層部材664を作製し、この積層部材664と樹脂フレーム20とを、接着剤によって接着している。
このような構成としても、第1実施形態と同様に、MEGA18の外周部におけるガスシールの信頼性を確保すると共に、燃料電池の使用時における電解質膜11の損傷を抑えることができる。また、第7実施形態では、ステップS130の切断の工程の前に、ロールツーロール方式によってガス拡散層15の積層を行なうため、MEA10上にガス拡散層15を積層する動作を、個々のMEA10毎に行なう必要が無く、ガス拡散層の積層の動作を簡素化することができる。
H.他の実施形態:
上記各実施形態では、封止部は、MEA10あるいはMEGA18の外周全体に設けている、すなわち、MEA10あるいはMEGA18の外周である4辺全てに設けているが、異なる構成としてもよい。MEA10あるいはMEGA18の外周の一部において、多孔質層を封止する封止部を介したシールを行ない、他の部位においては異なる方法によりガスシール性を確保することとしてもよい。MEA10あるいはMEGA18の外周の少なくとも一部において、多孔質層を封止する封止部を備えており、封止部において樹脂フレームと接着するならば、封止部を設けた部位において、既述した効果を奏することができる。
上記各実施形態では、燃料電池はガス拡散層を有することとしたが、異なる構成としてもよい。例えば、MEA10における発電に寄与する領域全体を覆う多孔質部材を、ガスセパレータ40,50とMEA10との双方に接するように配置して、上記多孔質部材によって、燃料電池セル内で反応ガスが流れる流路を形成する場合が考えられる。このような場合に、ガス拡散層14,15を省略してもよい。このような構成を採用する場合には、多孔質層である触媒電極層の外周部に封止部を設け、この封止部と樹脂フレームとの間、接着剤によって接着すればよい。
本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10…膜電極接合体(MEA)
11…電解質膜
12…アノード
13…カソード
14,15…ガス拡散層
16,17…MPL
18…膜電極ガス拡散層接合体(MEGA)
20…樹脂フレーム
20a…開口部
22…接着部
24,124…封止剤塗布領域
25,125,325…封止部
28,29…流路溝
31〜36…マニホールド孔
40,50…ガスセパレータ
60,160,560…膜電極接合体シート
62,162…膜電極接合体シートロール
64,164,264,364,464,564,664…積層部材
70,270,370…製造装置
72,272…封止剤塗布部
72a,73a…スキージ
74…硬化部
75…切断部
100…燃料電池セル
122…接着剤
326,327…封止剤塗布領域
372,373…封止剤塗布部

Claims (7)

  1. 気孔を有する触媒電極層が電解質膜の両面に形成された膜電極接合体と、前記膜電極接合体の外周部に接合された樹脂フレームと、を備える燃料電池の製造方法であって、
    前記膜電極接合体を得るために用いられ、前記電解質膜と前記触媒電極層とを備える膜電極接合体シートであって、前記電解質膜の少なくとも一方の面上に、少なくとも前記触媒電極層を含む多孔質層が設けられた膜電極接合体シートにおいて、前記多孔質層上から、前記膜電極接合体の外周となる部位を含む領域に対して封止剤を塗布して、前記封止剤を塗布した領域における前記多孔質層の気孔を封止する第1の工程と、
    前記封止剤を塗布した領域において前記膜電極接合体シートを切断して、前記膜電極接合体を含む積層部材を得る第2の工程と、
    前記積層部材と前記樹脂フレームとを接合する工程であって、前記積層部材が備える前記多孔質層における前記封止剤が塗布された部位と、前記樹脂フレームとを、接着剤によって接着する第3の工程と、
    を備える燃料電池の製造方法。
  2. 請求項1に記載の燃料電池の製造方法であって、
    前記燃料電池は、さらに、前記膜電極接合体における各々の前記触媒電極層上に積層されたガス拡散層を備え、
    前記膜電極接合体シートおよび前記積層部材は、前記多孔質層として、前記触媒電極層に加えて、該触媒電極層上に積層された前記ガス拡散層を備え、
    前記第1の工程は、前記封止剤の塗布により、前記封止剤を塗布した領域における前記触媒電極層および前記ガス拡散層の気孔を封止する
    燃料電池の製造方法。
  3. 請求項2に記載の燃料電池の製造方法であって、
    前記第1の工程は、
    前記封止剤として第1の封止剤を前記膜電極接合体シートに塗布して、前記第1の封止剤を塗布した領域における前記触媒電極層の気孔を封止する第4の工程と、
    前記第4の工程の後に、前記膜電極接合体シートにおける前記第1の封止剤を塗布した領域上に、前記封止剤として前記第1の封止剤よりも粘度が高い第2の封止剤を塗布して、前記第2の封止剤を塗布した領域における前記ガス拡散層の気孔を封止する第5の工程と、
    を備える燃料電池の製造方法。
  4. 請求項1から請求項3までのいずれか一項に記載の燃料電池の製造方法であって、
    前記第1の工程は、前記膜電極接合体シートとして、前記電解質膜の両面に前記多孔質層が設けられた膜電極接合体シートを用い、各々の前記多孔質層に対して前記封止剤を塗布する
    燃料電池の製造方法。
  5. 燃料電池であって、
    気孔を有する触媒電極層が電解質膜の両面に形成された膜電極接合体と、
    前記膜電極接合体の外周部に接合された樹脂フレームと、
    を備え、
    前記電解質膜の少なくとも一方の面上に、少なくとも前記触媒電極層を含む多孔質層であって、該多孔質層の外周部の気孔が封止剤で封止された多孔質層が設けられており、
    前記樹脂フレームは、前記気孔が前記封止剤で封止された前記多孔質層の前記外周部に対して、接着剤を介して接着されている
    燃料電池。
  6. 請求項5に記載の燃料電池であって、
    前記多孔質層は、前記触媒電極層に加えて、該触媒電極層上に積層されたガス拡散層を備え、
    前記多孔質層の前記外周部では、前記触媒電極層および前記ガス拡散層の気孔が前記封止剤で封止されている
    燃料電池。
  7. 請求項5または6に記載の燃料電池であって、
    前記電解質膜の両面上に、外周部の気孔が前記封止剤で封止された前記多孔質層が設けられている
    燃料電池。
JP2017117306A 2017-06-15 2017-06-15 燃料電池の製造方法 Active JP6855950B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017117306A JP6855950B2 (ja) 2017-06-15 2017-06-15 燃料電池の製造方法
US16/005,846 US10797325B2 (en) 2017-06-15 2018-06-12 Fuel cell and method of manufacturing same
DE102018114003.7A DE102018114003A1 (de) 2017-06-15 2018-06-12 Brennstoffzelle und verfahren zum herstellen derselben
CN201810606372.7A CN109148913B (zh) 2017-06-15 2018-06-13 燃料电池和制造燃料电池的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017117306A JP6855950B2 (ja) 2017-06-15 2017-06-15 燃料電池の製造方法

Publications (2)

Publication Number Publication Date
JP2019003821A true JP2019003821A (ja) 2019-01-10
JP6855950B2 JP6855950B2 (ja) 2021-04-07

Family

ID=64457738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017117306A Active JP6855950B2 (ja) 2017-06-15 2017-06-15 燃料電池の製造方法

Country Status (4)

Country Link
US (1) US10797325B2 (ja)
JP (1) JP6855950B2 (ja)
CN (1) CN109148913B (ja)
DE (1) DE102018114003A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020140933A (ja) * 2019-03-01 2020-09-03 トヨタ自動車株式会社 燃料電池、およびその製造方法
JP2021057218A (ja) * 2019-09-30 2021-04-08 トヨタ自動車株式会社 燃料電池単位セル
JP2021057209A (ja) * 2019-09-30 2021-04-08 トヨタ自動車株式会社 燃料電池単位セル
JP2021057200A (ja) * 2019-09-30 2021-04-08 トヨタ自動車株式会社 燃料電池単位セル
WO2024116970A1 (ja) * 2022-11-30 2024-06-06 日本碍子株式会社 電気化学セル及びセパレータ付き電気化学セル
WO2024116971A1 (ja) * 2022-11-30 2024-06-06 日本碍子株式会社 電気化学セル及びセパレータ付き電気化学セル

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052483B2 (ja) * 2018-03-29 2022-04-12 トヨタ自動車株式会社 一体化シートの製造方法
CN111509258B (zh) * 2019-01-31 2021-08-20 长城汽车股份有限公司 膜电极组件和膜电极组件的装配方法与燃料电池模组
CN110010923B (zh) * 2019-04-01 2021-06-25 清华大学 一种一体化密封电堆的制造方法
CN110444790B (zh) * 2019-08-29 2020-12-04 武汉中极氢能产业创新中心有限公司 膜电极组件、制备方法及燃料电池单电池
CA3070363A1 (en) * 2020-01-30 2021-07-30 Avl List Gmbh Membrane electrode and frame assembly for fuel cell stacks and method for making
CN112563531B (zh) * 2020-12-03 2022-02-11 中国科学院大连化学物理研究所 一种燃料电池电堆封装结构
DE102022116405A1 (de) 2022-06-30 2024-01-04 Freudenberg Se Verfahren zum Fertigen eines bogenförmigen Werkstücks mit Dichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510932A (ja) * 1997-07-16 2001-08-07 バラード パワー システムズ インコーポレイティド 電気化学的燃料電池における膜電極組立体(mea)のための弾性シールおよび該シールの製造方法
JP2009026654A (ja) * 2007-07-20 2009-02-05 Toyota Motor Corp 燃料電池のシール構造および燃料電池
JP2015115131A (ja) * 2013-12-10 2015-06-22 トヨタ自動車株式会社 発電体
JP2016012444A (ja) * 2014-06-27 2016-01-21 本田技研工業株式会社 燃料電池及びその製造方法
JP2016081690A (ja) * 2014-10-16 2016-05-16 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100719201B1 (ko) * 2000-11-21 2007-05-16 엔오케이 가부시키가이샤 연료 전지용 구성 부품
KR101482799B1 (ko) * 2006-01-17 2015-01-14 헨켈 유에스 아이피 엘엘씨 실란트 통합 연료 전지 성분 및 이를 제조하기 위한 방법 및 시스템
JP5443401B2 (ja) * 2011-01-21 2014-03-19 株式会社ノリタケカンパニーリミテド 固体高分子形燃料電池のガス拡散層、そのガス拡散層を含む膜−電極接合体、そのガス拡散層の製造方法、および、そのガス拡散層の製造に用いるスラリー
CN103515622B (zh) * 2013-08-02 2016-02-10 清华大学 用于燃料电池的膜电极及其制备方法
JP6118225B2 (ja) * 2013-10-09 2017-04-19 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2017004607A (ja) 2015-06-04 2017-01-05 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510932A (ja) * 1997-07-16 2001-08-07 バラード パワー システムズ インコーポレイティド 電気化学的燃料電池における膜電極組立体(mea)のための弾性シールおよび該シールの製造方法
JP2009026654A (ja) * 2007-07-20 2009-02-05 Toyota Motor Corp 燃料電池のシール構造および燃料電池
JP2015115131A (ja) * 2013-12-10 2015-06-22 トヨタ自動車株式会社 発電体
JP2016012444A (ja) * 2014-06-27 2016-01-21 本田技研工業株式会社 燃料電池及びその製造方法
JP2016081690A (ja) * 2014-10-16 2016-05-16 本田技研工業株式会社 燃料電池用樹脂枠付き電解質膜・電極構造体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020140933A (ja) * 2019-03-01 2020-09-03 トヨタ自動車株式会社 燃料電池、およびその製造方法
JP7188192B2 (ja) 2019-03-01 2022-12-13 トヨタ自動車株式会社 燃料電池、およびその製造方法
JP2021057218A (ja) * 2019-09-30 2021-04-08 トヨタ自動車株式会社 燃料電池単位セル
JP2021057209A (ja) * 2019-09-30 2021-04-08 トヨタ自動車株式会社 燃料電池単位セル
JP2021057200A (ja) * 2019-09-30 2021-04-08 トヨタ自動車株式会社 燃料電池単位セル
WO2024116970A1 (ja) * 2022-11-30 2024-06-06 日本碍子株式会社 電気化学セル及びセパレータ付き電気化学セル
WO2024116971A1 (ja) * 2022-11-30 2024-06-06 日本碍子株式会社 電気化学セル及びセパレータ付き電気化学セル

Also Published As

Publication number Publication date
US10797325B2 (en) 2020-10-06
JP6855950B2 (ja) 2021-04-07
DE102018114003A1 (de) 2018-12-20
CN109148913B (zh) 2021-10-26
CN109148913A (zh) 2019-01-04
US20180366744A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
JP6855950B2 (ja) 燃料電池の製造方法
JP5638508B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法
JP6245194B2 (ja) 燃料電池単セル及び燃料電池単セルの製造方法
JP5855540B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP5683433B2 (ja) 燃料電池スタック
JP2013239316A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法
US11171341B2 (en) Fuel cell and method of manufacturing fuel cell
JP6145082B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体及びその製造方法
JP6666664B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2016058161A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP6144650B2 (ja) 燃料電池の製造方法
JP6100230B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体及びその製造方法
JP2017068908A (ja) 樹脂枠付き電解質膜・電極構造体の製造方法
JP2016076372A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法
JP6126049B2 (ja) 燃料電池の製造方法
JP7276206B2 (ja) 燃料電池およびその製造方法
JP2017004607A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法
JP2020064814A (ja) 燃料電池セルの製造方法
JP2020061250A (ja) 燃料電池セル
JP6170883B2 (ja) ホットメルト接着剤の製造方法
JP2017111870A (ja) 燃料電池
JP6133241B2 (ja) ホットメルト接着剤の製造方法及び製造装置
JP2017010704A (ja) 樹脂枠付き電解質膜・電極構造体の製造方法
JP2018063813A (ja) 燃料電池の製造方法
JP6084181B2 (ja) ホットメルト接着剤の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R151 Written notification of patent or utility model registration

Ref document number: 6855950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151