JP2018535467A - 物体識別システム及び方法 - Google Patents

物体識別システム及び方法 Download PDF

Info

Publication number
JP2018535467A
JP2018535467A JP2018513418A JP2018513418A JP2018535467A JP 2018535467 A JP2018535467 A JP 2018535467A JP 2018513418 A JP2018513418 A JP 2018513418A JP 2018513418 A JP2018513418 A JP 2018513418A JP 2018535467 A JP2018535467 A JP 2018535467A
Authority
JP
Japan
Prior art keywords
tag
probe
wave
location
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018513418A
Other languages
English (en)
Other versions
JP2018535467A5 (ja
Inventor
ジェームス ディー. リリー,
ジェームス ディー. リリー,
ケネス エル. コルム,
ケネス エル. コルム,
ジェームス エフ. コルム,
ジェームス エフ. コルム,
ジョセフ エフ. ピンゾーン,
ジョセフ エフ. ピンゾーン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CPG Technologies LLC
Original Assignee
CPG Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CPG Technologies LLC filed Critical CPG Technologies LLC
Publication of JP2018535467A publication Critical patent/JP2018535467A/ja
Publication of JP2018535467A5 publication Critical patent/JP2018535467A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V15/00Tags attached to, or associated with, an object, in order to enable detection of the object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2405Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Computer Security & Cryptography (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Control Of Conveyors (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

物体識別システム(400)は、それぞれのタグが物体(404)に関連付けられた物体識別タグ(402)が動作するための電力を得る誘導表面波を生成する誘導表面導波プローブ(P)と、前記物体のライフサイクルの間に前記タグが前記関連付けられた物体と共に移動するときに、前記タグのうちの1つ以上からの帰還信号を受信するように戦略的位置に配置された複数の受信器(408)と、を備える。

Description

[関連出願の相互参照]
本出願は、2013年3月7日に出願され出願番号第13/789,538号が付与され、公開番号第2014/0252886(A1)号として2014年9月11日に公開された「Excitation and Use of Guided Surface Wave Modes on Lossy Media」と題された同時係属の米国特許非暫定出願に関連し、その出願は、参照によりその全体が本明細書に組み込まれる。本出願はまた、2013年3月7日に出願され出願番号第13/789,525号が付与され、公開番号第2014/0252865(A1)号として2014年9月11日に公開された「Excitation and Use of Guided Surface Wave Modes on Lossy Media」と題された同時係属の米国特許非暫定出願に関連し、その出願は、参照によりその全体が本明細書に組み込まれる。本出願は更に、2014年9月10日に出願され出願番号第14/483,089号が付与された「Excitation and Use of Guided Surface Wave Modes on Lossy Media」と題された同時係属の米国特許非暫定出願に関連し、その出願は、参照によりその全体が本明細書に組み込まれる。本出願は更に、2015年6月2日に出願され出願番号第14/728,507号が付与された「Excitation and Use of Guided Surface Waves」と題された同時係属の米国特許非暫定出願に関連し、その出願は、参照によりその全体が本明細書に組み込まれる。本出願は更に、2015年6月2日に出願され出願番号第14/728,492号が付与された「Excitation and Use of Guided Surface Waves」と題された同時係属の米国特許非暫定出願に関連し、その出願は、参照によりその全体が本明細書に組み込まれる。
一世紀にわたり、電波信号は、従来のアンテナ構造を使用して伝送されてきた。無線科学とは対照的に、電力分配は、ワイヤなどの導電体に沿った電気エネルギの誘導に依拠してきた。無線周波数(radio frequency)(RF)と送電との間のこの差異の理解は、1900年代初頭から存在していた。
しかし、無線周波数識別(Radio frequency identification)(RFID)システムは、タグに電力を供給するために読取装置から放出されるRFエネルギを使用してきた。タグは、放出された信号に影響を及ぼして、読取装置によって検出可能な放出された信号の変化を引き起こすことができる、又は、タグは、読取装置によって検出可能なRF信号を送信することができる。前者の場合では、読取装置は、タグが読取装置の動作可能範囲内にあると判定することを可能にできる。後者の場合では、読取装置は、タグによって出力された信号から、タグを一意に識別するコードを抽出することを可能にできる。RFIDシステムの範囲は、極度に限定されている。また、タグの能力も、読取装置によって放出されるRF信号から導出することができる少量の使用可能なエネルギに起因して、限定されている。
本開示の態様は、以下の図面を参照することにより、より良好に理解される。図面は、必ずしも一定の縮尺ではなく、本開示の原理を明確に例示する際にむしろ強調されている。更に、図面中で、同じ参照数字は、いくつかの図を通して対応する部分を指す。
誘導電磁界及び放射電磁界に関して、距離の関数として電界強度を示すグラフである。
本開示の各種実施形態に係る、誘導表面波の伝送のために用いられる2つの領域を有する伝搬境界面を示す図である。
本開示の各種実施形態に係る、図2の伝搬境界面に対して配置された誘導表面導波プローブを示す図である。
本開示の各種実施形態に係る、一次ハンケル関数の近接漸近線及び遠方漸近線の大きさの例のグラフである。
本開示の各種実施形態に係る、誘導表面導波プローブによって合成された電界の複素入射角を示す図である。 本開示の各種実施形態に係る、誘導表面導波プローブによって合成された電界の複素入射角を示す図である。
本開示の各種実施形態に係る、図5Aの電界が損失性導電媒体とブルースター角で交差する位置上の帯電端子の高度の効果を示すグラフ表示である。
本開示の各種実施形態に係る、誘導表面導波プローブの例のグラフ表示である。
本開示の各種実施形態に係る、図3及び図7の誘導表面導波プローブの等価影像平面モデルの例を示すグラフ表示である。 本開示の各種実施形態に係る、図3及び図7の誘導表面導波プローブの等価影像平面モデルの例を示すグラフ表示である。 本開示の各種実施形態に係る、図3及び図7の誘導表面導波プローブの等価影像平面モデルの例を示すグラフ表示である。
本開示の各種実施形態に係る、図8B及び8Cの等価影像平面モデルの単線伝送線及び古典的伝送線のモデルの例を示すグラフ表示である。 本開示の各種実施形態に係る、図8B及び8Cの等価影像平面モデルの単線伝送線及び古典的伝送線のモデルの例を示すグラフ表示である。
本開示の各種実施形態に係る、損失性導電媒体の表面に沿って誘導表面波を送出するために図3及び図7の誘導表面導波プローブを調整する例を示す流れ図である。
本開示の各種実施形態に係る、図3及び図7の誘導表面導波プローブのウェーブチルト角と位相遅延との間の関係の例を示すグラフである。
本開示の各種実施形態に係る、誘導表面導波プローブの例を示す図である。
本開示の各種実施形態に係る、ハンケル交差距離で誘導表面導波モードに整合する複素ブルースター角での合成された電界の入射を示すグラフ表示である。
本開示の各種実施形態に係る、図12の誘導表面導波プローブの例のグラフ表示である。
本開示の各種実施形態に係る、誘導表面導波プローブの帯電端子T1の位相遅延(ΦU)の虚部及び実部の例のグラフを含む。
本開示の各種実施形態に係る、図14の誘導表面導波プローブの模式図である。
本開示の各種実施形態に係る、誘導表面導波プローブの例を示す図である。
本開示の各種実施形態に係る、図16の誘導表面導波プローブの例のグラフ表示である。
本開示の各種実施形態に係る、誘導表面導波プローブによって送出された誘導表面波の形態で伝送されたエネルギを受信するために用いることができる受信構造の例を示す。 本開示の各種実施形態に係る、誘導表面導波プローブによって送出された誘導表面波の形態で伝送されたエネルギを受信するために用いることができる受信構造の例を示す。 本開示の各種実施形態に係る、誘導表面導波プローブによって送出された誘導表面波の形態で伝送されたエネルギを受信するために用いることができる受信構造の例を示す。
本開示の各種実施形態に係る、受信構造を調整する例を示す流れ図である。
本開示の各種実施形態に係る、誘導表面導波プローブによって送出された誘導表面波の形態で伝送されたエネルギを受信するために用いることができる追加の受信構造の例を示す。
誘導表面波導波プローブを一般的に表す記号を示す。
誘導表面波受信構造を一般的に表す記号を示す。
線状プローブ型の誘導表面波受信構造を一般的に表す記号を示す。
同調した共振器型の誘導表面波受信構造を一般的に表す記号を示す。
磁気コイル型の誘導表面波受信構造を一般的に表す記号を示す。
物体識別システムの一実施形態の略図である。
物体識別システムの別の実施形態の略図である。
物体識別システムの一部として使用されるタグの略図である。
隣接した場所に配置された第1及び第2の物体識別システムの概略図である。
広域にわたって物体を識別するために配置された物体識別システムの概略図である。
物体識別システムの一部として使用されるコンピュータシステム及び受信器の略図である。
<1.表面誘導伝送線装置及び信号生成>
初めに、以下の概念の説明における明瞭さを提供するために、いくつかの専門用語を規定する。最初に、本明細書で意図されるように、放射電磁界と誘導電磁界との間に形式的区別がなされる。
本明細書で意図されるように、放射電磁界は、導波路に拘束されていない波動の形態で発生源の構造から放出された電磁エネルギを含む。例えば、放射電磁界は、一般的に、アンテナなどの電気的構造を出て、大気又は他の媒体を介して伝搬する電界であり、なんらの導波路構造に拘束されていない。放射された電磁波は、アンテナなどの電気的構造を離れると、発生源が動作し続けるか否かに関わらず、消散するまで、その発生源と無関係に伝搬の媒体(空気などの)内を伝搬し続ける。電磁波は、放射されると、遮断されない限り回収できず、遮断されない場合、放射された電磁波に固有のエネルギは、永久に失われる。アンテナなどの電気構造は、放射抵抗と構造損失抵抗の比を最大化することにより、電磁界を放射するように設計される。放射されたエネルギは、空間に広がって、受信器が存在するか否かに関わらず、失われる。放射された電界のエネルギ密度は、幾何学的拡大に起因する距離の関数である。したがって、本明細書で使用するとき、そのすべての形態における「放射する」という用語は、電磁伝搬のこの形態を指す。
誘導電磁界は、異なる電磁特性を有する媒体の間の境界内又はその付近にエネルギが集中した、伝搬する電磁波である。この意味で、誘導電磁界は、導波路に拘束されたものであり、導波路内を流れる電流によって搬送されるとして特徴付けることができる。誘導電磁波内で搬送されるエネルギを受信及び/又は消散する負荷が存在しない場合、誘導媒体の導電率で消散したエネルギ以外は、エネルギは失われない。別の言い方をすれば、誘導電磁波に対して負荷が存在しない場合、エネルギは消費されない。したがって、誘導電磁界を生成する発生器又は他の発生源は、抵抗負荷が存在しない限り、実際の電力を送出しない。そのため、そのような発生器又は他の発生源は、負荷が提示されるまで、本質的に空転する。これは、電気的負荷が存在しない電力線にわたって伝送される60ヘルツの電磁波を生成するように発生器を動作させることに類似している。誘導電磁界又は誘導電磁波は、「伝送線モード」と呼ばれるものと等価であることに留意されたい。これは、放射波を生成するために常に実際の電力が供給される放射電磁波と対照的である。放射電磁波とは異なり、誘導電磁エネルギは、エネルギ源がオフにされた後で、有限の長さの導波路に沿って伝搬し続けない。したがって、本明細書で使用するとき、そのすべての形態における「誘導する」という用語は、電磁伝搬のこの伝送モードを指す。
ここで図1を参照して、放射電磁界と誘導電磁界との間の差異を更に示すために、対数dBグラフ上のキロメートルでの距離の関数として、1メートル当たりのボルトでの任意指示を上回るデシベル(dB)での電界強度のグラフ100を示す。図1のグラフ100は、距離の関数として誘導電磁界の電界強度を示す誘導電界強度曲線103を示す。この誘導電界強度曲線103は、伝送線モードと本質的に同じである。また、図1のグラフ100は、距離の関数として放射電磁界の電界強度を示す放射電界強度曲線106を示す。
誘導波及び放射伝搬それぞれに対する曲線103及び106の形状が興味深い。放射電界強度曲線106は、幾何級数的に低下(1/d、式中dは距離である)し、これは、両対数目盛上で直線として示されている。一方、誘導電界強度曲線103は、
Figure 2018535467
の特徴的な指数関数的減衰を有し、両対数目盛上で独特の屈曲部109を呈する。誘導電界強度曲線103及び放射電界強度曲線106は、点112で交差し、これは交差距離で発生する。交差点112での交差距離未満の距離で、誘導電磁界の電界強度は、放射電磁界の電界強度より、大部分の位置で著しく大きい。交差距離より大きな距離では、その反対となる。したがって、誘導電界強度曲線及び放射電界強度曲線103及び106は、誘導電磁界と放射電磁界との間の根本的な伝搬の差異を更に示している。誘導電磁界と放射電磁界との間の差異の非公式な説明のために、Milligan,T.のModern Antenna Design(McGraw−Hill,1st Edition,1985,8〜9ページ)が参照され、この文献は、参照によりその全体が本明細書に組み込まれる。
上述した放射電磁波と誘導電磁波との間の差異は、公式に容易に表現され、厳密な基準で示されている。そのような2つの異なる解は、1つの同じ線形偏微分方程式から明らかにすることができ、この波動方程式は、問題に課された境界条件に解析的に従う。波動方程式に関するグリーン関数は、それ自体、放射波の性質と誘導波の性質との間の差異を含む。
空の空間において、波動方程式は、固有関数が複素波数平面上で固有値の連続スペクトルを保有する微分演算子である。この横電磁(transverse electro-magnetic)(TEM)界は、放射電磁界と呼ばれ、それらの伝搬電界は、「ヘルツ波」と呼ばれる。しかし、導電境界の存在において、波動方程式に境界条件を加えると、数学的に、連続スペクトルに加えて離散スペクトルの合計からなる波数のスペクトル表現となる。このために、Sommerfeld,A.の「Uber die Ausbreitung der Wellen in der Drahtlosen Telegraphie」(Annalen der Physik,Vol.28,1909,665〜736ページ)を参照する。また、「Partial Differential Equations in Physics−Lectures on Theoretical Physics:Volume VI」(Academic Press,1949,236〜289ページ,295〜296ページ)の第6章として刊行されたSommerfeld,A.の「Problems of Radio」、Collin、R.E.の「Hertzian Dipole Radiating Over a Lossy Earth or Sea:Some Early and Late 20th Century Controversies」(IEEE Antennas and Propagation Magazine,Vol.46,No.2,April 2004,64〜79ページ)、並びにReich,H.J.、Ordnung,P.F、Krauss,H.L.及びSkalnik,J.G.の「Microwave Theory and Techniques」(Van Nostrand,1953,291〜293ページ)を参照されたい。これらの参考文献のそれぞれは、その全体が参照により本明細書に組み込まれる。
「地上波」及び「表面波」という用語は、2つの明確に異なる物理的伝搬現象を識別する。表面波は、別個の極から解析的に発生して、平面波スペクトルにおける離散成分を生じる。例えば、Cullen,A.L.による「The Excitation of Plane Surface Waves」(Proceedings of the IEE(British),Vol.101,Part IV,August 1954,225〜235ページ)を参照されたい。この文脈では、表面波は、誘導表面波であると考えられる。表面波(Zenneck−Sommerfeld誘導波の意味における)は、無線放送から現在とてもよく知られている地上波(Weyl−Norton−FCCの意味における)と物理的かつ数学的に同じではない。これら2つの伝搬機構は、複素平面上の異なる種類の固有値スペクトル(連続又は離散)の励起から発生する。球状に伝搬し、固有値の連続性を保有し、図1の曲線106により示すように幾何級数的に低下して、分岐線法積分の結果から得られる古典的な地上波のヘルツ放射とは反対に、誘導表面波の電界強度は、図1の曲線103により示すように距離と共に指数関数的に減衰し(損失性の導波路内の伝搬に酷似する)、放射伝送線内の伝搬に似ている。「The Surface Wave in Radio Propagation over Plane Earth」(Proceedings of the IRE,Vol.25,No.2,February,1937,219〜229ページ)及び「The Surface Wave in Radio Transmission」(Bell Laboratories Record,Vol.15,June 1937,321〜324ページ)においてC.R.Burrowsによって実験的に実証されたように、垂直アンテナは、地上波を放射するが、誘導表面波を送出しない。
上記を要約すると、第1に、分岐線法積分に対応する波数固有値スペクトルの連続部分は、放射電磁界を生成し、第2に、離散スペクトル、及び積分の輪郭線により囲まれた極から発生する対応する残りの合計は、結果として、伝搬を横断する方向に指数関数的に減衰した非TEMの進行表面波となる。そのような表面波は、誘導伝送線モードである。更なる説明のために、Friedman,B.の「Principles and Techniques of Applied Mathematics」(Wiley,1956,214,283〜286,290,298〜300ページ)を参照する。
自由空間では、アンテナは、波動方程式の連続固有値を励起し、これは放射電磁界であり、Ez及び同相のHφを有する外向きに伝搬するRFエネルギは、永久に失われる。一方で、導波路プローブは、離散固有値を励起し、これは、結果として伝送線伝搬となる。Collin,R.E.の「Field Theory of Guided Waves」(McGraw−Hill,1960,453,474〜477ページ)を参照されたい。そのような理論的解析が、損失性均質媒体の平面又は球面にわたる開表面誘導波を送出する仮定的な可能性を提供してきたが、一世紀を越える間、なんらかの実用的効率を有してこれを実現する工学技術における既知の構造は、存在していない。残念なことに、1900年代初頭に出現したために、上述した理論的解析は、基本的に理論に留まり、損失性均質媒体の平面又は球面にわたる開表面誘導波の送出を実用的に実現する既知の構造は存在していない。
本開示の各種実施形態によれば、損失性導電媒体の表面に沿って誘導表面導波モードに結合する電界を励起するように構成された、様々な誘導表面導波プローブが説明される。そのような誘導電磁界は、損失性導電媒体の表面上の誘導表面波モードに、大きさ及び位相において実質的にモード整合している。そのような誘導表面波モードはまた、Zenneck導波モードと呼ぶことができる。本明細書で説明する誘導表面導波プローブによって励起された結果として生じる電界が、損失性導電媒体の表面上の誘導表面導波モードに実質的にモード整合しているという事実によって、誘導表面波の形態での誘導電磁界が、損失性導電媒体の表面に沿って送出される。一実施形態によれば、損失性導電媒体は、地球などのテレストリアル媒体を含む。
図2を参照して、1907年にJonathan Zenneckによって、彼の論文、Zenneck,J.の「On the Propagation of Plane Electromagnetic Waves Along a Flat Conducting Surface and their Relation to Wireless Telegraphy」(Annalen der Physik,Serial 4,Vol.23,September 20,1907,846〜866ページ)に記載されたように導出されたマクスウェル方程式に対する境界値解の検討のために提供する伝搬境界面を示す。図2は、領域1として示された損失性導電媒体と領域2として示された絶縁体との間の境界面に沿って放射状に伝搬する波動に対する円筒座標を示す。領域1は、例えば、任意の損失性導電媒体を含むことができる。一例では、そのような損失性導電媒体は、地球又は他の媒体などのテレストリアル媒体を含むことができる。領域2は、領域1と境界界面を共有する第2の媒体であり、領域1に対して異なる構造パラメータを有する。領域2は、例えば、大気又は他の媒体などの任意の絶縁体を含むことができる。そのような境界界面に対する反射係数は、複素ブルースター角での入射に対してのみゼロとなる。Stratton,J.A.の「Electromagnetic Theory」(McGraw−Hill,1941,516ページ)を参照されたい。
各種実施形態によれば、本開示は、領域1を含む損失性導電媒体の表面上の誘導表面導波モードに実質的にモード整合した電磁界を生成する、様々な誘導表面導波プローブを説明する。各種実施形態によれば、そのような電磁界は、結果としてゼロ反射とすることができる損失性導電媒体の複素ブルースター角で入射する波面を実質的に合成する。
更に説明するために、ejωtの電界変化が仮定され、かつρ≠0及びz≧0(式中、zは領域1の表面に垂直な垂直座標であり、ρは円筒座標における半径寸法である)である領域2において、境界面に沿った境界条件を満たすZenneckのマクスウェル方程式の閉形式厳密解は、以下の電界及び磁界成分によって表現される。
Figure 2018535467
jωtの電界変化が仮定され、かつρ≠0及びz≦0である領域1において、境界面に沿った境界条件を満たすZenneckのマクスウェル方程式の閉形式厳密解は、以下の電界及び磁界成分によって表現される。
Figure 2018535467
これらの表現において、zは、領域1の表面に垂直な垂直座標であり、ρは、半径座標であり、
Figure 2018535467
は、第2種及びn次の複素引数ハンケル関数であり、u1は、領域1の正の垂直(z)方向の伝搬定数であり、u2は、領域2の垂直(z)方向の伝搬定数であり、σ1は、領域1の導電率であり、ωは、2πf(式中、fは励起の周波数である)に等しく、εoは、自由空間の誘電率であり、ε1は、領域1の誘電率であり、Aは、発生源によって課される発生源定数であり、γは、表面波の放射伝搬定数である。
±z方向の伝搬定数は、領域1と領域2との間の境界面の上及び下に波動方程式を分離して、境界条件を課すことにより決定される。これを実行することにより、領域2では、以下の式が得られ、
Figure 2018535467
領域1では、以下の式が得られる。
Figure 2018535467
放射伝搬定数γは、以下の式により得られ、
Figure 2018535467
これは、複素表現であり、式中、nは、複素屈折率であり、以下の式により得られる。
Figure 2018535467
上記の式のすべてにおいて、
Figure 2018535467
であり、式中、εrは、領域1の比誘電率を含み、σ1は、領域1の導電率であり、εoは、自由空間の誘電率であり、μoは、自由空間の透磁率を含む。したがって、生成された表面波は、境界面に平行に伝搬し、境界面に垂直に指数関数的に減衰する。これは、消散として既知である。
したがって、式(1)〜(3)は、円筒状に対称な放射状に伝搬する導波モードであると考えることができる。Barlow,H.M.及びBrown,J.の「Radio Surface Waves」(Oxford University Press,1962,10〜12ページ,29〜33ページ)を参照されたい。本開示は、この「開境界」導波モードを励起する構造を詳述する。具体的には、各種実施形態によれば、誘導表面導波プローブは、電圧及び/又は電流が供給され、領域2と領域1との間の境界界面に対して配置された、適切なサイズの帯電端子を備える。これは、図3を参照することにより、より良好に理解することができる。図3は、損失性導電媒体203によって提示された平面に垂直な垂直軸zに沿って損失性導電媒体203(例えば、地球)の上に持ち上げられた帯電端子T1を含む、誘導表面導波プローブ200aの例を示す。損失性導電媒体203は、領域1を構成し、第2の媒体206は、領域2を構成して、損失性導電媒体203と境界界面を共有する。
一実施形態によれば、損失性導電媒体203は、地球などのテレストリアル媒体を含むことができる。このために、そのようなテレストリアル媒体は、天然であろうと人工であろうと、すべての構造又はその上に含まれる形成物を含む。例えば、そのようなテレストリアル媒体は、岩、土、砂、淡水、海水、木、植物、及び我々の惑星を構成する他のすべての自然要素などの、自然要素を含むことができる。加えて、そのようなテレストリアル媒体は、コンクリート、アスファルト、建築材料、及び他の人工材料などの、人工要素を含むことができる。他の実施形態では、損失性導電媒体203は、天然に存在するものであろうと人工であろうと、地球以外のなんらかの媒体を含むことができる。他の実施形態では、損失性導電媒体203は、人工表面などの他の媒体、及び自動車、航空機、人工材料(合板、プラスチックシート、又は他の材料などの)又は他の媒体などの構造を含むことができる。
損失性導電媒体203がテレストリアル媒体又は地球を含む場合では、第2の媒体206は、地表の上の大気を含むことができる。そのように、大気は、空気及び地球の大気を構成する他の要素を含む「大気媒体」と呼ぶことができる。加えて、第2の媒体206が、損失性導電媒体203に対して他の媒体を含むことができることが可能である。
誘導表面導波プローブ200aは、例えば、垂直給電線導体を介して励起源212を帯電端子T1に結合する給電ネットワーク209を含む。各種実施形態によれば、任意の所与の時点で端子T1に印加される電圧に基づく電界を合成するために、電荷Q1が帯電端子T1に課される。電界(E)の入射角(θi)に依存して、電界を、領域1を含む損失性導電媒体203の表面上の誘導表面導波モードに実質的にモード整合することが可能である。
式(1)〜(6)のZenneck閉形式の解を考慮することにより、領域1と領域2との間のLeontovichインピーダンス境界条件は、以下の式のように表すことができる。
Figure 2018535467
式中、
Figure 2018535467
は、正の垂直(+z)方向の単位法線であり、
Figure 2018535467
は、上記の式(1)により表現される領域2の磁界強度である。式(13)は、式(1)〜(3)で示される電界及び磁界が結果として境界界面に沿った放射表面電流密度となることができることを意味し、放射表面電流密度は、以下の式により示すことができる。
Figure 2018535467
式中、Aは、定数である。更に、誘導表面導波プローブ200に近接すると(ρ≪λに対して)、上記の式(14)は、以下のような挙動を有することを留意されたい。
Figure 2018535467
負号は、電源電流(Io)が図3に示すように上向きに垂直に流れるときに、「近接(close−in)」グラウンド電流は径方向内向きに流れることを意味する。「近接」のHφに場を整合することにより、以下の式であることを決定することができる。
Figure 2018535467
式中、式(1)〜(6)及び(14)において、q1=C11である。したがって、式(14)の放射表面電流密度は、以下の式のように言い換えることができる。
Figure 2018535467
式(1)〜(6)及び(17)によって表現される電界は、地上波の伝搬に関連付けられた放射電磁界ではなく、損失性の境界面に拘束される伝送線モードの性質を有する。Barlow,H.M.及びBrown,J.の「Radio Surface Waves」(Oxford University Press,1962,1〜5ページ)を参照されたい。
この時点では、式(1)〜(6)及び(17)に使用されるハンケル関数の性質のレビューが、波動方程式のこれらの解に対して提供される。第1種及び第2種かつn次のハンケル関数は、第1種及び第2種の標準ベッセル関数の複素の組合せとして定義されることがわかる。
Figure 2018535467
これらの関数は、それぞれ、径方向内向きに
Figure 2018535467
及び外向きに
Figure 2018535467
伝搬する円筒状の波を表す。この定義は、e±jx=cos x±j sin xの関係に類似している。例えば、Harrington,R.F.の「Time−Harmonic Fields」(McGraw−Hill,1961,460〜463ページ)を参照されたい。
その
Figure 2018535467
が外向き波であることは、Jn(x)及びNn(x)の級数定義から直接得られる、その独立変数を大きくした場合に漸近特性から認識することができる。誘導表面導波プローブから遠方では、
Figure 2018535467
これは、ejωtを乗じると、
Figure 2018535467
の空間的変動を有するej(ωt-kρ)の形態の外向きに伝搬する円筒状の波である。一次(n=1)解は、式(20a)から、以下の式のように決定することができる。
Figure 2018535467
誘導表面導波プローブに近接すると(ρ≪λに対して)、一次かつ第2種のハンケル関数は、以下の式のようにふるまう。
Figure 2018535467
これらの漸近表現は、複素量であることを留意されたい。xが実数量であるとき、式(20b)及び(21)は、
Figure 2018535467
だけ位相が異なり、これは、45°又は等価的にλ/8の追加の位相前進又は「位相増加」に対応する。第2種の一次ハンケル関数の近接及び遠方の漸近線は、それらがρ=Rxの距離で等しい大きさである、ハンケル「交差」又は遷移点を有する。
したがって、ハンケル交差点を越えると、「遠方」表現は、ハンケル関数の「近接」表現に対して優位である。ハンケル交差点までの距離(又はハンケル交差距離)は、式(20b)及び(21)を−jγρに対して等しくして、Rxについて解くことにより見出すことができる。x=σ/ωεoで、遠方及び近接のハンケル関数漸近線は、周波数が低下するとハンケル交差点が外側に移動して、周波数依存であることを理解することができる。損失性導電媒体の導電率(σ)が変化すると、ハンケル関数漸近線もまた変化し得ることも留意されたい。例えば、土の導電率は、気象条件の変化と共に変化し得る。
図4を参照して、1850kHzの動作周波数でのσ=0.010mhos/mの導電率及びεr=15の比誘電率の領域1に対する式(20b)及び(21)の一次ハンケル関数の大きさのグラフの例を示す。曲線115は、式(20b)の遠方漸近線の大きさであり、曲線118は、式(21)の近接漸近線の大きさであり、ハンケル交差点121がRx=54フィートの距離で生じている。大きさは等しいが、ハンケル交差点121で、2つの漸近線の間に位相オフセットが存在する。ハンケル交差距離は、動作周波数の波長より相当小さいこともまた理解することができる。
領域2のZenneck閉形式解の式(2)及び(3)により得られる電界成分を考慮して、EzとEρの比は、漸近的に以下の式になる。
Figure 2018535467
式中、nは、式(10)の複素屈折率であり、θiは、電界の入射角である。加えて、式(3)のモード整合した電界の垂直成分は、漸近的に以下の式になる。
Figure 2018535467
これは、端子電圧において上げられた帯電端子の静電容量の絶縁されたコンポーネント上の自由電荷qfree=Cfree×VTに線形に比例する。
例えば、図3の持ち上げられた帯電端子T1の高さH1は、帯電端子T1上の自由電荷の量に影響を及ぼす。帯電端子T1が領域1のグラウンド平面付近にある場合、端子上の電荷Q1の大部分は、「拘束」されている。帯電端子T1が上げられるにつれて、拘束電荷は、実質的にすべての絶縁された電荷が開放される高さに帯電端子T1が到達するまで少なくなる。
帯電端子T1に対する容量上昇の増大の利点は、持ち上げられた帯電端子T1上の電荷がグラウンド平面から更に除去されて、結果として自由電荷の量qfreeの増大となり、エネルギを誘導表面導波モードに結合することである。帯電端子T1がグラウンド平面から離れて移動すると、電荷分布は、端子の表面により均一に分布するようになる。自由電荷の量は、帯電端子T1の自己容量に関係する。
例えば、球形端子の静電容量は、グラウンド平面の上の物理的高さの関数として表現することができる。完全なグラウンドの上のhの物理的高さでの球の静電容量は、以下の式により得られる。
Figure 2018535467
式中、球の直径は、2aであり、M=a/2hであって、hは、球形端子の高さである。これで理解することができるように、端子高さhの増大により、帯電端子の静電容量Cは、低減する。直径の約4倍(4D=8a)以上の高さの帯電端子T1の高度に対して、電荷分布は、球形端子回りでほぼ均一であり、これは、誘導表面導波モードへの結合を向上することができることを示すことができる。
十分に絶縁された端子の場合では、導体球の自己容量は、C=4πεoaにより近似することができ、式中、aは、メートルでの球の半径である。円盤の自己容量は、C=8εoaにより近似することができ、式中、aは、メートルでの円盤の半径である。帯電端子T1は、球、円盤、円筒、円錐、トーラス、フード、1つ以上のリング、又は任意の他のランダム化形状若しくは形状の組合せなどの、任意の形状を含むことができる。帯電端子T1の位置に対して、等価球直径を決定して使用することができる。
これは、帯電端子T1が損失性導電媒体203の上にhp=H1の物理的高さに上げられた図3の例を参照して更に理解することができる。「拘束」電荷の影響を低減するために、帯電端子T1は、少なくとも帯電端子T1の球直径(又は等価な球の直径)の4倍の物理的高さに配置して、拘束された電荷の影響を低減することができる。
次に図5Aを参照して、図3の帯電端子T1上の上げられた電荷Q1により生成された電界の光線光学の解釈を示す。光学におけるように、入射電界の反射を最小化することにより、損失性導電媒体203の誘導表面導波モードに結合されたエネルギを向上及び/又は最大化することができる。入射面(境界界面ではない)に平行に偏波された電界(E||)に対して、入射電界の反射の量は、フレネル反射係数を使用して決定することができる。フレネル反射係数は、以下の式のように表現することができる。
Figure 2018535467
式中、θiは、面法線に対して測定した従来の入射角である。
図5Aの例では、光線光学の解釈は、面法線
Figure 2018535467
に対して測定したθiの入射角を有する入射面に平行に偏波された入射電界を示す。Γ||(θi)=0である場合、入射電界の反射は存在しないことになり、したがって、入射電界は、損失性導電媒体203の表面に沿った誘導表面導波モードに完全に結合されることになる。入射角が以下の式であるとき、式(25)の分子は、ゼロになることを理解することができる。
Figure 2018535467
式中、x=σ/ωεoである。この複素入射角(θi,B)は、ブルースター角と呼ばれる。式(22)に戻って、式(22)及び(26)の両方において同じ複素ブルースター角(θi,B)の関係が存在することを理解することができる。
図5Aに示すように、電界ベクトルEは、入射面に平行に偏波された入射する不均一平面波として示すことができる。電界ベクトルEは、独立した水平及び垂直成分から、以下の式のように生成することができる。
Figure 2018535467
幾何学的に、図5Aの例示は、電界ベクトルEを以下の式により得ることができることを示唆する。
Figure 2018535467
場の比は以下の式であることを意味する。
Figure 2018535467
「ウェーブチルト(wave tilt)」と呼ばれる一般化パラメータWは、本明細書では、以下の式により得られる、水平電界成分と垂直電界成分の比として表される。
Figure 2018535467
これは、複素数であり、大きさ及び位相の両方を有する。領域2内の電磁波に対して、ウェーブチルト角(Ψ)は、領域1との境界界面での波面の法線と境界界面の接線との間の角度に等しい。これは、放射状の円筒状の誘導表面波に関する電磁波の等位相面及びそれらの法線を示す、図5Bでより容易に理解することができる。完全導体との境界界面(z=0)において、波面法線は、境界界面の接線に平行であり、結果としてW=0となる。しかし、損失性誘電体の場合では、波面法線がz=0で境界界面の接線に平行ではないため、ウェーブチルトWは存在する。
式(30b)を誘導表面波に適用することにより、以下の式が得られる。
Figure 2018535467
複素ブルースター角(θi,B)に等しい入射角で、式(25)のフレネル反射係数は、以下の式により示すように、ゼロになる。
Figure 2018535467
式(22)の複素数の場の比を調整することにより、入射電界を、反射が低減又は除去される複素角で入射するように合成することができる。この比を
Figure 2018535467
として確立することにより、結果として複素ブルースター角で入射する合成された電界となり、反射をゼロにする。
電気的実効高の概念は、複素入射角を有する電界を誘導表面導波プローブ200と合成することに更なる洞察を提供することができる。電気的実効高(heff)は、以下の式のように定義されている。
Figure 2018535467
これは、hpの物理高(又は長さ)を有するモノポールに対するものである。この表現は、構造に沿った波源分布の大きさ及び位相に依存するため、実効高(又は長さ)は、一般的に複素数である。構造の分布電流I(z)の積分は、構造の物理高(hp)にわたって実行され、構造の底部(又は入力)を介して上向きに流れるグラウンド電流(I0)に対して正規化される。構造に沿って分配された電流は、以下の式により表現することができる。
Figure 2018535467
式中、β0は、構造上を伝搬する電流に対する伝搬係数である。図3の例では、ICは、誘導表面導波プローブ200aの垂直構造に沿って分配される電流である。
例えば、構造の底部の低損失コイル(例えば、ヘリカルコイル)、及びこのコイルと帯電端子T1との間に接続された垂直給電線導体を含む給電ネットワーク209を考えてみる。コイル(又はヘリカル遅延線)に起因する位相遅延は、θc=βpCであり、式中、lCは、物理的長さであり、以下の式は、伝搬係数である。
Figure 2018535467
式中、Vfは、構造上の速度係数であり、λ0は、供給される周波数での波長であり、λpは、速度係数Vfから結果として生じる伝搬波長である。位相遅延は、グラウンド(杭)電流I0に対して測定される。
加えて、垂直給電線導体の長さlwに沿った空間位相遅延は、θy=βwwにより得ることができ、式中、βwは、垂直給電線導体に対する伝搬位相定数である。いくつかの実装形態では、誘導表面導波プローブ200aの物理的高さhpと垂直給電線導体の長さlwとの間の差は、供給周波数での波長(λ0)より相当小さいため、空間位相遅延は、θy=βwpにより近似することができる。結果として、コイル及び垂直給電線導体を介した全位相遅延は、Φ=θc+θyであり、物理的構造の底部からコイルの上部に供給される電流は、以下の式である。
Figure 2018535467
式中、Φは、グラウンド(杭)電流I0に対して測定された全位相遅延である。その結果として、誘導表面導波プローブ200の電気的実効高は、以下の式により近似することができる。
Figure 2018535467
この式は、物理的高さhp≪λ0である場合に対するものである。Φの角度(又は位相シフト)でのモノポールの複素実効高heff=hpは、ソース電界を誘導表面導波モードに整合させ、誘導表面波を損失性導電媒体203上に送出させるように、調整することができる。
図5Aの例では、光線光学を使用して、ハンケル交差距離(Rx)121で複素ブルースター入射角(θi,B)を有する入射電界(E)の複素角三角法を例示している。式(26)から、損失性導電媒体に対して、ブルースター角は、複素数であり、以下の式により規定されることを思い出されたい。
Figure 2018535467
電気的に、幾何学的パラメータは、帯電端子T1の電気的な実効高(heff)によって、以下の式により関連付けられる。
Figure 2018535467
式中、Ψi,B=(π/2)−θi,Bは、損失性導電媒体の表面から測定されたブルースター角である。誘導表面導波モードに結合するために、ハンケル交差距離での電界のウェーブチルトは、電気的な実効高とハンケル交差距離の比として表現することができる。
Figure 2018535467
物理的高さ(hp)及びハンケル交差距離(Rx)の両方が実数量であるため、ハンケル交差距離(Rx)での所望の誘導表面ウェーブチルト角(Ψ)は、複素実効高(heff)の位相(Φ)に等しい。これは、コイルの供給点での位相、したがって、式(37)の位相シフトを変更することにより、複素実効高の位相Φを操作して、ハンケル交差点121での誘導表面導波モードのウェーブチルト角Ψに整合させることができる(Φ=Ψ)ことを意味する。
図5Aで、損失性導電媒体表面に沿った長さRxの隣接する辺、及び、Rxでのハンケル交差点121と帯電端子T1の中心との間に延びる光線124と、ハンケル交差点121と帯電端子T1との間の損失性導電媒体表面127との間で測定された複素ブルースター角Ψi,Bを有する、直角三角形が示されている。帯電端子T1を物理的高さhpに配置して、適切な位相遅延Φを有する電荷で励起して、結果として生じる電界は、ハンケル交差距離Rxで、かつブルースター角で、損失性導電媒体の境界界面に入射する。これらの条件下で、反射なしに又は実質的に無視できる反射で、誘導表面導波モードを励起することができる。
実効高(heff)の位相シフトΦを変更することなく帯電端子T1の物理的高さが低減される場合、結果として生じる電界は、誘導表面導波プローブ200から低減した距離においてブルースター角で損失性導電媒体203と交差する。図6は、電界がブルースター角で入射する距離についての帯電端子T1の物理的高さを低減する効果をグラフで示す。高さがh3からh2を経てh1まで低減されると、電界が損失性導電媒体(例えば、地球)とブルースター角で交差する点は、帯電端子位置に近づいて移動する。しかし、式(39)が示すように、帯電端子T1の高さH1(図3)は、ハンケル関数の遠方コンポーネントを励起するために、物理的高さ(hp)以上でなければならない。帯電端子T1を実効高(heff)以上に配置して、損失性導電媒体203を、図5Aに示すように、ハンケル交差距離(Rx)121以上でブルースター入射角(Ψi,B=(π/2)−θi,B)で照射することができる。帯電端子T1上の拘束電荷を低減又は最小化するために、上述したように、高さは、少なくとも帯電端子T1の球直径(又は等価な球体直径)の4倍でなければならない。
誘導表面導波プローブ200は、複素ブルースター角で損失性導電媒体203の表面を照射して、それによって、Rxのハンケル交差点121で(又はその向こうの)誘導表面波モードに実質的にモード整合することにより径方向の表面電流を励起する波動に対応するウェーブチルトを有する電界を確立するように構成することができる。
図7を参照して、帯電端子T1を含む誘導表面導波プローブ200bの例のグラフ表示を示す。AC源212は、例えば、ヘリカルコイルなどのコイル215を含む給電ネットワーク209(図3)を介して誘導表面導波プローブ200bに結合される帯電端子T1に対する励起源として機能する。他の実装形態では、AC源212は、一次コイルを介してコイル215に誘導結合することができる。いくつかの実施形態では、AC源212のコイル215への結合を向上及び/又は最大化するために、インピーダンス整合ネットワークを含めることができる。
図7に示すように、誘導表面導波プローブ200bは、損失性導電媒体203によって提示された平面に実質的に垂直な垂直軸zに沿って配置された上部帯電端子T1(例えば、高さhpにある球)を含むことができる。第2の媒体206は、損失性導電媒体203の上に配置されている。帯電端子T1は、自己容量CTを有する。動作中、任意の所与の時点での端子T1に印加される電圧に依存して、電荷Q1が端子T1に課される。
図7の例では、コイル215は、第1の端部で接地杭218に、かつ垂直給電線導体221を介して帯電端子T1に結合される。いくつかの実装形態では、帯電端子T1へのコイル接続は、図7に示すように、コイル215のタップ224を使用して調整することができる。コイル215は、コイル215の下側部分のタップ227を介してAC源212によって、動作周波数で励振させることができる。他の実装形態では、AC源212は、一次コイルを介してコイル215に誘導結合することができる。
誘導表面導波プローブ200の構造及び調整は、伝送周波数、損失性導電媒体の条件(例えば、土の導電率σ及び比誘電率εr)、及び帯電端子T1のサイズなどの、様々な動作条件に基づく。屈折率は、式(10)及び(11)から、以下の式のように計算することができる。
Figure 2018535467
式中、x=σ/ωεoであり、ω=2πfである。導電率σ及び比誘電率εrは、損失性導電媒体203の試験測定値により決定することができる。面法線から測定される複素ブルースター角(θi,B)もまた、式(26)から、以下の式のように決定することができる。
Figure 2018535467
又は、以下の式のように図5Aに示すように表面から測定される。
Figure 2018535467
ハンケル交差距離(WRx)でのウェーブチルトもまた、式(40)を使用して見出すことができる。
ハンケル交差距離もまた、図4により示すように、−jγρに対する式(20b)及び(21)の大きさを等しくして、Rxについて解くことにより、見出すことができる。次に、ハンケル交差距離及び複素ブルースター角を使用して式(39)から、電気的な実効高を、以下の式のように決定することができる。

Figure 2018535467
式(44)から理解することができるように、複素実効高(heff)は、帯電端子T1の物理的高さ(hp)に関連付けられた大きさ、及びハンケル交差距離(Rx)でのウェーブチルト角(Ψ)に関連付けられた位相遅延(Φ)を含む。これらの変数及び選択された帯電端子T1の構成を用いて、誘導表面導波プローブ200の構成を決定することが可能である。
物理的高さ(hp)以上に配置された帯電端子T1を用いて、給電ネットワーク209(図3)及び/又は給電ネットワークを帯電端子T1に接続する垂直給電線を調整して、帯電端子T1上の電荷Q1の位相(Φ)をウェーブチルト(W)の角度(Ψ)に整合することができる。帯電端子T1のサイズは、端子に課される電荷Q1のための十分大きな表面を提供するように選択することができる。一般的に、帯電端子T1を実用的な限り大きくすることが望ましい。帯電端子T1のサイズは、結果として帯電端子周囲の放電又はスパークとなり得る周辺の空気のイオン化を回避するために、十分大きくすべきである。
ヘリカル巻線コイルの位相遅延θcは、Corum,K.L.及びJ.F.Corumの「RF Coils,Helical Resonators and Voltage Magnification by Coherent Spatial Modes」(Microwave Review,Vol.7,No.2,September 2001,36〜45ページ)により説明されているように、マクスウェル方程式から決定することができ、この文献は、その全体が参照により本明細書に組み込まれる。H/D>1のヘリカルコイルに対して、コイルの縦軸に沿った波動の伝搬速度(υ)と光速(c)の比、又は「速度係数」は、以下の式により得られる。
Figure 2018535467
式中、Hは、ソレノイドコイルの軸方向長さであり、Dは、コイル直径であり、Nは、コイルの巻数であり、s=H/Nは、コイルの巻線間隔(又はらせんピッチ)であり、λoは、自由空間の波長である。この関係に基づいて、ヘリカルコイルの電気長又は位相遅延は、以下の式により得られる。
Figure 2018535467
らせんがらせん状に巻かれている、又は短くかつ太い場合、原理は同じであるが、Vf及びθcは、試験的測定により得る方がより容易である。ヘリカル伝送線の特性(波動)インピーダンスに対する表現もまた、以下の式のように導出されている。
Figure 2018535467
構造の空間位相遅延θyは、垂直給電線導体221(図7)の進行波の位相遅延を使用して決定することができる。完全グラウンド平面の上の円筒形垂直導体の静電容量は、以下の式のように表現することができる。
Figure 2018535467
式中、hwは、導体の垂直長さ(又は高さ)であり、aは、半径である(mks単位での)。ヘリカルコイルと同様に、垂直給電線導体の進行波の位相遅延は、以下の式により得ることができる。
Figure 2018535467
式中、βwは、垂直給電線導体に対する伝搬位相定数であり、hwは、垂直給電線導体の垂直長さ(又は高さ)であり、Vwは、ワイヤ上の速度係数であり、λ0は、供給周波数での波長であり、λwは、速度係数Vwから結果として生じる伝搬波長である。均一な円筒形導体に対して、速度係数は、Vw≒0.94又は約0.93〜約0.98の範囲の定数である。支柱が均一な伝送線であると考えられる場合、その平均特性インピーダンスは、以下の式により近似することができる。
Figure 2018535467
式中、均一な円筒形導体に対してVw≒0.94であり、aは、導体の半径である。単線給電線の特性インピーダンスに対するアマチュア無線文献で用いられてきた代替的表現は、以下の式により得ることができる。
Figure 2018535467
式(51)は、単線フィーダに対するZwが周波数と共に変化することを意味する。位相遅延は、静電容量及び特性インピーダンスに基づいて決定することができる。
帯電端子T1を図3に示すように損失性導電媒体203の上方に配置して、給電ネットワーク209は、ハンケル交差距離でのウェーブチルト角(Ψ)に等しい複素実効高(heff)の位相シフト(Φ)、又はΦ=Ψで帯電端子T1を励起するように調整することができる。この条件が満たされるとき、帯電端子T1上のQ1を振動させる電荷によって生成される電界は、損失性導電媒体203の表面に沿って進行する誘導表面導波モードに結合される。例えば、ブルースター角(θi,B)、垂直給電線導体221(図7)に関連付けられた位相遅延(θy)、及びコイル215(図7)の構成が既知である場合、振動する電荷Q1を位相Φ=Ψで帯電端子T1に課すように、タップ224(図7)の位置を決定して調整することができる。タップ224の位置を調整して、進行表面波の誘導表面導波モードへの結合を最大化することができる。タップ224の位置を越える余分なコイル長さを除去して、容量効果を低減することができる。垂直線の高さ及び/又はヘリカルコイルの幾何学的パラメータもまた、変更することができる。
損失性導電媒体203の表面上の誘導表面導波モードへの結合は、帯電端子T1上の電荷Q1に関連付けられた複素影像平面に関する定在波の共振のために誘導表面導波プローブ200を同調させることにより、向上及び/又は最適化することができる。これを行なうことにより、帯電端子T1上の増大した及び/又は最大の電圧(したがって、電荷Q1)に対して、誘導表面導波プローブ200の特性を調整することができる。図3に戻って、領域1の損失性導電媒体203の影響は、影像法の分析を使用して確認することができる。
物理的に、完全導体平面の上方配置された持ち上げられた電荷Q1は、完全導体平面上の自由電荷を誘引し、この自由電荷は、次に、持ち上げられた電荷Q1の下の領域内に「集積する」。結果として生じる完全導体平面上の「拘束」電気の分布は、ベル型曲線に類似している。持ち上げられた電荷Q1の電位にその下の誘導された「集積」電荷の電位を加えた重ね合わせは、完全導体平面に対するゼロ等電位面を強制する。完全導体平面の上の領域内の電界を説明する境界値問題の解は、持ち上げられた電荷からの電界が完全導体平面の下の対応する「影像」電荷からの電界と重ね合わされる、影像電荷の古典的概念を使用して得ることができる。
この解析はまた、誘導表面導波プローブ200の下の実効影像電荷Q1'の存在を仮定することにより、損失性導電媒体203に対しても使用することができる。実効影像電荷Q1'は、図3に示すように、導電性影像グラウンド平面130回りに帯電端子T1上の電荷Q1と同時に発生する。しかし、影像電荷Q1'は、完全導体の場合になるように、単になんらかの実数の深さに配置され、かつ帯電端子T1上の一次ソース電荷Q1と180°位相がずれているのではない。むしろ、損失性導電媒体203(例えば、テレストリアル媒体)は、位相シフトした影像を提示する。すなわち、影像電荷Q1'は、損失性導電媒体203の表面(又は物理的境界)の下の複素深さにある。複素影像深さの説明のために、Wait,J.R.の「Complex Image Theory−Revisited」(IEEE Antennas and Propagation Magazine,Vol.33,No.4,August 1991,27〜29ページ)を参照し、この文献は、その全体が参照により本明細書に組み込まれる。
電荷Q1の物理的高さ(H1)に等しい深さにある影像電荷Q1'の代わりに、導電性影像グラウンド平面130(完全導体を表す)が、z=−d/2の複素深さに配置されて、影像電荷Q1'は、−D1=−(d/2+d/2+H1)≠H1により得られる複素深さ(すなわち、「深さ」は大きさ及び位相の両方を有する)に見える。地球の上に垂直に偏波されたソースに対して、
Figure 2018535467
であり、式中、
Figure 2018535467
であり、式(12)に示すようである。次に、影像電荷の複素数の間隔は、境界面が誘電体又は完全導体のいずれかである場合には発生しない追加の位相シフトに、外部電界が遭遇することを意味する。損失性導電媒体では、波面法線は、領域1と領域2との間の境界界面ではなくz=−d/2の導電性影像グラウンド平面130の接線に平行である。
損失性導電媒体203が物理的境界136を有する有限導体の地球133である、図8Aに示す場合を考えてみる。有限導体の地球133は、物理的境界136の下の複素数の深さz1に配置された、図8Bに示すような完全導電性影像グラウンド平面139により置換えることができる。この等価表現は、物理的境界136で境界面を見下ろすとき、同じインピーダンスを有する。図8Bの等価表現は、図8Cに示すような等価伝送線としてモデル化することができる。等価構造の断面は、完全導電性影像平面のインピーダンスを短絡(zs=0)とした(z方向の)端部負荷伝送線として表される。深さz1は、地球を見下ろすTEM波のインピーダンスを図8Cの伝送線路を見て見た影像グラウンド平面のインピーダンスzinに等しくすることにより決定することができる。
図8Aの場合では、上部領域(空気)142内の伝搬定数及び波動の特性インピーダンスは、以下の式である。
Figure 2018535467
損失性の地球133では、伝搬定数及び波動の特性インピーダンスは、以下の式である。
Figure 2018535467
法線入射に対して、図8Bの等価表現は、特性インピーダンスが空気のもので(zo)、γoの伝搬定数を有し、長さがz1であるTEM伝送線と等価である。そのようにして、図8Cの短絡した伝送線に対して境界面で見た影像グラウンド平面のインピーダンスZinは、以下の式により得られる。
Figure 2018535467
図8Cの等価モデルに関連付けられた影像グラウンド平面のインピーダンスZinを図8Aの法線入射波のインピーダンスに等しくして、z1について解くことにより、短絡(完全導電性影像グラウンド平面139)までの距離が、以下の式のように得られる。
Figure 2018535467
式中、逆双曲線正接に対する級数展開の第一項のみがこの近似に関して考慮されている。空気領域142内では、伝搬定数は、γo=jβoであるので、Zin=jZotanβo1(これは実数z1に対する単なる虚数である)であるが、zeは、σ≠0である場合に複素数値である。したがって、z1が複素距離である場合のみ、Zin=Zeである。
図8Bの等価表現が完全導電性影像グラウンド平面139を含むため、地球の表面(物理的境界136)にある電荷又は電流に対する影像深さは、影像グラウンド平面139の反対側の距離z1、又は地球の表面(z=0に配置された)の下のd=2×z1に等しい。したがって、完全導電性影像グラウンド平面139までの距離は、以下の式により近似することができる。
Figure 2018535467
加えて、「影像電荷」は、実電荷に「等しくかつ反対」であることになるので、深さz1=−d/2での完全導電性影像グラウンド平面139の電位は、ゼロであることになる。
電荷Q1が図3に示すように地球の表面の上の距離H1に持ち上げられた場合、影像電荷Q1'は、表面の下のD1=d+H1の複素距離、又は影像グラウンド平面130の下のd/2+H1の複素距離にある。図7の誘導表面導波プローブ200bは、図8Bの完全導電性影像グラウンド平面139に基づくことができる等価単線伝送線路の影像平面モデルとしてモデル化することができる。図9Aは、等価単線伝送線路の影像平面モデルの例を示し、図9Bは、図8Cの短絡した伝送線を含む古典的等価伝送線路モデルの例を示す。
図9A及び9Bの等価影像平面モデルでは、Φ=θy+θcは、地球133(又は損失性導電媒体203)を基準にした誘導表面導波プローブ200の進行波の位相遅延であり、θc=βpHは、度で表現した物理的長さHのコイル215(図7)の電気長であり、θy=βwwは、度で表現した物理的長さhwの垂直給電線導体221(図7)の電気長であり、θd=βod/2は、影像グラウンド平面139と地球133(又は損失性導電媒体203)の物理的境界136との間の位相シフトである。図9A及び9Bの例では、Zwは、オームでの持ち上げられた垂直給電線導体221の特性インピーダンスであり、Zcは、オームでのコイル215の特性インピーダンスであり、ZOは、自由空間の特性インピーダンスである。
誘導表面導波プローブ200の底部で、構造を「見上げて」見たインピーダンスは、Z=Zbaseである。以下の式の負荷インピーダンスで、
Figure 2018535467
(式中、CTは、帯電端子T1の自己容量である)、垂直給電線導体221(図7)を「見上げて」見たインピーダンスは、以下の式により得られる。
Figure 2018535467
コイル215(図7)を「見上げて」見たインピーダンスは、以下の式により得られる。
Figure 2018535467
誘導表面導波プローブ200の底部で、損失性導電媒体203を「見下して」見たインピーダンスは、Z=Zinであり、これは以下の式により得られる。
Figure 2018535467
式中、Zs=0である。
損失を無視して、等価影像平面モデルは、物理的境界136でZ+Z=0である場合、共振に同調することができる。又は、低損失の場合では、物理的境界136でX+X=0であり、式中、Xは、対応するリアクタンス成分である。したがって、誘導表面導波プローブ200を「見上げた」物理的境界136でのインピーダンスは、損失性導電媒体203を「見下ろした」物理的境界136でのインピーダンスの共役である。プローブの電界の損失性導電媒体203(例えば、地球)の表面に沿った誘導表面導波モードへの結合を向上及び/又は最大化するΦ=Ψであるように、媒体のウェーブチルトΨの角度に等しい進行波の位相遅延Φを維持しながら、帯電端子T1の負荷インピーダンスZLを調整することにより、図9A及び9Bの等価影像平面モデルを、影像グラウンド平面139に対する共振に調整することができる。この方法で、等価複素影像平面モデルのインピーダンスは、単に抵抗性であり、これは、電圧及び端子T1上の持ち上げられた電荷を最大化するプローブ構造上の重ね合わせた定在波を維持し、式(1)〜(3)及び(16)により、伝搬する表面波を最大化する。
ハンケル解に従って、誘導表面導波プローブ200によって励起される誘導表面波は、外向きに伝搬する進行波である。誘導表面導波プローブ200(図3及び図7)の帯電端子T1と接地杭218との間の給電ネットワーク209に沿ったソース分布は、実際には、構造上の進行波に定在波を加えた重ね合わせで構成される。帯電端子T1を物理的高さhp以上に配置して、給電ネットワーク209を通って移動する進行波の位相遅延は、損失性導電媒体203に関連付けられたウェーブチルト角に整合される。このモード整合により、進行波を損失性導電媒体203に沿って送出することができる。進行波に対して位相遅延が確立されたら、帯電端子T1の負荷インピーダンスZLは、プローブ構造を−d/2の複素深さにある影像グラウンド平面(図3の130、又は図8の139)に対して定在波の共振に至らせるように調整される。この場合では、影像グラウンド平面から見たインピーダンスは、ゼロのリアクタンスを有し、帯電端子T1上の電荷は、最大化される。
進行波現象と定在波現象との間の差異は、(1)長さdの伝送線の区間(「遅延線」と呼ばれることもある)上の進行波の位相遅延(θ=βd)は、伝搬時間遅延に起因するのに対して、(2)定在波(前方及び後方に伝搬する波からなる)の位置依存性の位相は、線長さの伝搬時間遅延及び異なる特性インピーダンスの線区間の間の境界面でのインピーダンス遷移の両方に依存することである。正弦波定常状態で動作する伝送線の区間の物理的長さに起因して発生する位相遅延に加えて、Zoa/Zobの比に起因するインピーダンスの不連続点での追加の反射係数位相が存在する。式中、Zoa及びZobは、例えば、特性インピーダンスZoa=Zc(図9B)のヘリカルコイル区間の区間及び特性インピーダンスZob=Zw(図9B)の垂直給電線導体の直線区間などの、伝送線の2つの区間の特性インピーダンスである。
この現象の結果として、大いに異なる特性インピーダンスの2つの相対的に短い伝送線区間を使用して、非常に大きな位相シフトを提供することができる。例えば、低インピーダンス及び高インピーダンスの、合わせて例えば0.05λの物理的長さになる、伝送線の2つの区間からなるプローブ構造を作製して、0.25λ共振と等価である90°の位相シフトを提供することができる。これは、特性インピーダンスの大きなジャンプに起因する。この方法で、物理的に短いプローブ構造を、2つの物理的長さを組み合わせたより電気的に長くすることができる。これを、インピーダンス比の不連続点が位相の大きなジャンプを提供する図9A及び9Bに示す。区間が一体に接合されたインピーダンスの不連続点は、実質的な位相シフトを提供する。
図10を参照して、損失性導電媒体203(図3)の表面に沿って誘導表面進行波を送出する、誘導表面導波プローブ200(図3及び図7)を損失性導電媒体の表面上の誘導表面導波モードに実質的にモード整合するように調整する例を示す流れ図150を示す。153で開始して、誘導表面導波プローブ200の帯電端子T1は、損失性導電媒体203の上の定義された高さに配置される。損失性導電媒体203の特性及び誘導表面導波プローブ200の動作周波数を利用して、ハンケル交差距離はまた、図4により示すように−jγρに対する式(20b)及び(21)の大きさを等しくして、Rxについて解くことにより見出すことができる。複素屈折率(n)は、式(41)を使用して決定することができ、次に、複素ブルースター角(θi,B)は、式(42)から決定することができる。次に、帯電端子T1の物理的高さ(hp)は、式(44)から決定することができる。帯電端子T1は、ハンケル関数の遠方成分を励起するために、物理的高さ(hp)以上でなければならない。この高さの関係は、表面波を送出するときに最初に考慮される。帯電端子T1上の拘束電荷を低減又は最小化するために、高さは、少なくとも帯電端子T1の球直径(又は等価な球体直径)の4倍でなければならない。
156で、帯電端子T1上の持ち上げられた電荷Q1の電気的位相遅延Φは、複素ウェーブチルト角Ψに整合される。ヘリカルコイルの位相遅延(θc)及び/又は垂直給電線導体の位相遅延(θy)は、Φをウェーブチルト(W)の角度(Ψ)に等しくするように調整することができる。式(31)に基づいて、ウェーブチルト角(Ψ)は、以下の式から決定することができる。
Figure 2018535467
次に、電気的位相Φは、ウェーブチルト角に整合することができる。この角度(又は位相)の関係は、表面波を送出するときに次に考慮される。例えば、電気的位相遅延Φ=θc+θyは、コイル215(図7)の幾何学的パラメータ及び/又は垂直給電線導体221(図7)の長さ(又は高さ)を変更することにより調整することができる。Φ=Ψに整合することにより、境界界面で複素ブルースター角を有するハンケル交差距離(Rx)以上で電界を確立して、表面導波モードを励起して損失性導電媒体203に沿って進行波を送出することができる。
次に159で、帯電端子T1の負荷インピーダンスは、誘導表面導波プローブ200の等価影像平面モデルを共振させるように調整される。図9A及び9Bの導電性影像グラウンド平面139(又は図3の130)の深さ(d/2)は、式(52)、(53)及び(54)、並びに測定することができる損失性導電媒体203(例えば、地球)の値を使用して決定することができる。その深さを使用して、影像グラウンド平面139と損失性導電媒体203の物理的境界136との間の位相シフト(θd)は、θd=βod/2を使用して決定することができる。次に、損失性導電媒体203を「見下ろして」見たようなインピーダンス(Zin)は、式(65)を使用して決定することができる。この共振関係は、送出される表面波を最大化すると考えることができる。
コイル215の調整されたパラメータ及び垂直給電線導体221の長さに基づいて、速度係数、位相遅延、並びにコイル215及び垂直給電線導体221のインピーダンスは、式(45)〜(51)を使用して決定することができる。加えて、帯電端子T1の自己容量(CT)は、例えば、式(24)を使用して決定することができる。コイル215の伝搬係数(βp)は、式(35)を使用して決定することができ、垂直給電線導体221に対する伝搬位相定数(βw)は、式(49)を使用して決定することができる。自己容量並びにコイル215及び垂直給電線導体221の決定された値を使用して、コイル215を「見上げて」見たような誘導表面導波プローブ200のインピーダンス(Zbase)は、式(62)、(63)及び(64)を使用して決定することができる。
誘導表面導波プローブ200の等価影像平面モデルは、Zbaseのリアクタンス成分XbaseがZinのリアクタンス成分Xinを相殺するように、又はXbase+Xin=0であるように、負荷インピーダンスZLを調整することにより、共振するよう整調することができる。したがって、誘導表面導波プローブ200を「見上げた」物理的境界136でのインピーダンスは、損失性導電媒体203を「見下ろした」物理的境界136でのインピーダンスの共役である。負荷インピーダンスZLは、帯電端子T1の電気的位相遅延Φ=θc+θyを変更することなく帯電端子T1の静電容量(CT)を変更することにより、調整することができる。反復的手法を採用して、導電性影像グラウンド平面139(又は130)に対する等価影像平面モデルの共振のために負荷インピーダンスZLを整調することができる。この方法で、損失性導電媒体203(例えば、地球)の表面に沿った誘導表面導波モードへの電界の結合を、向上及び/又は最大化することができる。
これは、数値例を有する状況を例示することにより、より良好に理解することができる。1.85MHzの動作周波数(fo)でヘリカルコイル及び垂直給電線導体を介して励起される帯電端子T1を上部に有する、物理的高さhpの上部装荷垂直スタブを含む誘導表面導波プローブ200を考えてみる。16フィートの高さ(H1)、並びにεr=15の比誘電率及びσ1=0.010mhos/mの導電率を有する損失性導電媒体203(例えば、地球)を用いて、いくつかの表面波伝搬パラメータを、fo=1.850MHzに対して計算することができる。これらの条件下で、ハンケル交差距離は、hp=5.5フィートの物理的高さでRx=54.5フィートであることを見出すことができ、これは、帯電端子T1の実際の高さより相当低い。H1=5.5フィートの帯電端子高さを使用することができたが、より高いプローブ構造は、拘束静電容量を低減して、帯電端子T1上のより大きな割合の自由電荷を可能にし、より大きな電界強度及び進行波の励起を提供した。
波長は、以下の式のように決定することができる。
Figure 2018535467
式中、cは光速である。複素屈折率は、以下の式である。
Figure 2018535467
これは式(41)から得られ、式中、x=σ1/ωεoであり、ω=2πfoである。複素ブルースター角は、以下の式である。
Figure 2018535467
これは式(42)から得られる。式(66)を使用して、ウェーブチルトの値は、以下の式として決定することができる。
Figure 2018535467
したがって、ヘリカルコイルは、Φ=Ψ=40.614°に整合するように調整することができる。
垂直給電線導体(0.27インチの直径を有する均一な円筒状の導体として近似される)の速度係数は、Vw≒0.93として得ることができる。hp≪λoであるため、垂直給電線導体に対する伝搬位相定数は、以下の式のように近似することができる。
Figure 2018535467
式(49)から、垂直給電線導体の位相遅延は、以下の式である。
Figure 2018535467
θc=28.974°=40.614°−11.640°であるようにヘリカルコイルの位相遅延を調整することにより、Φは、Ψに等しいことになり、誘導表面導波モードに整合する。ΦとΨとの間の関係を示すために、図11は、周波数の範囲にわたる両方のグラフを示す。Φ及びΨの両方が周波数依存であるため、それらの対応する曲線が約1.85MHzで互いに交差することがわかる。
0.0881インチの導体直径、30インチのコイル直径(D)、及び4インチの巻きの間の間隔(s)を有するヘリカルコイルに対して、コイルに対する速度係数は、式(45)を使用して、以下の式のように決定することができる。
Figure 2018535467
式(35)からの伝搬係数は、以下の式である。
Figure 2018535467
θc=28.974°で、ソレノイドコイルの軸方向長さ(H)は、式(46)を使用して、以下の式のように決定することができる。
Figure 2018535467
この高さは、垂直給電線導体が接続されるヘリカルコイル上の位置を決定し、結果として、8.818巻(N=H/s)のコイルとなる。
ウェーブチルト角(Φ=θc+θy=Ψ)に整合するように調整されたコイル及び垂直給電線導体の進行波の位相遅延で、帯電端子T1の負荷インピーダンス(ZL)は、誘導表面波プローブ200の等価影像平面モデルの定在波共振のために調整することができる。測定された地球の誘電率、導電率、及び透磁率から、放射伝搬定数は、式(57)を使用して決定することができる。
Figure 2018535467
導電性影像グラウンド平面の複素深さは、式(52)から、以下の式のように近似することができる。
Figure 2018535467
導電性影像グラウンド平面と地球の物理的境界との間の対応する位相シフトは、以下の式により得られる。
Figure 2018535467
式(65)を使用して、損失性導電媒体203(すなわち、地球)を「見下ろして」見たインピーダンスは、以下の式のように決定することができる。
Figure 2018535467
損失性導電媒体203を「見下ろして」見たリアクタンス成分(Xin)を誘導表面波プローブ200を「見上げて」見たリアクタンス成分(Xbase)と整合することにより、誘導表面導波モードへの結合を最大化することができる。これは、コイル及び垂直給電線導体の進行波の位相遅延を変更することなく帯電端子T1の静電容量を調整することにより、実現することができる。例えば、帯電端子の静電容量(CT)を61.8126pFに調整することにより、式(62)からの負荷インピーダンスは、以下の式となる。
Figure 2018535467
そして境界でのリアクタンス成分は整合される。
式(51)を使用して、垂直給電線導体(0.27インチの直径(2a)を有する)のインピーダンスは、以下の式のように得られる。
Figure 2018535467
垂直給電線導体を「見上げて」見たインピーダンスは、式(63)により、以下の式のように得られる。
Figure 2018535467
式(47)を使用して、ヘリカルコイルの特性インピーダンスは、以下の式のように得られる。
Figure 2018535467
コイルを「見上げて」見たインピーダンスは、式(64)により、以下の式のように得られる。
Figure 2018535467
式(79)の解と比較すると、リアクタンス成分が反対かつおおよそ等しく、したがって、互いの共役であることを理解することができる。したがって、完全導電性影像グラウンド平面から図9A及び9Bの等価影像平面モデルを「見上げて」見たインピーダンス(Zip)は、抵抗のみ、又はZip=R+j0である。
誘導表面導波プローブ200(図3)によって生成される電界が、給電ネットワークの進行波の位相遅延をウェーブチルト角に整合することにより確立され、かつプローブ構造が複素深さz=−d/2の完全導電性影像グラウンド平面に対して共振されるとき、電界は、損失性導電媒体上の表面上の誘導表面導波モードに実質的にモード整合され、誘導表面進行波が損失性導電媒体の表面に沿って送出される。図1に示すように、誘導電磁界の誘導電界強度曲線103は、
Figure 2018535467
の特徴的な指数関数的減衰を有し、両対数目盛上で独特の屈曲部109を呈する。
要約すれば、解析的に及び実験的にの両方で、誘導表面導波プローブ200の構造上の進行波成分は、表面進行波のウェーブチルト角(Ψ)に整合する(Φ=Ψ)、その上部端子での位相遅延(Φ)を有する。この条件下で、表面導波路は、「モード整合」していると考えることができる。更に、誘導表面導波プローブ200の構造上の共振定在波成分は、帯電端子T1でVMAXを有し、損失性導電媒体203の物理的境界136(図8B)での接続部ではなく、z=−d/2の複素深さでZip=Rip+j0である下の影像平面139(図8B)でVMINを有する。最後に、帯電端子T1は、複素ブルースター角で損失性導電媒体203に入射する電磁波が
Figure 2018535467
の項が優位である距離(≧Rx)で入射するように、図3の十分な高さH1(h≧RxtanΨi,B)である。無線伝送及び/又は電力供給系に役立つように、1つ以上の誘導表面導波プローブと共に、受信回路を用いることができる。
図3に戻って、誘導表面導波プローブ200の動作は、誘導表面導波プローブ200に関連付けられた動作条件の変化に対して調整するように制御することができる。例えば、適応プローブ制御システム230を使用して、誘導表面導波プローブ200の動作を制御するように、給電ネットワーク209及び/又は帯電端子T1を制御することができる。動作条件としては、損失性導電媒体203の特性(例えば、導電率σ及び比誘電率εr)の変化、電界強度の変化、及び/又は誘導表面導波プローブ200の負荷の変化を挙げることができるが、これらに限定されない。式(31)、(41)及び(42)から理解することができるように、屈折率(n)、複素ブルースター角(θi,B)、及びウェーブチルト(|W|e)は、例えば、気象条件から結果として生じる土の導電率及び誘電率の変化により影響を受けることがある。
例えば、導電率測定プローブ、誘電率センサ、グラウンド・パラメータ計、電界計、電流モニタ、及び/又は負荷受信器などの装置を使用して、動作条件の変化をモニタして、適応プローブ制御システム230に現在の動作条件に関する情報を提供することができる。次に、プローブ制御システム230は、誘導表面導波プローブ200に1つ以上の調整を行なって、誘導表面導波プローブ200に対する指定された動作条件を維持することができる。例えば、湿度及び温度が変化すると、土の導電率もまた、変化することになる。導電率測定プローブ及び/又は誘電率センサは、誘導表面導波プローブ200の周囲の複数の位置に配置することができる。一般的に、動作周波数に対するハンケル交差距離Rx又はその付近の導電率及び/又は誘電率をモニタすることが望ましいであろう。導電率測定プローブ及び/又は誘電率センサは、誘導表面導波プローブ200の周囲の複数の位置(例えば、それぞれの象限内の)に配置することができる。
導電率測定プローブ及び/又は誘電率センサは、周期的に導電率及び/又は誘電率を評価して、その情報をプローブ制御システム230に通信するように構成することができる。この情報は、LAN、WLAN、セルラーネットワーク、又は他の適切な有線又は無線通信ネットワークなどだがこれらに限定されない、ネットワークを介してプローブ制御システム230に通信することができる。モニタした導電率及び/又は誘電率に基づいて、プローブ制御システム230は、屈折率(n)、複素ブルースター角(θi,B)、及び/又はウェーブチルト(|W|e)の変化を評価し、誘導表面導波路プローブ200を調整して、ウェーブチルト角(Ψ)に等しい給電ネットワーク209の位相遅延(Φ)を維持する、かつ/又は誘導表面導波プローブ200の等価影像平面モデルの共振を維持することができる。これは、例えば、θy、θc、及び/又はCTを調整することにより、実現することができる。例えば、プローブ制御システム230は、帯電端子T1の自己容量、及び/又は帯電端子T1に適用される位相遅延(θy、θc)を調整して、誘導表面波の電気的送出効率をその最大又は最大付近に維持することができる。例えば、帯電端子T1の自己容量は、端子のサイズを変更することにより、変更することができる。電荷分布もまた、帯電端子T1のサイズを増大させることにより向上することができ、これにより、帯電端子T1からの放電の可能性を低減することができる。他の実施形態では、帯電端子T1は、負荷インピーダンスZLを変更するように調整することができる、可変インダクタンスを含むことができる。帯電端子T1に適用される位相は、送出効率を最大化するように、コイル215(図7)上のタップ位置を変更することにより、及び/又はコイル215に沿った複数の既定のタップを含めて異なる既定のタップ位置の間で切換えることにより、調整することができる。
電界計又は電界強度(field strength)(FS)計もまた、誘導表面導波プローブ200回りに分布させて、誘導表面波に関連付けられた電界の電界強度を測定することができる。電界計又はFS計は、電界強度及び/又は電界強度(例えば、電界の強度)の変化を検出して、その情報をプローブ制御システム230に通信するように構成することができる。この情報は、LAN、WLAN、セルラーネットワーク、又は他の適切な通信ネットワークなどだがこれらに限定されない、ネットワークを介してプローブ制御システム230に通信することができる。動作中に負荷及び/又は環境条件が変化する又は異なると、誘導表面導波プローブ200を調整して、FS計の位置での指定された電界強度(単数又は複数)を維持し、供給している受信器及び負荷への適切な送電を確実にすることができる。
例えば、帯電端子T1に適用される位相遅延(Φ=θy+θc)を調整して、ウェーブチルト角(Ψ)に整合することができる。1つ又は両方の位相遅延を調整することにより、誘導表面導波プローブ200を調整して、ウェーブチルトが複素ブルースター角に対応することを確実にすることができる。これは、コイル215(図7)のタップ位置を調整して、帯電端子T1に適用される位相遅延を変更することにより、実現することができる。帯電端子T1に供給される電圧レベルもまた、電界強度を調整するために増大又は減少させることができる。これは、励起源212の出力電圧を調整することにより、又は給電ネットワーク209を調整若しくは再構成することにより、実現することができる。例えば、AC源212に対するタップ227(図7)の位置を調整して、帯電端子T1から見た電圧を増大させることができる。電界強度レベルを既定の範囲内に維持することにより、受信器による結合を向上し、グラウンド電流損失を低減して、他の誘導表面導波プローブ200からの伝送との干渉を回避することができる。
プローブ制御システム230は、ハードウェア、ファームウェア、ハードウェアによって実行されるソフトウェア、又はそれらの組合せで実装することができる。例えば、プローブ制御システム230は、当業者によって理解され得るように、共に例えば付随する制御/アドレスバスを有するデータバスなどのローカルインターフェースに結合することができるプロセッサ及びメモリを含む、処理回路を含むことができる。プローブ制御のアプリケーションは、モニタされた条件に基づいて誘導表面導波プローブ200の動作を調整するように、プロセッサによって実行することができる。プローブ制御システム230はまた、様々なモニタ装置と通信するための1つ以上のネットワークインターフェースを含むことができる。通信は、LAN、WLAN、セルラーネットワーク、又は他の適切な通信ネットワークなどだがこれらに限定されない、ネットワークを介することができる。プローブ制御システム230は、例えば、サーバ、デスクトップコンピュータ、ラップトップ、又は同様な能力を有する他のシステムなどのコンピュータシステムを備えることができる。
図5Aの例に戻って、ハンケル交差距離(Rx)で複素ブルースター角(θi,B)を有する帯電端子T1の入射電界(E)の光線光学の解釈に関する複素角三角法を示す。損失性導電媒体に対して、ブルースター角は、複素数であり、式(38)により規定されることを思い出されたい。電気的に、幾何学的パラメータは、式(39)により、帯電端子T1の電気的実効高(heff)によって関連付けられる。物理的高さ(hp)及びハンケル交差距離(Rx)の両方が実量であるため、ハンケル交差距離での所望の誘導表面ウェーブチルト角(WRx)は、複素実効高(heff)の位相(Φ)に等しい。帯電端子T1を物理的高さhpに配置して、適切な位相Φを有する電荷で励起して、結果として生じる電界は、ハンケル交差距離Rxで、かつブルースター角で、損失性導電媒体の境界界面に入射する。これらの条件下で、反射なしに又は実質的に無視できる反射で、誘導表面導波モードを励起することができる。
しかし、式(39)は、誘導表面導波プローブ200の物理的高さが相対的に低くてよいことを意味する。これが誘導表面導波モードを励起することになるが、これは、結果としてほとんど自由電荷を有さないで過度に大きな拘束電荷となる。補償するために、帯電端子T1を適切な高度に上げて、自由電荷の量を増大することができる。1つの例示的な経験則として、帯電端子T1は、帯電端子T1の実効直径の約4〜5倍(又はそれより大きい)の高度に配置することができる。図6は、図5Aに示す物理的高さ(hp)の上に帯電端子T1を上げることの効果を示す。増大した高度は、ウェーブチルトが損失性導電媒体に入射する距離をハンケル交差点121(図5A)を越えて移動させる。誘導表面導波モードでの結合を向上し、したがって、誘導表面波のより大きな送出効率を提供するために、より小さな補償端子T2を使用して、ハンケル交差距離でのウェーブチルトがブルースター角にあるように、帯電端子T1の全実効高(hTE)を調整することができる。
図12を参照して、損失性導電媒体203により提示された平面に垂直な垂直軸zに沿って配置された、持ち上げられた帯電端子T1及びより低い補償端子T2を含む、誘導表面導波プローブ200cの例を示す。これに関して、帯電端子T1は、補償端子T2の真上に配置されているが、2つ以上の帯電端子及び/又は補償端子TNのなんらかの他の配置を使用することができることが可能である。本開示の実施形態によれば、誘導表面導波プローブ200cは、損失性導電媒体203の上に配置されている。損失性導電媒体203は、領域1を構成し、領域2を構成する第2の媒体206は、損失性導電媒体203と境界界面を共有する。
誘導表面導波プローブ200cは、励起源212を帯電端子T1及び補償端子T2に結合する給電ネットワーク209を含む。各種実施形態によれば、電荷Q1及びQ2を、任意の所与の時点に端子T1及びT2に印加される電圧に依存して、対応する帯電端子及び補償端子T1及びT2に課すことができる。I1は、端子リードを介して帯電端子T1上の電荷Q1を供給する誘導電流であり、I2は、端子リードを介して補償端子T2上の電荷Q2を供給する誘導電流である。
図12の実施形態によれば、帯電端子T1は、物理的高さH1で損失性導電媒体203の上に配置され、補償端子T2は、物理的高さH2で垂直軸zに沿ってT1の真下に配置され、H2は、H1未満である。伝送構造の高さhは、h=H1−H2として計算することができる。帯電端子T1は、絶縁(又は自己)静電容量C1を有し、補償端子T2は、絶縁(又は自己)静電容量C2を有する。相互静電容量CMもまた、端子T1とT2との間に、その間の距離に依存して存在し得る。動作中、電荷Q1及びQ2が、任意の所与の時点に帯電端子T1及び補償端子T2に印加される電圧に依存して、それぞれ帯電端子T1及び補償端子T2上に課される。
次に図13を参照して、図12の帯電端子T1上の持ち上げられた電荷Q1及び補償端子T2により生成される効果の光線光学の解釈を示す。線163により示すように光線がハンケル交差点121より大きな距離でブルースター角で損失性導電媒体と交差する高さに持ち上げた帯電端子T1と共に、補償端子T2を使用して、増大した高さを補償することにより、hTEを調整することができる。補償端子T2の効果は、線166により示すようにハンケル交差距離でのウェーブチルトがブルースター角にあるように、誘導表面導波プローブの電気的実効高を低減する(又は損失性媒体の境界面を効果的に上げる)ことである。
全実効高は、帯電端子T1に関連付けられた上側実効高(hUE)及び補償端子T2に関連付けられた下側実効高(hLE)の重ね合わせとして、以下の式のように書くことができる。
Figure 2018535467
式中、ΦUは、上側帯電端子T1に適用される位相遅延であり、ΦLは、下側補償端子T2に適用される位相遅延であり、β=2π/λpは、式(35)からの伝搬係数であり、hpは、帯電端子T1の物理的高さであり、hdは、補償端子T2の物理的高さである。追加のリード長さを考慮する場合、それらは、帯電端子リード長さzを帯電端子T1の物理的高さhpに、及び補償端子リード長さyを補償端子T2の物理的高さhdに加えることにより、以下の式に示すように考慮することができる。
Figure 2018535467
より低い実効高を使用して、全実効高(hTE)を調整し、図5Aの複素実効高(heff)に等しくすることができる。
式(85)又は(86)を使用して、ハンケル交差距離での所望のウェーブチルトを得るために、補償端子T2の下側円盤の物理的高さ、及び端子に給電する位相角度を決定することができる。例えば、式(86)は、補償端子高さ(hd)の関数としての帯電端子T1に適用される位相シフトとして書き換えることができ、以下の式が得られる。
Figure 2018535467
補償端子T2の位置を決定するために、上述した関係を利用することができる。最初に、全実効高(hTE)は、式(86)で表現されるように、上側帯電端子T1の複素実効高(hUE)及び下側補償端子T2の複素実効高(hLE)の重ね合わせである。次に、入射角の正接は、幾何学的に以下の式のように表現することができる。
Figure 2018535467
これは、ウェーブチルトWの定義に等しい。最後に、所望のハンケル交差距離Rxであるとして、hTEを調整して、入射光線のウェーブチルトをハンケル交差点121で複素ブルースター角に整合させることができる。これは、hp、ΦU、及び/又はhdを調整することにより、実現することができる。
これらの概念は、誘導表面導波プローブの例の文脈で説明すると、より良好に理解することができる。図14を参照して、損失性導電媒体203によって提示された平面に実質的に垂直な垂直軸zに沿って配置された、上側帯電端子T1(例えば、高さhTの球)及び下側補償端子T2(例えば、高さhdの円盤)を含む誘導表面導波プローブ200dの例のグラフ表示を示す。動作中、電荷Q1及びQ2が、任意の所与の時点に端子T1及びT2に印加される電圧に依存して、それぞれ帯電端子T1及び補償端子T2上に課される。
AC源212は、例えば、ヘリカルコイルなどのコイル215を含む給電ネットワーク209を介して誘導表面導波プローブ200dに結合される帯電端子T1に対する励起源として機能する。AC源212は、図14に示すようにタップ227を介してコイル215の下側部分にわたって接続することができる、又は一次コイルを経由してコイル215に誘導結合することができる。コイル215は、第1の端部で接地杭218に、及び第2の端部で帯電端子T1に結合することができる。いくつかの実装形態では、帯電端子T1への接続は、コイル215の第2の端部でタップ224を使用して調整することができる。補償端子T2は、損失性導電媒体203(例えば、グラウンド又は地球)の上に、かつそれに実質的に平行に配置され、コイル215に結合されたタップ233を介して励振される。コイル215と接地杭218との間に配置された電流計236を使用して、誘導表面導波プローブの底部での電流フローの大きさ(I0)の表示を提供することができる。あるいは、電流クランプを接地杭218に結合された導体の周囲に使用して、電流フローの大きさ(I0)の表示を得ることができる。
図14の例では、コイル215は、第1の端部で接地杭218に、かつ垂直給電線導体221を介して第2の端部で帯電端子T1に結合される。いくつかの実装形態では、帯電端子T1への接続は、図14に示すように、コイル215の第2の端部でタップ224を使用して調整することができる。コイル215は、コイル215の下側部分のタップ227を介してAC源212によって、動作周波数で励振することができる。他の実装形態では、AC源212は、一次コイルを介してコイル215に誘導結合することができる。補償端子T2は、コイル215に結合されたタップ233を介して励振される。コイル215と接地杭218との間に配置された電流計236を使用して、誘導表面導波プローブ200dの底部での電流フローの大きさの表示を提供することができる。あるいは、電流クランプを接地杭218に結合された導体の周囲に使用して、電流フローの大きさの表示を得ることができる。補償端子T2は、損失性導電媒体203(例えば、グラウンド)の上方に、かつそれに実質的に平行に配置される。
図14の例では、帯電端子T1への接続は、補償端子T2用のタップ233の接続点の上のコイル215上に配置された。そのような調整により、増大した電圧(したがってより高い電荷Q1)を上側帯電端子T1に印加することができる。他の実施形態では、帯電端子T1及び補償端子T2用の接続点は、反転することができる。誘導表面導波プローブ200dの全実効高(hTE)を調整して、ハンケル交差距離Rxで誘導表面ウェーブチルトを有する電界を励起することが可能である。ハンケル交差距離もまた、図4により示すように、−jγρに対する式(20b)及び(21)の大きさを等しくして、Rxについて解くことにより、見出すことができる。屈折率(n)、複素ブルースター角(θi,B及びΨi,B)、ウェーブチルト(|W|e)、及び複素実効高(heff=hp)は、式(41)〜(44)に関して上述したように決定することができる。
選択された帯電端子T1の構成を用いて、球体直径(又は実効球体直径)を決定することができる。例えば、帯電端子T1が球として構成されない場合、端子構成は、実効球体直径を有する球体のキャパシタンスとしてモデル化することができる。帯電端子T1のサイズは、端子に課される電荷Q1のための十分大きな表面を提供するように選択することができる。一般的に、帯電端子T1を実用的な限り大きくすることが望ましい。帯電端子T1のサイズは、結果として帯電端子周囲の放電又はスパークとなり得る周囲空気のイオン化を回避するために、十分大きくすべきである。帯電端子T1上の拘束電荷の量を低減するために、誘導表面波を送出するために帯電端子T1上に自由電荷を提供するための所望の高度は、少なくとも損失性導電媒体(例えば、地球)の上の実効球直径の4〜5倍でなければならない。補償端子T2を使用して、誘導表面導波プローブ200dの全実効高(hTE)を調整し、Rxで誘導表面ウェーブチルトを有する電界を励起することができる。補償端子T2は、hd=hT−hpで帯電端子T1の下に配置することができ、式中、hTは、帯電端子T1の全物理的高さである。補償端子T2の位置を固定し、かつ位相遅延ΦUを上側帯電端子T1に適用して、下側補償端子T2に適用される位相遅延ΦLは、式(86)の関係を使用して、以下の式のように決定することができる。
Figure 2018535467
代替の実施形態では、補償端子T2は、高さhdに配置することができ、ここで、Im{ΦL}=0である。これを、図15Aにグラフで示し、この図は、ΦUの虚部及び実部のグラフ、それぞれ172及び175を示す。補償端子T2は、高さhdに配置され、ここで、グラフ172で図示するようにIm{ΦU}=0である。この固定した高さで、コイルの位相ΦUは、グラフ175で図示するようにRe{ΦU}から決定することができる。
AC源212をコイル215に(例えば、結合を最大化する50Ωの点に)結合して、動作周波数でのコイルの少なくとも一部分と補償端子T2の並列共振のために、タップ233の位置を調整することができる。図15Bは、図14の一般的電気接続の模式図を示し、図中、V1は、タップ227を介してAC源212からコイル215の下側部分に印加される電圧であり、V2は、上側帯電端子T1に供給されるタップ224での電圧であり、V3は、タップ233を介して下側補償端子T2に印加される電圧である。抵抗Rp及びRdは、それぞれ帯電端子T1及び補償端子T2のグラウンド帰路抵抗を表す。帯電端子T1及び補償端子T2は、球、円筒、トロイド、リング、フード、又は容量構造の任意の他の組合せとして構成することができる。帯電端子T1及び補償端子T2のサイズは、端子に課される電荷Q1及びQ2のための十分大きな表面を提供するように選択することができる。一般的に、帯電端子T1を実用的な限り大きくすることが望ましい。帯電端子T1のサイズは、結果として帯電端子周囲の放電又はスパークとなり得る周囲空気のイオン化を回避するために、十分大きくすべきである。帯電端子T1及び補償端子T2それぞれの自己容量Cp及びCdは、例えば、式(24)を使用して決定することができる。
図15Bで理解することができるように、共振回路は、コイル215のインダクタンスの少なくとも一部分、補償端子T2の自己容量Cd、及び補償端子T2に関連付けられたグラウンド帰路抵抗Rdにより形成される。並列共振は、Cdを調整するために、補償端子T2に印加される電圧V3を調整することにより(例えば、コイル215上のタップ233の位置を調整することにより)、又は補償端子T2の高さ及び/又はサイズを調整することにより、確立することができる。コイルのタップ233の位置は、並列共振のために調整することができ、並列共振の結果として、接地杭218及び電流計236を通るグランド電流が最大点に到達することになる。補償端子T2の並列共振が確立された後で、AC源212用のタップ227の位置は、コイル215上の50Ωの点に調整することができる。
コイル215からの電圧V2は、帯電端子T1に印加することができ、タップ224の位置は、全実効高(hTE)の位相(Φ)がハンケル交差距離(Rx)での誘導表面ウェーブチルト角(WRx)とほぼ等しいように、調整することができる。コイルのタップ224の位置は、この動作点に到達するまで調整することができ、この結果として、電流計236を通るグラウンド電流が最大に増大することになる。この時点で、結果として生じる誘導表面導波プローブ200dによって励起された電界が、損失性導電媒体203の表面上の誘導表面導波モードに実質的にモード整合しており、結果として、損失性導電媒体203の表面に沿った誘導表面波の送出となる。これは、誘導表面導波プローブ200から延びる放射に沿って電界強度を測定することにより、検証することができる。
補償端子T2を含む回路の共振は、帯電端子T1の取り付け、及び/又はタップ224を介して帯電端子T1に印加される電圧の調整で変化することがある。共振のために補償端子回路を調整することは、帯電端子の接続のその後の調整を助成するが、ハンケル交差距離(Rx)での誘導表面ウェーブチルト(WRx)を確立することが必要ではない。システムを更に調整して、AC源212用のタップ227の位置をコイル215上の50Ωの点になるように繰り返して調整し、電流計236を通るグラウンド電流を最大化するようにタップ233の位置を調整することにより、結合を向上することができる。補償端子T2を含む回路の共振は、タップ227及び233の位置が調整されると、又は他の構成要素がコイル215に取り付けられると、ドリフトすることがある。
他の実装形態では、コイル215からの電圧V2は、帯電端子T1に印加することができ、タップ233の位置は、全実効高(hTE)の位相(Φ)がRxでの誘導表面ウェーブチルト角(Ψ)とほぼ等しいように、調整することができる。コイルのタップ224の位置は、動作点に到達するまで調整することができ、結果として、電流計236を通るグラウンド電流が実質的に最大に到達することになる。結果として生じる電界は、損失性導電媒体203の表面上の誘導表面導波モードに実質的にモード整合しており、損失性導電媒体203の表面に沿って誘導表面波が送出される。これは、誘導表面導波プローブ200から延びる径方向に沿って電界強度を測定することにより、検証することができる。システムを更に調整して、AC源212用のタップ227の位置をコイル215上の50Ωの点になるように繰り返して調整し、電流計236を通るグラウンド電流を最大化するようにタップ224及び/又は233の位置を調整することにより、結合を向上することができる。
図12に戻って、誘導表面導波プローブ200の動作は、誘導表面導波プローブ200に関連付けられた動作条件の変化に対して調整するように制御することができる。例えば、プローブ制御システム230を使用して、誘導表面導波プローブ200の動作を制御するように、給電ネットワーク209及び/又は帯電端子T1及び/又は補償端子T2の位置を制御することができる。動作条件としては、損失性導電媒体203の特性(例えば、導電率σ及び比誘電率εr)の変化、電界強度の変化、及び/又は誘導表面導波プローブ200の負荷の変化を挙げることができるが、これらに限定されない。式(41)〜(44)から理解することができるように、屈折率(n)、複素ブルースター角(θi,B及びΨi,B)、ウェーブチルト(|W|e)、及び複素実効高(heff=hp)は、例えば、気象条件から結果として生じる土の導電率及び誘電率の変化により影響を受けることがある。
例えば、導電率測定プローブ、誘電率センサ、グラウンド・パラメータ・メータ、電界計、電流モニタ、及び/又は負荷受信器などの装置を使用して、動作条件の変化をモニタして、プローブ制御システム230に現在の動作条件に関する情報を提供することができる。次に、プローブ制御システム230は、誘導表面導波プローブ200に1つ以上の調整を行なって、誘導表面導波プローブ200に対する指定された動作条件を維持することができる。例えば、湿度及び温度が変化すると、土の導電率もまた、変化することになる。導電率測定プローブ及び/又は誘電率センサは、誘導表面導波プローブ200の周囲の複数の位置に配置することができる。一般的に、動作周波数に対するハンケル交差距離Rx又はその付近の導電率及び/又は誘電率をモニタすることが望ましいであろう。導電率測定プローブ及び/又は誘電率センサは、誘導表面導波プローブ200の周囲の複数の位置(例えば、それぞれの象限内の)に配置することができる。
図16を参照して、垂直軸zに沿って配置された帯電端子T1及び帯電端子T2を含む誘導表面導波プローブ200eの例を示す。誘導表面導波プローブ200eは、領域1を構成する損失性導電媒体203の上に配置されている。加えて、第2の媒体206は、損失性導電媒体203と境界界面を共有し、領域2を構成する。帯電端子T1及びT2は、損失性導電媒体203の上に配置される。帯電端子T1は、物理的高さH1に配置され、帯電端子T2は、高さH2で垂直軸zに沿ってT1の真下に配置され、H2は、H1未満である。誘導表面導波プローブ200eによって提示される伝送構造の高さhは、h=H1−H2である。誘導表面導波プローブ200eは、励起源212を帯電端子T1及びT2に結合する給電ネットワーク209を含む。
帯電端子T1及び/又はT2は、実用的に可能な限り多くの電荷を保持するサイズにすることができる、電荷を保持することができる導体塊を含む。帯電端子T1は、自己容量C1を有し、帯電端子T2は、自己容量C2を有し、それらは、例えば、式(24)を使用して決定することができる。帯電端子T2の真上の帯電端子T1の配置によって、帯電端子T1とT2との間に、相互静電容量CMが生成される。帯電端子T1及びT2は、同一である必要はなく、それぞれが、別個のサイズ及び形状を有することができ、異なる導電材料を含むことができることに留意されたい。最終的に、誘導表面導波プローブ200eによって送出される誘導表面波の電界強度は、端子T1上の電荷の量に正比例する。次に、電荷Q1は、Q1=C1Vであるため、帯電端子T1に関連付けられた自己容量C1に比例し、式中、Vは、帯電端子T1に課される電圧である。
既定の動作周波数で動作するように適切に調整されると、誘導表面導波プローブ200eは、損失性導電媒体203の表面に沿った誘導表面波を生成する。励起源212は、構造を励起するために誘導表面導波プローブ200eに印加される既定の周波数の電気エネルギを生成することができる。誘導表面導波プローブ200eによって生成された電磁界が、損失性導電媒体203と実質的にモード整合される場合、電磁界は、結果としてほとんど反射しない又は反射しない複素ブルースター角で入射する波面を実質的に合成する。したがって、表面導波路プローブ200eは、放射波を生成しないが、損失性導電媒体203の表面に沿った誘導表面進行波を送出する。励起源212からのエネルギは、Zenneck表面電流として誘導表面導波プローブ200eの実効伝送範囲内に配置された1つ以上の受信器に伝送することができる。
損失性導電媒体203の表面上の放射Zenneck表面電流Jρ(ρ)の漸近線を近接でJ1(ρ)かつ遠方でJ2(ρ)となるように、以下の式のように決定することができる。
Figure 2018535467
式中、I1は、第1の帯電端子T1上の電荷Q1を供給する誘導電流であり、I2は、第2の帯電端子T2上の電荷Q2を供給する誘導電流である。上側帯電端子T1上の電荷Q1は、Q1=C11により決定され、式中、C1は、帯電端子T1の絶縁静電容量である。Leontovich境界条件に従い、第1の帯電端子上の持ち上げられた振動する電荷Q1の準静的電界により注入された損失性導電媒体203内の放射電流寄与である、
Figure 2018535467
により得られる上述したJ1に対する第3の成分が存在することに留意されたい。量Zρ=jωμo/γeは、損失性導電媒体の放射インピーダンスであり、式中、γe=(jωμ1σ1−ω2μ1ε11/2である。
式(90)及び(91)により上述したような近接及び遠方の放射電流を表す漸近線は、複素量である。各種実施形態によれば、物理的表面電流J(ρ)は、大きさ及び位相において電流の漸近線に可能な限り近く整合するように合成される。すなわち、近接で、|J(ρ)|は、|J1|に対して接線となることになり、遠方で、|J(ρ)|は、|J2|に対して接線となることになる。また、各種実施形態によれば、J(ρ)の位相は、近接のJ1の位相から遠方のJ2の位相に遷移しなければならない。
誘導表面波を送出するように伝送の場所で誘導表面波モードに整合するために、遠方の表面電流|J2|の位相は、e-jβ(ρ2-ρ1)に対応する伝搬位相に約45度又は225度の定数を加えただけ、近接の表面電流|J1|の位相とは異ならなければならない。これは、
Figure 2018535467
に対して、π/4付近に1つ及び5π/4付近に1つの、2つの根が存在するためである。適切に調整された合成放射表面電流は、以下の式である。
Figure 2018535467
これは式(17)と一致していることに留意されたい。マクスウェル方程式により、そのようなJ(ρ)の表面電流は、自動的に、以下の式に従う電界を生成する。
Figure 2018535467
したがって、整合されることになる誘導表面波モードに対する遠方の表面電流|J2|と近接の表面電流|J1|との間の位相の差は、式(1)〜(3)と一致する式(93)〜(95)のハンケル関数の特性に起因する。式(1)〜(6)及び(17)並びに式(92)〜(95)によって表現される電界は、地上波の伝搬に関連付けられた放射電磁界ではなく、損失性の境界面に拘束された伝送線モードの性質を有することを認識することは重要である。
所与の位置での誘導表面導波プローブ200eの所与の設計に対する適切な電圧の大きさ及び位相を得るために、反復的手法を使用することができる。具体的には、生成される放射表面電流密度を決定するために、端子T1及びT2への給電電流、帯電端子T1及びT2上の電荷、並びに損失性導電媒体203内のそれらの影像を考慮して、誘導表面導波プローブ200eの所与の励起及び構成の解析を実行することができる。このプロセスは、所望のパラメータに基づいて所与の誘導表面導波プローブ200eの最適な構成及び励起が決定されるまで、繰り返して実行することができる。所与の誘導表面導波プローブ200eが最適なレベルで動作しているか否かを判定するのを助成するために、誘導表面導波プローブ200eの位置での領域1の導電率(σ1)及び領域1の誘電率(ε1)に対する値に基づいて式(1)〜(12)を使用して、誘導電界強度曲線103(図1)を生成することができる。そのような誘導電界強度曲線103は、測定された電界強度を誘導電界強度曲線103により示される大きさと比較して、最適な伝送が実現されているか否かを判定することができるように、動作に対する基準を提供することができる。
最適化された条件に到達するために、誘導表面導波プローブ200eに関連付けられた様々なパラメータを調整することができる。誘導表面導波プローブ200eを調整するために変更することができる1つのパラメータは、損失性導電媒体203の表面に対する帯電端子T1及び/又はT2の1つ又は両方の高さである。加えて、帯電端子T1とT2との間の距離又は間隔もまた、調整することができる。そのようにすることで、理解することができるように、帯電端子T1及びT2と損失性導電媒体203との間の相互静電容量CM又はなんらかの拘束電荷を最小化する又は別の方法で変更することができる。それぞれの帯電端子T1及び/又はT2のサイズもまた、調整することができる。帯電端子T1及び/又はT2のサイズを変更することにより、理解することができるように、対応する自己容量C1及び/又はC2、並びに相互静電容量CMを変更することになる。
また更に、調整することができる別のパラメータは、誘導表面導波プローブ200eに関連付けられた給電ネットワーク209である。これは、給電ネットワーク209を構成する誘導リアクタンス及び/又は容量リアクタンスのサイズを調整することにより、実現することができる。例えば、そのような誘導リアクタンスがコイルを含む場合、そのようなコイル上の巻数を調整することができる。最終的に、給電ネットワーク209に対する調整を行なって、給電ネットワーク209の電気長を変更し、それによって、帯電端子T1及びT2上の電圧の大きさ及び位相に影響を及ぼすことができる。
理解することができるように、様々な調整を行うことにより実行される伝送の反復は、コンピュータモデルを使用することにより、又は物理的構造を調整することにより、実施することができることを留意されたい。上述の調整を行なうことにより、上述した式(90)及び(91)で規定される誘導表面波モードの同じ電流J(ρ)を近似する、対応する「近接」表面電流J1及び「遠方」表面電流J2を生成することができる。そうすることにより、結果として生じる電磁界は、損失性導電媒体203の表面上の誘導表面波モードに実質的に又は近似的にモード整合されることになる。
図16の例に示さないが、誘導表面導波プローブ200eの動作は、誘導表面導波プローブ200に関連付けられた動作条件の変化に対して調整するように制御することができる。例えば、図12に示すプローブ制御システム230を使用して、誘導表面導波プローブ200eの動作を制御するように、給電ネットワーク209並びに/又は帯電端子T1及び/若しくはT2の位置及び/若しくはサイズを制御することができる。動作条件としては、損失性導電媒体203の特性(例えば、導電率σ及び比誘電率εr)の変化、電界強度の変化、及び/又は誘導表面導波プローブ200eの負荷の変化を挙げることができるが、これらに限定されない。
ここで図17を参照して、誘導表面導波プローブ200fとして本明細書で表記された、図16の誘導表面導波プローブ200eの例を示す。誘導表面導波プローブ200fは、損失性導電媒体203(例えば、地球)によって提示された平面に実質的に垂直な垂直軸zに沿って配置された帯電端子T1及びT2を含む。第2の媒体206は、損失性導電媒体203の上にある。帯電端子T1は、自己容量C1を有し、帯電端子T2は、自己容量C2を有する。動作中、電荷Q1及びQ2が、任意の所与の時点に帯電端子T1及びT2に印加される電圧に依存して、それぞれ帯電端子T1及びT2上に課される。相互静電容量CMは、帯電端子T1とT2との間に、その間の距離に依存して存在し得る。加えて、拘束静電容量は、損失性導電媒体203に対するそれぞれの帯電端子T1及びT2の高さに依存して、それぞれの帯電端子T1及びT2と損失性導電媒体203との間に存在し得る。
誘導表面導波プローブ200fは、帯電端子T1及びT2のそれぞれに結合された一対のリードを有するコイルL1aを含む誘導インピーダンスを含む給電ネットワーク209を含む。一実施形態では、コイルL1aは、誘導表面導波プローブ200fの動作周波数での波長の半分(1/2)の電気的長さを有するように規定される。
コイルL1aの電気的長さは、動作周波数での波長の約半分(1/2)として規定されるが、コイルL1aは、他の値での電気長で規定することができることが理解される。一実施形態によれば、コイルL1aが動作周波数での波長の約半分の電気長を有するという事実は、帯電端子T1及びT2上に最大電圧差が生成されるという利点を提供する。それにもかかわらず、誘導表面導波プローブ200fを調整して誘導表面波モードの最適な励起を得るときに、コイルL1aの長さ又は直径は、増大又は減少させることができる。コイル長の調整は、コイルの1つ又は両方の端部に配置されたタップにより提供することができる。一実施形態では、誘導インピーダンスは、誘導表面導波プローブ200fの動作周波数での波長の1/2より著しく短い又は長い電気長を有するように規定される場合とすることができる。
励起源212は、磁気結合によって給電ネットワーク209に結合することができる。具体的には、励起源212は、コイルL1aに誘導結合されたコイルLPに結合される。これは、理解することができるように、リンク結合、タップ付きコイル、可変リアクタンス、又は他の結合手法により行うことができる。このために、理解することができるように、コイルLPは、一次コイルとして機能し、コイルL1aは、二次コイルとして機能する。
所望の誘導表面波の伝送のために誘導表面導波プローブ200fを調整するために、それぞれの帯電端子T1及びT2の高さは、損失性導電媒体203に対して、及び互いに対して、変更することができる。また、帯電端子T1及びT2のサイズを変更することができる。加えて、巻きを追加若しくは除去することにより、又はコイルL1aのなんらかの他の寸法を変更することにより、コイルL1aのサイズを変更することができる。コイルL1aはまた、図17に示すように、電気長を調整するための1つ以上のタップを含むことができる。帯電端子T1又はT2のいずれかに接続されたタップの位置もまた、調整することができる。
次に図18A、18B、18C、及び図19を参照して、無線電力供給システムに表面誘導波を使用するための、一般化した受信回路の例を示す。図18A及び18B〜18Cは、それぞれ、線状プローブ303及び同調共振器306を含む。図19は、本開示の各種実施形態に係る、磁気コイル309である。各種実施形態によれば、線状プローブ303、同調共振器306、及び磁気コイル309のうちのそれぞれ1つを用いて、各種実施形態による損失性導電媒体203の表面上の誘導表面波の形態で伝送された電力を受信することができる。上述したように、一実施形態では、損失性導電媒体203は、テレストリアル媒体(又は地球)を含む。
具体的に図18Aを参照して、線状プローブ303の出力端子312での開回路端子電圧は、線状プローブ303の実効高に依存する。このために、端子点の電圧は、以下の式のように計算することができる。
Figure 2018535467
式中、Eincは、1V/mでの線状プローブ303上に誘導された入射電界の強度であり、dlは、線状プローブ303の方向に沿った積分の要素であり、heは、線状プローブ303の実効高である。電気的負荷315は、インピーダンス整合ネットワーク318を介して出力端子312に結合される。
線状プローブ303が上述したように誘導表面波を受けるとき、場合によって、共役インピーダンス整合ネットワーク318を介して電気的負荷315に印加することができる電圧が、出力端子312にわたって生じる。電気的負荷315への電力の流れを促進するために、後述するように、電気的負荷315は、線状プローブ303に実質的にインピーダンス整合されていなければならない。
図18Bを参照して、誘導表面波のウェーブチルトに等しい位相シフトを保有するグラウンド電流励起コイル306aは、損失性導電媒体203の上に持ち上げられた(又はつり下げられた)帯電端子TRを含む。帯電端子TRは、自己容量CRを有する。加えて、損失性導電媒体203の上の帯電端子TRの高さに依存して、帯電端子TRと損失性導電媒体203との間に、拘束された静電容量(図示せず)もまた存在する。拘束された静電容量は、好ましくは実行可能な限り最小化されなければならないが、これは、すべての場合において全面的に必要でなくてもよい。
同調共振器306aもまた、位相シフトΦを有するコイルLRを含む受信器ネットワークを含む。コイルLRの1つの端部は、帯電端子TRに結合され、コイルLRの他方の端部は、損失性導電媒体203に結合される。受信器ネットワークは、コイルLRを帯電端子TRに結合する垂直供給線導体を含むことができる。このために、コイルLR(同調共振器LR−CRと呼ばれる場合もある)は、帯電端子CR及びコイルLRが直列に配置されるとき、直列調整された共振器を含む。コイルLRの位相遅延は、帯電端子TRのサイズ及び/若しくは高さを変更することにより、並びに/又は構造の位相Φがウェーブチルト角Ψに実質的に等しくなるようにコイルLRのサイズを調整することにより、調整することができる。垂直供給線の位相遅延もまた、例えば、導体長を変更することにより、調整することができる。
例えば、自己容量CRにより提示されるリアクタンスは、1/jωCRとして計算される。理解することができるように、構造306aの全静電容量はまた、帯電端子TRと損失性導電媒体203との間の静電容量を含むことができ、構造306aの全静電容量は、自己容量CR及びなんらかの拘束された静電容量の両方から計算することができることに留意されたい。一実施形態によれば、帯電端子TRは、なんらかの拘束された静電容量を実質的に低減又は除去するような高さに上げることができる。拘束された静電容量の存在は、上述したように帯電端子TRと損失性導電媒体203との間の静電容量の測定値から判定することができる。
別個の要素のコイルLRにより提示される誘導リアクタンスは、jωLとして計算することができ、式中、Lは、コイルLRの集中素子インダクタンスである。コイルLRが分布素子である場合、その等価な端子点の誘導リアクタンスは、従来の手法によって決定することができる。構造306aを整調するために、動作周波数での表面導波路へのモード整合のために位相遅延がウェーブチルトに等しいように、調整を行なうことになる。この条件下で、受信構造は、表面導波路に「モード整合」していると考えることができる。電力を負荷に結合するために、プローブと電気的負荷327との間に、構造周囲の変圧器リンク及び/又はインピーダンス整合ネットワーク324を挿入することができる。プローブ端子321と電気的負荷327との間にインピーダンス整合ネットワーク324を挿入することにより、電気的負荷327への最大電力伝送のための共役整合条件に影響を及ぼすことができる。
動作周波数での表面電流の存在下に置かれた場合、電力は、表面誘導波から電気的負荷327に送出されることになる。このために、電気的負荷327は、磁気結合、容量結合、又は導電(直接タップ)結合によって、構造306aに結合することができる。結合ネットワークの素子は、理解することができるように、集中素子又は分布素子とすることができる。
図18Bに示す実施形態では、磁気結合が用いられており、トランス一次コイルとして機能するコイルLRに対する二次コイルとして、コイルLSが配置されている。理解することができるように、コイルLSは、同じコア構造の周囲に幾何学的に巻いて、結合した磁束を調整することにより、コイルLRにリンク結合することができる。加えて、受信構造306aは、直列同調した共振器を含むが、適切な位相遅延の並列同調共振器又は更に分布素子共振器もまた、使用することができる。
電磁界に浸漬された受信構造は、電界からのエネルギを結合することができるが、偏波整合した構造は、結合を最大化することにより、最も良好に機能し、導波モードへのプローブ結合に関する従来の規則を遵守しなければならないことを理解することができる。例えば、TE20(横電気モード)導波路プローブは、TE20モードで励起された従来の導波路からエネルギを抽出するために最適にすることができる。同様に、これらの場合では、モード整合及び位相整合した受信構造は、表面誘導波からの電力を結合するために最適化することができる。損失性導電媒体203の表面上の誘導表面導波プローブ200によって励起された誘導表面波は、開放導波路の導波モードと考えることができる。導波路損失を除いて、ソースエネルギは、完全に回収することができる。有用な受信構造は、電界(E-field)結合、磁界(H-field)結合、又は表面電流で励起することができる。
受信構造を調整して、受信構造の近傍の損失性導電媒体203の局所的な特性に基づいて、誘導表面波との結合を増大又は最大化することができる。これを実現するために、受信構造の位相遅延(Φ)を調整して、受信構造での表面進行波のウェーブチルト角(Ψ)を整合することができる。適切に構成された場合、受信構造は、次に、複素深さz=−d/2での完全導電性影像グラウンド平面に対する共振のために同調することができる。
例えば、コイルLR及びコイルLRと帯電端子TRとの間に接続された垂直供給線を含む、図18Bの同調した共振器306aを含む受信構造を考えてみる。帯電端子TRを損失性導電媒体203の上の規定された高さに配置して、コイルLR及び垂直供給線の全位相シフトΦは、同調した共振器306aの位置でのウェーブチルト角(Ψ)に整合することができる。式(22)から、ウェーブチルトは、漸近的に以下の式になることを理解することができる。
Figure 2018535467
式中、εrは、比誘電率を含み、σ1は、受信構造の位置での損失性導電媒体203の導電率であり、εoは、自由空間の誘電率であり、ω=2πfであり、fは、励起の周波数である。したがって、ウェーブチルト角(Ψ)は、式(97)から決定することができる。
同調共振器306aの全位相遅延(Φ=θc+θy)は、コイルLRによる位相遅延(θc)及び垂直供給線の位相遅延(θy)の両方を含む。垂直供給線の長さlwに沿った空間位相遅延は、θy=βwwにより得ることができ、式中、βwは、垂直供給線導体に対する伝搬位相定数である。コイル(又はヘリカル遅延線)に起因する位相遅延は、θc=βpCであり、式中、lCは、物理的長さであり、以下の式は、伝搬係数である。
Figure 2018535467
式中、Vfは、構造上の速度係数であり、λ0は、供給される周波数での波長であり、λpは、速度係数Vfから結果として生じる伝搬波長である。位相遅延(θc+θy)のうちの1つ又は両方を調整して、位相シフトΦをウェーブチルト角(Ψ)に整合することができる。例えば、図18BのコイルLR上のタップ位置を調整して、コイルの位相遅延(θc)を調整し、全位相シフトをウェーブチルト角に整合する(Φ=Ψ)ことができる。例えば、コイルの一部分を、図18Bに示すようにタップ接続により回避することができる。垂直供給線導体もまた、タップを介してコイルLRに接続することができ、コイル上のタップの位置を調整して、全位相シフトをウェーブチルト角に整合することができる。
同調した共振器306aの位相遅延(Φ)が調整されたら、次に、帯電端子TRのインピーダンスを調整して、複素深さz=−d/2での完全導電性影像グラウンド平面に対して共振するよう同調することができる。これは、コイルLR及び垂直供給線の進行波の位相遅延を変更することなく帯電端子T1の静電容量を調整することにより、実現することができる。この調整は、図9A及び9Bに関して説明したものと同様である。
複素影像平面に対する損失性導電媒体203を「見下ろして」見たインピーダンスは、以下の式により得られる。
Figure 2018535467
式中、
Figure 2018535467
である。地球の上の垂直に偏波したソースに対して、複素影像平面の深さは、以下の式により得られる。
Figure 2018535467
式中、μ1は、損失性導電媒体203の透磁率であり、ε1=εrεoである。
同調共振器306aの底部で、受信構造を「見上げて」見たインピーダンスは、図9Aに示すようにZ=Zbaseである。以下の式の端子インピーダンスで、
Figure 2018535467
(式中、CRは、帯電端子TRの自己容量である)、同調共振器306aの垂直供給線導体を「見上げて」見たインピーダンスは、以下の式により得られる。
Figure 2018535467
同調共振器306aのコイルLRを「見上げて」見たインピーダンスは、以下の式により得られる。
Figure 2018535467
損失性導電媒体203を「見下ろして」見たリアクタンス成分(Xin)を同調共振器306aを「見上げて」見たリアクタンス成分(Xbase)と整合することにより、誘導表面導波モードへの結合を最大化することができる。
次に図18Cを参照して、受信構造の上部に帯電端子TRを含まない同調共振器306bの例を示す。この実施形態では、同調共振器306bは、コイルLRと帯電端子TRとの間に結合された垂直供給線を含まない。したがって、同調共振器306bの全位相シフト(Φ)は、コイルLRによる位相遅延(θc)のみを含む。図18Bの同調共振器306aと同様に、コイルの位相遅延θcを調整して、式(97)から決定されたウェーブチルト角(Ψ)を整合することができ、これにより、結果としてΦ=Ψとなる。表面導波モードに結合された受信構造を用いて電力抽出が可能であるが、受信構造を調整して、帯電端子TRによって提供される可変リアクタンス負荷なしに誘導表面波との結合を最大化することは困難である。
図18Dを参照して、受信構造を調整して、損失性導電媒体203の表面上の誘導表面導波モードに実質的にモード整合する例を示す流れ図180を示す。181で開始して、受信構造が(図18Bの同調共振器306aの)帯電端子TRを含む場合、184で、帯電端子TRは、損失性導電媒体203の上の定義された高さに配置される。誘導表面導波プローブ200によって表面誘導波が確立されたら、帯電端子TRの物理的高さ(hp)は、実効高より低いものとすることができる。物理的高さを選択して、帯電端子TR上の拘束電荷を低減又は最小化することができる(例えば、帯電端子の球直径の4倍)。受信構造が(例えば、図18Cの同調共振器306bの)帯電端子TRを含まない場合、流れは、187に進む。
187で、受信構造の電気的位相遅延Φは、損失性導電媒体203の局所的な特性によって定義された複素ウェーブチルト角Ψに整合される。ヘリカルコイルの位相遅延(θc)及び/又は垂直供給線の位相遅延(θy)は、Φをウェーブチルト(W)の角度(Ψ)に等しくするように調整することができる。ウェーブチルト角(Ψ)は、式(86)から決定することができる。次に、電気的位相Φは、ウェーブチルト角に整合することができる。例えば、電気的位相遅延Φ=θc+θyは、コイルLRの幾何学的パラメータ及び/又は垂直供給線導体の長さ(又は高さ)を変更することにより調整することができる。
次に190で、帯電端子TRの負荷インピーダンスは、同調共振器306aの等価影像平面モデルを共振させるように整調させることができる。受信構造の下の導電性影像グラウンド平面139(図9A)の深さ(d/2)は、式(100)、及び局所的に測定することができる受信構造での損失性導電媒体203(例えば、地球)の値を使用して決定することができる。その複素深さを使用して、影像グラウンド平面139と損失性導電媒体203の物理的境界136(図9A)との間の位相シフト(θd)は、θd=βod/2を使用して決定することができる。次に、損失性導電媒体203を「見下ろして」見たようなインピーダンス(Zin)は、式(99)を使用して決定することができる。この共振関係は、誘導表面波との結合を最大化すると考えることができる。
コイルLRの調整されたパラメータ及び垂直供給線導体の長さに基づいて、速度係数、位相遅延、並びにコイルLR及び垂直供給線のインピーダンスを決定することができる。加えて、帯電端子TRの自己容量(CR)は、例えば、式(24)を使用して決定することができる。コイルLRの伝搬係数(βp)は、式(98)を使用して決定することができ、垂直供給線に対する伝搬位相定数(βw)は、式(49)を使用して決定することができる。自己容量並びにコイルLR及び垂直供給線の決定された値を使用して、コイルLRを「見上げて」見たような同調共振器306aのインピーダンス(Zbase)は、式(101)、(102)及び(103)を使用して決定することができる。
図9Aの等価影像平面モデルはまた、図18Bの同調共振器306aにも適用される。同調共振器306aを同調して、Zbaseのリアクタンス成分XbaseがZinのXinのリアクタンス成分を相殺する、又はXbase+Xin=0であるように、帯電端子TRの負荷インピーダンスZRを調整することにより、複素影像平面に対して共振させることができる。したがって、同調共振器306aのコイルを「見上げた」物理的境界136(図9A)でのインピーダンスは、損失性導電媒体203を「見下ろした」物理的境界136でのインピーダンスの共役である。負荷インピーダンスZRは、帯電端子TRから見た電気的位相遅延Φ=θc+θyを変更することなく帯電端子TRの静電容量(CR)を変更することにより、調整することができる。反復的手法を採用して、導電性影像グラウンド平面139に対する等価影像平面モデルの共振のために負荷インピーダンスZRを同調することができる。この方法で、損失性導電媒体203(例えば、地球)の表面に沿った誘導表面導波モードへの電界の結合を、向上及び/又は最大化することができる。
図19を参照して、磁気コイル309は、電気的負荷336にインピーダンス整合ネットワーク333を介して結合された受信回路を含む。誘導表面波からの電力の受信及び/又は抽出を促進するために、磁気コイル309は、誘導表面波の磁束Hφが磁気コイル309を通り、それによって、磁気コイル309内に電流を誘導して、その出力端子330で端子点電圧を生成するように、配置することができる。単一の巻きのコイルに結合された誘導表面波の磁束は、以下の式により表現される。
Figure 2018535467
式中、Fは、結合した磁束であり、μrは、磁気コイル309のコアの実効比透磁率であり、μoは、自由空間の透磁率であり、
Figure 2018535467
は、入射磁界強度ベクトルであり、
Figure 2018535467
は、巻きの断面区間に垂直な単位ベクトルであり、ACSは、それぞれのループによって囲まれた区間である。磁気コイル309の断面区間にわたって均一な入射磁界への最大結合に向けたN巻きの磁気コイル309に対して、磁気コイル309の出力端子330で発生する開回路で誘導された電圧は、以下の式である。
Figure 2018535467
式中、これらの変数は、上記で定義されている。磁気コイル309は、場合によって、分布した共振器として、又はその出力端子330にわたる外部コンデンサを有してのいずれかで、誘導表面波の周波数に同調して、次に、共役インピーダンス整合ネットワーク333を介して外部電気的負荷336にインピーダンス整合することができる。
磁気コイル309によって提示された結果として生じる回路及び電気的負荷336が適切に調整され、インピーダンス整合ネットワーク333を介して共役インピーダンス整合されることを仮定して、次に、磁気コイル309内に誘導された電流を用いて、電気的負荷336に最適に電力を供給することができる。磁気コイル309によって提示された受信回路は、グラウンドに物理的に接続する必要がないという利点を提供する。
図18A、18B、18C、及び図19を参照して、線状プローブ303によって提示された受信回路、モード整合した構造306、及び磁気コイル309はそれぞれ、上述した誘導表面導波プローブ200の実施形態のいずれか1つから伝送される電力の受信を促進する。このために、理解することができるように、受信したエネルギを使用して、共役整合ネットワークを介して電気的負荷315/327/336に電力を供給することができる。これは、放射された電磁界の形態で伝送されて受信器に受信することができる信号と対照的である。そのような信号は、非常に低い利用可能な電力を有し、そのような信号の受信器は、送信器に負荷を加えない。
線状プローブ303によって提示された受信回路、モード整合した構造306、及び磁気コイル309は、誘導表面導波プローブ200に適用され、それによって、そのような受信回路が受ける誘導表面波を生成する励起源212(例えば、図3、図12、及び図16)に負荷を加えることになることもまた、上述した誘導表面導波プローブ200を使用して生成される本誘導表面波の特性である。これは、上述した所与の誘導表面導波プローブ200によって生成される誘導表面波が伝送線モードを含むという事実を反映している。対照として、放射電磁波を生成する放射アンテナを駆動する電源は、用いられる受信器の数に関わらず、受信器によって負荷を加えられない。
したがって、1つ以上の誘導表面導波プローブ200、並びに線状プローブ303、同調したモード整合した構造306、及び/又は磁気コイル309の形態の1つ以上の受信回路は、ともに、無線分配システムを構成することができる。上述したような誘導表面導波プローブ200を使用した誘導表面波の伝送の距離が周波数に依存することを考えると、広いエリアにわたって、かつグローバルにでも、無線電力分配を実現することが可能である。
今日幅広く研究された従来の無線送電/分配系は、放射電磁界からの「環境発電(energy harvesting)」、及び誘導又はリアクタンス性の近接場に結合するセンサをも含む。対照的に、本無線電力系は、遮断されない場合には永久に失われる放射の形態で電力を浪費しない。また、本開示の無線電力系は、従来の相互リアクタンス結合した近接場系と同様の非常に短い範囲に限定されない。本明細書で開示する無線電力系は、新規の表面誘導伝送線モードにプローブ結合し、これは、導波路により負荷に、又は遠方の発電機に直接結線された負荷に、電力を送出することと等価である。60Hzでの従来の高圧電力線における伝送損失に対して、非常に低周波数では小さな、伝送電界強度を維持するのに必要とされる電力に加えて表面導波路内で消散する電力を考慮しないで、発電機の電力のすべては、所望の電気的負荷のみに行く。電気的負荷の需要が終了すると、ソースの発電は、相対的に空いている。
次に、図20A〜Eを参照して、以下の説明に関連して使用される様々な回路図記号の例を示す。図20Aを具体的に参照して、誘導表面導波プローブ200a、200b、200c、200e、200d、若しくは200f、又はそれらの任意の変形のいずれか1つを表す記号を示す。以下の図面及び説明において、この記号の表現は、誘導表面導波プローブPと呼ばれることになる。以下の説明を簡単にするために、誘導表面導波プローブ導波プローブPのあらゆる参照は、誘導表面導波プローブ200a、200b、200c、200e、200d、若しくは200f、又はそれらの変形若しくは組合せのいずれか1つの参照である。
同様に、図20Bを参照して、線状プローブ303(図18A)、同調した共振器306(図18B〜18C)、又は磁気コイル309(図19)のいずれか1つを含むことができる、誘導表面波受信構造を表す記号を示す。以下の図面及び説明において、この記号の表現は、誘導表面波受信構造Rと呼ばれることになる。以下の説明を簡単にするために、誘導表面波受信構造Rのあらゆる参照は、線状プローブ303、同調した共振器306、若しくは磁気コイル309、又はそれらの変形若しくは組合せのいずれか1つの参照である。
更に、図20Cを参照して、線状プローブ303(図18A)を具体的に表す記号を示す。以下の図面及び説明において、この記号の表現は、誘導表面波受信構造Rと呼ばれることになる。以下の説明を簡単にするために、誘導表面波受信構造Rのあらゆる参照は、線状プローブ303又はその変形の参照である。
更に、図20Dを参照して、同調した共振器306(図18B〜18C)を具体的に表す記号を示す。以下の図面及び説明において、この記号の表現は、誘導表面波受信構造Rと呼ばれることになる。以下の説明を簡単にするために、誘導表面波受信構造Rのあらゆる参照は、同調した共振器306又はその変形の参照である。
更に、図20Eを参照して、磁気コイル309(図19)を具体的に表す記号を示す。以下の図面及び説明において、この記号の表現は、誘導表面波受信構造Rと呼ばれることになる。以下の説明を簡単にするために、誘導表面波受信構造Rのあらゆる参照は、磁気コイル309又はその変形の参照である。
<2.物体識別>
[2(A).全体概要]
図21及び図22を追加して参照して、1つ以上の応答タグ402に電力を供給するために前節で説明したような誘導表面波を使用する、物体識別システム400の実施形態を模式的に示す。添付の図は、必ずしも一定の縮尺ではないことが再び強調される。
それぞれのタグ402は、物体404に関連付けることができる。物体404は、任意の種類の物品とすることができる。例示的な物体404としては、消費財、商品群、衣料品、食料品、物品用の包装、複数の物品用の容器、車両、商品が積み重ねられるパレット、運送用コンテナ、又は追跡が望ましい任意の他の品目が挙げられるが、これらに限定されない。
物体識別システム400は、質問機406を含む。図21の実施形態では、質問機406は、同じ場所に配置された誘導表面波導波プローブP及び受信器408を含む。プローブP及び受信器408は、レードーム、装飾用筐体などの同じ構造内に収容することができる。この実施形態では、質問機406は、典型的には固定位置を有する。
図22の実施形態では、プローブP及び受信器408は、同じ場所に配置されていない。説明することになるように、プローブP及び受信器408は、物理的関係を有する(例えば、両方を施設に配置することができる)、又は物理的関連を有さない、若しくはほとんど有さないでもよい。この実施形態では、プローブP及び受信器408は、質問機406を機能的に形成するが、必ずしも同じ関係者によって配置されず、同じ場所に配置する必要がなく、ユニットとして考える必要がない。この実施形態では、プローブPは、典型的には固定位置を有し、レードーム又は装飾用筐体などの好適な構造内に収容することができる。受信器408は、固定位置を有することができる、又は携帯可能とすることができる。例えば、受信器408は、人間が動き回る際に人間によって手に持って使用することができる、又はトラック、フォークトラック、航空機、貨物船などの車両に搭載することができる。
図21及び図22の実施形態では、プローブPは、前節で説明したように、下にあるテレストリアル媒体410に沿った誘導表面波を送出する。テレストリアル媒体410は、地球、店舗の床、倉庫、工場、若しくは他の施設、又は任意の他の適切な基材などだがこれらに限定されない、任意の適切な損失性導電媒体とすることができる。説明したように、プローブPは、放射波を生成しないが、媒体410の表面に沿った誘導表面波を送出する。プローブPから放出されたエネルギは、Zenneck表面電流として、誘導表面導波プローブPの実効伝送範囲内に配置された1つ以上のタグ402に伝送される。プローブPは、上述したプローブのいずれかとして、又は任意の他の適切な構成で、構成することができる。
図23を追加して参照して、典型的なタグ402を模式的に示す。タグ402は、RFIDタグに酷似して構成されており、紙又はプラスチックシートなどの基板416に搭載されたアンテナ412及びタグ回路414を含む。基板416は、タグ402を物体404に取り付けるための接着剤を含むことができる。他の締結技術を使用することができる、又は、タグ402は、物体404の一部を形成することができる。別の実施形態では、タグは、物体404の内部に配置することができる、又は、タグ402の電気構成要素は、物体404の電気構成要素の一部を形成することができる。
典型的な実施形態では、誘導表面波からの電力の抽出以外に、タグ402は、電池又は外部電源への物理的接続などの電源を有さない。むしろ、タグ402は、1つ以上の周波数の誘導表面波に応答する。例えば、プローブPによって生成される誘導表面波からの電磁エネルギは、アンテナ412内に電流を誘導し、この電流は、タグ回路414に結合して、それに電力を供給するために使用される。RFエネルギが従来のRFIDタグに電力を供給する方法と同様に、この方法でのタグ回路414の電力供給は、タグ402への照射と呼ばれることがある。しかし、従来のRFIDタグとは対照的に、タグ回路414は、プローブPに負荷を加えることができる。
タグ回路414は、任意の適切な電気構成要素を含むことができ、任意の適切な機能を実行するように構成することができる。例えば、タグ回路414は、関連付けられた物体404を識別するために使用することができる識別子などだがこれに限定されないデータを記憶する、メモリを含むことができる。識別子は、在庫管理単位(stock-keeping unit)(SKU)などの商品の種類を表すことができる。SKUは、商取引で入手可能なそれぞれの別個の製品に対する一意の識別子である。あるいは、識別子は、名目上同じ物体(例えば、同じSKUを有する物体)を含むすべての他の物体とその物体を区別する一意の識別子などの、特定の品目を表すことができる。タグ回路414は、メモリから識別子を読取ることができ、アンテナ412(又は図示していない第2のアンテナ)を介して、データメッセージ形式で識別子を含むRF信号を送信することができる。別の実施形態では、タグ402は、誘導表面波を放出することにより応答することができるが、タグ402を相対的に小さく、平坦、かつ電力効率が良く保持する要求のために、RF帰還信号を生成するのがより簡便である可能性がある。
一実施形態では、タグは、アドレス指定可能であり、階層アドレス指定を含む媒体アクセス制御(media access control)(MAC)アドレス又はインターネットプロトコルバージョン6(Internet protocol version 6)(IPv6)アドレスなどの、一意のアドレスを有する。一実施形態では、タグの識別子は、タグのアドレスと同じである。
タグ402によって放出されたRF信号は、受信器408によって受信することができる。受信器408は、信号を分析して、識別子を判定することができる。一実施形態では、受信器408は、識別子及びタグ402の読取中に収集した任意の他の適切な情報をコンピュータシステム418(図21及び図22)に通信する。これらの目的のために、受信器408は、タグ402によって放出されたRF信号を受信するアンテナ及び無線回路、タグ402から受信したデータ又は読取の時点で確認したデータ(例えば、後述するような位置データ、到着時間、又は信号強度)の読取、記憶、分析、及び処理と関連する適切な機能を実行する処理回路、並びにコンピュータシステム418との機能する通信を確立するための通信インターフェースを含むことができる。したがって、受信器408は、データ及び論理命令を記憶するためのメモリ、及び論理命令を実行するためのプロセッサを含むことができる。あるいは、コンピュータシステム418及び受信器408は、組合せることができる。
識別子を受信すると、コンピュータシステム418は、受信した識別子に関して適切な1つ以上の機能を実行することができる。コンピュータシステム418によって実行される様々な例示的な機能は、より詳細に以下に後述する。
受信器408及びコンピュータシステム418は、通信媒体420を介して通信することができる。通信媒体420としては、直接有線接続(例えば、USBインターフェース)、直接無線接続(例えば、Bluetooth(登録商標)インターフェース)、広域ネットワーク接続(例えば、インターネットを介した通信)、又はローカルエリアネットワーク(例えば、企業のネットワーク又はWiFiネットワークを介した通信)などのうちの1つ以上を挙げることができる。いくつかの実施形態では、コンピュータシステム418はまた、いつ誘導表面波を生成するか、誘導表面波生成の持続期間、誘導表面波の周波数などに関して誘導表面波の生成を制御するなどのために、プローブPと通信することができる。
[2(B).誘導表面波を用いたタグへの電力供給]
RFIDタグへの電力供給は、送信リンクに限定される。より具体的には、従来のRFIDタグは、従来のRFID質問機(RFID読取装置とも呼ばれる)によって照射され読取られる。RFID質問機は、相対的に小さな指向性アンテナを使用してRF信号を放出する。放出されるRFエネルギは、典型的には米国の連邦通信委員会(Federal Communications Commission)(FCC)などの法規制機関によって制限されている。他のシステムへの許容できない干渉の生成を回避するために、かつ潜在的に有害な放射の放出を回避するために、限度は存在している。したがって、従来のRFID周波数(例えば、900MHz付近又は13.56MHzに割り当てられた周波数)を使用して十分なエネルギを従来のRFIDタグに伝送して、タグの回路に電力を供給しRF応答を引き起こすためには、従来のRFID質問機と従来のRFIDタグとの間の極近接を必要とする。多くの場合、有効な読取のためのRFID質問機とRFIDタグとの間の最大距離は、数メートルであり、RFIDタグからの帰還信号がRFID質問機との誘導結合に依拠する場合には、より短いことがある。加えて、従来のRFID技術は、高誘電率かつ損失性の材料への不十分な透過率を有する。そのような材料の例は、ウォーターボトル又は水を含む食料品のパレットである。したがって、高誘電率かつ損失性の材料がRFID質問機とRFIDタグとの間に介在する場合のRFIDタグの読取は、多くの場合、成功しない。
従来のRFI技術は、本質的にRFIDタグの機能を制限する。より具体的には、処理機能、メモリ読取動作、メモリ書込動作、データ送信動作などを実行するために利用可能な電力はほとんど存在しない。同時に、在庫及びサプライチェーン管理用のRFIDの用途を拡張して、製品の盗難により発生する在庫の「減少」を低減し、他の機能を実行することに関する業者及び他の者による関心が存在する。
本明細書で開示する技術は、これらの欠陥を克服し、誘導表面波の使用によりタグ付きの物体で実行することができる機能を強化して、より大量の電力を「目標に向かって」(例えば、目標は、1つ以上のタグ402である)供給する。したがって、開示する技術は、従来のRFIDタグで見出された送信リンクの制限を克服する。
タグ402は、プローブP上の負荷として考えることができ、多くの状況では、処理機能、メモリ読取動作、メモリ書込動作、データ送信動作などを実行するために必要なだけの電力を得ることができる。例示的な動作は、より詳細に以下に後述する。更に、タグ402とプローブPとの間の距離、及びタグ402と受信器408との間の距離は、RFID質問機とRFIDタグとの間に従来必要とされた距離に対して大幅に拡張することができる。開示する手法におけるタグ402に電力を供給するための送信リンクは、タグ402と受信器408との間の返信リンクより数十dB高いリンク品質を有することができることが注目される。それにもかかわらず、システム性能は、本明細書で説明する機能及び特徴、並びに他の同様な特徴及び機能を実行するのに十分であることになる。
誘導表面波から電力を導出するために、タグ402は、アンテナ412を含む。アンテナ412は、図23に模式的に示すようなループアンテナ(コイルアンテナとも呼ばれる)とすることができる、又は図19に模式的に示す磁気コイル309として実装することができる。他の実施形態では、アンテナ412は、ダイポールアンテナとして、又は図18Aに模式的に示す線状プローブ303として構成することができる。1つより多くのアンテナ412が存在してよい。この場合、アンテナ412は、同じ種類(例えば、ループアンテナ又はダイポールアンテナ)とすることができる、又は異なる種類(例えば、ループアンテナ及びダイポールアンテナ)とすることができる。一般的に同じ平面又は平行な平面内(例えば、両方とも基板416上)にあるループアンテナ及びダイポールアンテナの存在は、タグの向きに関わらずタグへの電力の供給を促進することができる。これは、アンテナのうちの少なくとも1つが、互いに対して垂直な誘導表面波の磁気成分又は誘導表面波の電気成分とより良好に整列することになるためである。したがって、タグの空間的向きに依存して、ループアンテナを、誘導表面波の磁気成分からタグ回路414への電力の主要な供給元とすることができる、又はダイポールアンテナを、誘導表面波の電気成分からタグ回路414への電力の主要な供給元とすることができる。タグ回路414に電力を供給するために誘導表面波から十分なエネルギを電気エネルギに変換するように、多くの従来のRFIDタグアンテナの設計を用いる又は改良することができることが更に意図されている。
タグ回路414は、上述したようなインピーダンス整合ネットワークを含むことができる。いくつかの実施形態では、インピーダンス整合ネットワークは、静的に配置されることになる、又は省略することができる。静的に配置された又は省略されたインピーダンス整合ネットワークは、結果として最大エネルギ変換性能にならないことがあるが、タグ回路414を相対的に簡単にして、損失性導電媒体410に対するタグ402の位置に従ってインピーダンス整合ネットワークを再構成する必要なしに、タグ402の頻繁な移動に適応することになる。アンテナ412の特定の配置に関わらず、タグ402は、図1〜図20Eに関連して上述したような誘導表面波受信構造Rを含むと考えることができる。
タグ402は、相対的に小さくかつ軽くすることができる。大多数のタグ402は、サイズ及び重量が従来のRFIDタグと類似していることになる。例えば、タグ402は、相対的に平坦(例えば、厚さ約1mm以下)、長さ約1cm〜長さ約10cmの範囲内、かつ幅約1cm〜幅約10cmの範囲内とすることができる。
説明するように、プローブPからタグ402に電力を送出する送信リンクとして機能する誘導表面波は、1つの周波数を有することができ、タグ402は、第2の周波数上で返信リンク信号を放出して、データを受信器408に送信することができる。低電力で動作する複数のタグ402に対して性能及びデータスループットを増大するために、第2の周波数は、第1の周波数より高く(例えば、1桁以上高く)することができる。高周波数での返信リンク信号の放出に適応するために、アンテナ412が返信リンク信号を効率的に放出することができない場合には、タグ402は、第2のアンテナ422を含むことができる。
システム400は、上述したような誘導表面波の特性を利用するように構成することができる。したがって、相対的に低周波数での誘導表面波の実用的な使用を、物体識別に関連して行うことができる。一実施形態では、プローブによって放出される誘導表面波の周波数は、13.56MHz、又はRFID技術での使用のために適切な法規制機関によって既に認可された他の周波数の付近である。物体識別の用途及び誘導表面波の所望の特性に依存して、13.56MHzより高い周波数又は低い周波数を使用することができる。アンテナ構成及び/又はインピーダンス整合を含むタグ402のアーキテクチャは、誘導表面波の周波数に調和させて、エネルギ伝送を実現することができる。
上述したように、誘導表面波の電界強度は、誘導電界強度曲線103の屈曲部109(図1)未満のプローブPからの距離に対して、相対的に高い。そのように、単一のプローブPを使用して、プローブPの位置で許容できるエネルギ密度を維持しながら、プローブPの周囲の実効エリア内の多くのタグ200に電力を供給することができる。例えば、物体識別用途に関連して使用されるエネルギ源での実効等方放射電力(effective isotropic radiated power)(EIRP)が、法規制機関によって課される場合がある。従来のRFID用途に対する典型的な限度は、約1ワット又は2ワットである。誘導表面波を使用するいくつかの種類の物体識別用途に対してこれらの種類のEIRP限度が維持されることになることを、合理的に仮定することができる。これらの限度においても、単一のプローブPは、プローブPから対応する誘導電界強度曲線103の屈曲部109の距離未満であるプローブPからの半径距離内に配置された数百、数千、又は数百万のタグ402に電力を供給することを可能にすることができる。全方向プローブPに対して、タグを照射することができる実効エリアは、およそプローブPから対応する誘導電界強度曲線103の屈曲部109の距離である半径を有する円形エリアである。プローブPからの屈曲部109の距離は、誘導表面波の周波数に依存する。例として、約13MHzでの誘導表面波に対するプローブPからの屈曲部109の距離は、地表特性に依存して、約1キロメートルである。相対的に理想的な状況下で、900MHzで動作する従来のRFID技術は、約30メートルの実効動作範囲を有する。したがって、以前に可能であったより、相当大きな距離から、かつ相当低い周波数で、タグ402に電力を供給することができることが理解されるであろう。
タグ402は、所定の周波数、複数の周波数、又はある範囲の周波数の誘導表面波で照射されたとき、応答する(例えば、電力を供給される及び/又は帰還信号を送信する)ように構成することができる。一実施形態では、あるタグ402は、第1の周波数に応答するが、第2の周波数に応答しないように構成されており、異なるタグ402は、第2の周波数に応答するが第1の周波数に応答しないように構成されている。一実施形態では、第1の周波数と第2の周波数との間の最小分離は、約10kHzの分離又は100kHzの分離などに確立することができる。
理解されるであろうように、誘導表面波の使用により、多くのタグ402に効率的に電力を供給することができ、タグ402は、相対的に電力を消費する機能を実行するように構成することができる。これらの機能の多くは、後述する。更に、限定された動作範囲を有する誘導読取装置の使用を回避することができる。これにより、相当な距離及び/又は相対的に低い周波数でのタグ402の問合せができる。誘導表面波の性質により、高誘電率の材料及び/又は損失性の材料がプローブPとタグ402との間に介在する状況でのタグ402の問合せもできる。例として、水分を含有する商品(例えば、ウォーターボトル、ビール、スープなどの水分を含む食料品、ケチャップ又はバーベキューソースなどの調味料など)のパレット又は商品の運送用コンテナ内に配置されたタグ402に、問合せることができる。一実施形態では、プローブPとタグ402との間に介在する1〜5メートルの水が存在する場合に、タグ402に電力を供給して、動作させることができる。
[2(C).タグの問合せ]
タグ402に適合した周波数を有する誘導表面波でタグ402を照射して、受信器408でタグ402からの帰還信号を受信することにより、1つ以上のタグ402に問合せる(読取るとも呼ばれる)ことができる。このプロセスの一部として、タグ402は、誘導表面波から電力を抽出して、タグ402内の電子機器(タグ回路414)に電力を供給する。電力の抽出は、受動動作とすることができる。具体的には、誘導表面波は、アンテナ412内にタグ回路414に印加される電流を誘導する。タグ回路414への電力の印加により、タグ回路414を作動させて、1つ以上の所定の機能を実行させる。例示的な所定の機能としては、タグ回路414のメモリ構成要素からタグ414に関連付けられたタグ識別子を読取って、タグ識別子を含む帰還信号を送信することである。帰還信号は、伝送時間(例えば、他のタグの帰還信号との時分割多重化の下での所定のタイムスロット)、電気特性、メッセージ形式、又はコンテンツ、暗号化などに関して、所定のプロトコルに従うデータ伝送の形態とすることができる。この信号は、受信器408によって受信して解釈することができる。
一実施形態では、帰還信号は、RF信号とすることができる。帰還信号の伝搬能力は、エネルギレベル、データ符号化、及び周波数などのRF信号の特性に依存することになる。受信器408によって帰還信号を効率的に検出することができる距離は、周囲環境における帰還信号の伝搬能力、及び受信器408の感度に依存することになる。30メートルより大きい距離などの相対的に大きな距離での読取を可能にするために、帰還信号を、相対的に大きなEIRPで放出することができる。誘導表面波から電力を抽出することにより、ソース(誘導表面波)での利用可能な電力のエネルギ密度が高いため、タグ回路414内の送信器が、相対的に高い電力で放射することができることになる。加えて、帰還信号は、周相対的に高い波数を有して、スループットを高めることができる。一実施形態では、帰還信号は、誘導表面波の周波数より約1〜3桁高い周波数などの、照射する誘導表面波の周波数より高い周波数を有することができる。例えば、誘導表面波が約10MHz〜約250MHzの範囲内である場合、帰還信号は、約100MHz〜約5.4GHz以上の範囲内とすることができる。
したがって、誘導表面波は、1つの周波数(例えば、第1の周波数)とすることができ、タグ402は、第1の周波数とは異なる第2の周波数で応答することができる。他の実施形態では、応答周波数は、誘導表面波の周波数と名目上同じとすることができる。一実施形態では、第1の周波数での誘導表面波に応答するタグ402の第1の組は、第2の周波数で応答することができ、第1の周波数での誘導表面波に応答するタグ402の第2の組は、第2の周波数とは異なる第3の周波数で応答することができる。応答周波数の差を使用して、第1の組のタグを、第2の組のタグと区別することができる。
例示したように、タグ回路414が作動されたときに、1つ以上の所定の機能をタグ402によって実行することができる。1つの例示的な所定の機能としては、帰還信号を放出することである。帰還信号は、識別する情報を有さないでタグ402が存在するというインジケーション、タグ402の種類若しくはタグ402が関連付けられた物体404の種類のインジケーション、タグ402が関連付けられた物体404に対するSKU若しくは他の識別子、タグ402をタグ402の他の組若しくはすべての他のタグ402と区別するタグ402の一意の識別子若しくはアドレス、又はタグ402によって記憶された任意の他のデータのうちの1つ以上などの情報を含むことができる。
一実施形態では、帰還信号の送信は、自動的である。他の実施形態では、タグ402によって行われる応答又は他の動作は、特定の条件下で実行することができる。例示的な実施形態では、タグ402は、アドレス指定可能であり、タグ402にアドレス指定されたメッセージ又はデータに応答する。アドレス方式に依存して、タグ402は、個別にアドレス指定可能とすることができる。この目的のために、タグ402は、IPv6アドレス、又は適切な形式のなんらかの他のアドレスなどの、すべての他のタグ402のアドレスと重複しない任意のアドレスを有することができる。一実施形態では、アドレスは、約40ビット〜約64ビットの長さを有することができる。64ビット以上の長さのアドレスを使用して、この惑星上のあらゆる物体を一意にアドレス指定することができることが意図されている。他の実施形態では、メッセージ又はコマンドを、複数のタグ402にアドレス指定することができる。この目的のために、タグ402は、共通アドレスを共有することができる(例えば、SKUに関連付けられたすべてのタグ402が、同じアドレスを有することができる)、又は階層アドレス指定を使用して、別の方法で一意のアドレスを利用することができる。他の例示的なデータ配信技術としては、マルチキャストアドレス指定又はジオキャストが挙げられる。
アドレス指定可能なタグ402を使用することにより、様々な所定の機能をタグ402によって実行することができる。例として、データの双方向交換のために、受信器408とタグ402との間のデータリンク又は通信インターフェース(例えば、Bluetooth(登録商標)インターフェース)を確立することができる。受信器408とタグ402との間の通信により、受信器408(又は受信器408を介してコンピュータシステム418)が、タグ402によって記憶された情報に関してタグ402にポーリングする、若しくはタグにコマンドを送信することができる、又はタグ402が、追加の情報を受信して記憶することができる。
別の実施形態では、タグ402によって実行される所定の機能は、誘導表面波内に符号化されたデータを記憶すること、又は誘導表面波内に符号化されたコマンドを実行することを含む。タグ402が応答する誘導表面波内のデータ又はコマンドは、アドレス指定することなくタグ402にブロードキャストすることができる、又は1つ以上の特定のタグ402にアドレス指定することができる。この目的のために、プローブPは、誘導表面波内に符号化されたキャリヤメッセージを含むことができる。
データ及び/又はコマンドが受信器408によって又は誘導表面波の一部として伝送されるときに1つ以上のタグ402によって実行することができる所定の機能としては、タグ402のメモリへのデータの書込み、コマンドの実行、要求された情報での応答、及びアドレス指定された又は別の方法でポーリングされた場合にのみ帰還信号を放出することによる応答を挙げることができるが、これらに限定されない。
別の所定の機能は、帰還信号の受信を確認するメッセージ又は適切なコマンドに応じて帰還信号の放出を停止することとすることができる。この機能は、様々な状況で用いることができる。例えば、在庫管理作業中に、誘導表面波を使用して、多くのタグ402を照射することができ、タグのすべてが、それぞれの帰還信号を放出することにより応答動作を開始することができる。個別のタグ402からの応答が受信されて処理されると、コンピュータシステム418は、帰還信号を受信して処理したタグ402に(受信器408又は誘導表面波を介して)帰還信号の放出を停止するコマンドを発行することができる。この方法で、他のタグ402からの帰還信号を、競合を少なくして受信して処理することができる。
一実施形態では、タグ402内でコマンドを実行することにより、タグ402を恒久的に「オフにする」又は無効にすることを可能とすることができる。例えば、物体404が消費者によって購入された後で、タグが適切な誘導表面波によって照射されたときにもはや所定の機能を実行しないように、その関連付けられたタグ402を無効にすることができる。
[2(D).タグ照射の地域化]
図24を追加して参照する。図24は、2つの隣接する場所424a及び424bを示す。例示した実施形態での場所424は、小売店をそれぞれ収容する建造物である。この例示的な実施形態は、説明するために示す。例示した実施形態は、開示する概念の態様を表すことが理解されるであろう。開示する概念の原理が適用可能な場所の性質及び構成は、異なることがある。場所の種類としては、小売店、倉庫、事務所、学校、港、フルフィルメントセンター、発送及び仕分センター、スポーツ会場、駐車場、工場又は製造会社、農場、軍事基地などが挙げられるが、これらに限定されない。場所は、建造物をなんら含まなくてよい、又は1つ以上の建造物を含むことができる。それぞれの場所は、タグ402の照射及び読取が望まれる既知の地理的エリアによって特徴付けられる。タグ402及び場所の相対的サイズのため、個別のタグ402及び関連付けられた物体404は、図を簡易にするために図24で示されていない。しかし、タグ402及び関連付けられた物体404がそれぞれの場所424内に存在することが理解されるであろう。場所424内のタグ402及び関連付けられた物体404の数は、変更することができ、1つのタグ402/関連付けられた物体404だけから数百万のタグ402/関連付けられた物体404の範囲とすることができる。
例示した実施形態では、場所424a及び424bは、離して間隔をおかれている。隣接する場所424は、離して間隔をおかれている必要はない。建造物に対応する場所424は、互いに接触する若しくはほぼ接触することができる、又は1つの場所424を別の場所と分離する壁を共有することができる。
一実施形態では、プローブPは、それぞれの場所424に関連付けられる。典型的には、プローブPは、場所424を画定する地理的エリア内に配置される。1つ以上の受信器408もまた、場所424に関連付けられて、配置される。典型的には、場所424に関連付けられた受信器408は、場所424を画定する地理的エリア内に配置されるが、場所424に関連付けられた受信器408のうちの1つ以上は、場所424の入口付近などの、この地理的エリアの外側に配置することができる。
それぞれのプローブPは、プローブPに関連付けられた場所424の地理的エリア内に配置されたタグ402に照射するように構成されている。一実施形態では、1つの場所424に関連付けられたプローブPは、隣接する場所424内に配置されたタグ402に照射しないように構成されている。隣接する場所内のタグ402に照射しないことは、常に可能又は現実的ではないことがある、及び/又は、プローブPの動作可能範囲を限定するように配慮した場合でも、時として隣接する場所内のタグ402が意図せずに照射されることがあることが理解されるであろう。
隣接する場所内のタグ402に照射しないようにプローブPを構成するために、プローブPによる誘導表面波の生成の結果として生じる自然な「エネルギバブル」を用いることができる。上述したように、誘導表面波のエネルギ密度の減衰は、プローブPから屈曲部109の距離未満の距離では非常に小さい。屈曲部109の距離以上では、エネルギ密度は、劇的に低下する。プローブPが全方向であり、テレストリアル媒体410の電気特性がプローブPとテレストリアル媒体410との間の機能する境界面に沿って均一であると仮定すると、エネルギ密度は、プローブPからのすべての放射方向でこのようにふるまう。屈曲部109の距離は、誘導表面波の周波数の関数である。また、この説明のために、照射されると考えられるためには、タグ402は、電源をオンにして応答することができるように誘導表面波から十分な電力を得るための閾値エネルギ密度の存在内になければならない。閾値エネルギ密度は、タグ402のエネルギ消費特性に依存することがあり、したがって、異なることがある。
プローブPによって生成される誘導表面波の周波数に動作可能に適合したタグ402に対して、タグ402が照射されるように閾値エネルギ密度に晒されることになるプローブPの周囲のエリアは、照射エリア426と呼ばれることになる。図24の例示的な実施形態に示すように、場所424a及びプローブPaに関連付けられた1つの照射エリア426a、及び場所424b及びプローブPbに関連付けられた別の照射エリア426bが存在する。隣接した場所424a及び424bに対してプローブPa及びPbによって生成される誘導表面波の周波数が、隣接した場所424a及び424bの他方で使用されるタグ402に動作可能に適合した実施形態では、重なり合ない照射エリア426の確立により、それぞれの場所424が、互いに独立してタグ402を読取ることにより物体識別を実行することができることになる。
具体的には、場所424aに対してプローブPaによって生成される誘導表面波は、隣接した場所424b内のタグに照射しない傾向となることになる、及びその逆も同様である。タグ402が隣接した場所424b用のプローブPbによって照射されたときに、1つの場所424a用の受信器408に隣接した場所424b内に配置されたタグ402からの応答信号を検出させることを回避するために、及びその逆も同様に、追加の予防策を行うことができる。これらの予防策としては、それぞれの場所424a、424bのプローブPa、Pbが同時に誘導表面波を能動的に生成しないように、照射のタイミングを制御することを挙げることができる。別の予防策は、タグ402の出力電力を他の場所内の受信器408による検出を回避するために十分低いレベルに制限すること、及び/又は隣接した場所424内のタグ402からの信号の検出を回避するように受信器408の受信感度を制限することである。別の予防策は、場所424の読取装置408からの情報を処理するコンピュータシステム418内に、場所424内に存在すべきすべてのタグ402に対するタグ識別子のデータベースを維持することである。タグ402が読取られて、関連付けられたタグ識別子がデータベース内にない場合、タグ402が場所424に関連付けられておらず、無視すべきであると仮定することができる。受入モードにおいて、物体が場所424に到着して、問合せられて、対応するタグ識別子をデータベースに追加する場合は、例外を実施することができる。
上述したことを留意して、誘導表面波の電力及び周波数、並びにタグ402の電力要件を含む、照射エリア426の実効サイズを制御するいくつかの要因が存在する。したがって、誘導表面波の電力及び周波数、場所424内で使用されるタグ402の特性、並びに隣接した場所(単数又は複数)内で使用されるタグ402の特性のそれぞれは、それぞれの照射エリア426に対する適切なサイズを確立するように、互いに連携して選択することができる。しかし、周波数が照射エリア426のサイズに対する最も重要な寄与要因であることが理解されるであろう。約100MHz〜約200MHzの範囲内の周波数は、場所424が典型的な倉庫又は小売店である場合に場所424のサイズに厳密に整合するように照射エリア426のサイズを制御するために十分であるであろう。
照射エリア426の形状を制御することもまた、望ましいことがある。照射エリア426の形状は、方向の関数として変化する出力を有するプローブ組立体を使用することにより、制御することができる。これは、複数のプローブPを使用して、誘導表面波プロファイル内にローブを生成することにより、又は複数の指向的に送出される誘導表面波の集約体である誘導表面波を生成する(例えば、マルチビーム手法)ことにより、実現することができる。例えば、個別のプローブPの重ね合わせを使用して、複数の同時に生成される誘導表面波の存在により制御される指向性出力を有するフェーズドアレイプローブを作ることができる。
プローブP(又はプローブ組立体)及びタグ402の特性を選択して、照射エリア426のサイズ及び形状を制御することにより、照射エリア426を、関連付けられた場所424の地理的エリアを近似するようにすることができる。また、上述したように、場所424内に1つのプローブPを使用して、ソースでの許容できるエネルギ密度(例えば、プローブPで約1ワット〜約2ワットのEIRP)を維持しながら、場所424内のすべてのタグ402に照射する(例えば、場所424全体にわたって高エネルギ密度を実現することにより)ことを可能にすることができる。
誘導表面波の周波数を選択するのに、追加の考慮を用いることができる。例えば、物体識別のために、場所424が配置された管轄区域を監督する法規制機関によって、特定の周波数へのアクセスを利用可能にすることができる、又はしないことができる。
別の考慮は、誘導表面波の実効高さである。誘導表面波のエネルギ密度は、およそ誘導表面波の波長の高さで低下する。したがって、照射エリア426の高さは、およそ誘導表面波の波長であることになる。約13MHzの誘導表面波に対して、プローブPは、高さ約3フィートであることになり、照射エリア426は、高さ約72フィート(約22メートル)であることになる。この高さは、多くの倉庫内の上部の棚に配置された物体404に関連付けられたタグ402に照射するために十分とすることができる。約100MHzの誘導表面波に対して、照射エリア426は、高さ約3メートルであることになり、約300MHzの誘導表面波に対して、照射エリア426は、高さ約1メートルであることになる。これらの高さは、多くの小売業環境に適合することができる。
[2(E).場所でのタグからのデータ収集]
場所に存在するタグ402を読み取ることにより、様々な機能を実行することができる。例示的な機能としては、在庫管理、誤って配置された物体404の発見、盗難の低減、及び消費者の取引動作が挙げられる。これらのタスクに対して、追跡されることになるそれぞれの物体404がタグ402に関連付けられ、コンピュータシステム418が物体404及びそれぞれの関連付けられたタグ識別子のデータベースを維持することを仮定することになる。この情報は、物体が製造される工場でなど、場所424から遠隔の位置で行うことができる、タグ402が最初に物体404に関連付けられるときに、生成する及び/又は収集することができる。他の状況では、この情報は、タグ402が場所に到着するときに、生成する及び/又は収集することができる。
場所424でのタグ402の読取を実行するために、1つ以上のプローブP及び1つ以上の受信器408が存在する。場所424の外側に配置されたプローブPによって生成される誘導表面波によってタグ402に照射することができるため、プローブPは、場所424の地理的エリア内に配置する必要がない。しかし、場所424に配置されたタグ402からの帰還信号を受信するそれぞれの受信器408は、場所424の地理的エリア内又は場所424の近く(例えば、場所424内のタグ402によって放出される帰還信号を受信することができる距離内)に配置されることになることが意図されている。
場所424用のそれぞれの受信器408は、ドア、搬入口、レジなどの近傍に、戦略的に配置することができる。例えば、場所424aが売り場である場所424aの例示した実施形態では、顧客が出入りする正面玄関428に隣接して受信器408が配置され、主要ショッピングエリア432を在庫保管エリア434と分離するドア430に隣接して受信器408が配置され、保管エリア434の補助出口ドア436に隣接して受信器408が配置される。別の受信器408は、搬入口438に隣接して配置することができ、別の受信器408は、支払エリア440に配置することができる。物体404及び関連付けられたタグ402は、棚442、又はショッピングエリア432内に配置されたディスプレイ上に存在することができる。追加の物体404及び関連付けられたタグ402は、棚442上、又は保管エリア434内に配置された他の位置に存在することができる。追加の又は代替の位置の受信器408もまた、存在することができる。
図24の例示的な場所424bの図を追加して参照して、受信器408に関する別の配置を説明する。この実施形態では、受信器408は、戦略的位置に配置されているが、ドア、搬入口、支払エリアなどの場所424b内の特定の位置に関連付けられていない。むしろ、受信器408は、場所424内にあるタグ402によって放出される帰還信号を検出するために配置される。2つの受信器408が添付の図に示されているが、他の数の受信器408が可能である。例えば、1つの受信器408のみ、又は3つ以上の受信器408が存在してよい。上述したのと同じ方法で、帰還信号を使用して分析することができる。場所424a又は場所424bの実施形態のいずれかにおける受信器408の数及び配置は、タグ402と受信器408との間の機能する範囲、場所424のサイズ、コンピュータシステム418のプログラミング、及び任意の他の関連要因に依存し得る。また、場所424aの実施形態の受信器配置は、いくつかの受信器が場所の特定の構造要素に関連して配置され、他の受信器が一般的な戦略的位置に配置されるように、場所424bの実施形態の受信器配置と組合せることができる。
図24の受信器408の位置は、例示的なものであり、説明するためのものであることが理解されるであろう。受信器408の数及び位置は、場所424の特性及び実行されるタグ読取機能に依存して、変更することができる。
プローブPは、戦略的位置に配置することができるが、視界から隠すことができる。例えば、場所424aの実施形態では、プローブPaは、棚442のうちの1つの端部キャップ444内に隠されている。プローブPは、再送信の間の遅延なしに帰還信号を再送信すること、又は帰還信号を周期的に再送信する(例えば、1秒に1回)ことなどにより、それぞれの照射領域426内のそれぞれのタグ402が連続的に応答するように、誘導表面波を連続的に生成するように構成することができる。他の実施形態では、プローブPは、所望の時間に、かつ所望の持続期間、誘導表面波を生成するように制御される。所望の時間は、予めスケジュール設定することができる、又はプローブの起動をトリガする(例えば、オペレータは、以下の例示的な機能で説明するように、在庫調査を実行するために、誤って配置された物体を見つけるために、又は購入に対して物体を記録するために、プローブをトリガすることができる)ことの結果とすることができる。
帰還信号は、1つ以上の受信器408によって検出することができる。帰還信号から導出されるデータ(例えば、タグ識別子)は、帰還信号を検出する受信器408の既知の位置及び/又は識別情報と共に、様々な機能に関連して使用することができる。1つの例示的な機能は、顧客が購入することを意図する物体404を識別するのを支援することである。例えば、顧客は、購入のために物体404を支払エリア440に持って行くことができる。場所424aの実施形態では、物体404を、支払エリア440の受信器408を通過して移動させることができ、それらの物体404を、コンピュータシステム418によってログ記録することができる。印刷されたSKUがバーコード読取装置で順次スキャンされる方法と同様に購入のための品目を1つずつ読み取る必要はないことが注目される。むしろ、複数の物体404を、同時に受信器408を通過して持って行くことができる。物体404が識別されたら、顧客は、次に、従来の方法で品目に対して支払うことができる。
別の実施形態では、場所424での在庫に関する情報を追跡することができる。例えば、場所424aの実施形態では、物体404が場所424に入る又は出ると、関連付けられたタグ402は、ドア428、ドア436、又はドア438に配置された受信器408のうちの1つの近傍を通過することができる。これらの受信器408を通過する物体404の追跡を保持することにより、物体の種類ごとの物体404の数の正確な記録を行うことができ、許可されたエリアから許可されていないエリアに移動する物体の検出を行うことができる。この検出はまた、所定の点を通過する、又は許可されたエリアと許可されていないエリアとの間の境界を横切る、移動を検出することにより、行うことができる。別の実施形態では、物体が許可されたエリアを出たことの検出は、帰還信号の最後の反復の受信から所定の時間内に関連付けられたタグからの帰還信号の受信に失敗することにより、行うことができる。また、この情報は、正当な物体購入及び物体を場所424から除去することができる他の正当な理由(例えば、サプライチェーンの下流の位置に発送される、又は供給業者に返品される)に対して、相互参照することができる。物体404の出発が正当な理由に関連付けられていない場合、管轄(例えば、場所424のマネージャ、又は警察)に警告すること、セキュリティカメラをオンにして物体が出たドア又は搬入口の周囲のエリアのビデオを録画すること、調査を開始することなどの、追加のセキュリティ関連の動作を実行することができる。
物体404が場所424に入る又は出る仕方、帰還信号の受信の時間、及び/又はいつ特定の車両若しくは従業員も存在していたかなどの追加の情報から、他の情報を判定することができる。例えば、複数の搬入口を有する施設において、物体が通過した搬入口の追跡を使用して、どの従業員が物体を取り扱ったか、どのトラックに物体が積載されたか、又はどのトラックが物体を施設に持って来たか、を立証することができる。別の例として、ショッピングエリア432に対する保管エリア434内に配置された物体404の追跡は、ドア430の受信器408による帰還信号の受信により行うことができる。1つのユーザ定義区域から別のユーザ定義区域への移動を追跡すること、顧客の挙動に関するデータを収集することなどの、場所424内の物体の移動に関する他のデータ収集を行うことができる。
別の実施形態では、タグ402からの帰還信号を分析することにより、場所424内のすべての物体404又は特定のカテゴリーの物体の在庫目録を作成することができる。一実施形態では、コンピュータシステム418は、それぞれの別個の帰還信号に関連付けられたタグ識別子を分析して、在庫分析を実行することができる。一実施形態では、デインターリーブ技術を適用して、在庫分析にログ記録されていたタグ識別子を関連付けていたタグ402からの帰還信号を無視する又はオフにすることができる。在庫分析中に応答するタグ402の数を制限するために、帰還信号を放出するようにアドレス指定されたコマンドを、対象の特定のタグ402に送信することができる。応答する又は応答しないようにタグをデインターリーブ及び/又はアドレス指定することは、本明細書で説明する他の機能に関連して使用することができる。
一実施形態では、物体404に関連付けられたタグ402からの帰還信号を使用して、すべての物体404、特定のカテゴリーの物体404、又は単一の特定の物体404の地理的位置を識別することができる。タグ402に照射して、それぞれ既知の位置を有する2つ以上の受信器408で帰還信号を受信することにより、タグ402及びその関連付けられた物体404の位置を判定することができる。同じタグ402からの2つ以上の帰還信号に対して、到着時間の差、又は受信した電力の差(例えば、電圧定在波比(voltage standing wave ratio)又はVSWR)を使用して、タグ402の位置を三角測量することができる。この分析は、複数のタグ402から受信した帰還信号に対して、繰り返すことができる。また、デインターリーブ技術を適用して、位置が判定されているタグ402からの帰還信号を無視する又はオフにすることができる。また、位置分析中に応答するタグ402の数を制限するために、アドレス指定を使用して、どのタグ又は複数のタグ402が帰還信号を放出するか制御することができる。
位置判定技術(例えば、上述した三角測量技術)は、様々な機能に関連して使用することができる。例えば、場所424bの例示的な表現を参照して、特定のエリア内の物体404のバルク識別を行うことができる。例えば、購入のための品目が場所424bを出る前に通過する指定された問合せエリアとして機能する読取区域446が存在することができる。読取区域446内に配置されたタグ402からの帰還信号を分析することにより、専用の読取区域446内の物体404のすべてを検出することができる。したがって、物体の群を、読取区域446を通過させて、コンピュータシステム418によって一括して識別してログ記録することができる。次に、取引を完了して、品目を購入することができる。このバルク物体識別の手法は、搬入口を通過するすべての品目の識別、トラック又は鉄道車両が所定のエリアを通過する際のトラック又は鉄道車両上のすべての品目の識別などの、他の文脈で適用することができる。
別の例として、地理的位置を使用して、物体404の許可されていない移動(例えば、物体404の盗難)を検出することができる。一実施形態では、この検出は、物体404が存在してはいけない位置にあると判定される(例えば、物体404の位置が場所424の地理的エリアの外側にあると検出される)場合に、行うことができる。別の実施形態では、この検出は、物体が所定の点から、閾値距離を越えて、かつ許可されていない方向に移動する場合に、行うことができる。この技術は、例えば、ドアから離れて、かつ駐車場に向かって移動する物体を検出することができる。可能性がある許可されていない移動の検出が行われたら、この検出は、物体の購入、別の位置への物体のスケジュール設定された発送などの、移動に対するなんらかの正当な理由に対して、相互参照することができる。行われた検出に対する正当な理由が存在しない場合、セキュリティ処置をトリガすることができる。セキュリティ処置としては、管轄(例えば、場所424のマネージャ、又は警察)に警告すること、セキュリティカメラをオンにして物体が出たドア又は搬入口の周囲のエリアのビデオを録画すること、調査を開始することなどを挙げることができるが、これらに限定されない。
物体404の地理的位置を判定する別の実施形態では、物体404の位置の代用物として、関連付けられたタグの帰還信号が受信される受信器408の地理的位置を使用することができる。例えば、支払エリア440の受信器408がタグ402に関する帰還信号を検出する場合、関連付けられた物体404は、支払エリア440又はその付近に配置されていると仮定されることになる。1つより多くの受信器408がタグ402に関する帰還信号を検出する事象では、帰還信号に対する最高信号強度を検出する受信器408の位置を、関連付けられた物体の位置の代用物として使用することができる。いくつかの実施形態では、受信器408は、トラック、船、列車、又は他の車両に搭載された受信器408などの、可動式とすることができる。この場合、タグ402/物体404の地理的位置の代用物として機能する受信器408の地理的位置は、例えば、全地球測位システム(global positioning system)(GPS)技術を使用して判定することができる。
タグ(単数又は複数)402の地理的位置を判定するための上述した手法のいずれかは、地理的位置(例えば、二次元座標により表現されたような)に加えて、タグ(単数又は複数)402の高度の判定を含むことができる。また、いくつかの実施形態では、誘導表面波が場所424の特定のエリア内のタグ402のみを照射するように誘導表面波の向きを操作することにより(例えば、マルチビーム誘導表面波生成手法を使用して経時的に方向が変化する誘導表面波を出力することにより)、タグ402の位置の特定を改良することを可能にすることができる。
施設(例えば、倉庫、フルフィルメントセンター、小売店の保管エリアなど)内に物体を保管することは、典型的には、物体を所望されたときに容易に見つけることができるように、どこに物体を配置すべきかの詳細な計画立案を伴う。タグ402に照射してその地理的位置の特定をするための開示する技術を使用して、計画立案を軽減することができる。代わりに、物体404は、物体404を収容することになる任意の位置に配置することができる。この位置は、物体404に関連付けられたタグ(単数又は複数)402の地理的位置を判定するための上述した手法のうちの1つを使用して、配置の時点で判定することができる。この位置は、コンピュータシステム418によってデータベースに記憶して、後の時点での物体404の取得を促進するために使用することができる。あるいは、物体404は、位置に関する情報を判定又は記憶することなしに、好適な位置に配置することができる。物体を見つけることが所望されるとき、物体404に関連付けられたタグ(単数又は複数)402の地理的位置を判定するための上述した手法のうちの1つを使用して、物体404の位置を判定することができる。
一実施形態では、物体404に関連付けられたタグ402の地理的位置の位置判定を周期的に又は連続的に行うことにより、物体404の移動を追跡することができる。この方法での移動追跡は、在庫計画のために、盗難又は製品の減少に対して監視するために、及び様々な他の目的のために、使用することができる。一実施形態では、複数のタグ402の追跡は、追加の情報を提供することができる。例えば、人間が第1のタグ402に関連付けられ、物体404が第2のタグ402に関連付けられ、これらのタグが共に移動することが見出される場合、人間が物体を移動している、又は物体の移動に関連付けられている(例えば、両方が車両内にあり共に移動している)という判定を行うことができる。車両に関連付けられたタグ402、及び物体404に関連付けられたタグに対して、同じ分析を行うことができる。
タグ402は、多数の方法で、かつ様々な目的のために、人間に関連付けることができる。一実施形態では、人間に関連付けられたタグ402は、クレジットカードのフォームファクタに類似したタグ402、又は電子デバイス(例えば、携帯電話、又はそのケース)の一部であるタグ402などの、人間によって通常保持される物体の形態をとる、又はその物体に含めることができる。タグ402が人間に関連付けられると、タグ、したがって人間を識別することを、様々な目的のために使用することができる。例えば、人間に関連付けられたタグ402は、人間が購入することを意図する物体に関連付けられたタグ402の検出に関連して、支払エリア440で検出することができる。銀行口座、クレジットカード、又は他の支払手段が、購入する人間に関連付けられたタグ402に更に関連付けられている場合、購入する人間に関連付けられたタグ402に関連付けられた支払手段を使用して、取引を登録するコンピュータシステム418によって物体404に対する支払を行うことができる。
別の実施形態では、場所424の従業員は、タグ402を保持することを必要とすることができる。位置追跡及び/又は人間との物体404の関連を使用して、コンピュータシステム418によって様々な機能を実行することができる。例示的な機能としては、タスクの完了を追跡すること、業務の遂行を追跡すること、実働時間を追跡すること、及び従業員による物体404の盗難に対して監視することを挙げることができる。
[2(F).タグのマクロ照射]
前節は、典型的には1つの関係者によって管理された既知の場に対応する良好に画定された地理的エリア内のタグ402に照射するための誘導表面波の使用を説明した。
別の実施形態を、図25に関連して説明する。この実施形態では、誘導表面波を使用して、複数の場所424が存在することができるエリアにわたって、それぞれの関係者によって制御される複数の受信器408が存在するエリアにわたって、及び/又はタグ402が車両(例えば、トラック、自動車、航空機、列車、船など)により移動することができるエリアにわたって、タグ402に照射することができる。これらのエリアとしては、任意のエリア、商品が移動することを意図された経路、郵便番号、都市、群、州、若しくは地域、国、大陸、又は、規制境界、政府の境界、若しくは地理的境界に対応することができる、若しくは対応しなくてよい、プローブPの事業者によって判定されたエリアを挙げることができる。一実施形態では、誘導表面波を生成して、グローバルベースで(すなわち、世界中で)タグ402に照射することができる。意図されるエリアの一部のサイズに対するタグ402及び受信器408のサイズのため、個別のタグ402及び受信器408は、図を簡易にするために図25で示されていない。
プローブPは、一定の縮尺で描かれておらず、この惑星上のほとんどどこにでも配置することができることに留意して、図25に示す典型的な実施形態は、グローバルベースでタグ402に照射することができる誘導表面波を意図している。しかし、以下の説明の態様は、より小さな照射エリアにも該当する。
誘導表面波は、好ましくは、既知の固定された周波数(例えば、第1の周波数)を有する。1つ以上の追加のプローブPを使用して、第1の周波数の誘導表面波によってタグ402が照射されるエリアに重ね合わさる、少なくともあるエリア内のタグに照射する誘導表面波(単数又は複数)を生成することができる。他の誘導表面波(単数又は複数)は、第1の周波数とは異なる周波数を有することができ、他の誘導表面波(単数又は複数)でのタグ402の照射に関連して実行される機能は、第1の周波数の誘導表面波でのタグ402の照射に関連して実行される機能と同じである又は類似することができる。したがって、第1の周波数の単一の誘導表面波の文脈で、更に、第1の周波数に動作可能に適合した(例えば、第1の周波数の誘導表面波によって電力を供給され、かつ電源をオンされると帰還信号を放出することができる)タグ402の文脈で、相対的に広範なエリアにわたるタグ402の照射を説明する。他の周波数の誘導表面波及びそれらの他の周波数に適合したタグの動作は、第1の周波数の誘導表面波及び第1の周波数に適合したタグの動作と同じ方法で、かつその動作と平行して実行することができる。
一般的に、第1の周波数の誘導表面波によってタグ402に電力を供給することができるエリアが増大すると、第1の周波数は、減少することになる。
プローブPによって生成される第1の周波数の誘導表面波を使用してタグ402に電力を供給することに関心がある事業体は、第1の周波数に適合したタグ402を配置することができる。タグ402を配置することは、例えば、事業体が追跡して物体404の識別情報及び関連付けられたタグ識別子をコンピュータシステム418(一定の縮尺で示されない)の適切なデータベースにログ記録することを望むそれぞれの物体404に、適合したタグ402を物理的に関連付けることを含むことができる。タグ402及び物体404を物理的に関連付けることは、直接物体404に、物体404用の包装に、又は物体404と共に保持されるなんらかの他の品目(例えば、取扱説明書)に、タグ402を接着又は固定することを含むことができる。他の実施形態では、タグ402は、物体404の内部、又は物体404の一体部分とすることができる。
事業体はまた、誘導表面波がタグ402に照射することになるエリア内の戦略的位置に、受信器408を配置することができる。それ固有の受信器を配置することに加えて、又はその代わりに、事業体は、受信器を配置する別の関係者と協力することができる。他の関係者は、受信器によって検出される帰還信号内に存在する情報(例えば、タグ識別子)を事業体に提供することができる。情報の提供は、コンピュータシステム418を介することができ、データを処理して経路追跡などの様々な判定を行うことを含むことができる。帰還信号からの情報を処理する複数のコンピュータシステム418が存在することができることが更に理解されるであろう。例えば、第1の周波数の誘導表面波を使用して物体を識別することに関心があるそれぞれの事業体は、コンピュータシステム418又は複数のコンピュータシステム418を配置して、複数の場所に対して情報を処理することができる。
タグ402の広域照射は、従来のRFID技術で現在可能ではない、多数の物体識別及び追跡機能となるであろうことが意図されている。加えて、ローカルプローブP(例えば、図24の実施形態に関連して説明したような)を使用するときに実行される動作のいずれかはまた、図25に関連して説明したようなリモートプローブPを使用して実行することができる。
上述した動作と同様に、誘導表面波で照射されるタグ402は、識別子で応答することになる。識別子は、IPv6アドレス又は別の形式の識別子などの、タグ402をすべての他のタグ402と区別する一意の識別子とすることができる。第1の周波数の誘導表面波は、最大でこの惑星全体とすることができるカバーするエリアにわたって十分なエネルギ密度を有して、カバーするエリア内のすべてのタグ402を照射する。結果として、タグ402は、典型的には第1の周波数より高い第2の周波数で行われるその帰還信号を放出することにより、連続的に再放射することができる。帰還信号を連続的に再放射することは、帰還信号の放出の間の遅延なしに又はわずかな遅延で(例えば、一実施形態では最大5秒、別の実施形態では最大2秒、別の実施形態では最大1秒、又は別の実施形態では最大0.5秒)帰還信号を繰り返すことを含むことができる。いくつかの状況では、タグ402は、特定の時間に特定の周期性を有して、又は応答するためのコマンドに応じて、応答するようにプログラムすることができる。他の状況では、少なくとも指定された期間(例えば、多数のタグを正確に識別するためにデインターリーブ手法を用いる複数のタグの読取動作中)応答しないように、タグ402に命令することができる。
一実施形態では、タグ402が第1の周波数の誘導表面波によって照射されるエリア内にある限り、タグ402は、タグ402のライフサイクルの間、「常時」その識別子を放射する(例えば、それぞれの放射サイクルの間の遅延なしに又はほとんど遅延なしに何度も何度も識別子を繰り返し放射する)ことになる。そのように、タグ402の放出周波数(例えば、第2の周波数)上の帰還信号を検出するように構成された受信器408の機能する範囲内にタグ402がある限り、第1の周波数の誘導表面波によって照射されるエリア内のどこでもタグ402を追跡することができる。上述したように、タグ402の位置(例えば、経度及び緯度)及び高度は、例えば、三角測量を使用して、又は受信器の位置をタグの位置の代用物として使用することにより、判定することができる。
カバーするエリアが世界全体である例示的な実施形態では、それぞれの適合したタグ402は、タグ402が送信を停止するまで、いつでもこの惑星上のどこでも追跡することができる。タグ402は、無効化コマンドに応じて無効にすること、タグ回路414の故障、物理的に損傷すること、などにより、送信を停止することができる。グローバルの実施形態では、誘導表面波は、最大約35000フィートなどの相対的に高い高度でタグ402に照射するように機能することができる。そのようにして、受信器がタグ402からの応答信号を検出することができるならば、航空機によって搬送されるタグ402を追跡することができる。
受信器408は、タグ402の識別が所望される任意の位置に配置することができる。受信器408用の可能な位置の非包括的リストとしては、製造施設、農場、倉庫、商品に対するインターネットによる注文又は通信販売を処理するフルフィルメントセンター、売り場、レストラン、食料雑貨店、国の通関手続地、海港、空港、道路沿い、鉄道線路沿い、及び移動する車両(例えば、自動車、トラック、航空機、船、列車、フォークトラックなど)上が挙げられる。
受信器408の広範な配置により、タグ402に関連付けられた物体404のライフタイム追跡を可能にすることができる。収集される追跡情報の量は、例えば、タグ402に関連付けられた物体404の性質、対象のサプライチェーン、又は物体と関係を有する人間若しくは事業体の関心のレベルに依存し得る。例として、物体404は、中国の北京の工場での製造又は包装の時点でタグ402に関連付けて、その後、トラックに積載されて中国の天津の海港に運ばれるときに追跡することができる。次に、物体404は、貨物用コンテナに積載されるときに追跡され、貨物用コンテナが船に積載されるときに追跡される。物体404は、船による経路でLos Angeles,California,U.S.の海港まで更に追跡することができる。船からの貨物用コンテナの荷下ろし及びその後の列車への物体404の積載は、タグ402からの帰還信号の受信により海港で追跡することができる。物体404は、列車による移動中に追跡することができ、この列車は、物体をMemphis,Tennessee,U.S.に運ぶことができ、そこで、物体は列車から荷下ろしされて、Memphisのフルフィルメントセンター内の棚に搬送される。Boston,Massachusetts,U.S.の顧客からの物体に対する注文は、フルフィルメントセンターのオペレータによって受け取ることができる。その時点で、物体404は、棚から取り出して、発送箱に配置し、宅配運送業者のMemphisの仕分配送センターに搬送することができ、そこで、物体を含む箱は、最終的に航空機に積載される。それらの事象のすべてもまた、追跡することができる。物体は、航空機がBostonに移動する際に追跡することができる。その後、航空機からの物体の荷下ろし、宅配運送業者のBostonの仕分配送センターへの物体の搬送、配送トラックへの物体の積載、及び顧客の職場又は住居への最終配送などの事象が追跡される。その後、顧客は、休暇でParis,Franceに物体404と共に移動することができる。関連付けられたタグ402が物体から分離されていない、又は無効にされていないと仮定して、物体は、Parisへの移動中に、又はそこにいる間、再度検出することができる。
上述の物体のライフサイクル追跡の例は、典型的なサプライチェーンの状況を説明していることが理解されるであろう。誘導表面波に応答するタグ402を使用して追跡される物体は、多くの他の方法で商取引に入って通過することができるが、様々な目的のために更に追跡することができる。それらの目的としては、例えば、サプライチェーン管理、在庫管理、盗難の検出、ある位置での到着時間の推定などが挙げられる。
物体がどこにあったか及び/又は物体と相互作用した人間若しくは事業体に関する詳細な情報は、多数の文脈で使用することができる。例として、物体の供給業者、売り場(該当する場合)、及び支払方法(例えば、該当する場合、特定のクレジットカードを含む)と共に、物体の購入者の識別情報を判定することができる。この情報は、マーケティング機会を生成するように、購入者に関する他の情報と組合せて分析して、フォローアップサービス/製品の更新の目的又は他の理由のために、製品を保証のために自動的に登録することができる。
一実施形態では、開示する識別及び追跡技術を使用して、食品媒介の病気の発生源をたどることができる。この実施形態では、病気にかかった人間に面談して、それらの人々が何を食べたか、それらの品目をいつ食べたか、及びその人間への食品の供給源(例えば、食品が消費されたレストラン、又は食品が購入された食料雑貨店)を判定することができる。それぞれの病気にかかった人間に関する情報は、データベースに格納し、相互参照して、どの食品が病気を引き起こした可能性が最もあるかを判定することができる。場合により、この情報を単に相互参照することは、特に食品が国又は地域の広域にわたって流通している場合、病原体を含む食品を判定するのに十分でないことがある。食品内の物体に関連付けられたタグ402から収集された情報を使用して、どの食品が人々を病気にしているか、その食品がどこから来たか、及び流通チェーンのどこに他の潜在的に汚染した食品が現在配置されているかを発見するのに、サプライチェーンを役立てることができる。
この目的のために、タグ402は、食品チェーンの可能な限り早い食品に関連付けることができる。例えば、タグ402は、ピーナッツバターを製造している及び/又は瓶に充填している処理工場で、ピーナッツバターの瓶、又はピーナッツバターの複数の瓶の箱に関連付けることができる。農産物(例えば、フルーツ及び野菜)は、農産物を梱包する栽培者又は梱包施設で、タグ402に関連付ける(例えば、典型的には、いくつかの実施形態では中に農産物を入れて消費者に販売される配送用の容器又はクレートに農産物を配置することにより)ことができる。タグ402の位置は、上述したように追跡することができる。その後、食品媒介の病気の発生中に、疑わしい食品製品の群又はカテゴリー、病気にかかった人々の位置付近の末端流通パターンを有する食品製品、又はなんらかの他の方法で分類された食品製品から、病気にかかった人々と食品製品との間の対応を識別しようと、病気にかかった人間の情報を、位置追跡情報に対して相互参照することができる。この方法で、原因の食品製品の特定を、迅速に識別することができる。従来の分析が行われる場合より、原因の製品の特定を速く行うことができることが意図されている。
原因の食品製品が特定されたら、食品製品を回収することができる。追跡情報を下流及び上流の両方で使用して、製品回収及び他の是正措置を促進することができる。例えば、病原体が持ち込まれた場所を特定して、病原体を根絶することができる。また、汚染されている場合がある及び/又は回収を受ける食品ユニットの最後に検出された位置を特定することができる。それらの品目がまだ食料雑貨店又はレストランにある場合、食料雑貨店又はレストランに警告することができ、販売又は使用から食品を除去することができる。また、消費者によって購入された製品に対して、購入者とタグ付き物体との間の相関関係を立証する記録を使用して、品目の一部の特定の購入者を識別して、連絡することができる。いくつかの実施形態では、帰還信号を分析して、回収されるユニットの現在位置を識別することができ、レストラン、家庭、食料雑貨店、又は他の位置から、それらのユニットを回収する措置をとることができる。
別の例示的な用途は、サービス、又は製品のアップグレード若しくはリコールの予定である品目の追跡である。自動車に関する製品リコールの例示的な実施形態を説明するが、製品アップグレードの定常サービスを伴う状況に関する方法に対する改良は、更なる説明なしに明らかであろう。この実施形態では、プローブPは、自動車に関連付けられたタグPに照射する誘導表面波を放出する。受信器408は、道路、駐車場、私道、又は自動車が通ることができる他の位置に沿って配置される。自動車が受信器408のうちの1つを通ると、関連付けられたタグ402からの帰還信号は、受信器408によって受信されることになる。タグ識別子、又は車両識別番号(vehicle identification number)(VIN)などのタグ識別子に関連付けられた車両データは、メーカー及び型式ごとに、どの自動車が製品安全リコールに対処するための必要な作業を完了しているかを記憶するデータベースに対して、相互参照することができる。回収作業の完了に関するデータは、作業が実行されると、自動車販売業者及び他のサービス提供業者から入手することができる。車両は作業が完了していると判定される場合、追加の措置をとらなくてよい。車両は作業が完了していないと判定される場合、追加の措置をとることができる。例えば、誘導表面波内の符号化されたキャリヤメッセージを介して、タグ402にデータを送信することができる。データは、対処しなければならない製品リコールが存在するというメッセージを運転者に表示するために車両の電子機器と相互作用するように、タグ402に指示することができる。他の措置としては、電話、電子メール、テキスト、又はデータメッセージ、従来のメールなどにより、車両の所有者又は執行機関に連絡するように試みることを挙げることができる。
別の用途は、有料道路の使用に対して運転者又は車両の所有者に請求することができる。この例では、受信器408は、有料道路の入口及び出口に、又は有料道路に沿って配置することができる。受信器408を通る車両又は運転者に関連付けられたタグ402からの帰還信号が受信されると、コンピュータシステム418内で運転者又は車両に従前に関連付けられていた口座又はクレジットカードに対して、適切な請求を行うことができる。
別の実施形態では、タグ402からの帰還信号又は帰還信号の欠如を使用して、偽造商品を識別する、又は正当な商品を認証することができる。1つの例示的な手法では、それぞれの正当な物体は、一意の識別子を有するタグ402に関連付けられる。様々な時間に、正当な商品に関連付けられていることが既知であるタグ識別子のデータベースに対して、タグ識別子を検査することができる。商品が検査される例示的な時間としては、税関の管理検問所を通過する時点、及び商品の所有又は権利が関係者間で移転された(例えば、製造業者から輸入業者に、輸入業者から卸売業者に、卸売業者から店主に、店主から消費者に)時を挙げることができる。受信したタグ識別子と既知の正当なタグ識別子のデータベースとの間に合致が存在する場合、商品は、税関機関を通過する、又は受領者によって受け入れることができる。合致が存在しない又はタグ402が存在しない場合、税関機関は、商品を押収して、調査を実行することができる、又は受領者は、商品を拒否することができる。
上述の例から明らかなように、様々な物体404に関して収集された追跡及びデータの量は、物体404の関心度及び物体404を追跡する理由に依存することになる。物体404の追跡を越えて、関連付けられたタグ402は、追加の目的のために使用することができる。例を提供する。これらの例では、データを、タグ402に伝送することができる、又は、照会若しくはコマンドを、タグ402に送信することができる。これらの状況では、データ、照会、又はコマンドは、タグ402と受信器404との間の通信リンクにより送信することができる、又はタグ402にアドレス指定されて、誘導表面波の一部を形成するメッセージ内に符号化することができる(例えば、符号化キャリヤメッセージとして)。
一実施形態では、タグ識別子に加えてデータを、タグ402によって記憶することができる。記憶されたデータ、又は記憶されたデータの選択された要素は、自動式の帰還信号の一部として送信することができる。他の状況では、記憶されたデータ、又は記憶されたデータの選択された要素は、照会又はコマンドに応答する信号内で送信することができる。タグ402によって記憶された情報は、動作機能をサポートするために適切であるように、経時的に変更することができる。記憶されたデータ要素としては、タグ402の存在が以前に判定された位置(例えば、位置履歴記録)、タグ402からの帰還信号を受信した受信器408の識別子、タグ402に関連付けられた物体404の製造業者、輸入業者、卸売業者、若しくは所有者の識別情報又は位置、製造の時間及び日付、包装又は他の処理、タグ402を有する1つ以上の追加の物体404の関連、通関手続データ、位置、時間及び日付、並びに/又は通関手続地を通過すること、製造、購入、購入量などの特定の事象に関連した他の詳細、製品の有効期限、バージョン番号又は値、製品機能、より多くの製品情報、保証情報、法定期限、若しくは知的財産範囲情報が入手可能なウェブサイト又は他のデータ、製品サポートを得ること又は付属品若しくは交換部品を注文することに関する情報などを挙げることができるが、これらに限定されない。
各種実施形態では、誘導表面波は、大きな地理的エリアにわたってタグ402を照射するように、長期間にわたって存在することになる。なんらかの時点で、特定の製品に対する帰還信号の値は、1つ以上の関係者に対してもはや関心がなくなることがある。例えば、物体404の購入者は、プライバシーに対する懸念のため、物体のタグ402に帰還信号を送信させることを望まないことがある。別の例として、食品が消費された後で、食品の包装に関連付けられたタグ402は、ほとんど価値がない。これらの状況では、タグを再生利用すること、タグを破壊すること、タグの帰還信号機能をオフにすること、追跡データシステム(例えば、コンピュータシステム418)に連絡してタグの更なる追跡をオプトアウトすること、又はタグ、受信器若しくはコンピュータシステムの動作を変更する他の措置を可能にすることができる。
一実施形態では、タグ402は、1つより多くの周波数の誘導表面波に応答することができる。例えば、タグ402は、図25に関連して説明したような第1のプローブによって生成され広範なエリアをカバーする第1の周波数の誘導表面波が存在する場合、第1の帰還信号を放出することができ、図24に関連して説明したような第2のプローブによって生成されローカルエリア(例えば、特定の場所に対応するエリア)をカバーする第2の周波数の誘導表面波が存在する場合、第2の帰還信号を放出することができる。第1の周波数の広域誘導表面波に応答する帰還信号は、第2の周波数のローカルエリア誘導表面波の帰還信号の周波数とは異なる周波数のものとすることができる。この方法では、帰還信号を、区別する、及び/又は異なる受信器408によって受信することができる。
[2(G).コンピュータシステム]
各種実施形態におけるコンピュータシステムは、パーソナルコンピュータ、サーバ、又は分散システム(例えば、「クラウド」コンピューティング環境)などの、任意の適切なシステムとすることができる。図26を追加して参照して、受信器408と通信で結合された例示的なコンピュータシステム418を示す。適切な場合、コンピュータシステム418は、複数の受信器408と通信することができる。該当する場合、コンピュータシステム418は、1つ以上のプローブPとの動作可能な通信を有して、プローブ300が誘導表面波を生成するときに誘導表面波の特性を制御し、誘導表面波内に1つ以上のタグ402への送信用のデータ又はコマンドを含めるようにプローブ300を制御することができる。
コンピュータシステム418は、受信器408、プローブP、及びタグ402と共に、本開示で説明する技術を実行することができる。示したように、コンピュータシステム418は、任意の適切な通信媒体420を介して受信器408と通信する。本明細書で説明する動作を実行することに加えて、コンピュータシステム418は、物体404とのタグ402の論理結合を管理する、中央登録システム又はなんらかの他の形態の管理プラットフォームとすることができる。
コンピュータシステム418は、実行されると本明細書で説明するコンピュータシステム418の機能を実行するタグ管理機能448を含む、コンピュータアプリケーション(例えば、ソフトウェアプログラム)を実行することができるコンピュータベースのシステムとして実装することができる。タグ管理機能448及びデータベース450は、メモリ452などの非一次的コンピュータ可読媒体上に記憶することができる。データベース450を使用して、本開示で説明した機能を実行するために使用される様々な情報セットを記憶することができる。メモリ452は、磁気記憶装置、光学記憶装置、又は電子記憶装置(例えば、ハードディスク、光ディスク、フラッシュメモリなど)とすることができ、揮発性及び不揮発性メモリ構成要素を含む、いくつかのデバイスを含むことができる。したがって、メモリ452は、例えば、システムメモリとして機能するためのランダムアクセスメモリ(random access memory)(RAM)、読出し専用メモリ(read-only memory)(ROM)、ソリッドステートドライブ、ハードディスク、光ディスク(例えば、CD及びDVD)、テープ、フラッシュデバイス及び/又は他のメモリ構成要素、並びにこれらのメモリデバイス用の関連付けられたドライブ、プレーヤ、及び/又は読取装置を含むことができる。
論理動作を実行するために、コンピュータシステム418は、論理ルーチンを実行する命令を実行するために使用される、1つ以上のプロセッサ454を含むことができる。プロセッサ454及びメモリ452は、ローカルインターフェース456を使用して結合することができる。ローカルインターフェース456は、例えば、付随する制御バスを有するデータバス、ネットワーク、又は他のサブシステムとすることができる。
コンピュータシステム418は、様々な周辺機器に動作可能に接続するための、様々な入力/出力(input/output)(I/O)インターフェースを有することができる。コンピュータシステム418はまた、1つ以上の通信インターフェース458を有することができる。通信インターフェース458は、例えば、モデム及び/又はネットワークインターフェースカードを含むことができる。通信インターフェース458は、コンピュータシステム418が、通信媒体420を介して他のコンピューティングデバイス、受信器408、及びプローブPとの間でデータ信号を送受信できるようにすることができる。具体的には、通信インターフェース458は、コンピュータシステム418を通信媒体420に動作可能に接続することができる。
受信器408は、タグ402からの帰還信号を受信するための無線回路460、及び通信媒体420を介して他のデバイスとの動作可能な通信を確立するための通信インターフェース462などの通信回路を含む。無線回路460は、1つ以上アンテナ及び無線受信器(又は、受信器408がデータ若しくはコマンドをタグ402に送信する場合には、送受信器)を含むことができる。
受信器408の全部の機能は、例えば、論理命令を実行する処理装置を含む制御回路464によって制御することができる。受信器408はまた、データ、及び実行可能なコードの形態の論理命令を記憶する、メモリ466を含むことができる。メモリ466は、バッファ、フラッシュメモリ、ハードドライブ、リムーバブルメディア、揮発性メモリ、不揮発性メモリ、ランダムアクセスメモリ(RAM)、又は他の好適なデバイスのうちの1つ以上などの、非一次的コンピュータ可読媒体とすることができる。典型的な構成では、メモリ466は、長期のデータ記憶用の不揮発性メモリ、及び制御回路464用のシステムメモリとして機能する揮発性メモリを含む。受信器408は、ディスプレイ、スピーカ、マイクロフォン、ユーザインターフェース(例えば、キーパッド及び/又はタッチ感知入力)、動きセンサ、位置判定要素(例えば、GPS受信器)などだが、これらに限定されない、任意の他の適切な構成要素を含むことができる。
<3.結論>
一実施形態に関して説明及び/又は例示した特徴は、1つ以上の他の実施形態と同じ方法若しくは同様な方法で、かつ/又は他の実施形態の特徴と組合せて若しくは代わりに使用することができる。したがって、任意の1つの開示した特徴は、任意の他の特徴と組合せ可能又は交換可能とすることができる。
更に、特定の実施形態を図示して説明してきたが、本明細書を読んで理解することで、添付の特許請求の範囲内である等価物及び改良版が当業者によって行われるであろうことが理解される。

Claims (28)

  1. 物体識別システム(400)であって、
    それぞれのタグが物体(404)に関連付けられた物体識別タグ(402)が動作するための電力を得る誘導表面波を生成する誘導表面導波プローブ(P)と、
    前記物体のライフサイクルの間に前記タグが前記関連付けられた物体と共に移動するときに、前記タグのうちの1つ以上からの帰還信号を受信するように戦略的位置に配置された複数の受信器(408)と、
    を備えることを特徴とするシステム。
  2. 前記誘導表面導波プローブはテレストリアル媒体(203、410)の上方にある帯電端子を含み、前記帯電端子は少なくとも1つの結果として生じる電界を発生させるように構成され、前記少なくとも1つの結果として生じる電界は、前記テレストリアル媒体の複素ブルースター入射角(θi,B)で入射する波面を合成することを特徴とする請求項1に記載のシステム。
  3. 前記誘導表面波は、タグに電力を供給するために十分なエネルギが存在する照射エリア(426)を有し、前記照射エリアのサイズは、前記タグが前記物体の前記ライフサイクルの少なくとも一部の間存在することが予期される領域に対応することを特徴とする請求項1又は2に記載のシステム。
  4. 前記誘導表面波は、世界的ベースでタグの動作に電力を供給するように構成された、請求項1又は2に記載のシステム。
  5. 前記受信器は、商取引において移動する物体を追跡するように製品供給経路に沿って配置されることを特徴とする請求項1乃至4のいずれか一項に記載のシステム。
  6. 前記システムは、前記受信器による前記タグからの前記帰還信号の検出に関連付けられたデータをデータベース(450)にログ記録するコンピュータシステム(418)を更に備えることを特徴とする請求項5に記載のシステム。
  7. 前記システムは、前記受信器によって受信された前記タグからの帰還信号に従って前記タグの地理的位置を識別する、コンピュータシステムを更に備えることを特徴とする請求項1乃至6のいずれか一項に記載のシステム。
  8. 少なくとも1つのタグに対する地理的位置は、2つの受信器で受信された対応する帰還信号を使用して三角測量により判定されることを特徴とする請求項7に記載のシステム。
  9. タグからの帰還信号を受信する少なくとも1つの受信器の地理的位置は、前記タグの位置の代用物として機能することを特徴とする請求項7に記載のシステム。
  10. 前記物体識別タグが動作するための電力を得るための十分なエネルギ密度が存在する前記誘導表面波に対する照射エリアの形状は、方向の関数として変化するように前記誘導表面波を生成することにより制御されることを特徴とする請求項1乃至9のいずれか一項に記載のシステム。
  11. 前記タグは、アドレス指定可能であり、前記誘導表面波は、前記タグのうちの少なくとも1つに対してアドレス指定されたメッセージを含むことを特徴とする請求項1乃至10のいずれか一項に記載のシステム。
  12. 前記タグは、アドレス指定可能であり、前記受信器は、前記タグのうちの少なくとも1つに対してアドレス指定されたメッセージを送信するように構成されることを特徴とする請求項1乃至11のいずれか一項に記載のシステム。
  13. 前記メッセージは、アドレス指定されたタグによって記憶されたデータに対する照会であることを特徴とする請求項11又は12に記載のシステム。
  14. 前記メッセージは、アドレス指定されたタグによって記憶されることになるデータを含むことを特徴とする請求項11又は12に記載のシステム。
  15. 前記データは、前記アドレス指定されたタグの履歴に関連付けられた少なくとも1つの事象に対応することを特徴とする請求項14に記載のシステム。
  16. 前記データは、前記アドレス指定されたタグの少なくとも1つの検出された位置に対応することを特徴とする請求項14に記載のシステム。
  17. 前記メッセージは、アドレス指定されたタグが少なくとも一定期間、帰還信号を送信しないようにするコマンドであることを特徴とする請求項11又は12に記載のシステム。
  18. 前記誘導表面波は、第1の周波数で前記タグを照射し、前記タグの少なくとも第1のセットは、前記第1の周波数とは異なる第2の公称周波数で帰還信号を放出することを特徴とする請求項1乃至17のいずれか一項に記載のシステム。
  19. 前記タグの少なくとも第2のセットは、前記第1及び第2の周波数とは異なる第3の公称周波数で帰還信号を放出することを特徴とする請求項18に記載のシステム。
  20. 前記プローブは、別の誘導表面波が存在する環境で動作し、前記別の誘導表面波は、前記第1の周波数とは異なる公称周波数を有し、タグの前記第1のセットは、前記別の誘導表面波の前記周波数に応答しないことを特徴とする請求項18に記載のシステム。
  21. 前記誘導表面波の前記生成は、一定期間にわたって連続的であることを特徴とする請求項1乃至20のいずれか一項に記載のシステム。
  22. 前記一定期間の間、それぞれのタグは、それぞれの帰還信号のインスタンスの間の遅延なしに、又はわずかな遅延で、前記帰還信号の放出を繰り返すことを特徴とする請求項21に記載のシステム。
  23. 前記システムは、コンピュータシステム(418)を更に備え、前記コンピュータシステムは、前記受信器によって受信された前記タグからの帰還信号に従って前記タグに関連する事象を追跡してデータベースにログ記録することを特徴とする請求項1乃至22のいずれか一項に記載のシステム。
  24. 前記事象は、物体とのタグの関連付け、前記物体の製造、前記物体の移動、所定の位置での前記物体の出発若しくは到着、又は前記物体の販売若しくは所有の移転のうちの1つ以上に対応することを特徴とする請求項23に記載のシステム。
  25. 前記受信器のうちの1つ以上は、固定された地理的位置を有することを特徴とする請求項1乃至24のいずれか一項に記載のシステム。
  26. 前記地理的位置は、場所の出入口、場所の支払エリア、場所の受入口若しくは発送口、又は通関手続地のうちの1つ以上から選択されることを特徴とする請求項25に記載のシステム 。
  27. 前記受信器のうちの1つ以上は、1つ以上の物体を搬送するように構成された車両と共に、前記搬送される物体のライフサイクルの一部分の間に移動することを特徴とする請求項1乃至26のいずれか一項に記載のシステム。
  28. 前記システムは、経時的に前記タグを追跡するコンピュータシステム(418)を更に備え、前記コンピュータシステムは、前記物体のうちの1つ以上に関連付けられた人間が、前記物体のうちの前記1つ以上に関連付けられた前記タグの更なる追跡をオプトアウトすることができるように構成されることを特徴とする請求項1乃至27のいずれか一項に記載のシステム。
JP2018513418A 2015-09-09 2016-08-26 物体識別システム及び方法 Pending JP2018535467A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/849,208 2015-09-09
US14/849,208 US9973037B1 (en) 2015-09-09 2015-09-09 Object identification system and method
PCT/US2016/048822 WO2017044323A1 (en) 2015-09-09 2016-08-26 Object identification system and method

Publications (2)

Publication Number Publication Date
JP2018535467A true JP2018535467A (ja) 2018-11-29
JP2018535467A5 JP2018535467A5 (ja) 2019-09-26

Family

ID=56985664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018513418A Pending JP2018535467A (ja) 2015-09-09 2016-08-26 物体識別システム及び方法

Country Status (14)

Country Link
US (1) US9973037B1 (ja)
EP (1) EP3320366B1 (ja)
JP (1) JP2018535467A (ja)
KR (1) KR20180052626A (ja)
CN (1) CN108027429A (ja)
AU (1) AU2016318430A1 (ja)
CA (1) CA2996054C (ja)
EA (1) EA201890659A1 (ja)
HK (1) HK1251662A1 (ja)
IL (1) IL257919A (ja)
MX (1) MX2018002949A (ja)
TW (1) TW201714347A (ja)
WO (1) WO2017044323A1 (ja)
ZA (1) ZA201800799B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102417610B1 (ko) * 2016-03-03 2022-07-07 삼성전자주식회사 근거리 초고주파 레이더를 이용한 코드 판독 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202713A (ja) * 2004-01-16 2005-07-28 Hitachi Ltd 来客管理システムおよびその方法
JP2008099235A (ja) * 2006-09-11 2008-04-24 Sony Corp 通信システム及び通信装置
US20140252865A1 (en) * 2013-03-07 2014-09-11 Cpg Technologies, Llc Excitation and use of guided surface wave modes on lossy media
WO2014137817A1 (en) * 2013-03-07 2014-09-12 Cpg Technologies, Llc. Excitation and use of guided surface wave modes on lossy media

Family Cites Families (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123767A (en) 1964-03-03 Uator
GB189620981A (en) 1896-09-22 1896-11-21 Nikola Tesla Improvements relating to the Production, Regulation, and Utilization of Electric Currents of High Frequency, and to Apparatus therefor.
US645576A (en) 1897-09-02 1900-03-20 Nikola Tesla System of transmission of electrical energy.
GB189824421A (en) 1898-11-19 1899-03-04 George Frederick Baker An Improved Curtain Rod.
US685955A (en) 1899-06-24 1901-11-05 Nikola Tesla Apparatus for utilizing effects transmitted from a distance to a receiving device through natural media.
US685953A (en) 1899-06-24 1901-11-05 Nikola Tesla Method of intensifying and utilizing effects transmitted through natural media.
US685956A (en) 1899-08-01 1901-11-05 Nikola Tesla Apparatus for utilizing effects transmitted through natural media.
US685954A (en) 1899-08-01 1901-11-05 Nikola Tesla Method of utilizing effects transmitted through natural media.
US685012A (en) 1900-03-21 1901-10-22 Nikola Tesla Means for increasing the intensity of electrical oscillations.
US787412A (en) 1900-05-16 1905-04-18 Nikola Tesla Art of transmitting electrical energy through the natural mediums.
US725605A (en) 1900-07-16 1903-04-14 Nikola Tesla System of signaling.
GB190111293A (en) 1901-06-01 1901-11-02 Nikola Tesla Improvements relating to the Utilization of Electromagnetic, Light, or other like Radiations Effects or Disturbances transmitted through the Natural Media and to Apparatus therefor.
GB190113563A (en) 1901-07-03 1901-11-09 Nikola Tesla Improvements in, and relating to, the Transmission of Electrical Energy.
GB190214579A (en) 1902-06-30 1902-12-18 Joseph William Cunningham Improvements in Mills for Grinding Grain
GB190508200A (en) 1905-04-17 1906-04-17 Nikola Tesla Improvements relating to the Transmission of Electrical Energy.
US851336A (en) 1905-06-27 1907-04-23 Georg Von Arco Transmitter for wireless telegraphy.
US1119732A (en) 1907-05-04 1914-12-01 Nikola Tesla Apparatus for transmitting electrical energy.
US1452849A (en) 1921-12-13 1923-04-24 Rca Corp Wireless transmitting station
US1691338A (en) 1923-10-05 1928-11-13 Westinghouse Electric & Mfg Co Aerial system
US1652516A (en) 1924-12-23 1927-12-13 Westinghouse Electric & Mfg Co Radio transmitting system
US1947256A (en) 1930-01-11 1934-02-13 Bell Telephone Labor Inc Antenna counterpoise system
BE554252A (ja) 1950-03-21
US2921277A (en) 1956-07-13 1960-01-12 Surface Conduction Inc Launching and receiving of surface waves
US3219954A (en) 1957-05-31 1965-11-23 Giovanni P Rutelli Surface wave transmission system for telecommunication and power transmission
FR1604503A (ja) 1960-05-31 1971-11-29
US3445844A (en) 1968-01-11 1969-05-20 Raytheon Co Trapped electromagnetic radiation communications system
US3742511A (en) 1971-06-15 1973-06-26 Smith Electronics Inc Low-loss antenna system with counterpoise insulated from earth
US3742509A (en) 1971-11-11 1973-06-26 Raytheon Co Subsurface traveling wave antenna
GB1471860A (en) 1974-07-02 1977-04-27 Plessey Co Ltd Radio antenna incorporating low-loss high relative permittivity dielectric material
US4808950A (en) 1986-10-06 1989-02-28 Sanders Associates, Inc. Electromagnetic dispersive delay line
GB8802204D0 (en) 1988-02-02 1988-03-02 Hately M C Twin feeder crossed field antenna systems
IL89468A (en) 1989-03-03 1994-08-26 Gamzon Eliyahu Method and system for supporting an airborne vehicle in space
US5293308A (en) 1991-03-26 1994-03-08 Auckland Uniservices Limited Inductive power distribution system
US5301096A (en) 1991-09-27 1994-04-05 Electric Power Research Institute Submersible contactless power delivery system
KR100265468B1 (ko) 1992-01-03 2000-09-15 칼 하인쯔 호르닝어 수동 표면파 센서
DE69313631T2 (de) 1992-05-08 1998-02-05 Uniline Ltd Verfahren und gerät zur übertragung von elektrischer leistung über eine einzige leitung
US6075498A (en) 1993-01-08 2000-06-13 American Nucleonics Corp. Surface wave directional detection system and method
JPH06225481A (ja) 1993-01-21 1994-08-12 Takeo Oe 水中電気機器用の無線方式電力供給装置
GB2288914A (en) 1994-04-26 1995-11-01 Maurice Clifford Hately Radio antenna
US5835067A (en) 1994-04-28 1998-11-10 Goodman; Edward A. Short vertical 160 meter band antenna
US5920261A (en) 1996-12-31 1999-07-06 Design Vision Inc. Methods and apparatus for tracking and displaying objects
PT929926E (pt) 1997-08-08 2007-03-30 Jurgen G Meins Processo e aparelho para fornecer energia sem contacto
GB9718311D0 (en) 1997-08-30 1997-11-05 Hately Maurice C Dual loop radio antenna
DE19911369C2 (de) 1999-03-15 2003-04-03 Nanotron Ges Fuer Mikrotechnik Oberflächen-Wellen-Wandler-Einrichtung sowie Identifikationssystem hiermit
RU2143775C1 (ru) 1999-03-25 1999-12-27 Стребков Дмитрий Семенович Способ и устройство для передачи электрической энергии
RU2161850C1 (ru) 1999-07-14 2001-01-10 Стребков Дмитрий Семенович Способ и устройство передачи электрической энергии
WO2001037215A1 (de) 1999-11-18 2001-05-25 Siemens Aktiengesellschaft Mobiler datenträger mit einem transponder aus einem oberflächenwellenbauelement mit schlitzantenne
US6864849B2 (en) 2000-05-23 2005-03-08 Robert T. Hart Method and apparatus for creating an EH antenna
US6486846B1 (en) 2000-05-23 2002-11-26 Robert T. Hart E H antenna
RU2183376C2 (ru) 2000-07-03 2002-06-10 Стребков Дмитрий Семенович Способ и устройство для передачи электрической энергии (варианты)
JP2002071798A (ja) 2000-09-01 2002-03-12 Hitachi Kokusai Electric Inc 物体探知システム
AU2003217075A1 (en) 2002-04-13 2003-11-03 Maurice Clifford Hately Crossed-field radio antenna
RU2255406C2 (ru) 2003-02-21 2005-06-27 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Способ и устройство для передачи электрической энергии
US7068234B2 (en) 2003-05-12 2006-06-27 Hrl Laboratories, Llc Meta-element antenna and array
US6956535B2 (en) 2003-06-30 2005-10-18 Hart Robert T Coaxial inductor and dipole EH antenna
US7280033B2 (en) 2003-10-15 2007-10-09 Current Technologies, Llc Surface wave power line communications system and method
WO2006002247A2 (en) 2004-06-18 2006-01-05 Symbol Technologies, Inc. Method, system, and apparatus for a radio frequency identification (rfid) waveguide for reading items in a stack
RU2273939C1 (ru) 2004-12-01 2006-04-10 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Способ и устройство для передачи электрической энергии
KR101225519B1 (ko) 2004-12-13 2013-01-24 인테스트 코포레이션 반사가 감소된 신호 모듈
FI118193B (fi) 2005-07-04 2007-08-15 Pentti Lajunen Mittausjärjestelmä, mittausmenetelmä ja antennin uusi käyttö
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
CN101258658B (zh) 2005-07-12 2012-11-14 麻省理工学院 无线非辐射能量传递
US7307589B1 (en) 2005-12-29 2007-12-11 Hrl Laboratories, Llc Large-scale adaptive surface sensor arrays
RU2310964C1 (ru) 2006-02-10 2007-11-20 Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Способ и устройство для передачи электрической энергии
JP4278061B2 (ja) 2006-03-06 2009-06-10 国立大学法人京都大学 建物内無線電力伝送システム
US7782264B1 (en) 2006-03-28 2010-08-24 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations Systems and methods for providing distributed load monopole antenna systems
WO2007146164A2 (en) 2006-06-14 2007-12-21 Powercast Corporation Wireless power transmission
RU2341860C2 (ru) 2006-07-04 2008-12-20 Виктор Иванович Петрик Способ и устройство для передачи электрической энергии (варианты)
JP4893483B2 (ja) 2006-09-11 2012-03-07 ソニー株式会社 通信システム
US20080129453A1 (en) 2006-11-30 2008-06-05 Symbol Technologies, Inc. Method, system, and apparatus for a radio frequency identification (RFID) waveguide for reading items in a stack
EP1965223B1 (en) 2007-03-02 2013-12-18 Saab Ab Subsurface Imaging radar
RU2340064C1 (ru) 2007-03-29 2008-11-27 Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Способ и устройство для передачи электрической энергии (варианты)
RU2342761C1 (ru) 2007-09-07 2008-12-27 Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Способ и устройство для передачи электрической энергии (варианты)
US8890472B2 (en) 2007-09-26 2014-11-18 Alex Mashinsky Self-charging electric vehicles and aircraft, and wireless energy distribution system
WO2013093922A2 (en) 2011-12-21 2013-06-27 Powermat Technologies Ltd. System and method for providing wireless power transfer functionality to an electrical device
US8350769B1 (en) 2008-03-20 2013-01-08 United States Of America As Represented By Secretary Of The Navy Frequency agile electrically small tactical AM broadcast band antenna system
DE102008018003A1 (de) 2008-04-09 2009-10-22 Siemens Enterprise Communications Gmbh & Co. Kg Verfahren zum Austausch von Daten zwischen einem Mobiltefelon und einem Festnetztelefon
RU2366057C1 (ru) 2008-04-25 2009-08-27 Российская Академия сельскохозяйственных наук Государственное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Способ и устройство передачи электроэнергии
CN102099958B (zh) 2008-05-14 2013-12-25 麻省理工学院 包括干涉增强的无线能量传输
RU2366058C1 (ru) 2008-05-16 2009-08-27 Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Способ и устройство для передачи электроэнергии
US8620287B2 (en) 2008-06-06 2013-12-31 Ws Packaging Group, Inc. Food tracking system with mobile phone uplink
WO2010020813A1 (en) 2008-08-20 2010-02-25 Bae Systems Plc High frequency surfacewave radar
WO2010024895A1 (en) 2008-08-25 2010-03-04 Governing Dynamics, Llc Wireless energy transfer system
JP4911148B2 (ja) 2008-09-02 2012-04-04 ソニー株式会社 非接触給電装置
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8299936B2 (en) 2008-12-18 2012-10-30 Bae Systems Information And Electronic Systems Integration Inc. Method and apparatus for establishing low frequency/ultra low frequency and very low frequency communications
US9130394B2 (en) 2009-02-05 2015-09-08 Qualcomm Incorporated Wireless power for charging devices
JP4752931B2 (ja) 2009-02-18 2011-08-17 ブラザー工業株式会社 無線タグ通信装置
US8803474B2 (en) 2009-03-25 2014-08-12 Qualcomm Incorporated Optimization of wireless power devices
US8237313B2 (en) 2009-04-08 2012-08-07 John Ruocco Method and apparatus for wireless transmission and reception of electric power
WO2010129369A2 (en) 2009-04-28 2010-11-11 Mojo Mobility, Inc. System and methods for inductive charging, and improvements and uses thereof
WO2010127685A1 (en) 2009-05-07 2010-11-11 Telecom Italia S.P.A. System for transferring energy wirelessly
US8274178B2 (en) 2009-06-21 2012-09-25 Christopher Allen Tucker System of transmission of wireless energy
US8587490B2 (en) 2009-07-27 2013-11-19 New Jersey Institute Of Technology Localized wave generation via model decomposition of a pulse by a wave launcher
CN102013736B (zh) 2009-09-03 2013-10-16 Tdk株式会社 无线馈电装置和无线电力传输系统
RU2409883C1 (ru) 2009-09-11 2011-01-20 Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Способ и устройство для передачи электрической энергии
US8541974B2 (en) 2009-09-17 2013-09-24 Qualcomm Incorporated Movable magnetically resonant antenna for wireless charging
US20110133565A1 (en) 2009-12-03 2011-06-09 Koon Hoo Teo Wireless Energy Transfer with Negative Index Material
US9461505B2 (en) 2009-12-03 2016-10-04 Mitsubishi Electric Research Laboratories, Inc. Wireless energy transfer with negative index material
RU2473160C2 (ru) 2009-12-04 2013-01-20 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Способ и устройство для передачи электрической энергии
US8384247B2 (en) 2010-01-13 2013-02-26 Mitsubishi Electric Research Laboratories, Inc. Wireless energy transfer to moving devices
US8159385B2 (en) 2010-02-04 2012-04-17 Sensis Corporation Conductive line communication apparatus and conductive line radar system and method
CA2789479C (en) 2010-02-09 2016-06-21 Meps Real-Time, Inc. Self-contained rfid-enabled drawer module
RU2423772C1 (ru) 2010-03-23 2011-07-10 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Способ и устройство передачи электрической энергии (варианты)
RU2459340C2 (ru) 2010-09-21 2012-08-20 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Способ и устройство для передачи электрической энергии
RU2474031C2 (ru) 2010-09-22 2013-01-27 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Способ и устройство для передачи электрической энергии (варианты)
JP2012147351A (ja) 2011-01-14 2012-08-02 Sony Corp 信号伝送装置、電子機器、及び、信号伝送方法
WO2012112091A1 (en) 2011-02-17 2012-08-23 Telefonaktiebolaget L M Ericsson (Publ) System, servers, methods and computer programs for machine-to-machine equipment management
JP5058350B1 (ja) 2011-03-30 2012-10-24 株式会社東芝 送電装置及び電力伝送システム
US9030421B2 (en) 2011-04-01 2015-05-12 Qualcomm Incorporated Touchscreen controller with adjustable parameters
US20130049674A1 (en) 2011-08-24 2013-02-28 Qualcomm Incorporated Integrated photo voltaic solar plant and electric vehicle charging station and method of operation
CN102982424B (zh) * 2011-09-02 2017-04-26 深圳光启智能光子技术有限公司 基于物联网的物品进出管理系统
GB2494435B (en) 2011-09-08 2018-10-03 Roke Manor Res Limited Apparatus for the transmission of electromagnetic waves
US8941448B2 (en) 2011-10-13 2015-01-27 Mediatek Singapore Pte. Ltd. M-way coupler
US9264108B2 (en) 2011-10-21 2016-02-16 Qualcomm Incorporated Wireless power carrier-synchronous communication
RU2488207C1 (ru) 2011-11-17 2013-07-20 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Способ и устройство для передачи электрической энергии
RU2488208C1 (ru) 2011-12-22 2013-07-20 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Способ и устройство для передачи электрической энергии
US9156364B2 (en) 2012-02-14 2015-10-13 Ut-Battelle, Llc Wireless power charging using point of load controlled high frequency power converters
US8976022B2 (en) 2012-04-13 2015-03-10 Khalid Hamad Motleb ALNAFISAH Mobile tracking identification system, method, and computer program product
US20150280444A1 (en) 2012-05-21 2015-10-01 University Of Washington Through Its Center For Commercialization Wireless power delivery in dynamic environments
US9419476B2 (en) 2012-07-10 2016-08-16 Farrokh Mohamadi Flat panel, stationary or mobile, spatially beam-formed wireless energy delivery system
US8573495B1 (en) 2012-07-30 2013-11-05 Tai-Hwa Liu Radio frequency identification electronic device with enhancing surface wave-guide effect
GB201215152D0 (en) 2012-08-24 2012-10-10 Imp Innovations Ltd Maximising DC to load efficiency for inductive power transfer
KR20150103651A (ko) 2012-08-28 2015-09-11 오클랜드 유니서비시즈 리미티드 개별적으로 위상을 제어하는 다상 유도 전력 전달 시스템
US9270248B2 (en) 2012-10-12 2016-02-23 Infineon Technologies Ag Impedance matching network with improved quality factor and method for matching an impedance
US8844814B2 (en) 2012-12-10 2014-09-30 Tai-Hwa Liu Radio frequency identification automatic detecting system with antenna net
RU2544380C2 (ru) 2013-01-24 2015-03-20 Дмитрий Семенович Стребков Способ и устройство для передачи электрической энергии
RU2533060C2 (ru) 2013-02-01 2014-11-20 Дмитрий Семенович Стребков Способ и устройство для передачи электрической энергии
US9010637B2 (en) 2013-02-21 2015-04-21 Tai-Hwa Liu Wireless radio frequency identification receiving facility having antenna net
US9912031B2 (en) 2013-03-07 2018-03-06 Cpg Technologies, Llc Excitation and use of guided surface wave modes on lossy media
US20140279294A1 (en) * 2013-03-14 2014-09-18 Nordstrom, Inc. System and methods for order fulfillment, inventory management, and providing personalized services to customers
RU2548571C2 (ru) 2013-04-04 2015-04-20 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ФГБНУ ВИЭСХ) Система для беспроводного электропитания удаленных потребителей электрической энергии по лазерному лучу
GB201306555D0 (en) 2013-04-10 2013-05-22 Roke Manor Research System and Method for Sensing Signal Disruption
JP6164914B2 (ja) 2013-04-30 2017-07-19 キヤノン株式会社 給電装置、制御方法及びプログラム
RU2554723C2 (ru) 2013-06-13 2015-06-27 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) Способ и устройство электроснабжения воздушного летательного аппарата (варианты)
US9647345B2 (en) 2013-10-21 2017-05-09 Elwha Llc Antenna system facilitating reduction of interfering signals
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9577341B2 (en) 2013-11-12 2017-02-21 Harris Corporation Microcellular communications antenna and associated methods
US10498393B2 (en) 2014-09-11 2019-12-03 Cpg Technologies, Llc Guided surface wave powered sensing devices
US10027116B2 (en) * 2014-09-11 2018-07-17 Cpg Technologies, Llc Adaptation of polyphase waveguide probes
US10074993B2 (en) 2014-09-11 2018-09-11 Cpg Technologies, Llc Simultaneous transmission and reception of guided surface waves
CA3002642A1 (en) 2014-10-20 2016-04-28 Ion Geophysical Corporation Noise removal in non-uniformly spaced seismic receiver arrays
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202713A (ja) * 2004-01-16 2005-07-28 Hitachi Ltd 来客管理システムおよびその方法
JP2008099235A (ja) * 2006-09-11 2008-04-24 Sony Corp 通信システム及び通信装置
US20140252865A1 (en) * 2013-03-07 2014-09-11 Cpg Technologies, Llc Excitation and use of guided surface wave modes on lossy media
WO2014137817A1 (en) * 2013-03-07 2014-09-12 Cpg Technologies, Llc. Excitation and use of guided surface wave modes on lossy media

Also Published As

Publication number Publication date
CA2996054C (en) 2019-03-05
TW201714347A (en) 2017-04-16
MX2018002949A (es) 2018-06-15
ZA201800799B (en) 2019-07-31
AU2016318430A1 (en) 2018-04-26
CA2996054A1 (en) 2017-03-16
IL257919A (en) 2018-05-31
HK1251662A1 (zh) 2019-02-01
US9973037B1 (en) 2018-05-15
EP3320366B1 (en) 2019-10-30
KR20180052626A (ko) 2018-05-18
EA201890659A1 (ru) 2018-08-31
EP3320366A1 (en) 2018-05-16
WO2017044323A1 (en) 2017-03-16
CN108027429A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
JP2018530063A (ja) 物体識別システム及び方法
JP2018530819A (ja) 物体識別システム及び方法
US10031208B2 (en) Object identification system and method
JP2018530064A (ja) 物体識別システム及び方法
US20070279231A1 (en) Asymmetric rfid tag antenna
US10115075B1 (en) Radio frequency identification (RFID) inventory management system
JP2018535467A (ja) 物体識別システム及び方法
Butt Systemization of RFID Tag Antenna Design Based on Optimization Techniques and Impedance Matching Charts
Choosri et al. Practical aspects of using passive UHF RFID technology for vehicle tracking

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180510

A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210315