JP2018135886A - 調整可能な作動流体ポートを有する回転膨張室装置およびこれを内蔵するシステム - Google Patents

調整可能な作動流体ポートを有する回転膨張室装置およびこれを内蔵するシステム Download PDF

Info

Publication number
JP2018135886A
JP2018135886A JP2018038364A JP2018038364A JP2018135886A JP 2018135886 A JP2018135886 A JP 2018135886A JP 2018038364 A JP2018038364 A JP 2018038364A JP 2018038364 A JP2018038364 A JP 2018038364A JP 2018135886 A JP2018135886 A JP 2018135886A
Authority
JP
Japan
Prior art keywords
expansion chamber
rotary expansion
working fluid
chamber device
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018038364A
Other languages
English (en)
Other versions
JP6677754B2 (ja
Inventor
フォイステル,アーロン
Aaron Feustel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2018135886A publication Critical patent/JP2018135886A/ja
Application granted granted Critical
Publication of JP6677754B2 publication Critical patent/JP6677754B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/3446Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/40Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member
    • F01C1/44Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member with vanes hinged to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/10Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F01C1/104Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member one member having simultaneously a rotational movement about its own axis and an orbital movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/10Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/04Control of, monitoring of, or safety arrangements for, machines or engines specially adapted for reversible machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/10Control of, monitoring of, or safety arrangements for, machines or engines characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/10Control of, monitoring of, or safety arrangements for, machines or engines characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F01C20/14Control of, monitoring of, or safety arrangements for, machines or engines characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using rotating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F01C21/186Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet for variable fluid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/10Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/02Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C2/04Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of internal axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/103Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member one member having simultaneously a rotational movement about its own axis and an orbital movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Multiple-Way Valves (AREA)
  • Hydraulic Motors (AREA)
  • Supercharger (AREA)
  • Valve Device For Special Equipments (AREA)
  • Wind Motors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】例えば大きさまたは位置を調整可能な1つまたは複数の作動流体ポートを有する回転膨張室(REC)装置を提供する。【解決手段】可変ポート機構を使って、REC装置104の複数の動作パラメータのうちの何れか1つまたは複数を、動作パラメータのうちの他の1つまたは複数に関係なく制御することができる。REC装置は複数の流体体積を有することができ、これはREC装置の回転中に大きさが変化し、REC装置の回転中に体積ゼロ状態に移行する。1つまたは複数のREC装置を含むことのできるシステムも提供される。1つまたは複数の動作パラメータを制御する方法を含む、REC装置の各種の面を制御する方法もまた提供される。【選択図】図1

Description

本発明は一般に、回転膨張室装置に関する。特に、本発明は調整可能な作動流体ポートを有する回転膨張室装置とこれを内蔵するシステムに関する。
回転膨張室装置は少なくとも1つの主要部から構成され、これは別の主要部に関して回転し、この別の主要部とともに、使用中に作動流体を受けるように構成された流体領域の境界を画定する。流体領域は一般に複数の流体体積からなり、これは回転体が回転すると大きさが増大および縮小する。回転膨張室装置は例えば圧縮機として使用でき、この場合、圧縮性流体が複数の流体体積の中に入り、流体体積の大きさが小さくなると圧縮され、またはこの装置は膨張機として使用でき、この場合、圧縮性流体からのエネルギーが、この流体が流体体積で膨張させられると回転体に伝達される。
回転膨張室装置の回転体の360°の回転は多数の円弧に分割でき、その各々が以下の3つのカテゴリ、すなわちa)主要部により部分的または全体的に境界が画定される作動流体の体積が収縮している収縮円弧、b)主要部により部分的または全体的に境界が画定される流体の体積が膨張している膨張円弧、c)主要部により部分的または全体的に境界が画定される流体の体積の大きさが変化していない一定体積円弧の1つを表す。これらの円弧は、回転体との何らかの関係で移動しても移動しなくてもよい。これらの円弧に概して関する位置に、流体が流体領域に入り、そこから出ることのできる開口部またはポートがある。
膨張室装置は、様々な動作パラメータを有することができ、これらは例えば装置の回転速度、作動流体の質量流量、作動流体の出力温度および圧力、装置により生成または消費されるエネルギーである。しかしながら、先行技術の装置にはこれらのパラメータの1つまたは複数を他の動作パラメータに関係なく制御する機能が備わっておらず、これをエネルギー効率の良い方法で行う機能も備わっていない。
1つの実施例において、本願は回転膨張室装置に関する。この装置は、機械軸を有する外側回転構成部品を含み、内側回転構成部品であって、外側回転構成部品に関して、内側および外側構成部品の間に流体領域を画定するように位置付けられた内側回転構成部品を含み、流体領域は使用中に作動流体を受けるためのものであり、内側および外側回転構成部品は、相互に係合して、内側および外側回転構成部品のうちの少なくとも一方が機械軸に平行な軸の周囲で他方に関して継続的に移動されている時、内側および外側回転構成部品が流体領域内に少なくとも1つの収縮円弧と少なくとも1つの膨張円弧と少なくとも1つの体積ゼロ円弧を継続的に画定するように設計および構成され、またこの装置は、流体領域と流体連通して第一の円周範囲と機械軸の周囲の第一の角度位置を有する第一の作動流体ポートを含み、第一の円周範囲と第一の角度位置の少なくとも一方を制御可能に変化させるように設計および構成された第一の機構を含む。
他の実施例において、本願はエネルギー回収システムに関する。このシステムは、調整可能な作動流体出力ポートと出力ポートの大きさと位置のうちの少なくとも一方を制御可能に調整するように設計および構成された第一のポート調整機構を有する第一の回転膨張室装置と、調整可能な作動流体入力ポートと入力ポートの大きさと位置のうちの少なくとも一方を制御可能に調整するように設計および構成された第二のポート調整機構を有する第二の回転膨張室装置と、を含み、第一の回転膨張室装置は第二の回転膨張室装置に機械的に連結されており、またこのシステムは、第一の回転膨張室装置の出力に流体連結され、第二の回転膨張室装置の入力に流体連結された復水器を含み、このシステムは、作動流体からのエネルギーを、作動流体を第一の回転膨張室装置の出力ポートから周囲圧力より低い圧力で排出させることによって回収し、作動流体を液化させ、その後、作動流体を第二の回転膨張室装置で周囲圧力と実質的に同じ圧力まで再圧縮するように設計および構成される。
また別の実施例において、本願は単相冷却システムに関する。このシステムは、第一の入力ポートと第一の出力ポートと第一の入力ポートと第一の出力ポートのうちの少なくとも一方の大きさまたは位置またはその両方を制御可能に調整するように設計および構成された第一のポート調整機構を有する第一の回転膨張室装置と、第二の入力ポートと第二の出力ポートと第二の入力ポートと第二の出力ポートの少なくとも一方を制御可能に調整するように設計および構成された第二のポート調整機構を有する第二の回転膨張室装置と、を含み、第一の回転膨張室装置は第二の回転膨張室装置に機械的に連結され、またこのシステムは、第一と第二の熱交換器を含み、第一の熱交換器は第一の出力ポートと第二の入力ポートに流体連結され、第二の熱交換器は第二の出力ポートと第一の入力ポートに流体連結され、このシステムは、圧縮性単相作動流体による閉ループ冷却サイクルとして機能するように構成され、第一と第二の回転膨張室装置はどちらも、第一と第二のポート調整機構を調整することによって、作動流体の質量流量を、第一と第二の回転膨張室装置の温度または圧力差に関係なく制御するよう設計および構成される。
さらに別の実施例において、本願は熱を制御環境に伝えるように構成された加熱システムに関する。この加熱システムは、閉サイクルエンジンに連結された開サイクルエンジンを含み、開サイクルエンジンは第一と第二の回転膨張室装置を含み、閉サイクルエンジンは第三と第四の回転膨張室装置を含み、第一、第二、第三、第四の回転膨張室装置は相互に機械的に連結されて、その回転動作が連結され、開サイクルエンジンは燃焼室を有し、これは第一と第二の回転膨張室装置に連結され、第一の回転膨張室装置によって圧縮されていた第一の作動流体を加熱するように構成され、第二の回転膨張室装置は燃焼室によって排出された第一の作動流体からエネルギーを抽出するように構成され、閉サイクルエンジンは、第一の作動流体から第二の作動流体に熱を伝達するように構成された第一の熱交換器によって開サイクルエンジンに熱連結され、第三と第四の回転膨張室装置は、第一の熱交換器と第二の熱交換器に連結されて閉ループを形成し、第二の熱交換器は制御環境に熱連結され、それによって加熱システムが熱を制御環境に伝達するように構成され、第一、第二、第三、第四の回転膨張室装置の各々は、少なくとも1つの調整可能なポートと、ポートの大きさまたは位置またはその両方を調整するための少なくとも1つの調整機構を有し、第一と第二の回転膨張室装置は、第一の作動流体の圧力または温度を、第一の作動流体の質量流量と回転膨張室装置の回転速度に関係なく制御するように構成され、第二と第三の回転膨張室装置は、第二の作動流体の圧力または温度を、第二の作動流体の質量流量と回転膨張室装置の回転速度に関係なく制御するように構成される。
さらにまた別の実施例において、本願は、回転膨張室装置を制御する方法に関し、回転膨張室装置は、内側および外側回転構成部品を有し、それらの間に流体領域が画定され、これは回転膨張室装置の動作中に少なくとも1つの収縮円弧と少なくとも1つの膨張円弧を含む。この方法は、1)回転膨張室装置上の、流体領域と流体連通する第一のポートの所望の円周方向開口範囲と、2)第一のポートの所望の角度位置のうちの少なくとも一方を決定するステップと、所望の円周方向開口範囲または所望の角度位置の何れかまたはその両方を実現して、第一の動作パラメータを第二の動作パラメータに関係なく制御するように、第一のポートを調整するステップと、を含む。
本発明の説明を目的として、図面は本発明の1つまたは複数の実施形態の態様を示している。しかしながら、本発明は図面に示されている正確な配置と手段に限定されないと理解するべきである。
図1は、本発明により作製された回転膨張室(REC)装置システムの概略図である。 図2Aは、ベーン式REC装置の横方向断面図である。図2Bは、図2Aのベーン式REC装置の等角図である。図2Cは、図2Aと2Bのベーン式REC装置の異なる状態の横方向断面図である。 図3Aは、6つのスライドを有するベーン式REC装置の横方向断面図である。図3Bは、図3Aのベーン式REC装置の等角図である。図3Cは、図3Aと3Bのベーン式REC装置の異なる状態の横方向断面図である。 図4は、2つのウェッジを有するベーン式REC装置の横方向断面図である。 図5は、8つのスライドを有するベーン式REC装置の横方向断面図である。 図6は、動力を効率的に伝達するために使用されるREC装置とその他の構成部品のシステムの概略図である。 図7は、動力を効率的に生成し、伝達するために使用されるREC装置とその他の構成部品のシステムの概略図である。 図8は、熱を効率的に伝達するために使用されるREC装置とその他の構成部品のシステムの概略図である。 図9は、熱を効率的に生成し、伝達するために使用されるREC装置の閉ループシステムに連結されたREC装置の開ループシステムとその他の構成部品の概略図である。 図10は、REC装置の中の回転構成部品の一部として使用可能な歯車の形状の一部を説明する略図である。 図11は、REC装置の中の回転構成部品として使用可能な2つの歯車の外形の略図である。 図12は、REC装置の中の回転構成部品の一部として使用可能な歯車の形状の一部を説明する略図である。 図13は、REC装置の回転構成部品として使用可能な2つの歯車の外形を示す。 図14Aは、スライドと終板を有するREC装置の断面図である。図14Bは、図14AのREC装置の等角図である。 図15Aは、複数の膨張円弧と複数の収縮円弧を有するベーン式REC装置の断面図である。図15Bは、図15AのREC装置の等角図である。 図16Aは、流体領域に連結された弁を有するREC装置の断面図である。図16Bは、図16AのREC装置の等角図である。
帆発明のいくつかの態様は、各種の可変ポート機構、制御システム、および回転膨張室(REC)装置の複数の動作パラメータの何れか1つまたは複数を、それらの動作パラメータの他の1つまたは複数に関係なく、エネルギー効率が高く、有効な方法で再現可能かつ予測可能に変化させる方法を含む。本発明の他の態様は、このような可変ポート機構と制御システムを個々に、またはまとめて内蔵し、および/またはそのような方法を利用するREC装置とREC装置に基づくシステムを含む。この開示全体を読めば明らかになるように、このような可変ポート機構、制御システム、方法から利益を得ることのできるREC装置は、ベーン式REC装置、ジェロータ式REC装置、偏心ロータ式REC装置が含まれるが、これらに限定されない。さらに、このような可変ポート機構、制御システムおよび/または方法から得られる利点は、REC装置の役割、例えばそれが圧縮機、膨張機、ポンプ、モータ等、およびそれらの組み合わせの何れとして機能しているかに関係なく享受できる。実際に、本発明の態様が提供する利点によって、REC装置はこれらの機能の何れに関する性能においても非常に望ましいものとなることができ、またREC装置を、例えば車両推進/エネルギー回収システム、発熱器、短距離および長距離動力伝達、ヒートポンプ、およびその他多数のシステムに利用することが可能となり、それらにおいてはこれまで、従来のREC装置の使用はその性能の限界から真剣に検討されていなかったかもしれない。
本発明の各種の態様をREC装置およびこのような装置を内蔵するシステムに幅広く適用可能であることを鑑み、添付の図面の中の図1は、本明細書で説明され、他の図面とそれに付随する説明の中の具体的な例により例示されている可変ポートの機能性の基本となる一般的な特徴と原理のいくつかを紹介する。ここで図1を参照すると、この図はREC装置システム100のある例示的実施形態を示しており、これはシステムの複数の動作パラメータの何れか1つまたは複数を、他の動作パラメータに関係なく、エネルギー効率の良い方法で再現可能かつ予測可能に制御することができる。システム100はREC装置104を含み、これはこの例では外側回転構成部品108と内側回転構成部品112を含み、これらは一緒に(およびプレートまたは筐体部品等の何らかのエンドピース(図示せず)とともに)、使用中に作動流体Fを受ける流体領域116を画定する。留意すべき点として、本明細書と付属の特許請求の範囲の中で使用される「回転構成部品」という用語は、ロータ、歯車、偏心ロータ、偏心歯車等、回転する回転性構成部品であるか、使用中に回転性構成部品を有する構成部品か、使用中に回転性構成部品が係合するステータ等の静止構成部品の何れかを意味するものとする。当業者であればわかるように、本願のREC装置、例えばREC装置104は、1つまたは複数の回転性構成部品を有することができる。内側および外側回転構成部品108と112を含む図の実施形態において、内側および外側回転構成部品のそれぞれ、一方、他方、または両方を回転性構成部品とすることができる。
図の実施形態において、動作中、内側回転構成部品112は両方向矢印Rで示されるように何れの方向にも回転できる。外側および内側回転構成部品108と112の相互係合によって、流体領域116はそれらの間に複数の流体体積を有し、その中の少なくとも1つは、回転方向に応じて、内側回転構成部品の運動中に大きさが増大および縮小する。使用中、ある流体体積の大きさがある円周上の位置において増大しているか、縮小しているかは、内側回転構成防品112の回転方向と、それが移動して通過する円弧に依存する。図の実施形態において、内側回転構成部品112の1回転に、1)流体体積の大きさが増大している膨張体積円弧116A、2)流体体積の大きさが減少している収縮体積円弧116B、3)流体体積が実質的に同じ大きさのままである一定体積円弧116Cが含まれる。他の実施形態において、REC装置の膨張体積円弧は2つ以上、収縮体積円弧は2つ以上、一定体積円弧は0か、2つ以上であってもよい。
REC装置104は、作動流体Fを流体領域に連通させるため、または作動流体を流体領域から連通させるために流体領域116と流体連通する少なくとも1つの調整可能な作動流体ポートをさらに含む。図の例において、REC装置104は2つの調整可能な作動流体ポート120と124を有する。図の実施形態おいて、流体領域116の中の、より具体的には複数の流体体積円弧116A〜116Cの中の様々な円弧の中の作動流体Fは、内側回転構成部品112の回転の特定の部分において調整可能ポート120と124にアクセスしうる。内側回転構成部品112の回転の他の部分においては、流体体積円弧116A〜116Cのそれぞれが完全に境界を画定されてもよく、調整可能ポート120とも、調整可能ポート124とも流体連通しなくてよい。REC装置104の構成に応じて、流体領域116は、膨張、収縮、一定体積円弧116A、116B、116Cの何れか1つにおいて調整可能ポート120または調整可能ポート124にアクセスしてもよい。これに加えて、前述のように、調整可能ポート120と124は、REC装置104の上の様々な位置に配置することができ、例えば、これらは装置の外周面上に、また外周面から半径方向に内側の位置に、または装置の長手方向端に、またはその他に配置することができる。この開示全体を読めば明らかとなるように、各調整可能ポート120と124は、円周または角度位置、流路面積、またはその両方において調整可能である。これに関連して、留意すべき点として、「円周」という用語は位置ではなく、方向のみを示す。
角度位置に関して、そのようになされていれば、各調整可能ポート120と124の角度位置は、流体領域116のうち、流体Fが調整可能ポート120と124の何れかにアクセスできる部分を変更できるように調整することが可能である。例えば、調整可能ポート120の角度位置は、流体領域116の中の流体Fが膨張体積円弧116Aの始まりでそのポートにアクセスできる第一の位置から、流体領域の中の流体が、膨張体積円弧116Aの中央または終わりまで調整可能ポート120にアクセスできない第二の位置へと変更できる。調整可能ポート120の角度位置はまた、収縮体積円弧116Bまたは一定体積円弧116Cの一部において、移動している体積円弧だけがそのポートにアクセできるように調整してもよい。同様に、調整可能ポート124の角度位置は、体積円弧116A〜116Cに沿って、流体領域116の中の流体Fがそのポートにアクセスできる位置を変えるように調整することができる。
流路面積の調整可能性に関して、本願の調整可能ポート、例えば調整可能ポート120と124の何れかの流路面積の大きさは、どのような適当な方法でも変えることができ、例えばその円周範囲(例えば、好みにより、円周の長さまたは円周の幅と呼ぶこともできる)を変化させるか、またはその軸方向範囲(例えば、(好みにより)回転構成部品のうちの1つの回転軸に平行な方向への長さまたは幅)を変化させるか、またはそれら両方を変化させることによる。例えば、調整可能ポート120と124の円周範囲は、1つまたは複数の円弧116A〜116Cのうち、流体領域116の中の流体Fがそのポートにアクセスできる部分を変えられるように調整してもよい。例えば、調整可能ポート120は、流体領域116の中の流体Fが膨張円弧116Aの第一のパーセンテージにわたってそのポートにアクセスできる第一の円周範囲から、流体領域の中の流体が膨張円弧116Aの、より大きな第二のパーセンテージにわたって第一のポート112にアクセスできる、より大きな第二の円周範囲へと調整できる。前述のように、調整可能ポート120と124の何れかまたは両方の軸範囲もまた調整可能であってもよく、それによって流体領域116の中の流体FがREC装置104の長手方向軸128に沿って、より大きな流路面積にわたってそのようなポートにアクセスしてもよい。1つまたは複数の作動流体ポートの角度位置、円周範囲、軸範囲のうちの1つまたは複数の調整を通じて、流体領域の中の作動流体がREC装置の外部の流体システム(図示せず)と流体連通する位置と流路面積は、動作状態や所望の性能に合わせて高精度に調整できる。
以下からもわかるように、本願の調整可能ポート、例えばポート120と124はまた、ポートを相互に、および/または対応する流体領域、例えば流体領域116の外にある1つまたは複数の調整不能ポートと選択的に結合することによって調整可能にできる。各種の要因、例えば特定の用途におけるREC装置104の機能に応じて、調整可能ポート120と124は反対のタイプ、すなわち一方が吸入ポートで一方が排出ポートであってもよく、または同じタイプ、すなわち両方が吸入ポートか両方が排出ポートであってもよい。他の実施形態において、本願のREC装置が有する調整可能ポートは2つより多くても少なくてもよい。これに加えて、図1には示されていないが、本願のREC装置はまた、1つまたは複数の調整不能ポートを含んでいてもよい。
各調整可能ポート120と124は、それぞれ1つまたは複数の調整機構132と136を使って調整可能にされる。調整機構132と136として使用するのに適した調整機構の例には、円周スライド、らせんスライド、回転可能リング、回転可能プレート、移動可能ウェッジ、およびあらゆる必要なアクチュエータ(例えば、電気モータ、油圧アクチュエータ、空気圧アクチュエータ、リニアモータ等)、あらゆる必要なトランスミッション(例えば、ウォームギア、ラックアンドピニオン等)、およびこれらの装置を支持するためのあらゆる必要な構成部品が含まれるが、これらに限定されない。後述の詳細な例を含めたこの開示全体を読めば、当業者であれば、本発明によって作製されるある調整可能ポートに適した調整機構を容易に選択、設計、実施できるであろう。REC装置システム100はさらに、1つまたは複数のコントローラ、ここでは単独のコントローラ140を含み、これは調整可能ポート120と124の角度位置および/または流路面積の大きさを制御するように設計および構成されていてもよい。以下により詳しく説明するように、コントローラ、例えばコントローラ140は、何れか1つまたは複数の調整可能ポート、例えば調整可能ポート120と124を調整して、1つまたは複数の動作パラメータを、複数の他の動作パラメータに関係なく制御するように設計し、構成することができる。当業者であれば容易にわかるように、REC装置システム100はまた、1つまたは複数のセンサ142も含んでいてよい。例えば、1つまたは複数のセンサ142をコントローラ140および機構132と136のうちの一方または両方に関連して使用して、1つまたは複数パラメータ、例えば機構の位置、1つまたは複数の位置における作動流体Fの温度、圧力または質量流量、1つまたは複数の回転構成部品の回転速度のほか、他の各種パラメータをモニタしてもよい。
いくつかの実施形態において、REC装置104は完全に逆転可能であってもよく、内側回転構成部品112は矢印Rが示すように何れの方向にも回転できる。作動流体Fの流れの方向もまた逆転可能であってよく、調整可能ポート120または124のどちらか一方を作動流体入力ポートとすることができ、他方のポートを作動流体出力ポートとすることができる。また、いくつかの実施形態において、流れの方向は、内側回転構成部品112の回転方向を変えずに逆転させることができる。上述のように、代替的実施形態において、装置は追加のポートを有することができ、例えば、装置は2つまたはそれ以上の入力ポートと2つまたはそれ以上の出力ポートを有していてもよく、ポートのうちの1つまたは複数を調整可能とすることができる。作動流体吸入ポートの角度位置および/または大きさが調整されると、入力ポートへのアクセスの円弧を変化させることができ、これによって流体体積に入る作動流体の質量を変化させることができる。また、入力ポートを調整することによって、流体体積がポートにアクセスできない円弧を変化させることができ、これをアクセス不能円弧とも呼ぶ。アクセス不能円弧の円周位置と大きさを変えることによって、作動流体の体積の変化割合を変えることができる。また、作動流体出力ポートの角度位置および/または大きさを調整することによって、アクセス不能円弧の円周位置と大きさも変化させることができる。以下により詳しく説明するように、入力ポートと出力ポートのいくつかまたは全部を制御することにより、複数の動作パラメータのうちの何れか1つを、他の動作パラメータに関係なく、エネルギー効率の高い方法で、再現可能かつ予測可能に制御できる。
図の実施形態において、REC装置104は、圧縮性流体を、それが隔離された体積または小室内、例えば流体領域116内の複数の体積の中にある時に所望の圧力に圧縮または減圧してから、それを前記小室から吐出するように構成される。複数の体積はまた、各サイクルの始まりと終わりに体積ゼロまたは実質的にゼロに推移してもよく、これは装置の効率を最大化することができる。実質的に体積ゼロに推移させることによって、複数の体積の各々が確実に作動流体Fを持ち越さずに開始、終了できるため、効率が向上しうる。これは、排出圧力に到達した作動流体が小室内に残り、制御されずに吸入圧力に戻されるままにする場合と対照的である。
ここで、図2A〜2Cを参照すると、これらの図面は2つの調整可能ポート202と206を有するベーン式REC装置200の具体的な例示的実施形態を示しており、これについては以下により詳しく説明する。図2A〜2Cに示されるように、REC装置200は2つのらせんスライド212と216および1つのウェッジ220のセットの中に回転可能に配置されたロータ210を含む。容易にわかるように、ロータ210は図1の内側回転構成部品112に対応し、らせんスライド212と216およびウェッジ220のセットは、図1の外側回転構成部品108および機構132と136の1つまたは複数に対応できる。スライド212と216は部分的に流体ポート202と206を画定し、スライド212と216およびロータ210はそれらの間に流体領域224を画定する。流体領域224は、複数の流体体積226(雑然としないように、そのうちの2つのみに符号を付した)からなり、使用中に作動流体(図示せず)を受けるように構成されている。流体体積226は複数のベーン228(雑然としないように、そのうちの2つのみに符号を付した)によって画定され、これらはロータ210の外周面内にスライド可能に配置されている。複数のベーン228は、ロータ210が回転すると半径方向に内側および外側にスライドするように構成され、ベーンがロータの回転中ずっとスライド212と216に接触したままであるようになっている。ロータ210が矢印Rにより示されるように時計回りに回転する場合、ロータの360°の回転には膨張円弧230と収縮円弧232が含まれる。図の実施形態において、複数の体積226のそれぞれは、これらが膨張円弧230を通って移動する際に大きさが増大し、これらが収縮円弧232を通って移動する際に大きさが縮小する。
図の実施形態において、ベーン式REC装置200は2つの調整可能ポート202と206を有し、ポート202は吸入ポートであり、ポート206は排出ポートである。ポート202と206は、調整可能スライド212と216およびウェッジ220によって画定され、調整可能とされる。吸入ポート202は調整可能スライド212(吸入スライド)とウェッジ220によって画定される。同様に、排出ポート206は調整可能スライド216(排出スライド)とウェッジ220によって画定される。図の実施形態において、吸入スライド212、排出スライド218、およびウェッジ220はらせんを形成する。いくつかの実施形態において、ウェッジ220をロータ210から半径方向に遠ざかるように移動させて、ウェッジが分離する2つのポート、例えばポート202と206を結合させてもよい。ウェッジ220はまた、円周方向に移動させて、ポート202と206の位置を変えてもよい。これに加えて、スライド212と216の両方を円周方向に移動させて、それぞれのポート202と206の円周範囲または大きさを増大または縮小してもよく、それによってこれらのポートへの流体領域224のアクセス円弧が変化する。いくつかの実施形態において、円周スライド212と216の1つまたは複数を180°またはそれ以上回転させて、ポート202と206の特定の1つまたは複数へのアクセスを90°より大きくしてもよい。スライド212と216はまた、相互に反対に回転させて、ポート202と206の範囲が結合されるようにしてもよい。
図の実施形態において、ウェッジ220は、ウェッジ220を半径方向に移動させてポートを結合/分割するか、円周方向に移動させてポートの大きさを変えることによって、ポート202と206の円周範囲を個別に増大させ、または縮小するように調整してもよい。図の実施形態において、ウェッジ220はそれらの間に一定円弧を有するポートを分割し、ポートは対応するスライドらせんの中の2つのスライド間に円周方向に配置されることによって画定され、その一方で、スライドは、2つのポート間の介在円弧に可変性を提供するために使用されてもよく、図2Aの等角図であり、状態260と同じ状態にある図2Bの状態250に示されるように、各スライドらせんの端に配置されると定義される。いくつかの実施形態において、各ウェッジ220は2つの円周スライドに置き換えてもよく、例えば、図3A〜Cに示されるように、らせんを2つのらせんに分割してもよい(以下により詳しく説明する)。いくつかの実施形態において、2つのスライドはまた、1つのウェッジ(図示せず)に置き換えてもよく、例えばポート202と206の1つまたは複数をウェッジによって分割し、REC装置200と同様に一定の相対的間隔に保持することが好ましい場合に、2つのスライドらせんを連結してもよい。調整可能スライド212と216に関する上記の説明は、スライドが円周方向に無限に移動できるものとして説明しているが、代替的実施例では、スライドのいくつかまたは全部の移動を制限してもよい。
図2A〜Cに示される実施形態において、ウェッジ220は2つのポート202と206を分割する位置に示されており、流体体積228の体積がゼロまたは実質的にゼロとなる。それゆえ、流体体積228は、それがウェッジ220を通過する時、体積ゼロ円弧を通る。図の実施形態において、ウェッジ220の内面とロータ210の外面は体積ゼロ位置において相補的な形状を有し、作動流体Fが捕捉されるような空隙が実質的にない。それによって、確実に作動流体Fが完全に排出され、これは流体がREC装置200の中で再循環するのを防止し、その結果、装置がより体積効率の高いものとなる。これはまた、異なる圧力およびまたは温度を有する流体が制御されない方法で混合するのを防止し、それゆえREC装置200のエネルギー効率が向上する。この機能は、前述のように、2つの円周スライドに置き換えてもよい。
熱力学の理想気体の式(pV=nRT)から、圧縮性流体の圧力と温度は、その体積をそれぞれ縮小または増大した時、そのほかに流体に追加される、またはそこから取り除かれるエネルギーがない場合、再現可能かつ予測可能に増大または減少することがわかっている。また、それによるこの圧力と温度の変化は、システムに追加される、またはそこから取り除かれる熱がなく、流体の温度を変化させる化学反応または核反応がないかぎり、開始圧力、開始温度、体積の変化割合(プラスまたはマイナスの何れか)の関数であることもわかっている。その結果、圧力および/または温度の所望の変化を増大させる場合は体積の変化を増大させるべきであり、圧力および/または温度の所望の変化を減少させる場合は体積の変化を減少させるべきである。
この理解をもとに、1つまたは複数のポート、例えばポート202と206の大きさおよび/または角度位置を調整することによって、この1つまたは複数のポートから流体領域224への各アクセス円弧(およびしたがって、その結果としての何れかのポートへのアクセス不能円弧)の始まりと終わりの位置が制御され、それによって、a)それが各アクセス円弧を通る時の各流体体積226の体積の変化、およびしたがって前記アークの中の各流体体積226に、およびそこからどれだけの流体が移送されるか、と、b)それが各アクセス不能円弧を通る時の各流体体積226の体積の変化、およびしたがってポート、例えばポート206がそれにアクセスできるようになる直前の流体体積226の中の圧縮性流体の圧力が制御される。このようにして、装置200によって提供される排出圧力と温度は、排出ポート、例えばポート206の大きさと円周範囲を変えることによって再現可能かつ予測可能に変化させることができ、吸入圧力、吸入温度、回転構成部品、例えばロータ210の回転速度、またはその結果として得られる作動流体の質量流量を変化させなくてよい。
上述のように排出ポートを調整する場合と異なり、吸入ポート、例えばポート202の角度位置と円周範囲を変えると、ロータ210の1回転あたりに装置200が取り込む流体の体積と、したがってその結果として得られる1回転あたりの質量流体流量も変化する。このようにして、吸入ポートの大きさと円周範囲を変えることによって、吸入圧力、吸入温度、または回転構成部品の回転速度を変化させずに排出圧力、排出温度、質量流体流量を再現可能かつ予測可能に変化させることができる。
さらに、排出圧力、温度、作動流体の質量流量が、吸入ポート、例えばポート202を、例えばポートの円周範囲または角度位置を調整することによって変化する場合、これらのパラメータは、吸入ポートの調整だけでは個別に変化させることができないことがわかる。しかしながら、排出ポートを変えると、排出圧力と温度だけが変化し、作動流体の質量流量は変化しないため、吸入ポートが所望の作動流体の質量流量を提供するように調整されるが、それ以外に前記排気圧力と温度を変化させる場合に、排出ポートを調整して排出圧力と温度を一定に保持することができる。それゆえ、吸入および排出ポートの両方の大きさと円周範囲を変えることによって、作動流体の質量流量を再現可能かつ予測可能に変化させることができる、吸入圧力、吸入温度、回転構成部品の回転速度、排出圧力または排出温度を変化させる必要はない。
作動流体の質量流量はまた、回転構成部品の回転速度を高くすることによって増大させてもよく、この増大は略比例的、再現可能、予測可能である。しかしながら、作動流体の質量流量は上記のように回転速度に関係なく変化させてもよいため、回転構成部品、例えばロータ210の回転速度と吸入および排出ポートは、その大きさと円周範囲を変えることによって調整されてもよく、それによって回転構成部品の回転速度を変えることができ、吸入圧力、吸入温度、作動流体の質量流量、排出圧力または排出温度を変化させる必要はない。
さらに、吸入圧力を変えると、装置200によって取り込まれる流体の質量と排出圧力の両方が相応に変化する。しかしながら、作動流体の質量流量と排出圧力は相互に関係なく、また吸入圧力に関係なく変化させてもよいため、吸入および排出ポートはまた、その大きさと円周範囲を変えることによって再現可能かつ予測可能に調整してもよく、それによって吸入圧力を変えることができ、回転構成部品の回転速度、作動流体の質量流量または排出圧力を変化させる必要はない。
同様にして、吸入温度を変えると、排出温度が相応に変化するだけでなく、装置によって取り込まれる流体の質量、およびしたがって、作動流体の質量流量も変化する。また同様にして、作動流体の質量流量と排出温度の両方は相互に関係なく、また吸入温度に関係なく変化させてもよいため、吸入および排出ポートはまた、その大きさと円周範囲を変えることによって再現可能かつ予測可能に変化させてもよく、それによって吸入温度を変えることができ、回転構成部品の回転速度、作動流体の質量流量または排出温度を変化させる必要はない。
これに加えて、pV=nRTであることから、前の2つの文章において温度を圧力に置き換え、圧力を温度に置き換えることができる。それゆえ、上記の方法を使って、排出温度の変更を必要とせずに、吸入圧力を再現可能かつ予測可能に変化させることができるが、排出圧力は変化するであろう。同様に、上記の方法は再現可能かつ予測可能に使用でき、それによって排出圧力の変更を必要とせずに、吸入温度を変化させることができるが、排出温度は変化するであろう。
状態260は、スライド212と216が、ポート202での圧力と温度がポート206での圧力と温度より高くなるように位置付けられ、したがって圧縮機として機能するREC装置200示しているが、状態270では、スライド212と216は、ポート206での圧力と温度がポート202での圧力と温度より低くなるように位置変更される。このように再配置するのに、質量流体流量の逆転は不要である。その代わりに、質量流の方向は同じままであってもよく、流体は強制的に圧縮されるのではなく強制的に膨張されてもよく、この場合、REC装置200は膨張機として機能するであろう。
ロータ210の回転方向を逆転させると、作動流体の質量流もまた逆転する。例えば、REC装置200が状態260にあるときに回転方向Rを逆転させると、REC装置200は状態270で示されるように膨張機として機能する。同様に、状態270で回転方向Rを逆転させると、REC装置200は圧縮器として機能する。それゆえ、移動可能なスライドとウェッジと逆転可能なロータとの組み合わせにより、REC装置200は非常に柔軟で設定可能となる。
図3A〜3Cは他のREC装置300を示しており、これは、それがスライド312と316の中に回転可能に配置されたロータ310を有し、スライド312と316が部分的にポート302と306を画定するという点で、図2A〜2CのREC装置200と同様である。これに加えて、図3A〜3Cの特徴302、306、310、312、316、324、326、328、330、332、Rのそれぞれの名称と機能は、図2A〜2Cの対応する特徴、それぞれ202、206、210、212、216、224、226、228、230、232、Rと同じであるが、それらの形状と大きさは違っているかもしれない。しかしながら、図3A〜Cに示されるように、REC装置200のウェッジ220と異なり、REC装置300は実際上、第二の吸入スライド334と第二の排出スライド336の形態の別々のウェッジを有し、REC装置200の単独のスライドらせん(符号は付されていない)の代わりに、REC装置300は第一のスライドらせん338と第二のスライドらせん340を有し、これは、図3Aの等角図であり、360と同じ状態の図3Bにおいて最もよくわかる。REC装置200と同様に、吸入ポート302と排出ポート306の大きさは、相互に関係なく変化させてもよい。スライド334と336は相互に関係なく移動してもよいため、吸入ポート302と排出ポート306の位置もまた、相互に関係なく変化させてもよく、また、4つのスライド312、316、334、336の円周位置を変えることによって切り替わり、例えば、図3Aと3Cに示されるように、スライドは図3Aにおいて第一の状態360にあり、図3Cに示されるように第二の状態370に移動させることができる。こうすることによって、回転方向Rを、吸入圧力、吸入温度、排出圧力、排出温度、作動流体の質量流量、または回転構成部品の回転速度を変化させずに変えてもよい。
この回転方向の変化はまた、ポートに弁(図示せず)を使うことにより実現してもよい。
図4は、図3A〜3Cに示されるREC装置300と同様の別のREC装置400を示す。これに関連して、図4の特徴410、412、416、424、426、428、430、432、434、436、Rのそれぞれの名称と機能は、図3A〜3Cの対応する特徴、それぞれ310、312、316、324、326、328、330、332、334、336、Rと同じであるが、それらの形状と大きさは違っているかもしれない。図4は、REC装置400が、第一のウェッジ442がさらに追加されていることを示し、これは、REC装置300においては単独の吸入ポート302であったものを、第一の吸入ポート444と第二の吸入ポート446に分割してもよい。REC装置400はまた、第二のウェッジ448も有し、これはREC措置300においては単独の排出ポート306であったものを第一の排出ポート452と第二の排出ポート454に分割してもよい。これらのウェッジ442と448は、ウェッジ220と同様であるが異なる方法で機能し、図の実施形態においては、異なる形状である。ウェッジ442と448は両方とも所定の円周円弧で2つのポートを分離するが、ウェッジ220と異なり、ウェッジ442と448は2つの吸入ポート444と446を相互から、また2つの排出ポート452と454を相互から分離する。各ウェッジ442と448は、そのらせんに沿って円周方向に移動させて、ポート444、446、452、454の大きさと位置を変化させ、半径方向に移動させて、各ウェッジ442と448が分離するポートを結合してもよく、これらの動作は各々、他のすべての動作に関係なく行ってもよい。
図の実施形態において、追加されたウェッジ448は、回転構成部品がウェッジ448を通過して回転する際に、それが分離するポート452と454はどの地点においても流体体積426を通じて接続されないが、前記流体体積426はウェッジ448によって同時にどちらの排出ポート452と454からも切断されないような大きさである。図の実施形態において、流体体積426の中の流体の体積が2つの排出ポート452と454の間で変化しないため、2つの排出ポート452と454での圧力または温度には差がない。このようにして、2つの排出ポート452と454は、同じ排出温度と圧力を有することができ、その合算した作動流体の質量流量は、ウェッジ448を持たないREC装置300の単独の排出ポート306のそれと等しくすることができる。代替的実施形態において、ポート452と454をまた別のウェッジによってさらに何度か分割して、そうでなければ単独ポートであったもの、例えば単独の排出ポート306をさらに分割してもよい。さらに、ウェッジ448と、排出ポートをさらに分割するために追加された別のウェッジ(図示せず)を移動させて、各排出ポートへと吐出される作動流体の質量流量の割合を変化させてもよく、これらの割合は、排出圧力、排出温度、吸入圧力、吸入温度、回転構成部品の回転速度、回転方向R、合算した作動流体の質量流量に関係なく変化させることができる。これは、前述のように全体的な作動流体の質量流量を変化させて、吸入および排出ポートの大きさと円周範囲を再現可能かつ予測可能に変化させる能力と組み合わせることにより、何れかの排出ポート、例えばポート452と454からの、また何れの組み合わせからの作動流体の質量流量を、他の何れかの排出ポート452、454からの作動流体の質量流量、吸入圧力、吸入温度、回転構成部品の回転速度、回転方向R、同一の排出温度、同一の排出圧力に関係なく変化させることができる。
ウェッジ448と同様に、追加されたウェッジ442は、回転構成部品がウェッジ442を通過して回転する際に、ポート444と446はどの地点においても回転体により画定される流体体積426を通じて接続されないが、前記流体体積426がウェッジ442によって同時にどちらの吸入ポート444と446からも切断されないような大きさである。図の実施形態において、流体体積426の中の流体の体積は2つの吸入ポート444と446の間で変化しないため、REC装置400によって2つの吸入ポート444と446での圧力または温度に変化は引き起こされない。後述のように、吸入ポートの流体組成、圧力、温度は同じとすることができ(後述の「第一の場合」)、これらを異なるようにすることもできる(後述の「第二の場合」)。
第一の場合では、吸入温度と圧力が同じ2つの吸入ポート444と446があり、その合算された作動流体の質量流量は、ウェッジ442を持たない単独の吸入ポート302のそれと同等であり、これらの吸入ポート444と446をさらに何回か分割して、吸入ポート302であったものをさらに分割してもよい。さらに、ウェッジ442と、吸入ポート302であったものをさらに分割するために加えられたあらゆる追加のウェッジ(図示せず)を移動させて、各吸入ポート444、446および(図示されないもの)に引き込まれる作動流体質量流の割合を変化させてもよく、これらの割合は吸入圧力、吸入温度、排出圧力、排出温度、回転構成部品の回転速度、回転方向R、合算された作動流体の質量流量に関係なく変化させてもよい。これは、前述のように全体的な作動流体の質量流量を変化させて、吸入および排出ポートの大きさと円周範囲を再現可能かつ予測可能に変化させる能力と組み合わせることにより、何れかの組み合わせによる吸入ポート444、446および(図示されないもの)の何れかへの作動流体の質量流量を、何れかの他の吸入ポート444、446および(図示されないもの)への作動流体の質量流量、同一の吸入圧力、同一の温度、回転構成部品の回転速度、回転方向R、排出温度、または排出圧力に関係なく変化させることができる。上述のような排出ポート306の分割とさらに組み合わせれば、吸入および排出ポートの大きさと円周範囲を変化させて、2つまたはそれ以上のポート(吸入および/または排出)444、446、452、454の作動流体の質量流量を、残りのポート444、446、452、454の作動流体の質量流量に関係なく、また同一の吸入圧力、同一の吸入温度、同一の排出圧力、同一の排出温度、回転構成部品の回転速度、回転方向Rに関係なく再現可能かつ予測可能に変化させることができる。
第二の場合では、吸入温度および/または圧力が異なる2つの吸入ポート444と446があり、その合算された作動流体の質量流量は、ウェッジ442を持たない単独の吸入ポート302のそれと等しくなく、これらの吸入ポート444と446をさらに何回か分割して、吸入ポート302であったものをさらに分割してもよい。第一の場合と異なり、前述の吸入ポート444、446(および図示されていないもの)の圧力と温度を有する流体体積426の中の流体は、次の吸入ポート444、446または(図示されていないもの)の圧力へと、それがその吸入ポート444、446または(図示されていないもの)にアクセスする際に膨張または収縮する。したがって、各流体体積426とアクセスした最後の吸入ポートは、吸入ポートの圧力の同等性を完全に制御しており、各吸入ポート444、446および(図示されていないもの)から流体体積426の中に残っている流体の割合は、各吸入ポートの、その他に関する流体組成、圧力、温度と、ポートアクセスの順序のほか、流体体積426の、それが各吸入ポート444、446および(図示されていないもの)にアクセスした時の体積の変化に応じて異なる。異なる温度の流体が流体体積426の内外で混合されると、それらの温度は、それぞれの初期の温度と熱質量に基づく新たな温度へと均等化し、この均等な吸入ポート温度は、すべての吸入ポートにおける流体の温度と熱質量のほか、何れかの化学反応に応じて異なる。この前提により、依然として単独の同等の吸入ポート圧力と単独の同等の吸入ポート温度があり、これは依然として、前述のように、排出圧力、排出温度、全体的な作動流体の質量流量、回転方向R、回転構成部品の回転速度に関係なく、再現可能かつ予測可能に変化させることができる。これに加えて、吸入および排出ポートの大きさと円周範囲を変えて、2つまたはそれ以上のポート(吸入および/または排出)444、446、452、454の作動流体の質量流量を、残りのポート444、446、452、454の作動流体の質量流量に関係なく、また同等の吸入圧力、同等の吸入温度、同一の排出圧力、同一の排出温度、回転方向R、回転構成部品の回転速度に関係なく再現可能かつ不足可能に変化させてもよい。理想気体の式(pV=nRT)に異なる吸入圧力および/または、初期温度の異なる複数の流体の混合を組み合わせたもの、および各吸入ポート444、446の作動流体の質量流量を制御する能力を使って、均等な吸入温度を再現可能かつ予測可能に制御してもよく、これを全体的な作動流体の質量流量、個々の排出作動流体の質量流量、同等の吸入圧力、同一の排出圧力、同一の排出温度、回転方向R、回転構成部品の回転速度に関係なく行うことができる。今度は、この制御により、吸入および排出ポートの大きさと円周範囲を変化させることができ、その結果、各吸入ポート444、446の温度を、個々の他の吸入ポート444、446の温度に関係なく、また各吸入ポートの圧力、同一の排出圧力、同一の排出温度、各排出ポートの作動流体の質量流量、回転方向R、回転構成部品の回転速度に関係なく、再現可能かつ予測可能に変化させることができる。
しかしながら、様々な吸入ポートでの圧縮性流体が、その体積が接続された時に圧力を均等化できるようにすることは、それらが接続される前に装置を使ってその圧力を均等化する場合よりエネルギー効率が悪い。図5は、図4に示されているREC 400と同様のREC装置500を示す。実際に、図5の特徴510、512、516、524、526、528、530、532、534、536、544、546、552、554、Rのそれぞれの名称と機能は、図4の対応する特徴、それぞれ410、412、416、424、426、428、430、432、434、436、444、446、452、454、Rと同じであるが、その形状と大きさは違っているかもしれない。前述のように、単独のウェッジ442、448、または(図示されていないもの)は、そのウェッジのスライドらせん(符号は付与されていない)を2つのスライドらせんに分割することによって置き換えてもよく、2つの追加のスライド556、558、562、564が2つのウェッジ、例えばREC装置400のウェッジ442、448の代わりとなる。すべてのポート544、546、552、554がスライド512、516、534、536、556、558、562、564によって円周方向に制約された状態で、すべてのポート544、546、552、554の大きさと円周範囲は何れも、その他すべてに関係なく変えることができ、その位置を切り替えることもでき、これらを結合することさえでき、それによってREC装置500によりポート544、546、552、554の何れかの間に圧力変化は起こされないという前提が排除される。その結果、ポートの大きさと円周範囲を変化させて、複数の排出ポートの圧力と温度を再現可能かつ予測可能に、また個別に異なるようにしてもよく、これはちょうど、REC装置400のように損失を生じさせずに複数の吸入ポートの異なる圧力と温度に再現可能かつ予測可能に適応でき、すべて、各ポートの作動流体の質量流量、回転方向R、回転構成部品の回転速度に関係がないのと同様である。
仕事はトルクに角回転を乗じたものと等しい、すなわちdW=τdθであるため、式の両辺を時間で割ると、トルクに回転速度を乗じたものと等しい動力が得られ、すなわちdW/dt=P=τwとなる。熱力学から、W=(p−p)/(1−n)であるため、(p−p)/(1−n)(d/dt)=P=τwとなる。
回転構成部品の1回転あたりの流体体積の体積変化割合は作動流体流量だけを変化させることによって増やしてもよく、トルクは吸入ポート、例えば202、302、444、446、544、546と排出ポート、例えば206、306、452,454、552、554の間の圧力差と作動流体の質量流量の関数となる。すべてのポートの圧力は、前述のように個別に変えられるため、何れか1つまたは複数のポートの圧力を変化させることによって、吸入ポートと排出ポートの間の圧力差が変化する。したがって、1つまたは複数のポートの大きさと円周範囲を変えて、圧力差、作動流体の質量流量の何れかまたは両方を再現可能かつ予測可能に変えることにより、トルクを、回転方向Rと回転構成部品の回転速度に関係なく変化させてもよい。
動力は、吸入ポート、例えば202、302、444、446、544、546と排出ポート、例えば206、306、452、454、552、554の間の圧力差、作動流体の質量流量、回転構成部品の回転速度の関数である。このため、ポートの大きさと円周範囲を変えて、圧力差、作動流体の質量流量、回転構成部品の回転速度、またはこれらの何れかの組み合わせを再現可能かつ予測可能に変化させることにより、動力を回転方向Rに関係なく変化させてもよい。
前の例で説明したような圧縮機または膨張機はトルクと動力を回転体から圧縮性流体に伝達すると理解されるが、モータは、本明細書で説明するように、その逆を行うと理解され、すなわち、トルクと動力を圧縮性流体から回転体に伝達する。REC装置は、流れと回転の方向が逆である圧縮機/膨張機およびモータの何れとして使用してもよい。しかしながら、回転方向はREC装置については独立したものとすることができるため、これらは方向の逆転を必要としないモータとして使用してもよい。
従来の空気圧圧縮機とモータと異なり、REC装置は、高効率の動作のために特定の圧力、回転速度R、回転構成部品の回転方向、または作動流体の質量流量を有するように設計する必要がなく、前述のように、これらの4つすべてを相互に関係なく変化させることができる。したがって、1つまたは複数のREC装置で効率的な可変速度トランスミッションを構築してもよい。例えば、図6に概略的に示されている全輪駆動車のトランスミッション600を例にとる。エンジン602は一般に、特定の動力対回転速度曲線に関して最適な効率で動作する。圧縮機604として機能するREC装置は、動力エンジン602にRとして回転可能に連結され、可変的な動力および回転速度を補償して、所望の圧力の作動流体Fを、車の各車輪608におけるモータとして機能する別のRECに供給することができる。この加圧された作動流体Fは、図6に示されるように、単独の共通の排出ポート(符号は付されていない)から供給されても、または複数の排出ポートから供給されてもよく、圧縮機の排出ポートの圧力は、設計者の希望に応じて時間と共に変化してもよい。各モータ606は次に、各車輪608で望まれるものと同等の動力を供給するのに必要なだけの圧縮作動流体Fを個別に使用する。各車輪608は、各モータに直接、または一定もしくは可変トランスミッション610によりRとして回転可能に接続され、これが可変である場合は、各車輪608について別々に制御してもよい。圧縮機604とモータ606は、エンジンの回転速度に影響を与えずに、ポンピングを有効に停止することができ、異なる車輪のトランスミッション610の回転速度をそれが係合する前に一致させるように個別に制御できるため、クラッチシステムが不要である。
車輪608により多くの動力が必要であると、その車輪のモータ606はその作動流体の質量流量を増大させる。これは、圧縮機604によって全体的または部分的に補償されてもよく、エンジン602に対してより多くの動力を要求する。圧縮機604を通る作動流体質量流がモータ606のすべてを通る合算された流体流と一致しない場合、圧縮された作動流体の圧力が変化し、これを圧縮機604とモータ606の両方が補償でき、効率を低下させない。第一の1つまたは複数の貯蔵部613も圧縮機604の出力に接続されている場合、これがこの圧力変化を遅らせ、エンジン602が車輪モータ606の動力要求に対応できない時のためのバッテリまたはブースタを有効に提供する。
運転手がブレーキをかけると、モータ606として機能するREC装置は機能を切り替えて圧縮機として作用してもよく、その回転速度を保持しながら作動流体の質量流量を逆転させ、それによって高圧貯蔵部613の中の流体の圧力と質量を増大させながら車の速度を落とし、また、それによって回生制動システムとして機能して、摩擦に基づく制動システムを不要とする。一般にこれは、エンジン602に取り付けられた圧縮機604が貯蔵部613をその定格圧力より低い圧力に維持し、回生ブレーキが貯蔵部613の中の流体圧力を、その能力を超えずに、または除圧弁(図示せず)を必要とせずに高められることを意味するが、極端な状況ではこのような弁が望ましいであろう。しかしながら、貯蔵部の圧力は圧縮機604により、現在の自動車の速度と重量から考え、最大圧力から、車を停止させることによって得られると予想される圧力を差し引くことに基づく公式に従って保持することが可能である。この公式には、所望の効率、性能、貯蔵部の容量、勾配等に応じて、いくつかの追加の可変数を追加できる。
オルタネータ614をエンジン602に直接回転可能に接続してもよいが、過去において電気モータを使用していたファン、空調圧縮機、ワイパ、および/またはその他の電動装置616は、この代わりに、モータ617として構成されたREC装置を使用することができ、すべて、同じまたは異なる圧縮機604および貯蔵部613から駆動される。最後に、弁618を使って高圧貯蔵部613内の圧力を保持する場合、エンジンのREC装置604をこの代わりにモータ604として使用して、エンジン602を始動させることができ、スタータモータは不要となる。
乾燥窒素等の乾燥作動流体と低圧作動流体貯蔵部619を有する閉ループ流体Fシステムを使用することによって、前記閉ループFの高圧側と低圧側の両方を断熱できるため、効率が向上する。
同様のシステムは列車にも使用でき、クイックコネクトホースがすべての車両と1対ごとの車輪の上または各車両の各台車上のモータ606を連結し、複数の圧縮機604が複数のエンジン車の上の複数のエンジン602に取り付けられる。車両は相互に押したり引いたりしないため、列車をより軽量に建設でき、また車両が軌道から押し出されたり、引き出されたりしないため、はるかに急な曲線の軌道でも曲がることができる。
同様のシステムは動力分配システムとして使用することができ、流体接続で、圧縮機および/またはモータとして機能する多くのREC装置が接続され、前記REC装置の物理的な位置は相互に隣り合っているか、または最高何千マイルも離れている。
最も単純に説明すると、タービンエンジンは圧縮機とモータであり、回転速度がリンクされ、圧縮機の排出部とモータの吸入部の間に燃焼室がある。圧縮機はモータによって回転可能に駆動され、燃焼室は作動流体の温度を、それが圧縮機から出るときから空気モータに入る時へと上昇させ、それによって、モータに対し、同じ圧力で圧縮機によって提供されたものより大きな体積の作動流体を供給し、また圧縮機に必要なものより多い、モータにより生成された動力を供給する。図7に示されるように、同じモデルを使って、REC装置を圧縮機704とモータ705として使用するエンジン700を作製してもよく、以下のような改良により、それに伴う利点を得ることができる。
例えば、圧縮機704とモータ705の両方の流体流量は、流量制限器またはこれと同様のものを使用することによって損失を出さずに制御できるため、エンジンにより提供される動力を、それに応じて効率を落とすことなく制御できる。
エンジン700に取り付けられた別々のトランスミッション圧縮機を有する代わりに、エンジンの圧縮機704からの別々の排出ポートを使って、必ずしも(前述の車の車輪のように)エンジン700と同じ速度で回転しているとはかぎらない他の電動装置708のための何れかのモータ706に加圧した作動流体を供給することができる。これより格段に効率の良い選択肢は、これらのモータ706に、燃焼室709、711および/または混合室712の排出から直接動力を供給することであるかもしれない。
弁718によって制御された高圧貯蔵部713からの空気をモータ705に直接供給して、エンジン700を始動でき、電気スタータモータが不要となり、何れの電気バッテリの最大電力消費も大幅に減少する。あるいは、燃焼室709、711に点火装置を設けることができ、それによってエンジンは燃焼によって完全停止状態から直接始動でき、初期回転は一切不要となる。
圧縮機704とモータ705の両方を、それ自体の吸入および排出圧力を調整できるように設計し、使用することができるため、燃焼室709と711に過剰に加圧された流体が入ることによる損失がなく、またモータ705の排出部から過剰に加圧された流体が出ることによる同様の損失もなく、それによって、最適な効率を保持しながら、可変的な動力出力を提供することができ、排気音マフラも不要となる。
燃焼室709と711の圧力をエンジンによって制御できるため、その温度もまた制御でき、ディーゼルエンジンのような燃焼を可能にし、スパークプラグ、ソレノイド、およびそれらに付随する制御手段が不要となる。
多気筒エンジンと同様に、複数の圧縮機704とモータ705は、同じまたは複数の燃焼室709と711に取り付けることができる。これによって、数量および規模の面での効率化が可能となり、同じ基本的なREC装置を動力需要の異なる様々な用途に異なる量だけ使用することができる。これはまた、回転脳に接続され、および/または切断される複数のエンジン700を有することによる冗長性という恩恵を得ることを可能にし、必要に応じてエンジン700を始動および停止させることによって、より広い動力範囲にわたり、より高い効率を得ることも可能にする。
圧縮機704は、同じ(または異なる)圧力と、個別に制御される作動流体の質量流量を持つ複数の排出ポート(符号は付されていない)を有することができるため、1つのポートを、燃料貯蔵部720からどれだけの燃料が燃焼されるかを制御できる第一の燃焼室709につなぐことができ、第二の燃焼室711への第二のポートは燃焼工程を完了させ、おそらく、エンジン700の排出部で触媒コンバータを使用する代わりに排気を制御できる。燃焼工程全体を圧縮機704とモータ705の間に移すことによって、エンジンの効率が向上するであろう。さらに、第一の燃焼室709への作動流体の質量流量は、どれだけの燃料を燃焼させて第二の燃焼室711に移動させるかを制御できるため、燃料は、燃料導入速度によって制御する必要がなく、したがって、固形燃料の大きな切片を液体燃料の代わりに使用でき、しかも依然として燃焼速度を完全に制御でき、燃焼への露出を制限する、より効率の悪い方法を必要としない。
圧縮機704からの第三の排出ポート(符号は付されていない)は、完全に燃焼した流体をモータ705の構成部品が容易に耐えられる温度まで冷却するために使用される混合室712に接続することができ、それによってモータ705の前で燃焼エネルギーのすべてが保持され、エンジン構成部品のための冷却システムが不要となる。他の非排他的な例として、水Wまたはその他の液体を混合室712の中に導入することができる。水Wはまた、加熱して気化させ、多くの追加の作動流体の圧縮を必要とせずに、同じ冷却効果を提供することもできる。冷却復水器722をモータ705の直後に使用して、作動流体から略沸騰している水を再生利用した場合、水ポンプ724を使ってそれを混合室の中に再導入することができ、使用者は追加の水Wをほとんどまたはまったく貯蔵または補給する必要がなくなり、混合室712に導入される水Wは予熱されて効率が向上するであろう。
これに加えて、(第一と第二の)燃焼室709と711の一方または両方を1つまたは複数の熱交換器(図示せず)に置き換えてもよく、これによって、例えばエンジンの高温の排気を使って第二のエンジンに動力を与えるための熱を供給するか、画定された体積内の高温の排気を冷却し、その圧力の変化を利用してエンジンの出力を増大させることにより、さらに効率を高めることができる。熱交換器(図示せず)を燃焼エンジンの排出部に取り付け、これを上記の冷却復水器722と組み合わせることによって、その排出部の残留熱を使って第二のエンジン700に動力を与え、2つのエンジンの効率を向上させることができるであろう。第二の熱交換器を冷却復水器722と組み合わせて、非燃焼型エンジンでこれを使い、その排気を冷却してその圧縮機に戻されるようにすると、そのエンジンは作動流体の閉ループを使用でき、その熱サイクルでより効率的な作動流体を使用できることになる。これらの第二のエンジン(図示せず)を何段にも直列で使用することにより、複合エンジンの効率をさらに高めることができる。
冷却流体の境界を定め、それゆえ、その再圧縮から動力を得ることによって、燃焼および非燃焼型エンジンの両方をさらに効率化できる。排出部用の冷却復水器/熱交換器722がそれ自体の(負の)圧力室であり、モータから入る作動流体の質量流量が(再)圧縮機726として機能するRECにより排出される作動流体の質量流量と等しい場合、前記圧力室722を負圧に設定でき、動力を得ることができる。これは、前記圧力室から出ていく作動流体の体積流量が、入ってくる作動流体の体積流量より少なく、それゆえ、流体を周囲圧力728へと再圧縮するために必要なエネルギーが、周囲圧力728より低い圧力へとモータ705が排出することによって得られるエネルギーより少ないからである。その代わりに熱交換器を圧縮機(図示せず)に組み込んだ場合、流体の圧力が圧縮機内で低下する可能性があり、これによって流体の圧力と体積の積が縮小すると、圧縮機の回転が誘発されるであろう。
この効率的な冷却方法は、圧縮機を使って圧縮性流体を圧縮し、その後、流体は熱交換器内で流体が圧縮不能な液体状態に凝結するまで冷却されてから、弁を通って別の熱交換器の中へと吐出され、その中で流体が蒸発し、温められる。これはより旧式の技術と比較して多くの利点を有するが、それは安定した非腐食性、非毒性で、液体から気体対圧力/温度推移曲線が所望の環境の動作圧力能力と温度範囲内に適合するような流体を入手できるか否かに依存する。このような流体は現時点では入手不能であるか、または費用対効果が低い場合、流体の沈殿に依存しないシステムを有することは、圧縮された流体の圧力低下により放出されるエネルギーを回収できれば有利であり、効率的であろうと推測できる。その他の具体的な用途もまたこのような設定から利益を得ることができ、例えば単独の沈殿曲線がほとんどの場合において理想的ではない、広い幅で変化する入力および/または出力標的を有する冷却サイクルや、温度および/または熱伝達率およびまたは電力消費可変値の何れかを厳密に保持しなければならない用途である。
このような冷却システム800は、図8に示されるように実現できる。この場合、第一の熱交換器801が高圧高温作動流体側で、圧縮機804として使用されるREC装置の排出部とモータ805として使用される他のREC装置の吸入部に接続され、第二の熱交換器が低圧低温作動流体側で、モータ805の排出部と圧縮機804の吸入部に接続される。圧縮機の回転構成部品とモータはRとして回転可能に連結され、さらに外部電源830によって駆動される。定常状態では、圧縮機804はモータ805の排出より大きい体積の作動流体を取り込む。前述のように、圧縮機804は、システムとオペレータの両方が、何れかの動力および熱需要を満たすために要求する作動流体の質量流量と圧力差(およびそれゆえ、温度差)に合わせて調整できる。するとモータ805を、システムの共有の入力および出力圧力に合わせて調整し、確実に異なる温度が保持され、それと同時に前記圧力差による作動流体の膨張から動力が再び得られるようにすることができる。
暖房、換気、空調(HVAC)システムで使用されるようなヒートポンプは、冷却サイクルを使って、補助電源により駆動される1つまたは複数のポンプと流体の圧縮膨張の利用を通じて、一方の流体から他方に熱を伝達する。いくつかのヒートポンプの用途においては、加熱炉が燃料を燃やして熱を得て、その後その熱の一部を他の流体に伝達し、それと同時に残りの熱をその排出部から大気中に吐き出す。周囲温度が制御環境の温度に関して低いほど、その工程の熱効率が悪くなる。
図9に示されるように、熱機関900を、図7のようにエンジンとして使用される圧縮機704とモータ705として使用されるREC装置と、1つまたは複数の燃焼室909と911、作動流体貯蔵部913および関連する制御弁918、燃料貯蔵部920から作製してもよく、これに燃焼室とモータ905の間の熱交換器921が追加される。この場合、目的は、周囲から空気F1を吸入し、その温度を、制御環境932の中で望まれるものより高い温度まで圧縮のみによって上昇させ、その後、エンジン700と同様に、燃焼室909と911を使って熱の形態のエネルギーを加え、その後、前記燃焼から得られた熱を別の作動流体F2に伝達してから、周囲空気F1の圧縮によって失われたエネルギーを、それをモータ905の中で膨張させ、周囲928に再び放出することによって回復することである。圧縮機904とモータ905の中で損失が生じるため、周囲928の大気中に戻される空気の温度は、それが工程を開始した時より高くなってしまうであろう。これは、システムを他の方法によって駆動すれば克服され、吐き出された空気F1をより低い温度で戻すことさえ可能となりうる。1つのこのような方法は、システムに偏心モータ(図示せず)を補足することに関していてもよい。この偏心モータは外部電源により駆動されてもよいが、圧縮され、燃焼された空気F1からの熱を制御環境に伝達することも、加熱エンジンを補うために使用できる。
1つの選択肢は、熱を熱交換器921から第二のエンジン934の圧縮作動流体に供給することであってもよく、これは第三と第四のREC装置で構成され、その一方はその作動流体を制御環境から取り込む圧縮機936として使用され、他方はその作動流体を制御環境に戻すモータ938として使用される。第一と第二のエンジンの回転構成部品を回転可能に連結することによって動力の伝達が完全に行われ、圧縮された制御環境の作動流体F2の温度が十分に低く、熱交換器から十分に上昇させることができ、それが第二のエンジン934からの追加の損失を克服するだけでなく、第一のエンジン(符号は付されていない)に回転エネルギーを供給できれば、第二のエンジン934はシステムに動力を付与するであろう。この第二のエンジン934はまた、別の熱交換器940と閉じた流体ループを有することもでき、ブロアファンまたはその他の、空気をその制御環境932からその熱交換機934を通って押し出すための装置942を駆動するのに十分な追加の動力を提供することさえ可能であるかもしれない。
他の選択肢は、サーモカップルアレイ(図示せず)を熱交換器921に組み込むことであり、熱のすべてが一方の流体から他方の流体に移動する時にここを通らなければならず、それによって電位と電流が得られ、その一方で熱交換器の重量効率が低下する。この電位と電流はすると、どのような目的にも使用でき、その中の別のものは、システムのエンジンの制御手段を駆動することでありうる。これら2つの選択肢は組み合わせてもよい。
上記の選択肢は加熱システムとして機能し、これはシステムに動力を供給するために使用される燃料の持ちうるエネルギーの100%より大きいエネルギー効率を有し、周囲および制御温度の何れについても広い範囲で良好に機能しうる。
これまでは、すべての排出ポートの排出物の圧力はこれらのポートにおける周囲圧力と等しくされると仮定されていた。これは、異なる圧力の2つの圧縮性流体が混合した場合の排出ポートにおける突然の、発散による膨張からのエネルギー損失を排除する。エネルギー効率の面での利点より、用途によっては、体積および/または重量効率の面での利点のほうが勝るかもしれず、これらの利点は、用途ごとに、また同じ用途でも時間ごとに変わるかもしれない。
上述のようなシステムは、特定の出力範囲内では排出ポートにおける排出物の圧力と周囲圧力が同じで、その範囲より起きい出力レベルでは、これらの圧力が異なるように構成されてもよい。それゆえシステムは、より低い出力範囲では非常にエネルギー効率が高いが、より高い出力範囲では、そのエネルギー効率の一部が体積および/または重量効率と交換されるであろう。その代わりに、システムはエネルギー効率の高い範囲を持たず、常にそのエネルギー効率が体積および/または重量効率の犠牲になる場合もある。
使用者にとって、システムを特定のエネルギー効率範囲に、またはそれ以上に保持することが望ましい場合、第一の選択肢は、システム上の動力限界を使用者が設定することであり、それを使用者がオンまたはオフにし、および/または変更でき、これらは最もエネルギー効率の高い出力範囲の上限の出力レベルと同じでも、同じでなくてもよい。このようにして、システムはその最も、またはよりエネルギー効率の高い出力範囲に自発的またはその他によって限定されてもよい。
代替的な第二の選択肢として、限界を設定してもよく、緊急時またはその他の場合にシステムをこの限界から解除するスイッチまたはその他の方法が使用者または何らかの他のシステムの何れかによって決定される。このようにして、システムは自発的またはその他によって、そのエネルギー効率を犠牲にして、その通常はエネルギー効率の高い出力範囲を超えてもよい。
上記の選択肢は何れも、同じシステムで、出力およびエネルギー効率の異なる範囲について使用してもよい。例えば、システムが徐々に損傷を受けて、特定の出力定格を超える場合、それより下がるとシステムが損傷を受けるような、より低いエネルギー効率の出力範囲に第一の選択肢を使用してもよく、それ以上の出力範囲について第二の選択肢を使用してもよい。
上記の3つの場合のすべてにおいて、限界をオンまたはオフにするためにスイッチは望ましくないことが判明するもしれない。各範囲限界を超えるとスロットル上の使用者の圧力への抵抗が増大したことを認知した等の使用者からのフィードバックをスイッチの代わりに使用してもよく、それによってより直観的で、制限の少ない相互作用が可能となる。
前の文章と図面で説明した例は、おそらく多くのスライド、ウェッジ、調整可能ポートを有するらせんスライドに焦点を当てたが、以下では、2つの同等の調整可能ポートのみを含み、図7の構成部品704、705、726の組み合わせとして機能できる製造可能な設計の効率を最高にすることに焦点を当てる。
最高のエネルギー効率を得る場合、装置内のすべての往復運動を減らし、または排除することが望ましい。同じ考え方に沿って、すべての回転体のバランスがとれ、各物体の回転軸はその質量中心も通過するようになっていることが望ましい。ジェロータはこのような往復運動をすべて排除したもので、内側および外歯車の両方が回転していて、その回転中心が固定された状態に保持されるかぎり、その回転軸はまた、本質的にその質量中心も通過する。さらに、歯車装置を、歯車の一方が一定の回転速度で回転している場合に、もう一方もまた一定の回転速度で回転するように設計することも可能であり、これもまた、定常状態での角速度の強制的な変化による効率の損失を排除する。
最高のエネルギー効率を得る場合、圧縮性流体を、さらに流体を再び取り込む前にすべて完全に排出することが望ましい。これは、回転の過程ですべての流体体積が体積ゼロの状態で始まり、終わらなければならないことを意味する。定常状態においてポートとそれに関連する体積の間で正しいアクセスを保つために、スライドを装置の効率的な回転とともに、またはそれに応答して移動させることは望ましくないため、この体積ゼロの位置を固定の座標基準に関連して固定することが望ましい。一般的なN:N+1の歯車装置を調べると、一方の歯車から他方の歯車へのトルク伝達において効率的であることが発見された形状が、ここで説明した方法では全くエネルギー効率がよくないことがわかる。しかしながら、これは、この体積ゼロの位置を固定する最善の位置が、歯車の歯が最も完全に噛み合う場所であることを示唆していることは確かである。前記のN:N+1の歯車装置をさらに調べると、歯車の歯間の流体体積がセロに近付かない主な理由は、(何れかの歯車の)歯の先端が完全に噛み合った状態での嵌合相手に関して決して瞬時に静止せず、その代わりに、そのために残される開放空間を通じて搖動し、歯車が拘束されないことであることがわかる。この開放空間を取り除き、それゆえ、この位置で体積ゼロとなるようにするために、搖動を排除しければならない。それゆえ、まず、ロータまたはステータの何れか(または両方)の歯の先端を、完全に噛み合った位置でのその嵌合ポケットに関して瞬時に静止させることから始める。
数学的に、これは、上述のように完全に噛み合った位置における歯の先端の移動ベクトルが、体積ゼロの位置では、その嵌合相手の歯車の中のその嵌合部分と瞬時に一致しなければなないことを意味する。さらに、その歯の嵌合相手の歯車の回転中心の位置にあり、その嵌合相手の歯車と同じ速度で回転する回転座標基準が確立された場合、歯はこの完全に噛み合った状態では搖動できないため、それは、回転座標系上でたどった時に、歯車の回転軸間に引かれた線に平行なベクトルに沿った体積ゼロ位置の前後で、瞬時にこの位置に近付き、そこから離れなければならない。この線はまた、回転座標系上で歯の前記先端と何れかの歯車の回転軸の間に挽かれた線にも平行である。このようにして、各歯の先端は、たとえ固定の座標基準から見ると往復運動していなくても、回転座標基準から見た場合は、瞬時にピストンのように往復運動しているように見える。
一般的なN:N+iの歯車装置を調べると、時々、歯車の歯が常にその嵌合相手の歯車と接触状態に保たれない方法によって、個別の体積が融合し、また相互から分離することがわかる。これは、圧力の異なる体積が融合して、その圧力が均等になり、それによって上述のように効率が低下するため、望ましくない。一方または両方の歯車の歯の先端は嵌合相手の歯車の範囲を画定するため、各歯について、1つの体積と次の体積の間の境界を画定して、常にその嵌合相手の歯車と接触した状態に保ち、その歯によって境界が画定される2つの体積が融合しないようにすることが望ましい。
以上に基づき、内歯車または外歯車の何れかの歯が効率の高い装置のすべての条件を満たすようにしてもよく、両方ではないと判断された。その歯が取りうる形態を表すために2つの一般的な解決策が見つかっており、1つは、内歯車の歯の先端が上述のように外歯車を画定する役割を果たすことにより、1つは、外歯車の歯の先端が上述のように内歯車を画定する役割を果たすことによる。以下の式1〜7で表現される第一の解決策を最も詳しく説明するが、それは、最も堅牢で体積効率の良い選択肢であるからである。
NoET=NoIT+1 式(1)
式中、
NoETは外歯車の歯数と定義される。
NoITは内歯車の歯数と定義される。
式1は、上述のN:N+1の条件を数学的に表している。それゆえ、外歯車の1回転につき、内歯車は(n+1)/n回転する。別の言い方をすれば、内歯車が1回転するたびに、それは外歯車に関する位置を歯1個分前進させ、この前進は外歯車の1回転の1/(n+1)thおよび内歯車の1回転の(1/n)thとなる。
形状に関して図10〜13を参照すると、内歯車の歯の先端を使って外歯車を表す場合、次の式2〜4が有益である。
Figure 2018135886
Δ=NoIT・δ 式(4)
式中、
TH(1002と1202)は、歯の高さと定義され、これは歯車の回転軸と歯の先端1003と1203との間の距離である。
E(1004と1204)は、偏心度と定義され、これは内歯車の回転軸1005と1205と外歯車の回転軸1006と1206との間の距離である。
Δ(1007と1207)は、外歯車が回転した角度と定義される。
r(1008と1208)は、外歯車の中心から外歯車の歯のうちの1つの先端までの距離として定義され、それゆえ、外歯車の内壁を画定する。
δ(1010と1210)は、内歯車が外歯車に関して回転した角度と定義される。
θ(1012と1212)は、外歯車に関する「r」の角度と定義される。
実験を通じて発見された点として、
TH=E・NoIT 式(5)
が実行されると、上述のピストン運動が得られる。式4と5を式2と3に代入すると、
Figure 2018135886

Figure 2018135886
が得られ、図10は、その結果として得られるNoITが4の場合の谷部が1つの円弧1014を示す。E 1004と1204およびNoITがどちらも歯車の形状の一定の数値であるため、δ 1010と1210だけが各式の右辺の可変値として残り、E 1004と1204およびNoITの各組み合わせについて各式のパラメータ表示をプロットできる。(当業者であればわかるように、θを求める際、逆正接表現の結果に、それが不連続点を通過する時には必ずπを累積的に加算しなければならず、そうしないと不正確でばらばらなプロットになる。)あるいは、δ 1010と1210をθ 1012と1212について解き、それを式3または7に代入して、正しいプロットを得てもよい。どちらの式の組も、希望に応じてデカルト座標系に変換してもよい。
前述のように、歯車の歯により画定されるすべての体積は、始まりと終わりが体積ゼロとなる。それゆえ、外歯車の歯を使って内歯車の歯が画定される。しかしながら、外歯車の歯は内歯車の歯間の谷部をなぞるため、外歯車の全体の形状が関係する。外歯が谷部をなぞるため、また、なぞっている間に谷部と歯の間が接触したままであることが望ましいため、歯と谷部の間の接触点は、歯の上の、なぞる方向が歯の表面に対して接線となる地点である。しかしながら、これを解くと、式6と7を解いた時と同じ形状が得られ、これは内歯が1つ少ないことを除き、同じである。1のE 1004と1204と3と2のNoITを求めると、外内歯車装置が得られる。
上記に基づく効率の観点からは望ましいが、歯車の歯の先端の点は機械的に弱く、摩耗しやすく、製造しにくく、望ましい程度に緊密な気密状態を生成しない。しかしながら、各歯車の面に一定の量のオフセットを設けることによって歯車を変更してもよい。各歯の先端は点であるため、先端における一定のオフセットは半円形となり、図11に示されるように、3つの歯の内歯車1102と4つの歯の外歯車1104が得られる。しかしながら、歯車の面の湾曲により、新しい理論的な面が自己干渉し、不良とならないように適用しうるオフセットの量が限定される。この湾曲は歯の先端において最も急峻となり、これは体積ゼロまたはゼロに近い状態で歯間が密着し、それゆえ圧力差が最大となる場所であるため、「だまして」、オフセットを理論的に自己干渉するところまで大きくしすぎることが望ましい。しかしながら、オフセットを大きくすると、歯が機械的に強化されるだけでなく、歯車装置の体積効率も同時にわずかに増大する。この制約およびその他の制約により、オフセットをできるだけ大きくすることが望ましい。また、歯車あたりの歯数を増やしたら、歯の面をさらに湾曲させて、理論的な面が自己干渉する前にオフセットの量を減らすようにしなければならない。偏心度は体積効率に影響を与えないが、歯車あたりの歯数が増えると体積効率が低下する。それゆえ、歯車の機械的強度と体積効率の見地からの両方に基づき、NoITはできるだけ小さいことが望ましい。
歯車の回転のある地点において、歯はその嵌合相手の歯車と、それぞれの先端が接触する状態に到達し、したがって、その接触は力の回転ベクトルを相互に対して付加せず、この状態の何れかの側だけについて、付加されうる力の回転ベクトルは、一方の回転方向において1/∞であり、反対ではゼロである。内歯車の歯の数が偶数である場合、内歯車の反対側の歯はそれが嵌合する谷部の底部にあり、それゆえ、2つの歯と接触し、力の回転ベクトルをどちらの方向にも付加できる。上記の2つの状態の一方にない歯は、その嵌合する歯/谷部との接触点が1つしかないため、力のベクトルを一方の回転方向またはその反対に付加できるが、両方には付加できない。それゆえ、この場合に内歯車に歯が2つしかない場合、1つの歯が、それが両方の回転方向に力を付加できる状態を通過したばかりで、それゆえ、力を一方の回転方向にしか付加できず、もう一方の歯が反対方向に1/∞だけしか、または事実上全く力を付加できない状態が発生する。それゆえ、内歯車の回転と反対の力はすべて、事実上ゼロの力に打ち勝ち、それによってシステムは、何らかの外部の機構を使って内および外歯車をその回転中に整合状態に保たないかぎり、引っ掛かる。この場合、内歯車に3つまたはそれ以上の歯があると、この問題は解消される。
外歯車の歯の先端を使って内歯車を表す場合、以下の式8〜10が立ちうる。
Figure 2018135886
および
Δ=(NoIT+1)・δ 式(10)
実験を通じてわかったこととして、
TH=E・(NoIT+1) 式(11)
が実行されると、上述のピストン運動が得られる。式10と11を式8と9に代入すると、
Figure 2018135886

Figure 2018135886
が得られ、図12は、その結果として得られるNOITが3の時の1つの歯の円弧1216を示している。前述のように、E 1004と1204およびNoITはどちらも歯車の形状の一定の数値であるため、δ 1010と1210だけが各式の右辺の可変数として残り、E 1004と1204およびNoITの各組み合わせについて各式のパラメータ表示をプロットできる。前述のように、δ 1010と1210をθ 1012と1212について解き、それを式9または13に代入して、正しいプロットを得てもよい。前述のように、どちらの式の組も、希望に応じてデカルト座標系に変換してもよい。
それゆえ、以下12と13を解いて1のE 1004と1204と3と2のNoITを求めると、外内歯車装置が得られ、面にオフセットを設けることによって、図13に示されるように、歯が2つの内歯車1302と歯が3つの外歯車1304が得られる。外歯車はその先端で接触するため、それが3つまたはそれ以上の歯を必要とするほうであり、それによって内歯車は2つだけでよい点に留意されたい。流体体積が、外歯車の歯間の各谷部の底部において外歯車で常にアクセスされうる前述の3:4の歯車装置と異なり、2:3の歯車装置とその等式で作製されるすべての装置が、内歯車の歯間の各谷部の底部において同じように一定にアクセスできるとはかぎらない。
図14Bは、図14Aの等角図である。図14A〜14Bは、図11の4:3の歯車装置を含むREC装置1400を示しており、歯車1402は1102と機能的に同じであり、1404は1104と機能的に同じであり、その範囲は示されず、どちらも、図示されていない機構によって固定された回転中心を持つと理解されるが、これらは歯車1402を歯車1404の中で自由に回転させてもよい。これら2つの歯車1402と1404は、ページの中の同じ深さまで延び、その方向に平行であると理解し、その端面は同じ位置にあると理解する。さらに、同じ斜線が付けられた領域は、両方の歯車の端と同一平面のキャップ領域1406を表すと理解し、これは歯車1402と1404の歯間に流体体積を画定し、外歯車1404の谷部の底先端だけが画定されないまま残る。理解するべき点として、このアセンブリ1400の一端に、両方の歯車の端と同一平面内にある第一のスライド領域1408があり、これもまた、その端に、およびその円周範囲にわたって流体体積を画定するが、その端におけるその円周範囲の外側で前記流体体積にアクセスでき(このアクセスをアクセス1とする)、これはまたキャップ領域1406と同一平面内にあり、その円周方向の大きさは一定であるが、その範囲はキャップ領域1406の円周の周囲で自由に移動できる。理解するべき点として、このアセンブリ1400の反対の端には、第二のスライド領域1410があり、これは両方の歯車のその端と同一平面内にあり、これもまた、その端に、およびその円周範囲にわたって流体体積を画定するが、その端におけるその円周範囲の外側で前記流体体積にアクセスでき、これはまたキャップ領域1406と同一平面内にあり、その円周方向の大きさは一定であるが、その範囲は、その範囲がウェッジ領域1412と重なってはならない点を除き、キャップ領域1406の円周に沿って自由に移動できる。理解するべき点として、スライド領域1410と同じ端に、流体体積と同一平面内にあり、これを画定するウェッジ領域1412があり、これはキャップ領域1406と同一平面内にあり、その円周範囲と大きさは2つの歯車の回転軸に関して固定され、それは外歯車の谷部と、その谷部が先端の1つによって満たされ、残っている両隊体積がゼロか実質的にゼロである時に、そのすべてと重なるが、それ以上とは重ならないようになっている。理解するべき点として、歯車の中で、スライド領域1410とウェッジ領域1412が共有する端に、少なくとも1つ、多くて2つの、流体体積にアクセスする円周範囲があり、これをアクセス2およびアクセス3(符号は付されていない)とする。さらに理解するべき点として、図14Aに示される歯車の一方または他方の端から見た場合、アクセス1はアクセス2とアクセス3の何れかまたは両方と重なる。
REC装置1400は、後述のようにREC装置200として機能する。スライド領域1408がウェッジ領域1412と十分に重なると、ウェッジ領域1412の円周範囲では流体体積にアクセスできず、この領域は図2A〜2CのREC装置200のウェッジ220として機能する。スライド領域1408とスライド領域1410が部分的または全体的に重複すると、この重複の円周範囲は流体領域に対するアクセス拒否領域1414として機能し、これはスライド領域1408と1410の円周範囲によって、図2A〜2CのREC装置200のスライド212と216と同様の方法で制御される。領域1408、1410、1412のうちの2つが重ならない場合、流体体積へのアクセスはポート202と206と同様の方法で行われる。回転構成部品の回転方向Rを仮定すると、図14の吸入ポート1416はREC装置200の吸入ポート202と同様の方法で機能し、排出ポート1418はREC 200の排出ポート206と同様の方法で機能する。このようにして、その回転構成部品の往復運動のすべてを排除するREC装置を構築できる。これに加えて、ウェッジ領域1412と同様の円周範囲を有するが、これらが歯車のその端において他の何れの領域とも重ならないかぎり円周方向に移動できる別のウェッジ領域がアクセス2および/またはアクセス3に追加されると、これらは図4のウェッジ442と448のように機能してもよい。
スライド1408と1410およびウェッジ1412は歯車1402と1404の端に設置されるため、2組の回転構成成分が回転可能に相互に連結され、端と端を合わせて設置されてもよく、それによってこれらはスライドを共有でき、ウェッジを共でき、必要な部品数を減らすことができる。これら2組またはそれ以上の回転構成部品を相互に角度的にずらし、これらが同じ軸を共有するが、それらの流体体積が時間によって共有ポートにアクセスしたり、しなかったりするようにした場合、作動流体の質量流量がより小さなポートを通じてより連続的、一定となるという点で、これはNoITを増やす時と同様の平滑化効果を有するが、NoITを3つより多くしても体積効率は相応に低下しない。
図15Bは図15Aの等角図である。REC 200と同様のREC装置は、図15A〜15Bに示されるように複数の膨張円弧と複数の収縮円弧を有するように構成してもよいため、1つのREC装置で複数の圧縮機および/またはモータとして機能できる。REC装置1500は、REC 200と似ているが、回転構成部品の両端でスライド領域1502(その一部だけに符号が付されている)を使用して4つ分のREC装置200の機能を有する例を示している。
図16Bは図16Aの等角図である。REC装置1400と同様のREC装置は、図16A〜16Bに示されるように、歯車の谷部のいくつかだけについてポートがその流体体積にアクセスするように制御する弁またはその他の方法を有し、また、歯車の谷部の他のいくつかへのアクセスを継続的にブロックするその他の方法を有するように構成できるため、また図16A〜16Bに示されるように、アクセスを制御する方法が今度は、前述のスライドと同様の方法で制御されてもよいため、REC装置1400と同様の単独のREC装置は複数の圧縮機および/またはモータとして機能できる。REC装置1600は一方の端で2つの歯車の谷部を覆う2つの弁1602を使用し、これらの歯車の谷部へのアクセスを許可または拒否し、反対の端では、残りの2つの歯車の谷部(図示せず)について同じことが行われる。この実施形態は、2つのスライド領域1604と1つのウェッジ領域1606と共に通常開の弁1602を使用して、各端においてこれらの弁1602を制御し、2つ分のREC装置200の能力を提供するが、通常閉の弁および/またはさらに多くの組のスライドおよびウェッジ領域および/または、スライドが弁および/または、より多くのNoITを有する歯車装置とどのように相互作用するかをさらに差別化することをすべて使用して、REC装置1600の能力をさらに増やすことができる。
例示的実施形態を上で開示し、添付の図面に示した。当業者であればわかるように、本明細書で具体的に開示したものに対し、本発明の主旨と範囲から逸脱することなく、様々な変更、省略、追加を行うことができる。

Claims (24)

  1. 回転膨張室装置において、
    第一の回転構成部品を含む第一の機構を含み、前記第一の機構は部分的に少なくとも第一の体積の境界を画定し、前記第一の体積は前記回転膨張室装置の動作中に前記第一の回転構成要素の回転にしたがって、あるいは実質的にしたがって移動し、
    前記第一の機構と相互作用して実質的あるいは全体的に前記第一の体積の境界を画定する第二の機構を含み、
    円周範囲を有するアクセス不能な第一の円弧を含み、前記第一の体積は円周範囲全体に沿って前記第一および第二の機構によって実質的または全体的に範囲が画定され、
    前記アクセス不能な第一の円弧は第一端部と第二端部とを有し、
    前記第一の体積は前記回転膨張室装置の動作中に大きさが変わり、
    前記回転膨張室装置は、前記アクセス不能な第一の円弧の第一端部と第二端部の各々の位置を、前記第一端部と第二端部のうちの他方の位置を変えることなく変化させて、前記第一の体積が前記アクセス不能な円弧の第一端部に位置づけられているときに前記第一の体積の大きさを独立的に制御し、前記第一の体積が前記アクセス不能な円弧の第二端部に位置づけられているときに前記第一の体積の大きさを独立的に制御できるように設計され構成されていることを特徴とする回転膨張室装置。
  2. 請求項1に記載の回転膨張室装置において、前記回転膨張室装置がアクセス不能な第二の円弧を有し、前記回転膨張室装置がさらに、
    前記第一および第二の機構のうちの1以上と相互作用して前記第一の体積の境界を前記アクセス不能な第二の円弧に沿った第一の位置に実質的または全体的に画定する第三の機構を含み、前記第一の体積の大きさは前記第一の位置において実質的にゼロであることを特徴とする回転膨張室装置。
  3. 請求項2に記載の回転膨張室装置において、前記回転膨張室装置がさらに、前記アクセス不能な第一および第二の円弧の間に複数のアクセス円弧を含むことを特徴とする回転膨張室装置。
  4. 請求項3に記載の回転膨張室装置において、さらに、
    前記回転膨張室装置によって部分的に境界が画定される、前記第一の体積と断続的に連通する複数の体積を含み、
    前記複数の体積が部分的、実質的、および/または全体的に、前記回転膨張室装置によって互いに離間されていることを特徴とする回転膨張室装置。
  5. 請求項4に記載の回転膨張室装置において、前記第二の機構が複数のスライドを含み、前記アクセス不能な第一の円弧は、上に前記複数のスライドが互いに重なる円弧であることを特徴とする回転膨張室装置。
  6. 請求項4に記載の回転膨張室装置において、前記第二の機構が複数のスライドを含み、前記アクセス不能な第一の円弧は前記複数のスライドによって規定される円弧の合体であることを特徴とする回転膨張室装置。
  7. 請求項4に記載の回転膨張室装置において、前記回転膨張室装置は作動流体から機械的な回転動作にエネルギーを変換するモータとして動作するよう構成され、前記モータは、当該モータをまたがる前記作動流体の圧力差、前記モータに入る前記作動流体の第一の圧力、前記モータを出る前記作動流体の第二の圧力、前記モータをまたがる前記作動流体の温度差、前記モータに入る前記作動流体の第一の温度、前記モータを出る前記作動流体の第二の温度、前記モータを通る前記作動流体の質量流量、および前記モータを通る前記作動流体の流れる方向に関係なく、生成される回転速度、生成される回転方向、および生成されるトルクのうちの1以上を選択的かつ独立的に変化できるよう設計および構成されることを特徴とする回転膨張室装置。
  8. 請求項4に記載の回転膨張室装置において、前記回転膨張室装置は、回転の入力速度、回転の入力方向、および入力トルクのうちの1以上に関係なく、前記回転膨張室装置にまたがる作動流体の圧力差、前記回転膨張室装置に入る前記作動流体の第一の圧力、前記回転膨張室装置を出る前記作動流体の第二の圧力、前記回転膨張室装置をまたがる作動流体の温度差、前記回転膨張室装置に入る前記作動流体の第一の温度、前記回転膨張室装置を出る前記作動流体の第二の温度、前記回転膨張室装置を通る前記作動流体の質量流量、および前記回転膨張室装置を通る前記作動流体の流れる方向のうちの1以上を選択的かつ独立的に変更できるよう設計され構成されていることを特徴とする回転膨張室装置。
  9. エネルギー回収システムにおいて、
    それぞれ請求項4に記載の回転膨張室装置を第一のものと第二のものとで二つ含み、
    前記第一の回転膨張室装置は前記第二の回転膨張室装置に機械的に結合され、
    前記第一および第二の回転膨張室装置に流体連結された熱交換器を含み、
    前記システムが、前記作動流体を前記第一の回転膨張室装置で膨張させ、前記作動流体を前記熱交換器で冷却し、その後に前記作動流体を前記第二の回転膨張室装置で圧縮することにより、作動流体からエネルギーを回収するよう設計され構成されていることを特徴とするエネルギー回収システム。
  10. エネルギー回収システムにおいて、
    それぞれ請求項4に記載の回転膨張室装置を第一のものと第二のものとで二つ含み、
    前記第一の回転膨張室装置は前記第二の回転膨張室装置に機械的に結合され、
    前記第一および第二の回転膨張室装置に流体連結された燃焼室を含み、
    前記システムが、前記作動流体を前記第一の回転膨張室装置で圧縮し、前記燃焼室で加熱し、前記作動流体が前記第二の回転膨張室装置の前記第一の体積を出る前に、前記作動流体を前記第二の回転膨張室装置で実質的または全体的に膨張させるよう設計され構成されていることを特徴とするエネルギー回収システム。
  11. 単相冷却システムにおいて、
    それぞれ請求項4に記載の回転膨張室装置を第一のものと第二のものとで二つ含み、
    前記第一の回転膨張室装置は前記第二の回転膨張室装置に機械的に結合され、
    前記第一および第二の回転膨張室装置に流体連結された第一および第二の熱交換器を含み、
    前記システムが、圧縮性の作動流体による閉ループ冷却サイクルとして機能するように構成され、前記第一と第二の回転膨張室装置はどちらも、前記作動流体の質量流量を、前記第一の回転構成部品の回転速度、あるいは前記第一および第二の回転膨張室装置にまたがる温度または圧力差に関係なく独立的に制御するよう設計および構成されることを特徴とする単相冷却システム。
  12. 熱を制御環境に伝えるように構成された加熱システムにおいて、当該加熱システムが、
    閉サイクルエンジンに連結された開サイクルエンジンを含み、前記開サイクルエンジンはそれぞれ請求項4に記載の回転膨張室装置を第一のものと第二のものとで二つ含み、前記閉サイクルエンジンはそれぞれそれぞれ請求項4に記載の回転膨張室装置を第三のものと第四のものとで二つ含み、、前記第一、第二、第三、および第四の回転膨張室装置は相互に機械的に連結され、
    前記開サイクルエンジンは燃焼室を有し、これは前記第一と第二の回転膨張室装置に連結され、前記第一の回転膨張室装置によって圧縮されていた第一の作動流体を加熱するように構成され、前記第二の回転膨張室装置は前記燃焼室によって加熱された前記第一の作動流体を膨張させ、
    前記閉サイクルエンジンは、前記第一の作動流体から第二の作動流体に熱を伝達するように構成された第一の熱交換器によって前記開サイクルエンジンに熱連結され、
    前記第三と第四の回転膨張室装置は、前記第一の熱交換器と第二の熱交換器に連結されて閉ループを形成し、前記第二の熱交換器は制御環境に熱連結され、それによって前記加熱システムが熱を制御環境に伝えるように構成されることを特徴とする加熱システム。
  13. 回転膨張室装置において、
    回転するよう構成された第一の回転構成部品を含む第一の機構と、前記第一の機構と相互作用して実質的あるいは全体的に第一の体積の境界を画定する第二の機構とを含み、これにより前記回転膨張室装置の動作中に前記第一の体積が実質的に前記第一の回転構成部品の回転とともに移動し、
    前記回転膨張室装置が、前記回転膨張室装置の動作中に前記第一の体積が増大する膨張体積円弧、前記回転膨張室装置の動作中に前記第一の体積が実質的に同じ大きさのままである一定体積円弧、および前記回転膨張室装置の動作中に前記第一の体積が減少する収縮体積円弧のうちの少なくとも1つを含む、回転体積円弧を少なくとも1つ有し、
    前記回転膨張室装置が、作動流体が前記第一の体積内で継続的かつ実質的に拘束される第一の回転円弧を含み、前記第一の回転円弧は第一端部と第二端部を有し、前記第二の機構は、前記第一の回転円弧の第一端部と第二端部それぞれの位置を他端の位置に関係なく制御するよう設計され構成され、これにより前記第一の体積が前記第一の回転円弧の第一端部に位置づけられるときに前記第一の体積の大きさを個別に制御し、前記第一の体積が前記第一の回転円弧の第二端部に位置づけられるときに前記第一の体積の大きさを個別に制御することを特徴とする回転膨張室装置。
  14. 請求項13に記載の回転膨張室装置において、前記回転膨張室装置が第二の回転円弧を有し、前記回転膨張室装置がさらに、
    前記第一および第二の機構のうちの少なくとも一方と相互作用して、前記第二の回転円弧に沿った第一の位置に前記第一の体積の境界を実質的または全体的に定める第三の機構を含み、ここで前記第一の体積の大きさは前記第一の位置において実質的にゼロであることを特徴とする回転膨張室装置。
  15. 請求項14に記載の回転膨張室装置において、前記回転膨張室装置がさらに、前記第一および第二の回転円弧間に位置づけられた複数のアクセス円弧を含むことを特徴とする回転膨張室装置。
  16. 請求項15に記載の回転膨張室装置において、さらに、
    前記回転膨張室装置によって部分的に境界が画定される、前記第一の体積と断続的に連通する複数の体積を含み、
    前記複数の体積が部分的、実質的、および/または全体的に、前記回転膨張室装置によって互いに離間されていることを特徴とすることを特徴とする回転膨張室装置。
  17. 請求項16に記載の回転膨張室装置において、前記第二の機構が複数のスライドを含み、前記第一の回転円弧は、上に前記複数のスライドが互いに重なる円弧であることを特徴とする回転膨張室装置。
  18. 請求項16に記載の回転膨張室装置において、前記第二の機構が複数のスライドを含み、前記第一の回転円弧は前記複数のスライドによって規定される円弧の合体であることを特徴とする回転膨張室装置。
  19. 請求項16に記載の回転膨張室装置において、前記回転膨張室装置は作動流体から機械的な回転動作にエネルギーを変換するモータとして動作するよう構成され、前記モータは、当該モータをまたがる前記作動流体の圧力差、前記モータに入る前記作動流体の第一の圧力、前記モータを出る前記作動流体の第二の圧力、前記モータをまたがる前記作動流体の温度差、前記モータに入る前記作動流体の第一の温度、前記モータを出る前記作動流体の第二の温度、前記モータを通る前記作動流体の質量流量、および前記モータを通る前記作動流体の流れる方向に関係なく、生成される回転速度、生成される回転方向、および生成されるトルクのうちの1以上を選択的かつ独立的に変化できるよう設計および構成されることを特徴とする回転膨張室装置。
  20. 請求項16に記載の回転膨張室装置において、前記回転膨張室装置は、回転の入力速度、回転の入力方向、および入力トルクのうちの1以上に関係なく、前記回転膨張室装置にまたがる作動流体の圧力差、前記回転膨張室装置に入る前記作動流体の第一の圧力、前記回転膨張室装置を出る前記作動流体の第二の圧力、前記回転膨張室装置をまたがる作動流体の温度差、前記回転膨張室装置に入る前記作動流体の第一の温度、前記回転膨張室装置を出る前記作動流体の第二の温度、前記回転膨張室装置を通る前記作動流体の質量流量、および前記回転膨張室装置を通る前記作動流体の流れる方向のうちの1以上を選択的かつ独立的に変更できるよう設計され構成されていることを特徴とする回転膨張室装置。
  21. エネルギー回収システムにおいて、
    それぞれ請求項16に記載の回転膨張室装置を第一のものと第二のものとで二つ含み、
    前記第一の回転膨張室装置は前記第二の回転膨張室装置に機械的に結合され、
    前記第一および第二の回転膨張室装置に流体連結された熱交換器を含み、
    前記システムが、前記作動流体を前記第一の回転膨張室装置で膨張させ、前記作動流体を前記熱交換器で冷却し、その後に前記作動流体を前記第二の回転膨張室装置で圧縮することにより、作動流体からエネルギーを回収するよう設計され構成されていることを特徴とするエネルギー回収システム。
  22. エネルギー回収システムにおいて、
    それぞれ請求項16に記載の回転膨張室装置を第一のものと第二のものとで二つ含み、
    前記第一の回転膨張室装置は前記第二の回転膨張室装置に機械的に結合され、
    前記第一および第二の回転膨張室装置に流体連結された燃焼室を含み、
    前記システムが、前記作動流体を前記第一の回転膨張室装置で圧縮し、前記作動流体を前記燃焼室で加熱し、前記作動流体が前記第二の回転膨張室装置の前記第一の体積を出る前に、前記作動流体を前記第二の回転膨張室装置で実質的または全体的に膨張させるよう設計され構成されていることを特徴とするエネルギー回収システム。
  23. 単相冷却システムにおいて、
    それぞれ請求項16に記載の回転膨張室装置を第一のものと第二のものとで二つ含み、
    前記第一の回転膨張室装置は前記第二の回転膨張室装置に機械的に結合され、
    前記第一および第二の回転膨張室装置に流体連結された第一および第二の熱交換器を含み、
    前記システムが、圧縮性の作動流体による閉ループ冷却サイクルとして機能するように構成され、前記第一と第二の回転膨張室装置はどちらも、前記作動流体の質量流量を、前記第一の回転構成部品の回転速度、あるいは前記第一および第二の回転膨張室装置にまたがる温度または圧力差に関係なく独立的に制御するよう設計および構成されることを特徴とする単相冷却システム。
  24. 熱を制御環境に伝えるように構成された加熱システムにおいて、当該加熱システムが、
    閉サイクルエンジンに連結された開サイクルエンジンを含み、前記開サイクルエンジンはそれぞれ請求項16に記載の回転膨張室装置を第一のものと第二のものとで二つ含み、前記閉サイクルエンジンはそれぞれ請求項16に記載の回転膨張室装置を第三のものと第四のものとで二つ含み、前記第一、第二、第三、および第四の回転膨張室装置は相互に機械的に連結され、
    前記開サイクルエンジンは燃焼室を有し、これは前記第一と第二の回転膨張室装置に連結され、前記第一の回転膨張室装置によって圧縮されていた第一の作動流体を加熱するように構成され、前記第二の回転膨張室装置は前記燃焼室によって加熱された前記第一の作動流体を膨張させ、
    前記閉サイクルエンジンは、前記第一の作動流体から第二の作動流体に熱を伝達するように構成された第一の熱交換器によって前記開サイクルエンジンに熱連結され、
    前記第三と第四の回転膨張室装置は、前記第一の熱交換器と第二の熱交換器に連結されて閉ループを形成し、前記第二の熱交換器は制御環境に熱連結され、それによって前記加熱システムが熱を制御環境に伝えるように構成されることを特徴とする加熱システム。
JP2018038364A 2012-08-08 2018-03-05 調整可能な作動流体ポートを有する回転膨張室装置およびこれを内蔵するシステム Active JP6677754B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261680970P 2012-08-08 2012-08-08
US61/680,970 2012-08-08

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015526639A Division JP6328634B2 (ja) 2012-08-08 2013-08-06 調整可能な作動流体ポートを有する回転膨張室装置およびこれを内蔵するシステム

Publications (2)

Publication Number Publication Date
JP2018135886A true JP2018135886A (ja) 2018-08-30
JP6677754B2 JP6677754B2 (ja) 2020-04-08

Family

ID=50068519

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015526639A Expired - Fee Related JP6328634B2 (ja) 2012-08-08 2013-08-06 調整可能な作動流体ポートを有する回転膨張室装置およびこれを内蔵するシステム
JP2018038364A Active JP6677754B2 (ja) 2012-08-08 2018-03-05 調整可能な作動流体ポートを有する回転膨張室装置およびこれを内蔵するシステム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015526639A Expired - Fee Related JP6328634B2 (ja) 2012-08-08 2013-08-06 調整可能な作動流体ポートを有する回転膨張室装置およびこれを内蔵するシステム

Country Status (16)

Country Link
US (4) US9309766B2 (ja)
EP (1) EP2882937B1 (ja)
JP (2) JP6328634B2 (ja)
KR (1) KR102052232B1 (ja)
CN (2) CN104508242B (ja)
AU (2) AU2013299771B2 (ja)
BR (1) BR112015002678B1 (ja)
CA (1) CA2879418C (ja)
ES (1) ES2763337T3 (ja)
HK (1) HK1208715A1 (ja)
HU (1) HUE047292T2 (ja)
IN (1) IN2015DN01717A (ja)
MX (1) MX357268B (ja)
PL (1) PL2882937T3 (ja)
UA (1) UA119134C2 (ja)
WO (1) WO2014025778A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA119134C2 (uk) 2012-08-08 2019-05-10 Аарон Фьюстел Роторні пристрої з розширюваними камерами, що мають регульовані проходи для робочого плинного середовища, а також системи, що мають такі пристрої
US10180137B2 (en) * 2015-11-05 2019-01-15 Ford Global Technologies, Llc Remanufacturing a transmission pump assembly
WO2017150331A1 (ja) * 2016-02-29 2017-09-08 株式会社フジキン 流量制御装置
US9957888B2 (en) * 2016-03-30 2018-05-01 General Electric Company System for generating syngas and an associated method thereof
US10641239B2 (en) * 2016-05-09 2020-05-05 Sunnyco Inc. Pneumatic engine and related methods
US10465518B2 (en) * 2016-05-09 2019-11-05 Sunnyco Inc. Pneumatic engine and related methods

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2991930A (en) * 1957-09-16 1961-07-11 Worthington Corp Rotary compressor having a variable discharge cut-off point
US3334546A (en) * 1965-11-09 1967-08-08 Vuolle-Apiala Antti Ku Aukusti Fluid drive power transmission
JPS4217047Y1 (ja) * 1965-02-16 1967-10-02
JPS50142901A (ja) * 1974-05-07 1975-11-18
JPS5670101U (ja) * 1979-10-31 1981-06-10
JPH01232120A (ja) * 1988-03-11 1989-09-18 Hino Motors Ltd ロータリエンジン
JPH0472075B2 (ja) * 1987-07-20 1992-11-17 Trw Inc
JPH08503756A (ja) * 1991-12-20 1996-04-23 ラッペンヘーナー,ハンス,リヒャルト 回転ピストンポンプ
JPH08296569A (ja) * 1995-04-28 1996-11-12 Kayseven Co Ltd トロコイドポンプ、トロコイドモータ及び流量計
JP2000507661A (ja) * 1996-03-29 2000-06-20 タン,フーティエン ベーンタイプ・ロータリーエンジン
JP2002242688A (ja) * 2001-02-16 2002-08-28 Shiro Tanaka 回転燃焼室型ロータリエンジン
JP2006502347A (ja) * 2002-10-02 2006-01-19 イーエイ・テクニカル・サービシーズ・リミテッド 旋回ピストンを備えたロータリー型容積式装置
JP2008518145A (ja) * 2004-10-22 2008-05-29 ザ テキサス エイ・アンド・エム ユニヴァーシティ システム 擬等温ブレイトンサイクルエンジン用ジロータ装置
JP2009500554A (ja) * 2005-06-30 2009-01-08 イー エー テクニカル サーヴィスィズ リミテッド 軌道周回ピストン機械
US20100050628A1 (en) * 2004-05-20 2010-03-04 Mr. Gilbert Staffend High efficiency positive displacement thermodynamic system

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1076299A (en) 1913-04-30 1913-10-21 William E Marshall Fluid-motor.
GB191515825A (en) 1915-11-09 1916-12-11 John Arthur Torrens Improvements in or relating to Carburettors for Internal Combustion Engines.
US1418741A (en) 1920-12-17 1922-06-06 Granville H Stallman Rotary pump or compressor
GB339021A (en) 1929-09-18 1930-12-04 William Herbert Sollors Improvements in or relating to rotary compressors or vacuum pumps
GB353331A (en) 1929-10-10 1931-07-23 Sulzer Ag Improvements in or relating to rotary pumps
GB349191A (en) * 1930-03-18 1931-05-28 William Herbert Sollors Improvements in or relating to rotary compressors and vacuum pumps
US2159941A (en) 1933-09-11 1939-05-23 Fluvario Ltd Hydraulic machine
US2470670A (en) 1944-07-28 1949-05-17 Bendix Aviat Corp Rotary expansible chamber pump
GB792463A (en) 1954-02-15 1958-03-26 Pierre Charles Patin Improvements in and relating to internal gear machines and their applications
US3022741A (en) 1957-05-06 1962-02-27 Robert W Brundage Variable volume hydraulic pump or motor
GB881177A (en) * 1958-09-02 1961-11-01 Borsig Ag Improvements in or relating to rotary machines of the úe and úe+1 lobe type
US3029738A (en) 1958-09-02 1962-04-17 Borsig Ag Control for rotary piston machines
US3103893A (en) 1960-06-30 1963-09-17 New York Air Brake Co Variable displacement engine
US3191541A (en) 1961-12-26 1965-06-29 Brown Steel Tank Company Rotary fluid device
US3402891A (en) 1965-08-20 1968-09-24 Trw Inc Furnace pump and oil burner circuit
JPS4731722Y1 (ja) 1967-11-28 1972-09-25
JPS4634126Y1 (ja) 1967-12-27 1971-11-25
US3637332A (en) 1970-07-28 1972-01-25 United Aircraft Corp Variable compression means for a rotary engine
IT978275B (it) 1972-01-21 1974-09-20 Streicher Gmbh Statore registrabile per pompe con coclea ad eccentrico
US3797975A (en) 1972-02-18 1974-03-19 Keller Corp Rotor vane motor device
US4005949A (en) 1974-10-10 1977-02-01 Vilter Manufacturing Corporation Variable capacity rotary screw compressor
US4235217A (en) * 1978-06-07 1980-11-25 Cox Robert W Rotary expansion and compression device
US4241713A (en) 1978-07-10 1980-12-30 Crutchfield Melvin R Rotary internal combustion engine
US4272227A (en) 1979-03-26 1981-06-09 The Bendix Corporation Variable displacement balanced vane pump
US4280533A (en) 1979-11-13 1981-07-28 Greer Hydraulics, Incorporated Low pressure, low cost accumulator
US4421462A (en) 1979-12-10 1983-12-20 Jidosha Kiki Co., Ltd. Variable displacement pump of vane type
JPS5762986A (en) 1980-10-02 1982-04-16 Nissan Motor Co Ltd Variable displacement type vane pump
US4413960A (en) 1981-04-02 1983-11-08 Specht Victor J Positionable control device for a variable delivery pump
DE3144712C2 (de) * 1981-11-11 1984-11-29 Pierburg Gmbh & Co Kg, 4040 Neuss Verfahren zur Regelung der Füllung von Brennkraftmaschinen mit Verbrennungsgas sowie Vorrichtung zum Durchführen dieses Verfahrens
DE3240367A1 (de) 1982-11-02 1984-05-03 Alfred Teves Gmbh, 6000 Frankfurt Verstellbare fluegelzellenpumpe
US4710110A (en) 1986-09-22 1987-12-01 Paulus Henry G Fluid pump apparatus
US4960371A (en) 1989-01-30 1990-10-02 Bassett H Eugene Rotary compressor for heavy duty gas services
US5108275A (en) 1990-12-17 1992-04-28 Sager William F Rotary pump having helical gear teeth with a small angle of wrap
KR940006864B1 (ko) 1992-01-16 1994-07-28 구인회 캠기어 펌프장치
US5533566A (en) 1992-02-18 1996-07-09 Fineblum; Solomon S. Constant volume regenerative heat exchanger
DE4222644C2 (de) 1992-07-10 1998-10-29 Wilhelm Hoevecke Als Motor oder Pumpe betreibbare Rotationsscheibenmaschine
SE9203034L (sv) * 1992-10-15 1994-04-16 Fanja Ltd Vingkolvmaskin
US5518382A (en) * 1993-07-22 1996-05-21 Gennaro; Mark A. Twin rotor expansible/contractible chamber apparauts
DE4417161A1 (de) 1994-05-17 1995-11-23 Wankel Rotary Gmbh Verdichter in Hypotrochoidenbauweise
CA2159672C (en) * 1994-10-17 2009-09-15 Siegfried A. Eisenmann A valve train with suction-controlled ring gear/internal gear pump
EP0903835A1 (en) 1995-04-03 1999-03-24 Z&D Ltd. Axial flow pump/marine propeller
JPH0988842A (ja) * 1995-09-28 1997-03-31 Wankel Rotary Gmbh 内転トロコイド構造の圧縮機
FR2739900B1 (fr) 1995-10-12 1997-12-05 Wankel Rotary Gmbh Compresseur de construction hypocycloidale
ES2192242T3 (es) 1996-12-04 2003-10-01 Siegfried A Dipl-Ing Eisenmann Bomba anular de engranajes continuamente variable.
US6206666B1 (en) 1997-12-31 2001-03-27 Cummins Engine Company, Inc. High efficiency gear pump
DE19804133A1 (de) 1998-02-03 1999-08-12 Voith Turbo Kg Sichellose Innenzahnradpumpe
JP2001090749A (ja) * 1999-07-30 2001-04-03 Dana Corp 流体圧式リミテッド・スリップ・ディファレンシャル及びディファレンシャル用ジロータ・ポンプ
US6659744B1 (en) * 2001-04-17 2003-12-09 Charles Dow Raymond, Jr. Rotary two axis expansible chamber pump with pivotal link
WO2003012290A1 (en) 2001-07-27 2003-02-13 Manner David B An improved planetary rotary machine using apertures, volutes and continuous carbon fiber reinforced peek seals
BR0307457A (pt) * 2002-02-05 2005-05-10 Texas A & M Univ Sys Aparelho gerotor para um motor de ciclo de brayton quasi-isotérmico
US6969242B2 (en) 2003-02-28 2005-11-29 Carrier Corpoation Compressor
KR100519312B1 (ko) 2003-06-11 2005-10-07 엘지전자 주식회사 로터리 압축기
US7073775B2 (en) 2004-09-13 2006-07-11 Cameron International Corporation Rotating check valve for compression equipment
US7478629B2 (en) 2004-11-04 2009-01-20 Del Valle Bravo Facundo Axial flow supercharger and fluid compression machine
DE102005049938B3 (de) 2005-10-19 2007-03-01 Zeki Akbayir Rotor für eine Strömungsmaschine und eine Strömungsmaschine
US20070189905A1 (en) * 2006-02-13 2007-08-16 Ingersoll-Rand Company Multi-stage compression system and method of operating the same
DE602006005909D1 (de) 2006-05-03 2009-05-07 Jhou Wen San Luftverdichter mit anpassbarer äusserer Gehäusestruktur
US7823398B2 (en) * 2006-05-07 2010-11-02 John Stewart Glen Compressor/expander of the rotating vane type
US7926260B2 (en) 2006-07-05 2011-04-19 United Technologies Corporation Flexible shaft for gas turbine engine
US20080041056A1 (en) * 2006-08-16 2008-02-21 Eric Scott Carnahan External heat engine of the rotary vane type and compressor/expander
CA2664121C (en) 2006-09-19 2014-05-27 William C. Maier Rotary separator drum seal
CN103195482B (zh) * 2007-03-05 2016-05-04 小罗伊·J·哈特菲尔德 正位移旋转叶片发动机
JP2008255796A (ja) 2007-03-30 2008-10-23 Anest Iwata Corp オイルフリーロータリ圧縮機の軸封装置
DE102007030853A1 (de) 2007-06-26 2009-01-02 Hüttlin, Herbert, Dr. h.c. Rotationskolbenmaschine
US20090160135A1 (en) 2007-12-20 2009-06-25 Gabriele Turini Labyrinth seal with reduced leakage flow by grooves and teeth synergistic action
US9127671B2 (en) 2008-08-01 2015-09-08 Aisin Seiki Kabushiki Kaisha Oil pump including rotors that change eccentric positional relationship one-to another to adjust a discharge amount
CN102203385A (zh) 2008-10-29 2011-09-28 哈尔特泰克集团有限公司 压缩装置、泵和内燃机
US8132411B2 (en) * 2008-11-06 2012-03-13 Air Products And Chemicals, Inc. Rankine cycle for LNG vaporization/power generation process
DE102008054746B4 (de) 2008-12-16 2017-08-17 Robert Bosch Gmbh Scheibenwischvorrichtung, insbesondere für eine Heckscheibe eines Kraftfahrzeugs
US8061970B2 (en) 2009-01-16 2011-11-22 Dresser-Rand Company Compact shaft support device for turbomachines
JP5314456B2 (ja) 2009-02-27 2013-10-16 アネスト岩田株式会社 空冷式スクロール圧縮機
DE102009060189B4 (de) 2009-12-23 2017-07-13 Schwäbische Hüttenwerke Automotive GmbH Regelvorrichtung für die Verstellung des Fördervolumens einer Pumpe
KR20130064724A (ko) 2010-03-01 2013-06-18 브라이트 에너지 스토리지 테크놀로지스, 엘엘피 로터리 압축-팽창기 시스템 및 사용 및 제조 관련 방법
WO2012056470A2 (en) 2010-10-25 2012-05-03 Arvind Sharma Arvind Kumar Rotary three dimentional variable volume machine
DE102010064114B4 (de) 2010-12-23 2021-07-29 Robert Bosch Gmbh Pumpe mit einer Drossel
US8714951B2 (en) * 2011-08-05 2014-05-06 Ener-G-Rotors, Inc. Fluid energy transfer device
US8434284B1 (en) * 2012-06-26 2013-05-07 Glasscraft Door Company Method for forming a door assembly or a window assembly with a dual support connector
UA119134C2 (uk) 2012-08-08 2019-05-10 Аарон Фьюстел Роторні пристрої з розширюваними камерами, що мають регульовані проходи для робочого плинного середовища, а також системи, що мають такі пристрої

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2991930A (en) * 1957-09-16 1961-07-11 Worthington Corp Rotary compressor having a variable discharge cut-off point
JPS4217047Y1 (ja) * 1965-02-16 1967-10-02
US3334546A (en) * 1965-11-09 1967-08-08 Vuolle-Apiala Antti Ku Aukusti Fluid drive power transmission
JPS50142901A (ja) * 1974-05-07 1975-11-18
JPS5670101U (ja) * 1979-10-31 1981-06-10
JPH0472075B2 (ja) * 1987-07-20 1992-11-17 Trw Inc
JPH01232120A (ja) * 1988-03-11 1989-09-18 Hino Motors Ltd ロータリエンジン
JPH08503756A (ja) * 1991-12-20 1996-04-23 ラッペンヘーナー,ハンス,リヒャルト 回転ピストンポンプ
JPH08296569A (ja) * 1995-04-28 1996-11-12 Kayseven Co Ltd トロコイドポンプ、トロコイドモータ及び流量計
JP2000507661A (ja) * 1996-03-29 2000-06-20 タン,フーティエン ベーンタイプ・ロータリーエンジン
JP2002242688A (ja) * 2001-02-16 2002-08-28 Shiro Tanaka 回転燃焼室型ロータリエンジン
JP2006502347A (ja) * 2002-10-02 2006-01-19 イーエイ・テクニカル・サービシーズ・リミテッド 旋回ピストンを備えたロータリー型容積式装置
US20100050628A1 (en) * 2004-05-20 2010-03-04 Mr. Gilbert Staffend High efficiency positive displacement thermodynamic system
JP2008518145A (ja) * 2004-10-22 2008-05-29 ザ テキサス エイ・アンド・エム ユニヴァーシティ システム 擬等温ブレイトンサイクルエンジン用ジロータ装置
JP2009500554A (ja) * 2005-06-30 2009-01-08 イー エー テクニカル サーヴィスィズ リミテッド 軌道周回ピストン機械

Also Published As

Publication number Publication date
AU2017200157A1 (en) 2017-02-02
US20160194958A1 (en) 2016-07-07
HK1208715A1 (en) 2016-03-11
US8950169B2 (en) 2015-02-10
BR112015002678B1 (pt) 2022-04-05
KR102052232B1 (ko) 2020-01-08
CN104508242A (zh) 2015-04-08
MX357268B (es) 2018-07-03
US20140119967A1 (en) 2014-05-01
US20150098851A1 (en) 2015-04-09
UA119134C2 (uk) 2019-05-10
JP6328634B2 (ja) 2018-05-23
US9080568B2 (en) 2015-07-14
CN104508242B (zh) 2016-11-16
EP2882937A1 (en) 2015-06-17
WO2014025778A1 (en) 2014-02-13
CA2879418C (en) 2019-03-26
EP2882937A4 (en) 2015-07-22
US20150247405A1 (en) 2015-09-03
AU2013299771B2 (en) 2016-11-03
JP2015531040A (ja) 2015-10-29
AU2013299771A1 (en) 2015-02-12
AU2017200157B2 (en) 2018-08-23
MX2015001645A (es) 2015-04-08
PL2882937T3 (pl) 2020-04-30
HUE047292T2 (hu) 2020-04-28
BR112015002678A2 (pt) 2017-10-31
CN106523034B (zh) 2019-03-15
CN106523034A (zh) 2017-03-22
KR20150040330A (ko) 2015-04-14
JP6677754B2 (ja) 2020-04-08
ES2763337T3 (es) 2020-05-28
CA2879418A1 (en) 2014-02-13
EP2882937B1 (en) 2019-10-09
US10472966B2 (en) 2019-11-12
US9309766B2 (en) 2016-04-12
IN2015DN01717A (ja) 2015-05-22

Similar Documents

Publication Publication Date Title
JP6677754B2 (ja) 調整可能な作動流体ポートを有する回転膨張室装置およびこれを内蔵するシステム
JP2001227616A (ja) 駆動装置
US11408286B2 (en) Rotational displacement apparatus
WO2007078206A1 (en) Rotary machine and combustion engine
CN105229289A (zh) 增强的废热回收系统
CA2300812C (en) Rotary piston machine
US20140219844A1 (en) Expansion device for use in a working medium circuit and method for operating an expansion device
Imran et al. Mathematical modelling for positive displacement expanders
RU2814331C1 (ru) Роторный двигатель с внешним подводом теплоты
RU2587506C2 (ru) Способ работы роторно-лопастной машины (варианты) и роторно-лопастная машина
JP3154518U (ja) マルチベーン型膨張機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200313

R150 Certificate of patent or registration of utility model

Ref document number: 6677754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250