JP2018132751A - 反射防止フィルム、反射防止物品、偏光板、画像表示装置、モジュール、タッチパネル付き液晶表示装置、及び反射防止フィルムの製造方法 - Google Patents

反射防止フィルム、反射防止物品、偏光板、画像表示装置、モジュール、タッチパネル付き液晶表示装置、及び反射防止フィルムの製造方法 Download PDF

Info

Publication number
JP2018132751A
JP2018132751A JP2017072565A JP2017072565A JP2018132751A JP 2018132751 A JP2018132751 A JP 2018132751A JP 2017072565 A JP2017072565 A JP 2017072565A JP 2017072565 A JP2017072565 A JP 2017072565A JP 2018132751 A JP2018132751 A JP 2018132751A
Authority
JP
Japan
Prior art keywords
layer
antireflection
group
antireflection film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017072565A
Other languages
English (en)
Other versions
JP6778646B2 (ja
Inventor
千裕 増田
Chihiro Masuda
千裕 増田
美帆 朝日
Miho Asahi
美帆 朝日
悠太 福島
Yuta Fukushima
悠太 福島
竜二 実藤
Ryuji Saneto
竜二 実藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to PCT/JP2017/027315 priority Critical patent/WO2018034126A1/ja
Priority to KR1020197004406A priority patent/KR102253371B1/ko
Priority to CN201780050120.4A priority patent/CN109642963A/zh
Publication of JP2018132751A publication Critical patent/JP2018132751A/ja
Priority to US16/276,164 priority patent/US10871596B2/en
Application granted granted Critical
Publication of JP6778646B2 publication Critical patent/JP6778646B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】良好な反射防止性能を有し、全光線透過率が高く、かつ可視光の短波長領域の光の透過率が高い反射防止フィルム等を提供すること。
【解決手段】プラスチック基材と反射防止層とを有し、全光線透過率が88%以上であり、波長580nmの光の透過率から波長480nmの光の透過率を引いた値が3.5%以下であるモスアイ構造の反射防止フィルム、及び上記反射防止フィルムの製造方法、並びに上記反射防止フィルムを有する反射防止物品、偏光板、画像表示装置、モジュール、及びタッチパネル付き液晶表示装置。
【選択図】図1

Description

本発明は、反射防止フィルム、反射防止物品、偏光板、画像表示装置、モジュール、タッチパネル付き液晶表示装置、及び反射防止フィルムの製造方法の製造方法に関する。
陰極線管(CRT)を利用した表示装置、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、蛍光表示ディスプレイ(VFD)、フィールドエミッションディスプレイ(FED)、及び液晶ディスプレイ(LCD)のような画像表示装置では、表示面での外光の反射によるコントラスト低下及び像の映り込みを防止するために反射防止フィルムを設けることがある。また、タッチパネル付き液晶表示装置は、タッチパネルと液晶セルを含む液晶パネルとがエアギャップを介して配置された構造である場合があるが、タッチパネルとエアギャップとの界面、及びエアギャップと液晶パネルとの界面で光が反射してコントラストが低下したり、ニュートンリングが発生したりすることを防ぐために、タッチパネルとエアギャップとの界面、及びエアギャップと液晶パネルとの界面にそれぞれ反射防止フィルムを配置する方法が知られている。また、ショールームのガラス表面など、画像表示装置以外でも反射防止フィルムにより反射防止機能を付与する場合がある。
反射防止フィルムとして、基材表面に周期が可視光の波長以下の微細な凹凸形状を有する反射防止フィルム、いわゆるモスアイ(moth eye)構造を有する反射防止フィルムが知られている。モスアイ構造により、擬似的に空気から基材の内部のバルク材料に向かって屈折率が連続的に変化する屈折率傾斜層を作り出し、光の反射を防止することができる。
モスアイ構造を有する反射防止フィルムとして、特許文献1には、透明樹脂モノマーと微粒子を含有する塗布液を透明基材上に塗布し、硬化して微粒子が分散した透明樹脂を形成し、その後、透明樹脂をエッチングすることにより製造されたモスアイ構造を有する反射防止フィルムが記載されている。
特開2009−139796号公報
しかしながら、特許文献1の反射防止フィルムは、可視光の短波長領域の光の透過率が低いことが分かった。これは、具体的には波長580nmの光の透過率に比べて波長480nmの光の透過率が小さいことで表される。そして、その原因としては、モスアイ構造の凹凸周期によって光が干渉することが考えられ、より詳細には、凹凸周期の倍波長の回折光が干渉するためであると考えられる。可視光の短波長領域の光の透過率が低いと、色味変化などが生じやすくなり、特に反射防止フィルムを2枚以上使用する場合にはこの問題が顕著になる。反射防止フィルムを2枚以上使用する場合としては、例えばタッチパネル付き液晶表示装置が挙げられる。
本発明の課題は、良好な反射防止性能を有し、全光線透過率が高く、かつ可視光の短波長領域の光の透過率が高い反射防止フィルム、及び上記反射防止フィルムの製造方法、並びに上記反射防止フィルムを有する反射防止物品、偏光板、画像表示装置、モジュール、及びタッチパネル付き液晶表示装置を提供することにある。
<1>
プラスチック基材と、反射防止層とを有する反射防止フィルムであって、
上記反射防止層は、金属酸化物粒子及びバインダー樹脂を含み、
上記反射防止層は、上記金属酸化物粒子によって形成された凹凸形状からなるモスアイ構造を有し、
上記反射防止層の上記プラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率が88%以上であり、かつ、
上記反射防止層の上記プラスチック基材とは反対側から入射した際の反射防止フィルムの波長480nm及び580nmの光の透過率をそれぞれT480及びT580としたとき、T580−T480≦3.5%を満たす反射防止フィルム。
<2>
上記反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aの平均値をXとしたとき、X≦190nmを満たす<1>に記載の反射防止フィルム。
<3>
上記反射防止層の凹凸形状は、上記Aの分布を表す標準偏差をσとしたとき、X+σ≦190nmを満たす<2>に記載の反射防止フィルム。
<4>
上記金属酸化物粒子の平均一次粒径が100nm以上190nm以下である<1>〜<3>のいずれか1項に記載の反射防止フィルム。
<5>
上記バインダー樹脂に、25℃における粘度が1〜20mPaである1分子中に2個以下の重合性官能基を有する化合物又は重合性官能基を有さない化合物を含む<1>〜<4>のいずれか1項に記載の反射防止フィルム。
<6>
上記プラスチック基材と上記反射防止層との間に、ハードコート層を有する<1>〜<5>のいずれか1項に記載の反射防止フィルム。
<7>
上記ハードコート層に4級アンモニウム塩含有ポリマーを含み、
上記反射防止層の表面抵抗率を単位Ω/sqにてSRとした際の上記SRの常用対数値が11以下であり、かつ、上記反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aの平均値をXとし、上記Aの分布を表す標準偏差をσとしたとき、X+σ≦190nmを満たす<6>に記載の反射防止フィルム。
<8>
<1>〜<7>のいずれか1項に記載の反射防止フィルムを表面に有する反射防止物品。
<9>
偏光子と、上記偏光子を保護する少なくとも1枚の保護フィルムとを有する偏光板であって、上記保護フィルムの少なくとも1枚が<1>〜<7>のいずれか1項に記載の反射防止フィルムである偏光板。
<10>
<1>〜<7>のいずれか1項に記載の反射防止フィルム、又は<9>に記載の偏光板を有する画像表示装置。
<11>
<1>〜<7>のいずれか1項に記載の反射防止フィルムを2枚有し、上記2枚の反射防止フィルムがエアギャップを介して対向して設置されたモジュール。
<12>
上記2枚の反射防止フィルムは、上記反射防止層が上記プラスチック基材よりも上記エアギャップ側に配置された<11>に記載のモジュール。
<13>
<12>に記載のモジュールを含み、
上記2枚の反射防止フィルムのうちの一方の反射防止フィルムの上記プラスチック基材の上記反射防止層側とは反対側にタッチパネルを有し、
他方の反射防止フィルムの上記プラスチック基材の上記反射防止層側とは反対側に液晶セルを有する、タッチパネル付き表示装置。
<14>
プラスチック基材上に、硬化性化合物と平均一次粒径が100nm以上190nm以下の金属酸化物粒子とを、上記硬化性化合物を含む層(a)中に上記金属酸化物粒子が埋没する厚みで設ける工程(1)、
支持体及び上記支持体上にゲル分率が95.0%以上の粘着剤を含む層(b)を有する粘着フィルムの上記層(b)を、上記層(a)と貼り合わせる工程(2)、
上記金属酸化物粒子が、上記層(a)及び上記層(b)を合わせた層中に埋没し、かつ、上記層(a)の上記プラスチック基材側の界面とは反対側の界面から突出するように、上記層(a)と上記層(b)の界面の位置を上記プラスチック基材側に移動させる工程(3)、
上記金属酸化物粒子が、上記層(a)及び上記層(b)を合わせた層中に埋没した状態で上記層(a)を硬化する工程(4)、
上記層(b)を上記層(a)から剥離する工程(5)、
をこの順に有し、上記工程(1)〜(4)を行う際の温度が60℃以下である反射防止フィルムの製造方法。
本発明によれば、良好な反射防止性能を有し、全光線透過率が高く、かつ可視光の短波長領域の光の透過率が高い反射防止フィルム、及び上記反射防止フィルムの製造方法、並びに上記反射防止フィルムを有する反射防止物品、偏光板、画像表示装置、モジュール、及びタッチパネル付き液晶表示装置を提供することができる。
本発明の反射防止フィルムの一例を示す断面模式図である。 本発明のモジュール及びタッチパネル付き液晶表示装置の一例を説明するための模式図である。 本発明の反射防止フィルムの製造方法の一例を説明するための模式図である。
本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一種を表し、「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一種を表し、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの少なくとも一種を表す。
本発明における重量平均分子量および数平均分子量は、ゲル浸透クロマトグラフィー(GPC)により下記の条件で測定された値である。
[溶媒] テトラヒドロフラン
[装置名] TOSOH HLC−8220GPC
[カラム] TOSOH TSKgel Super HZM−H
(4.6mm×15cm)を3本接続して使用。
[カラム温度] 25℃
[試料濃度] 0.1質量%
[流速] 0.35ml/min
[校正曲線] TOSOH製TSK標準ポリスチレン Mw=2800000〜1050までの7サンプルによる校正曲線を使用。
[反射防止フィルム]
本発明の反射防止フィルムは、
プラスチック基材と、反射防止層とを有する反射防止フィルムであって、
上記反射防止層は、金属酸化物粒子及びバインダー樹脂を含み、上記反射防止層は、上記金属酸化物粒子によって形成された凹凸形状からなるモスアイ構造を有し、
上記反射防止層の上記プラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率が88%以上であり、かつ、
上記反射防止層の上記プラスチック基材とは反対側から入射した際の反射防止フィルムの波長480nm及び580nmの光の透過率をそれぞれT480及びT580としたとき、T580−T480≦3.5%を満たす反射防止フィルムである。
本発明の反射防止フィルムは、プラスチック基材と、反射防止層とを有するものであり、プラスチック基材と反射防止層とが積層されている。プラスチック基材と反射防止層とは直接積層されていてもよく、他の層(好ましくはハードコート層)を介して積層されていてもよい。
本発明の反射防止フィルムの反射防止層のプラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率は88%以上であり、好ましくは90%以上であり、より好ましくは92%以上であり、更に好ましくは94%以上である。
反射防止フィルムの反射防止層のプラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率は88%以上であることで、反射防止フィルムの透明性が高くなり、特に、反射防止フィルムを2枚以上用いても視認性が低下しにくい。
全光線透過率の測定は、日本工業規格(JIS) K7361−1(1997年)に準じて行うものとする。
反射防止フィルムの反射防止層のプラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率を88%以上にするための手段は特に限定されないが、例えば全光線透過率が高いプラスチック基材を用いることが挙げられる。また、後述するように、反射防止層の凹凸形状の隣り合う凸部の頂点間の距離Aの平均値Xを190nm以下にすることも、可視光領域の透過率の低下を防ぐ点で好ましい。
更に、本発明の反射防止フィルムの反射防止層のプラスチック基材とは反対側から入射した際の反射防止フィルムの波長480nm及び580nmの光の透過率をそれぞれT480及びT580としたとき、T480及びT580は、T580−T480≦3.5%を満たし、0%≦T580−T480≦3.0%を満たすことが好ましく、0%≦T580−T480≦2.5%を満たすことがより好ましく、0%≦T580−T480≦2.0%を満たすことが更に好ましい。
580−T480≦3.5%を満たす、すなわち、T580−T480が3.5%以下であることで、例えば反射防止フィルムを画像表示装置に適用した際の表示画像の色味変化を抑制できる。特に、反射防止フィルムを2枚以上用いた場合でも色味変化が生じにくい。
480及びT580の測定は、日本工業規格(JIS) K0115(2004年)に準じて行うものとする。
580−T480を3.5%以下にするための手段は特に限定されないが、反射防止層の凹凸形状の隣り合う凸部の頂点間の距離Aの平均値Xを190nm以下にすることが好ましく、上記Aの分布を表す標準偏差をσとしたとき、X+σを190nm以下にすることがより好ましい。このように凹凸形状を調整することで、凹凸周期の倍波長の回折光が干渉したとしても、波長380nm以上の可視光の範囲に入らない光であるため、可視光の短波長領域の透過率の低下を防ぐことができ、全光線透過率が88%以上で、かつT580−T480を3.5%以下にすることができる。
本発明の反射防止フィルムは、波長380〜780nmの全域にわたって積分反射率が3%以下であることが好ましく、2%以下であることがより好ましい。
本発明の反射防止フィルムの好ましい実施形態の一例を図1に示す。
図1の反射防止フィルム10は、プラスチック基材1と反射防止層2とを有する。反射防止層2は、金属酸化物粒子3とバインダー樹脂4を含む。金属酸化物粒子3はバインダー樹脂4から突出し、凹凸形状を形成しており、この凹凸形状はモスアイ構造である。
(モスアイ構造)
本発明の反射防止フィルムの反射防止層は、金属酸化物粒子によって形成された凹凸形状からなるモスアイ構造を有する。
凹凸形状は、反射防止層のプラスチック基材側の界面とは反対側の表面に形成されることが好ましい。
金属酸化物粒子によって形成された凹凸形状とは、好ましくはバインダー樹脂の膜から突出した1つ1つの金属酸化物粒子が凸部となり、金属酸化物粒子が存在しない部分が凹部となったものである。
凹凸形状からなるモスアイ構造とは、凹凸形状がモスアイ構造となっていることを表す。
なお、モスアイ構造を形成できる限り、凸部を形成する金属酸化物粒子の表面にバインダー樹脂などの他の成分が存在していてもよい。
モスアイ構造とは、光の反射を抑制するための物質(材料)の加工された表面であって、周期的な微細構造パターンをもった構造のことを指す。特に、可視光の反射を抑制する目的の場合には、780nm未満の周期の微細構造パターンをもった構造のことを指す。微細構造パターンの周期が190nm未満であると、反射光の色味が小さくなり好ましい。また、モスアイ構造の凹凸形状の周期が100nm以上であると波長380nmの光が微細構造パターンを認識でき、反射防止性に優れるため好ましい。モスアイ構造の有無は、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)等により表面形状を観察し、上記微細構造パターンが出来ているかどうか調べることによって確認することができる。
本発明の反射防止フィルムの反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aと、隣り合う凸部の頂点間の中心と凹部との距離Bとの比であるB/Aが0.4以上であることが好ましい。B/Aが0.4以上であると、凸部同士の距離に対して凹部の深さが大きくなり、空気から反射防止層内部にかけてより緩やかに屈折率が変化する屈折率傾斜層を作ることができるため、反射率をより低減できる。
B/Aは0.5以上であることが更に好ましい。B/Aが0.5以上であれば、隣り合う凸部(粒子により形成される凸部)の頂点間の距離Aが粒子径以上になり、粒子間に凹部が形成されることになる。その結果、凸部上側の曲率に依存する屈折率変化の急峻な部位による界面反射と、粒子間凹部の曲率に依存する屈折率変化の急峻な部位による界面反射の両者が存在することで、モスアイ構造による屈折率傾斜層効果に加えて、より効果的に反射率が低減されるものと推測される。
B/Aは、反射防止層におけるバインダー樹脂と金属酸化物粒子の体積比により制御することができる。そのため、バインダー樹脂と金属酸化物粒子の配合比を適切に設計することが重要である。
本発明の反射防止フィルムの反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aの平均値をXとしたとき、X≦190nmを満たすことが好ましく、X≦180nmを満たすことがより好ましく、X≦170nmを満たすことが更に好ましい。
X≦190nmを満たす、すなわちXが190nm以下であることで、前述のように、可視光の短波長領域の透過率の低下を防ぐことができる。
また、後述するように上記Aの分布を表す標準偏差をσとしたときにX+σ≦190nmを満たす観点から、X≦180nmを満たすことがより好ましく、X≦170nmを満たすことが更に好ましい。
X≦190nmを満たす凹凸形状を作成するための手段としては、特に限定されないが、(i)平均一次粒径が190nm以下の金属酸化物粒子を用いること、又は(ii)金属酸化物粒子の凝集を防ぐことで金属酸化物粒子間の空隙の形成を抑制することなどが挙げられる。上記(ii)の金属酸化物粒子の凝集を防ぐための手法としては、(ii−1)反射防止フィルム作製時の温度を60℃以下にすることでバインダー樹脂の粘度低下又は対流に伴う金属酸化物粒子の移動を抑制する方法、又は(ii−2)金属酸化物粒子と基材との間に結合を形成する方法などが挙げられる。
上記Aが分布を持つ場合においても可視光の短波長領域の透過率の低下を防ぐ観点から、上記Aの分布を表す標準偏差をσとしたとき、X+σ≦240nmを満たすことが好ましく、X+σ≦230nmを満たすことがより好ましく、X+σ≦210nmを満たすことが更に好ましく、X+σ≦200nmを満たすことが特に好ましく、X+σ≦190nmを満たすことが最も好ましい。
X+σ≦190nmを満たす、すなわちX+σが190nm以下であることで、前述のように、可視光の短波長領域の透過率の低下を防ぐことができる。
X+σ≦190nmを満たす凹凸形状を作成するための手段としては、特に限定されないが、(i)平均一次粒径が190nm以下の金属酸化物粒子を用いること、又は(ii)金属酸化物粒子の凝集を防ぐことなどが挙げられる。上記(ii)の金属酸化物粒子の凝集を防ぐための手法としては、(ii−1)反射防止フィルム作製時の温度を60℃以下にする方法、又は(ii−2)金属酸化物粒子と基材との間に結合を形成する方法などが挙げられる。
隣り合う凸部の頂点間の距離Aと、隣り合う凸部の頂点間の中心と凹部との距離B(凹部の深さ)の測定方法について、以下に、より具体的に説明する。
距離Bは、反射防止フィルムの断面SEM観察により測定することができる。反射防止フィルム試料をミクロトームで切削して断面を出し、適切な倍率(5000倍程度)でSEM観察する。観察し易いように、試料にはカーボン蒸着、エッチング等適切な処理を施してもよい。距離Bは、空気と試料が作る界面において、隣り合う凸部の頂点を含み基材面と垂直な面内にて、隣り合う凸部の頂点を結ぶ直線とその垂直二等分線が粒子またはバインダー樹脂に到達する点である凹部との距離を示す。隣り合う凸部の頂点間の距離Aを100点測長したときの平均値をXとして算出する。
また、測長した距離Aのばらつきを示す標準偏差をσとして算出する。
SEM写真においては、写っているすべての凹凸について、隣り合う凸部の頂点間の距離Aと、隣り合う凸部の頂点間の中心と凹部との距離Bとを正確に測長できない場合もあるが、その場合はSEM画像で手前側に写っている凸部と凹部に着目して測長すればよい。
なお、凹部は、SEM画像で測長する2つの隣り合う凸部を形成する粒子と同じ深度において測長することが必要である。より手前側に写っている粒子などまでの距離をBとして測長してしまうと、Bを小さく見積もってしまう場合があるからである。
更に、低反射率を実現し、ヘイズの発生を抑制するには凸部を形成する金属酸化物粒子は均一に、適度な充填率で敷き詰められていることが好ましい。上記観点から、凸部を形成する金属酸化物粒子の含有量は、反射防止層全体で均一になるように調整されるのが好ましい。充填率は、SEMなどにより表面から凸部を形成する金属酸化物粒子を観察したときの最も表面側に位置した金属酸化物粒子の面積占有率(粒子占有率)として測定することができ、25%〜64%であることが好ましく、25〜50%がより好ましく、30〜45%が更に好ましい。
反射防止フィルムの面の均一性をヘイズで評価することができる。測定は、フィルム試料40mm×80mmを、25℃、相対湿度60%で、日本電色工業(株)製ヘーズメーターNDH4000で、JIS−K7136(2000年)に従って測定することができる。粒子同士が凝集し不均一であるものは、ヘイズが高くなる。ヘイズが低い方が好ましい。ヘイズの値は0.0〜3.0%が好ましく、0.0〜2.5%がより好ましく、0.0〜2.0%がさらに好ましい。
(プラスチック基材)
本発明の反射防止フィルムのプラスチック基材について説明する。
プラスチック基材は、反射防止フィルムの基材として一般的に使用される透光性を有する基材であれは特に制限はない。プラスチック基材としては、種々用いることができ、例えば、セルロース系樹脂;セルロースアシレート(トリアセテートセルロース、ジアセチルセルロース、アセテートブチレートセルロース)等、ポリエステル樹脂;ポリエチレンテレフタレート等、(メタ)アクリル系樹脂、ポリウレタン系樹脂、ポリカーボネート、ポリスチレン、オレフィン系樹脂等を含有する基材が挙げられ、セルロースアシレート、ポリエチレンテレフタレート、又は(メタ)アクリル系樹脂を含有する基材が好ましく、セルロースアシレートを含有する基材がより好ましく、セルロースアシレートフィルムであることが特に好ましい。セルロースアシレートとしては、特開2012−093723号公報に記載の基材等を好ましく用いることが出来る。
プラスチック基材の厚さは、通常、10μm〜1000μm程度であるが、取り扱い性が良好で、透光性が高く、かつ十分な強度が得られるという観点から15μm〜200μmが好ましく、20μm〜200μmがより好ましく、20μm〜100μmが更に好ましく、25μm〜100μmが特に好ましい。
また、特に反射防止フィルムを2枚以上用いる場合には、薄型のプラスチック基材を好ましく用いることができる。この場合のプラスチック基材の厚みは20μm〜40μmが好ましく、25μm〜40μmがより好ましい。
プラスチック基材の透光性としては、全光線透過率が90%以上のものが好ましい。
(反射防止層)
本発明の反射防止フィルムの反射防止層について説明する。
反射防止層は、金属酸化物粒子及びバインダー樹脂を含む。
(バインダー樹脂)
バインダー樹脂は、プラスチック基材又はプラスチック基材と他の層との積層体に金属酸化物粒子を結着させる機能を有することが好ましい。
バインダー樹脂は、図1に示すように膜になっていることが好ましい。
バインダー樹脂は硬化性化合物の硬化物を含むことが好ましい。
バインダー樹脂は硬化性化合物を硬化させて得ることができる。
バインダー樹脂の形成に用いられる硬化性化合物を硬化性化合物(a1)とも呼ぶ。
<硬化性化合物(a1)>
硬化性化合物(a1)としては、重合性官能基を有する化合物(好ましくは電離放射線硬化性化合物)が好ましい。重合性官能基を有する化合物としては、各種モノマー、オリゴマー又はポリマーを用いる事ができ、重合性官能基(重合性基)としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の重合性不飽和基(炭素−炭素不飽和二重結合性基)等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
重合性不飽和基を有する化合物の具体例としては、ネオペンチルグリコールアクリレート、1,6−ヘキサンジオール(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールの(メタ)アクリル酸ジエステル類;
トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類;
ペンタエリスリトールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸ジエステル類;
2,2−ビス{4−(アクリロキシ・ジエトキシ)フェニル}プロパン、2−2−ビス{4−(アクリロキシ・ポリプロポキシ)フェニル}プロパン等のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類;等を挙げることができる。
さらにはエポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類も、光重合性官能基を有する化合物として、好ましく用いられる。
中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。さらに好ましくは、1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーを少なくとも1種含有することが好ましい。
例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO(エチレンオキサイド)変性トリメチロールプロパントリ(メタ)アクリレート、PO(プロピレンオキサイド)変性トリメチロールプロパントリ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールトヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。
(メタ)アクリロイル基を有する多官能アクリレート系化合物類の具体化合物としては、日本化薬(株)製KAYARAD DPHA、同DPHA−2C、同PET−30、同TMPTA、同TPA−320、同TPA−330、同RP−1040、同T−1420、同D−310、同DPCA−20、同DPCA−30、同DPCA−60、同GPO−303、大阪有機化学工業(株)製V#3PA、V#400、V#36095D、V#1000、V#1080等のポリオールと(メタ)アクリル酸のエステル化物を挙げることができる。また紫光UV−1400B、同UV−1700B、同UV−6300B、同UV−7550B、同UV−7600B、同UV−7605B、同UV−7610B、同UV−7620EA、同UV−7630B、同UV−7640B、同UV−6630B、同UV−7000B、同UV−7510B、同UV−7461TE、同UV−3000B、同UV−3200B、同UV−3210EA、同UV−3310EA、同UV−3310B、同UV−3500BA、同UV−3520TL、同UV−3700B、同UV−6100B、同UV−6640B、同UV−2000B、同UV−2010B、同UV−2250EA、同UV−2750B(日本合成化学(株)製)、UA−306H、UA−306I、UA−306T、UL−503LN(共栄社化学(株)製)、ユニディック17−806、同17−813、同V−4030、同V−4000BA(大日本インキ化学工業(株)製)、EB−1290K、EB−220、EB−5129、EB−1830,EB−4858(ダイセルUCB(株)製)、A−TMMT、A−TMPT、U−4HA、U−6HA、U−10HA、U−15HA(新中村化学工業(株)製)、ハイコープAU−2010、同AU−2020((株)トクシキ製)、アロニックスM−1960(東亜合成(株)製)、アートレジンUN−3320HA,UN−3320HC,UN−3320HS、UN−904,HDP−4Tなどの3官能以上のウレタンアクリレート化合物、アロニックスM−8100,M−8030,M−9050(東亞合成(株)製、KRM−8307(ダイセルサイテック(株)製)などの3官能以上のポリエステル化合物なども好適に使用することができる。
さらに、3個以上の重合性官能基を有する樹脂、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物などのオリゴマー又はプレポリマー等も挙げられる。
また、特開2005−76005号、同2005−36105号公報に記載された化合物、SIRIUS−501、SUBARU−501(大阪有機化学工業(株)製)のようなデンドリマー、特開2005−60425号公報に記載のようなノルボルネン環含有モノマーを用いることもできる。
さらに、金属酸化物粒子と硬化性化合物(a1)を結合させて強固な膜にするために、硬化性化合物(a1)として、重合性官能基を有するシランカップリング剤を用いてもよい。
重合性官能基を有するシランカップリング剤の具体例としては、例えば、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルメチルジメトキシシラン、3−(メタ)アクリロキシプロピルジメチルメトキシシラン、3−(メタ)アクリロキシプロピルメチルジエトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、2−(メタ)アクリロキシエチルトリメトキシシラン、2−(メタ)アクリロキシエチルトリエトキシシラン、4−(メタ)アクリロキシブチルトリメトキシシラン、4−(メタ)アクリロキシブチルトリエトキシシラン等が挙げられる。具体的には、KBM−503、KBM−5103(信越化学工業(株)製)、特開2014−123091号記載のシランカップリング剤X−12−1048、X−12−1049、X−12−1050(信越化学工業(株)製)、及び下記構造式で表される化合物C3等が挙げられる。
Figure 2018132751
重合性官能基を有する化合物は、二種類以上を併用してもよい。これら重合性官能基を有する化合物の重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
反射防止層はバインダー形成用化合物として、硬化性化合物(a1)以外の化合物を更に含むことができる。
後述する粘着剤層への浸透のしやすさの観点から、上記硬化性化合物(a1)として1分子中に2個以下の重合性官能基を有する化合物を用いてもよいが、特に、1分子中に3個以上の重合性官能基を有する化合物と、1分子中に2個以下の重合性官能基を有する化合物、または硬化性化合物(a1)以外の化合物として重合性官能基を有さない化合物を併用することが好ましい。
1分子中に2個以下の重合性官能基を有する化合物、または重合性官能基を有さない化合物としては、重量平均分子量(Mwa)が40<Mwa<500で、Hoy法によるSP値(SPa)が19<SPa<24.5である化合物が粘着剤層へ浸透しやすく好ましい。また、1分子中に2個以下の重合性官能基を有する化合物は、1分子中に1個の重合性官能基を有する化合物であることが好ましい。
なお、本発明におけるSP値(溶解性パラメーター)は、Hoy法によって算出した値であり、Hoy法は、POLYMERHANDBOOKFOURTHEDITIONに記載がある。
さらに、1分子中に2個以下の重合性官能基を有する化合物、または重合性官能基を有さない化合物は、25℃における粘度が100mPas以下であることが好ましく、1〜50mPasがより好ましく、1〜20mPasが更に好ましい。このような粘度範囲にある化合物は、粘着剤層へ浸透しやすい上に、粒子(a2)の凝集を抑制するように働き、ヘイズ、白濁感を抑制できるため好ましい。特に、後述するように粘着剤層を積層する前に硬化性化合物(a1)の一部を硬化させることで粒子(a2)の凝集を抑制することもできるが、このような粘度範囲にある化合物を用いることで、硬化が進んだ状態であっても1分子中に2個以下の重合性官能基を有する化合物、または重合性官能基を有さない化合物を十分に粘着剤層に浸透させることができるため好ましい。特に、1〜20mPasの粘度範囲にあると、粒子の隙間にバインダーが詰まることで生じる、反射率の上昇や全光線透過率低下を防ぐ効果が大きいため好ましい。
1分子中に2個以下の重合性官能基を有する化合物は、重合性官能基として、(メタ)アクリロイル基、エポキシ基、アルコキシ基、ビニル基、スチリル基、アリル基等を持つものが好ましい。
重合性官能基を有さない化合物としては、エステル系化合物、アミン系化合物、エーテル系化合物、脂肪族アルコール系化合物、炭化水素系化合物などを好ましく用いることができ、エステル系化合物が特に好ましい。より具体的には、コハク酸ジメチル(SP値20.2、粘度2.6mPas)、コハク酸ジエチル(SP値19.7、粘度2.6mPas)、アジピン酸ジメチル(SP値19.7、粘度2.8mPas)、コハク酸ジブチル(SP値19.1、粘度3.9mPas)、アジピン酸ビス(2−ブトキシエチル)(SP値19.0、粘度10.8mPas)、スベリン酸ジメチル(SP値19.4、粘度3.7mPas)、フタル酸ジエチル(SP値22.3、粘度9.8mPas)、フタル酸ジブチル(SP値21.4、粘度13.7mPas)、クエン酸トリエチル(SP値22.5、粘度22.6mPas)、クエン酸アセチルトリエチル(SP値21.1、粘度29.7mPas)、ジフェニルエーテル(SP値21.4、粘度3.8mPas)などが挙げられる。
反射防止層に含まれるバインダー樹脂の含有量は、100mg/m〜800mg/mが好ましく、100mg/m〜600mg/mがさらに好ましく、100mg/m〜400mg/mが最も好ましい。
<金属酸化物粒子>
金属酸化物粒子を、「粒子(a2)」とも呼ぶ。
金属酸化物粒子としては、シリカ粒子、チタニア粒子、ジルコニア粒子、五酸化アンチモン粒子などが挙げられるが、多くのバインダー樹脂と屈折率が近いためヘイズを発生しにくく、かつモスアイ構造が形成し易い観点からシリカ粒子が好ましい。
金属酸化物粒子の平均一次粒子径は、100nm以上190nm以下であることが好ましく、100nm以上180nm以下であることがより好ましく、100nm以上170nm以下であることが更に好ましい。下限値以上であることにより可視光の反射の抑制効果を高めることができ、更に上限値以下であることで凹凸形状の隣り合う凸部の頂点間の距離Aの平均値Xを190nm以下にしやすくなる。
金属酸化物粒子として、1種のみ使用してもよいし、平均一次粒子径の異なる2種以上の粒子を用いてもよい。
金属酸化物粒子の平均一次粒径は、体積平均粒径の累積の50%粒径を指す。粒径の測定には走査型電子顕微鏡(SEM)を用いる事ができる。粉体粒子(分散液の場合は乾燥させて溶剤を揮発させたもの)をSEM観察により適切な倍率(5000倍程度)で観察し、一次粒子100個のそれぞれの直径を測長してその体積を算出し、累積の50%粒径を平均一次粒径とすることができる。粒子が球形でない場合には、長径と短径の平均値をその一次粒子の直径とみなす。反射防止フィルム中に含まれる粒子を測定する場合は、反射防止フィルムを表面側から上記同様SEMで観察して算出する。この際、観察し易いように、試料にはカーボン蒸着、エッチング処理などを適宜施してよい。
金属酸化物粒子は、強度の観点から中実粒子であることが好ましい。金属酸化物粒子の形状は、球形が最も好ましいが、不定形等の球形以外であっても問題無い。
例えば、球形の金属酸化物粒子の一部が平面部となった不定形粒子を使用し、かつ平面部を下層側に設置させることで粒子の運動を抑制し、塗布から乾燥を経て硬化するまでの各工程での粒子凝集を防ぐことができ、粒子による凸部間の距離を均一にし、短波長領域の透過率を向上することができ好ましい。
また不定形形状の別の例としては、金属酸化物粒子の一部に更に小粒子が結合した形状の粒子を用いることができる。金属酸化物粒子に結合した小粒子の個数は複数でも良いが一つがより好ましい。金属酸化物粒子の一部に結合する小粒子の粒径は、金属酸化物粒子よりも小さいことが好ましく、金属酸化物粒子の粒径の0.5倍以下であることがより好ましく、0.25倍以下であることが更に好ましい。金属酸化物粒子の一部に結合する小粒子の密度は、金属酸化物粒子よりも大きいことが好ましく、2倍以上であることがより好ましく、3倍以上であることが更に好ましい。小粒子は金属酸化物であることが好ましく、例えばジルコニア、アルミナ、チタニアなどが好ましいが、上記密度の関係を満たすものであれば適宜用いることができる。例えば粒径160nmのシリカ粒子に粒径40nmのジルコニア粒子が付着した粒子が好ましい。
また、シリカ粒子については、結晶質でも、アモルファスのいずれでもよい。
金属酸化物粒子は塗布液中での分散性向上、膜強度向上、凝集防止のために表面処理された無機微粒子を使用することが好ましい。表面処理方法の具体例及びその好ましい例は、特開2007−298974号公報の[0119]〜[0147]に記載のものと同様である。
特に、バインダー樹脂を形成するための硬化性化合物(a1)との結着性を付与し、反射防止層の強度を向上させる観点から、粒子表面を重合性不飽和基(好ましくは不飽和二重結合)および粒子表面と反応性を有する官能基を有する化合物で表面修飾し、粒子表面に重合性不飽和基(好ましくは不飽和二重結合)を付与することが好ましい。表面修飾に用いる化合物としては、硬化性化合物(a1)として上述した、重合性官能基を有するシランカップリング剤を好適に用いることができる。
具体的には、市販のKBM−503、KBM−5103(いずれも信越化学工業(株)製、特開2014−123091号記載のX−12−1048、X−12−1049、X−12−1050といった(メタ)アクリロイル基を含有するシランカップリング剤を金属酸化物粒子表面に修飾することが好ましい。
平均一次粒子径が100nm以上190nm以下の粒子の具体的な例としては、シーホスターKE−P10(平均一次粒子径150nm、日本触媒(株)製アモルファスシリカ)などを好ましく用いることができる。
金属酸化物粒子としては、表面のヒドロキシル基量が適度に多く、かつ硬い粒子であるという理由から、焼成シリカ粒子であることが特に好ましい。
焼成シリカ粒子は、加水分解が可能なシリコン化合物を水と触媒とを含む有機溶媒中で加水分解、縮合させることによってシリカ粒子を得た後、シリカ粒子を焼成するという公知の技術により製造することができ、たとえば特開2003−176121号公報、特開2008−137854号公報などを参照することができる。
焼成シリカ粒子を製造する原料のシリコン化合物としては特に限定されないが、テトラクロロシラン、メチルトリクロロシラン、フェニルトリクロロシラン、ジメチルジクロロシラン、ジフェニルジクロロシラン、メチルビニルジクロロシラン、トリメチルクロロシラン、メチルジフェニルクロロシラン等のクロロシラン化合物;テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、トリメトキシビニルシラン、トリエトキシビニルシラン、3−グリシドキシプロピルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−(2−アミノエチルアミノ)プロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−クロロプロピルメチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジメトキシジエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のアルコキシシラン化合物;テトラアセトキシシラン、メチルトリアセトキシシラン、フェニルトリアセトキシシラン、ジメチルジアセトキシシラン、ジフェニルジアセトキシシラン、トリメチルアセトキシシラン等のアシロキシシラン化合物;ジメチルシランジオール、ジフェニルシランジオール、トリメチルシラノール等のシラノール化合物;等が挙げられる。上記例示のシラン化合物のうち、アルコキシシラン化合物が、より入手し易く、かつ、得られる焼成シリカ粒子に不純物としてハロゲン原子が含まれることが無いので特に好ましい。焼成シリカ粒子の好ましい形態としては、ハロゲン原子の含有量が実質的に0%であり、ハロゲン原子が検出されないことが好ましい。
焼成温度は特に限定されないが、800〜1300℃が好ましく、1000℃〜1200℃がより好ましい。
また上記不定形粒子の作製方法の一例として、高温焼成時に隣接する粒子同士を焼結させ、その後焼結した粒子を粉砕工程で粉砕し、球形の一部が平面となった不定形粒子を得ることもできる。
反射防止層中の金属酸化物粒子の含有量は、50mg/m〜200mg/mが好ましく、100mg/m〜180mg/mがさらに好ましく、130mg/m〜170mg/mが最も好ましい。下限以上では、モスアイ構造の凸部が数多く形成できるため反射防止性がより向上しやすく、上限以下であると、凝集が生じにくく、良好なモスアイ構造を形成しやすい。
金属酸化物粒子の平均一次粒径が100nm以上190nm以下で、かつCV(coefficient of variation)値が5%未満の単分散シリカ微粒子を一種類のみ含有することがモスアイ構造の凹凸の高さが均一になり、反射率がより低下するため好ましい。CV値は通常レーザー回折型粒径測定装置を用いて測定されるが、他の粒径測定方式でも良いし、反射防止層の表面SEM像から、画像解析によって粒径分布を求め算出することもできる。CV値は4%未満であることがより好ましい。
また別の態様として、金属酸化物微粒子は、平均一次粒径が100nm以上190nm以下の金属酸化物微粒子と平均一次粒径が1nm以上70nm未満の金属酸化物粒子とを両方含むことも好ましい。この場合は、より大きい粒径の粒子が主としてモスアイ構造に寄与し、より小さい粒径の粒子は大きい粒子同士の間に混在することで大きい粒子同士の凝集を抑制し、その結果、反射率、ヘイズが良化する場合がある。なお、一次粒径が1nm以上70nm未満の金属酸化物粒子はバインダー内により多く没入するため、反射防止層としての凸部は一次粒径が100nm以上190nm以下の金属酸化物微粒子によって形成されるものを指す。平均一次粒径が100nm以上190nm以下の金属酸化物微粒子に対する平均一次粒径が1nm以上70nm未満の金属酸化物粒子の個数の頻度は、1〜3倍の頻度で含むことが好ましい。この範囲にすることで、凝集抑制効果が高く、反射率を低くすることが出来る。平均一次粒径が1nm以上70nm以下の金属酸化物粒子は、平均一次粒径が30nm以上50nm以下であることが反射率を特に低くすることが出来て好ましい。 平均一次粒径が異なる金属酸化物粒子同士を併用する場合は、両方の粒子の表面のヒドロキシル基量を近くすることが、より凝集しにくいため好ましい。 ただし、平均一次粒径が1nm以上100nm未満の金属酸化物粒子は、主に平均一次粒径が100nm以上190nm以下の金属酸化物粒子の凝集を抑止させて離間させるために用いられるため、入手が容易であるヒドロキシル基量が1.00×10−1より多いか、または押し込み硬度400MPa未満である金属酸化物粒子を用いても良い。
反射防止層は、バインダー樹脂及び金属酸化物粒子以外の成分を含有していてもよく、たとえば、金属酸化物粒子の分散剤、レベリング剤、防汚剤等を含有していてもよい。
<金属酸化物粒子の分散剤>
金属酸化物粒子の分散剤は、粒子同士の凝集力を低下させることにより、金属酸化物粒子を均一に配置させ易くすることができる。分散剤としては、特に限定されないが、硫酸塩、リン酸塩などのアニオン性化合物、脂肪族アミン塩、四級アンモニウム塩などのカチオン性化合物、非イオン性化合物、高分子化合物が好ましく、吸着基と立体反発基それぞれの選択の自由度が高いため高分子化合物がより好ましい。分散剤としては市販品を用いることもできる。例えば、ビックケミー・ジャパン(株)製のDISPERBYK160、DISPERBYK161、DISPERBYK162、DISPERBYK163、DISPERBYK164、DISPERBYK166、DISPERBYK167、DISPERBYK171、DISPERBYK180、DISPERBYK182、DISPERBYK2000、DISPERBYK2001、DISPERBYK2164、Bykumen、BYK−2009、BYK−P104、BYK−P104S、BYK−220S、Anti−Terra203、Anti−Terra204、Anti−Terra205(以上商品名)などが挙げられる。
<レベリング剤>
レベリング剤は、反射防止層の表面張力を低下させることにより、塗布後の液を安定化させ硬化性化合物(a1)及び金属酸化物粒子を均一に配置させ易くすることができる。
本発明において用いられる反射防止層形成用組成物は、少なくとも1種のレベリング剤を含有することができる。
これにより、乾燥風の局所的な分布による乾燥バラツキに起因する膜厚ムラ等を抑制したり、塗布物のハジキを改良したり、硬化性化合物(a1)及び金属酸化物粒子を均一に配置させ易くすることができる。
レベリング剤として、具体的には、シリコーン系レベリング剤及びフッ素系レベリング剤から選択される少なくとも1種のレベリング剤を用いることができる。なお、レベリング剤は、低分子化合物よりもオリゴマー又はポリマーであることが好ましい。
レベリング剤を添加すると、塗布された塗膜の表面にレベリング剤が速やかに移動して偏在化し、塗膜の乾燥後もレベリング剤がそのまま表面に偏在することになるため、レベリング剤を添加した膜の表面エネルギーは、レベリング剤によって低下する。膜厚不均一性、ハジキ、及びムラを防止するという観点からは、膜の表面エネルギーが低いことが好ましい。
シリコーン系レベリング剤の好ましい例としては、ジメチルシリルオキシ単位を繰り返し単位として複数個含み、末端及び/又は側鎖に置換基を有するポリマーあるいはオリゴマーが挙げられる。ジメチルシリルオキシを繰り返し単位として含むポリマーあるいはオリゴマー中にはジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていてもよく、複数個あることが好ましい。好ましい置換基の例としてはポリエーテル基、アルキル基、アリール基、アリールオキシ基、アリール基、シンナモイル基、オキセタニル基、フルオロアルキル基、ポリオキシアルキレン基、などを含む基が挙げられる。
シリコーン系レベリング剤の数平均分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることがより好ましく、1000〜30000であることが特に好ましく、1000〜20000であることが最も好ましい。
好ましいシリコーン系レベリング剤の例としては、電離放射線硬化基を有しない市販のシリコーン系レベリング剤として、信越化学工業(株)製のX22−3710、X22−162C、X22−3701E、X22160AS、X22170DX、X224015、X22176DX、X22−176F、X224272、KF8001、X22−2000等;チッソ(株)製のFM4421、FM0425、FMDA26、FS1265等;東レ・ダウコーニング(株)製のBY16−750、BY16880、BY16848、SF8427、SF8421、SH3746、SH8400、SF3771、SH3749、SH3748、SH8410等;モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製のTSFシリーズ(TSF4460、TSF4440、TSF4445、TSF4450、TSF4446、TSF4453、TSF4452、TSF4730、TSF4770等)、FGF502、SILWETシリーズ(SILWETL77、SILWETL2780、SILWETL7608、SILWETL7001、SILWETL7002、SILWETL7087、SILWETL7200、SILWETL7210、SILWETL7220、SILWETL7230、SILWETL7500、SILWETL7510、SILWETL7600、SILWETL7602、SILWETL7604、SILWETL7604、SILWETL7605、SILWETL7607、SILWETL7622、SILWETL7644、SILWETL7650、SILWETL7657、SILWETL8500、SILWETL8600、SILWETL8610、SILWETL8620、SILWETL720)等を挙げることができるがこれに限定されるものではない。
電離放射線硬化基を有するものとして、信越化学工業(株)製のX22−163A、X22−173DX、X22−163C、KF101、X22164A、X24−8201、X22174DX、X22164C、X222426、X222445、X222457、X222459、X22245、X221602、X221603、X22164E、X22164B、X22164C、X22164D、TM0701等;チッソ(株)製のサイラプレーンシリーズ(FM0725、FM0721、FM7725、FM7721、FM7726、FM7727等);東レ・ダウコーニング(株)製のSF8411、SF8413、BY16−152D、BY16−152、BY16−152C、8388A等;エボニックデグサ ジャパン(株)製のTEGORad2010、2011、210
0、2200N、2300、2500、2600,2700等;ビックケミー・ジャパン(株)製のBYK3500;信越シリコーン社製のKNS5300;モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製のUVHC1105、UVHC8550等を挙げることができるがこれに限定されるものではない。
レベリング剤は、反射防止層中に0.01〜5.0質量%含有されることが好ましく、0.01〜2.0質量%含有されることがより好ましく、0.01〜1.0質量%含有されることが最も好ましい。
フッ素系レベリング剤は、フルオロ脂肪族基と、例えばこのレべリング剤を添加剤として使用したときに、コーティング用、成形材料用等の各種組成物に対する親和性に寄与する親媒性基とを同一分子内に有する化合物であり、このような化合物は、一般に、フルオロ脂肪族基を有するモノマーと親媒性基を有するモノマーとを共重合させて得ることができる。
フルオロ脂肪族基を有するモノマーと共重合される、親媒性基を有するモノマーの代表的な例としては、ポリ(オキシアルキレン)アクリレート、ポリ(オキシアルキレン)メタクリレート等が挙げられる。
好ましい市販のフッ素系レベリング剤としては、電離放射線硬化基を有しないものとしてDIC(株)製のメガファックシリーズ(MCF350−5、F472、F476、F445、F444、F443、F178、F470、F475、F479、F477、F482、F486、TF1025、F478、F178K、F−784−F等);ネオス(株)製のフタ―ジェントシリーズ(FTX218、250、245M、209F、222F、245F、208G、218G、240G、206D、240D等)が挙げられ、電離放射線硬化基を有するものとして、ダイキン工業(株)製のオプツールDAC;DIC(株)製のデイフェンサシリーズ(TF3001、TF3000、TF3004、TF3028、TF3027、TF3026、TF3025等)、RSシリーズ(RS71、RS101、RS102、RS103、RS104、RS105等)が挙げられるがこれらに限定されるものではない。
また、特開2004−331812号公報、特開2004−163610号公報に記載の化合物等を用いることもできる。
<防汚剤>
反射防止層には、防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のシリコーン系あるいはフッ素系の防汚剤、滑り剤等を適宜添加することができる。
シリコーン系あるいはフッ素系の防汚剤の具体例としては、前述のシリコーン系あるいはフッ素系のレベリング剤の中で電離放射線硬化基を有するものを好適に使用することができるがこれらに限定されるものではない。
防汚剤は反射防止層中に0.01〜5.0質量%含有されることが好ましく、0.01〜2.0質量%含有されることがより好ましく、0.01〜1.0質量%含有されることが最も好ましい。
[ハードコート層]
本発明の反射防止フィルムは、プラスチック基材と反射防止層の間に、その他の層を有していてもよい。その他の層としては、ハードコート層が好ましい。
後述するように、本発明の反射防止フィルムは、ハードコート層に4級アンモニウム塩含有ポリマーを含み、反射防止層の表面抵抗率SR(Ω/sq)の常用対数値(logSR)が11以下であり、かつ、反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aの平均値をXとし、Aの分布を表す標準偏差をσとしたとき、X+σ≦190nmを満たす反射防止フィルムであることが好ましい。
ハードコート層は、重合性基を有する化合物である硬化性化合物(好ましくは電離放射線硬化性化合物)の架橋反応、又は、重合反応により形成されることが好ましい。すなわち、ハードコート層は硬化性化合物の硬化物を含むことが好ましい。例えば、ハードコート層は、電離放射線硬化性の多官能モノマー、又は多官能オリゴマーを含むハードコート層形成用組成物をプラスチック基材上に塗布し、多官能モノマー若しくは多官能オリゴマーを架橋反応、又は、重合反応させることにより形成することができる。
電離放射線硬化性の多官能モノマー、及び多官能オリゴマーの官能基(重合性基)としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
ハードコート層を形成するための硬化性化合物として具体的には上述した硬化性化合物(a1)と同様の化合物を用いることができる。
特に、厚みが20〜40μmの薄型のプラスチック基材を用いる場合は、カール及びシワの発生を抑えることができるという観点から、ハードコート層を形成するための硬化性化合物として、分子内にエポキシ基を有する化合物を更に用いても良い。分子内にエポキシ基を有する化合物の分子量に制限は無く、モノマー、オリゴマー又はポリマーを好適に用いることが出来る。また、反射防止フィルムの表面硬度を維持する観点から、エポキシ基を有する化合物は更に分子内に重合性不飽和基を含むことが好ましい。分子内に重合性不飽和基とエポキシ基とを有する化合物としては(株)ダイセル製サイクロマーM100が挙げられるが、これに限定されるものではない。
分子内にエポキシ基を有する化合物は、ハードコート層中に12〜45質量%含有されることが好ましく、15〜35質量%含有されることがより好ましい。
フィルムに充分な耐久性、耐衝撃性を付与する観点から、ハードコート層の厚さは通常0.6μm〜50μm程度であり、好ましくは4μm〜20μmである。
また、ハードコート層の強度は、鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましい。さらに、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
ハードコート層は、反射防止フィルムをミクロトームで切削し、断面を飛行時間型二次イオン質量分析装置(TOF−SIMS)で分析した時に、電離放射線硬化性化合物の硬化物が検出される部分として測定することができ、この領域の膜厚も同様にTOF−SIMSの断面情報から測定することができる。
また、ハードコート層は、例えば光の干渉を利用した反射分光膜厚計又はTEM(透過型電子顕微鏡)による断面観察により、プラスチック基材と反射防止層の中間に別の1層を検出することによっても測定することが出来る。反射分光膜厚計としては、FE−3000(大塚電子(株)製)等を用いることが出来る。
本発明においては、工程(1)はハーフキュア状態のハードコート層に対して行うのが好ましい。ハードコート層をハーフキュア状態にすることで、ハードコート層と反射防止層との密着性の向上、及びハードコート層と不飽和二重結合を表面に付与した金属酸化物粒子との結合形成による金属酸化物粒子の凝集抑制の効果が得られる。
例えば塗膜が紫外線硬化性であれば、硬化時の酸素濃度、および紫外線照射量を適宜調整することによりハーフキュアにすることができる。紫外線ランプにより1mJ/cm〜300mJ/cmの照射量の紫外線を照射して硬化するのが好ましい。5mJ/cm〜100mJ/cmであることがより好ましく、10mJ/cm〜70mJ/cmであることがさらに好ましい。照射の際には、上記エネルギーを一度に当ててもよいし、分割して照射することもできる。紫外線ランプ種としては、メタルハライドランプ又は高圧水銀ランプ等が好適に用いられる。
硬化時の酸素濃度は0.05〜5.0体積%であることが好ましく、0.1〜2体積%であることがさらに好ましく、0.1〜1体積%であることが最も好ましい。
(溶媒)
ハードコート層形成用組成物は、溶媒を含むことが好ましい。
溶媒としては、プラスチック基材に対する浸透性を有する溶媒を含むことがプラスチック基材とハードコート層の密着性の観点から好ましい。プラスチック基材に対する浸透性を有する溶媒とは、プラスチック基材に対する溶解能を有する溶剤である。ここで、プラスチック基材に対して溶解能を有する溶剤とは、24mm×36mm(厚み80μm)の大きさのプラスチック基材を上記溶剤の入った15mlの瓶に入れて室温(25℃)で24時間経時させ、適宜瓶を揺らすなどして、プラスチック基材が完全に溶解して形をなくす溶剤を意味する。
プラスチック基材としてセルロースアシレートフィルムを用いた場合の浸透性溶媒としては、メチルエチルケトン(MEK)、炭酸ジメチル、酢酸メチル、アセトン、メチレンクロライド等が好ましく、メチルエチルケトン(MEK)、炭酸ジメチル、酢酸メチルがより好ましく用いることが出来るがこれらに限定されない。
ハードコート層形成用組成物は、浸透性溶媒以外の溶媒(たとえば、エタノール、メタノール、1−ブタノール、イソプロパノール(IPA)、メチルイソブチルケトン(MIBK)、トルエン等)を含んでいてもよい。
ハードコート層形成用組成物において、浸透性溶媒の含有量は、ハードコート層形成用組成物に含まれる全溶媒の質量に対して、50質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましい。
ハードコート層形成用組成物が4級アンモニウム塩含有ポリマーを含む場合、4級アンモニウム塩含有ポリマーとの相溶性の観点から、溶媒として、親水性の溶媒を含むことが好ましい。親水性の溶媒としては、メタノール、エタノール、イソプロパノール(IPA)、ブタノールなどの低級アルコールが好ましい。
ハードコート層形成用組成物の固形分濃度は、20質量%以上70質量%以下であることが好ましく、30質量%以上60質量%以下であることがより好ましい。
(その他の成分)
ハードコート層形成用組成物には、上記成分のほかに、更に重合開始剤、帯電防止剤、防眩剤等を適宜添加することもできる。更に、反応性又は非反応性レベリング剤、各種増感剤等の各種添加剤が混合されていても良い。
(重合開始剤)
必要に応じてラジカル及びカチオン重合開始剤等を適宜選択して用いても良い。これらの重合開始剤は、光照射及び/又は加熱により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。
重合開始剤としては、後述する反射防止層の層(a)を形成するための組成物(A)が含んでもよい重合開始剤と同様のものが挙げられる。
特に、ハードコート層形成用組成物が4級アンモニウム塩含有ポリマーを含む場合、重合開始剤として、ホスフィンオキサイド系重合開始剤を用いることが好ましい。ホスフィンオキサイド系重合開始剤は、フォトブリーチング効果を有するため、ハードコート層の表面をハーフキュア状態としても、内部の硬化率は他の開始剤を使用した場合に比べ高くなり、反射防止層への4級アンモニウム塩含有ポリマーの混入を抑制することができる。
(ホスフィンオキサイド系重合開始剤)
ホスフィンオキサイド系重合開始剤としては、光吸収時にn−π*遷移を起こし、フォトブリーチング効果を有するものが好ましく、具体的には、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイドが好ましく挙げられる。
市販されているホスフィンオキサイド系重合開始剤としては、BASF製のイルガキュア819、DAROCUR TPOなどが好ましく挙げられる。
本発明において用いられるホスフィンオキサイド系重合開始剤は1種でも2種以上でもよい。
(帯電防止剤)
帯電防止剤の具体例としては、4級アンモニウム塩、導電性ポリマー、導電性微粒子等の従来公知の帯電防止剤を用いることができ、特に限定されるものではないが、安価、かつ取り扱い容易性から、4級アンモニウム塩を有する帯電防止剤であることが好ましく、4級アンモニウム塩含有ポリマーであることがより好ましい。
ハードコート層に4級アンモニウム塩含有ポリマーを含む場合、4級アンモニウム塩含有ポリマーが反射防止層に混合すると金属酸化物粒子と4級アンモニウム塩含有ポリマーが相互作用して金属酸化物粒子の凝集を促進してしまうことがあるため、4級アンモニウム塩含有ポリマーはハードコート層の基材側に偏在していることが好ましい。4級アンモニウム塩含有ポリマーを偏在させる方法は限定されないが、4級アンモニウム塩含有ポリマーを含むハードコート層と4級アンモニウム塩含有ポリマーを含まないハードコート層との積層によりハードコート層を形成する方法、又は、相分離を用いる方法などが挙げられる。
相分離を用いる方法としては、親水性でかつ高沸点の溶媒(好ましくは101325Paにおける沸点が80℃以上、より好ましくは90℃以上140℃以下の溶媒であり、たとえば、イソプロパノール、ブタノールなどが挙げられる。)の使用又は低温乾燥などにより乾燥を遅くすると、4級アンモニウム塩含有ポリマーが疎水的な空気界面を避けてハードコート層の内部に偏在する。基材がセルロースアシレートであると、基材が親水的であるため、特にハードコート層の内部に偏在しやすい。また、ハードコート層中において疎水性素材との併用によっても偏在が進む。疎水性素材はSP値(SPb)が19≦SPb≦21であることが好ましく、硬度の観点から重合性不飽和基を有する硬化性化合物であることが好ましい。具体例としては日本化薬(株)製DPCA−20(SPb=20.6)、同DPCA−30(SPb=20.6)、同DPCA−60(SPb=20.5)、新中村化学工業(株)製A−TMMT(SPb=20.0)、同A−TMPT(SPb=20.0)などが挙げられる。
本発明の反射防止フィルムとしては、
用いる金属酸化物粒子が、粒子表面に重合性不飽和基を付与された金属酸化物粒子であり、
重合性不飽和基を有する硬化性化合物を含むハードコート層形成用組成物を硬化してなるハードコート層を有し、
上記金属酸化物粒子と上記ハードコート層との間に結合が形成されていることが好ましい。
(4級アンモニウム塩含有ポリマー)
4級アンモニウム塩含有ポリマーとしては、公知化合物の中から適宜選択して用いることができるが、塗付液への溶解性の観点から、下記一般式(I)、(II)〜(III)で表される構造単位の少なくとも1つの単位を有するポリマーが好ましい。
Figure 2018132751
一般式(I)中、Rは水素原子、アルキル基、ハロゲン原子又は−CHCOOを表す。Yは水素原子又は−COOを表す。Mはプロトン又はカチオンを表す。Lは−CONH−、−COO−、−CO−又は−O−を表す。Jはアルキレン基又はアリーレン基を表す。Qは下記群Aから選ばれる基を表す。
Figure 2018132751
式中、R、R’及びR’’は、それぞれ独立に、アルキル基を表す。Jはアルキレン基又はアリーレン基を表す。Xはアニオンを表す。p及びqは、それぞれ独立に、0又は1を表す。
Figure 2018132751
Figure 2018132751
一般式(II)、(III)中、R、R、R及びRは、それぞれ独立に、アルキル基を表し、RとR及びRとRはそれぞれ互いに結合して含窒素複素環を形成してもよい。
A、B及びDは、それぞれ独立に、アルキレン基、アリーレン基、アルケニレン基、アリーレンアルキレン基、−RCOR−、−RCOOR10OCOR11−、−R12OCR13COOR14−、−R15−(OR16−、−R17CONHR18NHCOR19−、−R20OCONHR21NHCOR22−又は―R23NHCONHR24NHCONHR25−を表す。Eは単結合、アルキレン基、アリーレン基、アルケニレン基、アリーレンアルキレン基、−RCOR−、−RCOOR10OCOR11−、−R12OCR13COOR14−、−R15−(OR16−、−R17CONHR18NHCOR19−、−R20OCONHR21NHCOR22−又は―R23NHCONHR24NHCONHR25−又は−NHCOR26CONH−を表す。R、R、R、R11、R12、R14、R15、R16、R17、R19、R20、R22、R23、R25及びR26はアルキレン基を表す。R10、R13、R18、R21及びR24は、それぞれ独立に、アルキレン基、アルケニレン基、アリーレン基、アリーレンアルキレン基及びアルキレンアリーレン基から選ばれる連結基を表す。mは1〜4の正の整数を表す。Xはアニオンを表す。
、Zは−N=C−基とともに5員又は6員環を形成するのに必要な非金属原子群を表し、≡N[X]−なる4級塩の形でEに連結してもよい。
nは5〜300の整数を表す。
一般式(I)〜(III)の基について説明する。
ハロゲン原子は、塩素原子、臭素原子が挙げられ、塩素原子が好ましい。
アルキル基は、炭素数1〜4の分岐又は直鎖のアルキル基が好ましく、メチル基、エチル基、プロピル基がより好ましい。
アルキレン基は、炭素数1〜12のアルキレン基が好ましく、メチレン基、エチレン基、プロピレン基がより好ましく、エチレン基が特に好ましい。
アリーレン基は、炭素数6〜15のアリーレン基が好ましく、フェニレン、ジフェニレン、フェニルメチレン基、フェニルジメチレン基、ナフチレン基がより好ましく、フェニルメチレン基が特に好ましい、これらの基は置換基を有していてもよい。
アルケニレン基は、炭素数2〜10のアルキレン基が好ましく、アリーレンアルキレン基は、炭素数6〜12のアリーレンアルキレン基が好ましい、これらの基は置換基を有していてもよい。
各基に置換してもよい置換基としては、メチル基、エチル基、プロピル基等が挙げられる。
一般式(I)において、Rは水素原子が好ましい。
Yは、好ましくは水素原子である。
Jは、好ましくはフェニルメチレン基である。
Qは、好ましくは群Aから選ばれる下記一般式(VI)であり、R、R’及びR’’は各々メチル基である。
は、ハロゲンイオン、スルホン酸アニオン、カルボン酸アニオンなどが挙げられ、好ましくはハロゲンイオンであり、より好ましくは塩素イオンである。
p及びqは、好ましくは0又は1であり、より好ましくはp=0、q=1である。
Figure 2018132751
一般式(II)及び(III)において、R、R、R及びRは、好ましくは炭素数1〜4の置換又は無置換のアルキル基が好ましく、メチル基、エチル基がより好ましく、メチル基が特に好ましい。
A、B及びDは、好ましくはそれぞれ独立に、炭素数2〜10の置換又は無置換のアルキレン基、アリーレン基、アルケニレン基、アリーレンアルキレン基を表し、好ましくはフェニルジメチレン基である。
は、ハロゲンイオン、スルホン酸アニオン、カルボン酸アニオンなどが挙げられ、好ましくはハロゲンイオンであり、より好ましくは塩素イオンである。
Eは、好ましくはEは単結合、アルキレン基、アリーレン基、アルケニレン基、アリーレンアルキレン基を表す。
、Zが、−N=C−基とともに形成する5員又は6員環としては、ジアゾニアビシクロオクタン環等を例示することができる。
以下に、一般式(I)〜(III)で表される構造のユニットを有する化合物の具体例を挙げるが、本発明はこれらに限定されるわけではない。なお、下記の具体例における添え字(m、x、y、r及び実際の数値)の内、mは各ユニットの繰り返し単位数を表し、x、y、rは各々のユニットのモル比を表す。
Figure 2018132751
Figure 2018132751
Figure 2018132751
Figure 2018132751
Figure 2018132751
Figure 2018132751
上記で例示した化合物は、単独で用いてもよいし、2種以上の化合物を併用して用いることもできる。
(屈折率調整剤)
ハードコート層の屈折率を制御する目的で、屈折率調整剤として高屈折率モノマーまたは無機粒子を添加することができる。無機粒子には屈折率を制御する効果に加えて、架橋反応による硬化収縮を抑える効果もある。本発明では、ハードコート層形成後において、上記多官能モノマーおよび/又は高屈折率モノマー等が重合して生成した重合体、その中に分散された無機粒子を含んでバインダーと称する。
(レベリング剤)
レベリング剤の具体例としては、フッ素系又はシリコーン系等の従来公知のレベリング剤を用いることが出来る。レベリング剤を添加したハードコート層形成用組成物は、塗布又は乾燥時に塗膜表面に対して塗工安定性を付与することができる。
本発明の反射防止フィルムは、種々の用途に用いることができ、例えば、偏光板保護フィルムとして好適に用いることができる。
本発明の反射防止フィルムを用いた偏光板保護フィルムは、偏光子と貼り合せて偏光板とすることができ、液晶表示装置などに好適に用いることができる。
[偏光板]
偏光板は、偏光子と、偏光子を保護する少なくとも1枚の保護フィルムとを有する偏光板であって、保護フィルムの少なくとも1枚が本発明の反射防止フィルムであることが好ましい。
偏光子には、ヨウ素系偏光子、二色性染料を用いる染料系偏光子又はポリエン系偏光子がある。ヨウ素系偏光子及び染料系偏光子は、一般にポリビニルアルコール系フィルムを用いて製造することができる。
[反射防止物品]
本発明の反射防止物品は本発明の反射防止フィルムを表面に有する物品である。例えば、カバーガラスに本発明の反射防止フィルムを適用し、反射防止機能を付与したカバーガラス(反射防止物品の一例)とすることができる。
[画像表示装置]
本発明の反射防止フィルムを画像表示装置に適用することもできる。
画像表示装置としては、陰極線管(CRT)を利用した表示装置、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、蛍光表示ディスプレイ(VFD)、フィールドエミッションディスプレイ(FED)、及び液晶ディスプレイ(LCD)を挙げることができ、特に液晶表示装置が好ましい。
一般的に、液晶表示装置は、液晶セル及びその両側に配置された2枚の偏光板を有し、液晶セルは、2枚の電極基板の間に液晶を担持している。更に、光学異方性層が、液晶セルと一方の偏光板との間に一枚配置されるか、又は液晶セルと双方の偏光板との間に2枚配置されることもある。液晶セルは、TN(Twisted Nematic)モード、VA(Vertically Aligned)モード、OCB(Optically Compensatory Bend)モード、IPS(In−Plane Switching)モードなど様々な駆動方式の液晶セルが適用できる。
[モジュール]
本発明のモジュールは、本発明の反射防止フィルムを2枚有し、2枚の反射防止フィルムがエアギャップ(空気層)を介して対向して設置されたモジュールである。
本発明のモジュールにおいて、2枚の反射防止フィルムは、反射防止層がプラスチック基材よりもエアギャップ側に配置されたモジュールであることが好ましい。
図2に本発明のモジュールの一例の断面模式図を示す。図2のモジュール20は、本発明の反射防止フィルム10a及び10bを有し、2枚の反射防止フィルムがエアギャップ11を介して対向して設置されている。また、2枚の反射防止フィルム10a及び10bは、それぞれ、反射防止層がプラスチック基材よりもエアギャップ11側に配置されている。
本発明のモジュールは種々の用途に用いることができ、例えば、タッチパネル付き液晶表示装置に用いることができる。
[タッチパネル付き液晶表示装置]
本発明のタッチパネル付き液晶表示装置は、本発明のモジュールを含み、
2枚の反射防止フィルムのうちの一方の反射防止フィルムのプラスチック基材の反射防止層側とは反対側にタッチパネルを有し、
他方の反射防止フィルムのプラスチック基材の反射防止層側とは反対側に液晶セルを有する、タッチパネル付き液晶表示装置である。
図2に、本発明のタッチパネル付き液晶表示装置の一例の断面模式図を示す。図2のタッチパネル付き液晶表示装置30は、本発明のモジュール20を含み、2枚の反射防止フィルムのうちの一方の反射防止フィルム10aのプラスチック基材の反射防止層側とは反対側にタッチパネル12を有し、他方の反射防止フィルム10bのプラスチック基材の反射防止層側とは反対側に液晶セル13を有する。また、反射防止フィルム10bは偏光子15の保護フィルムも兼ねている。偏光子15の反射防止フィルム10bとは反対側には別の保護フィルム14が設けられている。反射防止フィルム10bと偏光子15と保護フィルム14との積層体は本発明の偏光板でもある。
本発明のタッチパネル付き液晶表示装置30は、タッチパネル12の反射防止フィルム10a側の界面とは反対側から入射する外光の反射を反射防止フィルム10a及び反射防止フィルム10bにより低減できる。また、本発明の反射を反射防止フィルム10a及び反射防止フィルム10bは反射防止層のプラスチック基材とは反対側から入射した際の全光線透過率が88%以上であり、かつ、反射防止層のプラスチック基材とは反対側から入射した際の波長480nm及び580nmの光の透過率をそれぞれT480及びT580としたとき、T580−T480≦3.5%を満たすので、図示しないバックライトからの光を可視光の全領域に渡って透過しやすく、表示画像の色味変化を抑制することができる。
なお、使用できるタッチパネル、液晶セル、保護フィルム、偏光子については特に制限はなく、公知のいずれのものを用いてもよい。
例えば、タッチパネルは抵抗膜方式、静電容量方式、光学方式、超音波方式など様々な方式のタッチパネルを用いることができる。
[反射防止フィルムの製造方法]
本発明の反射防止フィルムの製造方法は、
プラスチック基材上に、硬化性化合物と平均一次粒径が100nm以上190nm以下の金属酸化物粒子とを、上記硬化性化合物を含む層(a)中に上記金属酸化物粒子が埋没する厚みで設ける工程(1)、
支持体及び上記支持体上にゲル分率が95.0%以上の粘着剤を含む層(b)を有する粘着フィルムの上記層(b)を、上記層(a)と貼り合わせる工程(2)、
上記金属酸化物粒子が、上記層(a)及び上記層(b)を合わせた層中に埋没し、かつ、上記層(a)の上記プラスチック基材側の界面とは反対側の界面から突出するように、上記層(a)と上記層(b)の界面の位置を上記プラスチック基材側に移動させる工程(3)、
上記金属酸化物粒子が、上記層(a)及び上記層(b)を合わせた層中に埋没した状態で上記層(a)を硬化する工程(4)、
上記層(b)を上記層(a)から剥離する工程(5)、
をこの順に有する、反射防止フィルムの製造方法である。
上記製造方法により、前述の本発明の反射防止フィルムを製造することができる。
上記製造方法において、硬化性化合物としては前述の硬化性化合物(a1)が好ましく用いられ、金属酸化物粒子も前述のものが好ましく用いられる。
また、工程(4)で硬化された層(a)は前述のバインダー樹脂の膜に相当し、層(a)と層(a)から突出した金属酸化物粒子とを含めたものが反射防止層である。
本発明の反射防止フィルムの製造方法の好ましい実施形態の一例を図3に示す。
図3の(1)は、工程(1)において、プラスチック基材1上に、硬化性化合物(a1)を含む層(a)(図3中の符号4)中に平均一次粒径が100nm以上190nm以下の金属酸化物粒子(「粒子(a2)」とも呼ぶ)(図3中の符号3)が埋没する厚みで設けた状態を模式的に表している。
図3の(2)は、工程(2)において、支持体5及び上記支持体5上にゲル分率が95.0%以上の粘着剤を含む層(b)(図3中の符号6)を有する粘着フィルム7の層(b)を、層(a)(図3中の符号4)と貼り合わせた状態を模式的に表している。
図3の(3)は、工程(3)において、粒子(a2)が、層(a)及び層(b)を合わせた層中に埋没し、かつ、層(a)の基材側の界面とは反対側の界面から突出するように、層(a)と層(b)の界面の位置をプラスチック基材側に移動させた状態を模式的に表している。なお、後述するように、層(a)と層(b)の界面の位置をプラスチック基材側に移動させる方法としては、硬化性化合物(a1)の一部を粘着剤を含む層(b)に浸透させる方法が挙げられる。
層(a)と層(b)の界面の位置をプラスチック基材側に移動させるということは、上記界面の位置をプラスチック基材に近づけることでもある。
図3の(4)は、工程(4)において、粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態で層(a)を硬化しているところを模式的に表している。
図3の(5)は、層(a)から層(b)を含む粘着フィルム7を剥離する工程(5)において、粘着フィルム7を剥離した後の状態(反射防止フィルム10)を表している。
本発明の反射防止フィルムの製造方法では、工程(1)〜(4)を行う際の温度が60℃以下であることが好ましく、40℃以下であることがより好ましい。工程(1)〜(4)を行う際の温度が60℃以下に保つことで、金属酸化物粒子の凝集を抑制することができ、良好な凹凸形状を形成することができる。
[工程(1)]
工程(1)は、プラスチック基材上に、硬化性化合物と平均一次粒径が100nm以上190nm以下の金属酸化物粒子とを、硬化性化合物を含む層(a)中に金属酸化物粒子が埋没する厚みで設ける工程である。
本発明において、「層(a)中に金属酸化物粒子が埋没する厚み」とは、金属酸化物粒子の平均一次粒子径の0.8倍以上の厚みを表すものとする。
工程(1)において、プラスチック基材上に層(a)を設ける方法は特に限定されないが、プラスチック基材上に層(a)を塗布することにより設けることが好ましい。この場合、層(a)は、硬化性化合物(a1)と、粒子(a2)とを含む組成物(A)を塗布してなる層である。塗布方法としては、特に限定されず公知の方法を用いることができる。例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法等が挙げられる。
工程(1)において、プラスチック基材の表面に直交する方向には粒子(a2)が複数存在しないことが好ましい。ここで、プラスチック基材の表面に直交する方向には粒子(a2)が複数存在しないとは、プラスチック基材の面内の10μm×10μmを走査型電子顕微鏡(SEM)で3視野観察した際に、表面に直交する方向に複数重なって存在していない状態の粒子(a2)の個数の割合が、80%以上であることを表し、好ましくは95%以上である。
なお、本発明においては、工程(1)の前に、プラスチック基材上に他の層を設けてもよい。プラスチック基材上に他の層を設けた場合には、工程(1)においては、この他の層上に層(a)を設け、以降の工程を行うものとする。他の層としてはハードコート層が好ましい。
(層(a))
層(a)は、硬化性化合物(a1)と、粒子(a2)とを含む。
層(a)は反射防止層を形成するための層である。
層(a)に含まれる硬化性化合物(a1)は、硬化されることで、反射防止層のバインダー樹脂となり得るものである。
層(a)に含まれる粒子(a2)は、反射防止フィルムにおいて、バインダー樹脂からなる膜の表面から突出し、凹凸形状(モスアイ構造)を形成する粒子である。
なお、層(a)は工程(4)で硬化されるため、硬化前と硬化後で含有する成分が異なるが、本発明では便宜的にいずれの段階においても層(a)と呼ぶことがある。
工程(1)における層(a)の膜厚は、粒子(a2)の平均一次粒径の0.8倍以上2.0倍以下であることが好ましく、0.8倍以上1.5倍以下であることがより好ましく、0.9倍以上1.2倍以下であることが更に好ましい。
プラスチック基材、硬化性化合物(a1)、粒子(a2)については前述したものと同様である。
<溶剤>
層(a)又は層(a)を形成するための組成物(A)は、溶剤を含んでいてもよい。
溶剤としては、粒子(a2)と極性が近いものを選ぶのが分散性を向上させる観点で好ましい。具体的には、例えばアルコール系の溶剤が好ましく、メタノール、エタノール、2−プロパノール、1−プロパノール、ブタノールなどが挙げられる。また、例えば粒子(a2)が疎水化表面修飾がされた金属樹脂粒子の場合には、ケトン系、エステル系、カーボネート系、アルカン、芳香族系等の溶剤が好ましく、メチルエチルケトン(MEK)、炭酸ジメチル、酢酸メチル、アセトン、メチレンクロライド、シクロヘキサノンなどが挙げられる。これらの溶剤は、分散性を著しく悪化させない範囲で複数種混ぜて用いてもかまわない。
<重合開始剤>
層(a)又は層(a)を形成するための組成物(A)は、重合開始剤を含んでいてもよい。
重合開始剤は、ラジカル重合開始剤であってもカチオン重合開始剤であってもよい。併用される重合性化合物の種類に応じて適切な重合開始剤を選択すればよい。重合開始剤としては、製造工程において施す重合処理の種類(加熱、光照射)に応じて、熱重合開始剤または光重合開始剤のいずれかを選択すればよい。また、熱重合開始剤と光重合開始剤と併用してもよい。
熱重合開始剤の構造については、特に限定されるものではない。熱重合開始剤の具体的態様としては、アゾ化合物、ヒドロキシルアミンエステル化合物、有機過酸化物、過酸化水素等を挙げることができる。有機過酸化物の具体例については、特許第5341155号公報段落0031に記載のものを挙げることができる。
アゾ化合物は、少なくとも1つのアゾ結合を含めばよく、アゾ結合とともに各種置換基を含むことができる。具体的には、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルイソブチロニトリル)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、1−[(1−シアノ−1−メチルエチル)アゾ]ホルムアミド等のアゾニトリル化合物、ジメチル2,2’−アゾビス(2−メチルプロピオネート)、ジメチル1,1’−アゾビス(1−シクロヘキサンカルボキシレート)等のアゾエステル化合物、2,2’−アゾビス[N−(2−プロペニル)−2−メチルプロピオンアミド]、2,2’−アゾビス(N−ブチル−2−メチルプロピオンアミド)、2,2’−アゾビス(N−シクロヘキシル−2−メチルプロピオンアミド)等のアゾアミド化合物、2,2’−アゾビス[2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン]ジヒドロキシクロライド、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等のアゾイミダゾリン化合物、2,2’−アゾビス(2,4,4−トリメチルペンタン等のアゾアルキル化合物、更にはアゾアミジン化合物、アゾ結合を有する繰り返し単位を含むポリマーの使用も可能である。アゾ化合物は、レドックス分解や誘発分解が生じにくい点等で好ましい熱重合開始剤である。
また、ヒドロキシルアミンエステル化合物としては、特表2012−521573号公報に記載の式Iで表されるヒドロキシルアミンエステル化合物を挙げることができる。具体的な化合物を以下に示す。ただしこれらに限定されるものではない。
Figure 2018132751
硬化性化合物(a1)が光重合性化合物である場合は、光重合開始剤を含むことが好ましい。
光重合開始剤の構造については、特に限定されるものではない。具体的態様としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。光重合開始剤の具体例、及び好ましい態様、市販品などは、特開2009−098658号公報の段落[0133]〜[0151]に記載されており、本発明においても同様に好適に用いることができる。
「最新UV硬化技術」{(株)技術情報協会}(1991年)、p.159、及び、「紫外線硬化システム」加藤清視著(平成元年、総合技術センター発行)、p.65〜148にも種々の例が記載されており本発明に有用である。
層(a)中の重合開始剤の含有量は、層(a)に含まれる重合可能な化合物を重合させるのに十分な量であり、かつ開始点が増えすぎないように設定するという理由から、層(a)中の全固形分に対して、0.1〜8質量%が好ましく、0.5〜5質量%がより好ましい。
層(a)には、上述した重合性官能基を有するシランカップリング剤を反応させるために光あるいは熱により酸又は塩基を発生する化合物(以下、光酸発生剤、光塩基発生剤、熱酸発生剤、熱塩基発生剤と称する場合がある。)を含んでいてもよい。
<光酸発生剤>
光酸発生剤としては、例えば、ジアゾニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、セレノニウム塩、アルソニウム塩等のオニウム塩、有機ハロゲン化合物、有機金属/有機ハロゲン化物、o−ニトロベンジル型保護基を有する光酸発生剤、イミノスルフォネ−ト等に代表される光分解してスルホン酸を発生する化合物、ジスルホン化合物、ジアゾケトスルホン、ジアゾジスルホン化合物等を挙げることができる。また、トリアジン類(例えば、2−(4−メトキシフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなど)、第四級アンモニウム塩類、ジアゾメタン化合物、イミドスルホネート化合物、オキシムスルホネート化合物を挙げることもできる。
また、光により酸を発生する基、または化合物をポリマーの主鎖もしくは側鎖に導入した化合物を用いることができる。
さらに、V.N.R.Pillai,Synthesis,(1),1(1980)、A.Abad et al.,Tetrahedron Lett.,(47)4555(1971)、D.H.R.Barton et al.,J.Chem.Soc.,(C),329(1970)、米国特許第3,779,778号、欧州特許第126,712号等に記載の光により酸を発生する化合物も使用することができる。
<熱酸発生剤>
熱酸発生剤としては、酸と有機塩基からなる塩を挙げることができる。
上記の酸としては、スルホン酸、ホスホン酸、カルボン酸など有機酸や硫酸、リン酸のような無機酸が挙げられる。硬化性化合物(a1)に対する相溶性の観点からは、有機酸がより好ましく、スルホン酸、ホスホン酸が更に好ましく、スルホン酸が最も好ましい。好ましいスルホン酸としては、p−トルエンスルホン酸(PTS)、ベンゼンスルホン酸(BS)、p−ドデシルベンゼンスルホン酸(DBS)、p−クロロベンゼンスルホン酸(CBS)、1,4−ナフタレンジスルホン酸(NDS)、メタンスルホン酸(MsOH)、ノナフルオロブタン−1−スルホン酸(NFBS)などが挙げられる。
酸発生剤の具体例としては特開2016−803号に記載のものを好適に用いることができる。
<光塩基発生剤>
光塩基発生剤としては、活性エネルギー線の作用により塩基を発生する物質を挙げることができる。より具体的には、(1)紫外線、可視光、又は赤外線の照射により脱炭酸して分解する有機酸と塩基の塩、(2)分子内求核置換反応や転位反応などにより分解してアミン類を放出する化合物、あるいは(3)紫外線、可視光、又は赤外線の照射により何らかの化学反応を起こして塩基を放出するものを使用できる。
本発明に用いられる光塩基発生剤は、紫外線、電子線、X線、赤外線および可視光線などの活性エネルギー線の作用により塩基を発生する物質であれば特に限定されない。
具体的には特開2010−243773に記載のものを好適に用いる事ができる。
層(a)中の、光あるいは熱により酸や塩基を発生する化合物の含有量は、層(a)に含まれる重合可能な化合物を重合させるのに十分な量であり、かつ開始点が増えすぎないように設定するという理由から、層(a)中の全固形分に対して、0.1〜8質量%が好ましく、0.1〜5質量%がより好ましい。
層(a)又は層(a)を形成するための組成物(A)は、更に、粒子(a2)の分散剤、レベリング剤、防汚剤などを含んでいてもよく、これらは前述したものと同様である。
[工程(2)]
工程(2)は、支持体及び支持体上にゲル分率が95.0%以上の粘着剤を含む層(b)を有する粘着フィルムの層(b)を、層(a)と貼り合わせる工程である。層(a)と粘着フィルムの層(b)とを貼り合わせる方法としては特に限定されず公知の方法を用いることができ、たとえばラミネート法が挙げられる。
層(a)と層(b)とが接するように粘着フィルムを貼り合わせることが好ましい。
工程(2)の前に、層(a)を乾燥する工程を有していてもよい。層(a)の乾燥温度は20〜60℃が好ましく、20〜40℃がより好ましい。乾燥時間は0.1〜120秒が好ましく、1〜30秒がより好ましい。
本発明者らは、工程(2)において粘着フィルムの層(b)と層(a)とを貼り合わせ、後述する工程(3)において粒子(a2)を層(a)及び層(b)を合わせた層中に埋没し、かつ、層(a)のプラスチック基材側の界面とは反対側の界面から突出させ、後述する工程(4)において粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態で層(a)を硬化することで、粒子(a2)が層(a)の硬化前に空気界面に露出しないようにして、凝集を抑制し、粒子(a2)によって形成された良好な凹凸形状を作製できることを見出した。
(粘着フィルム)
粘着フィルムは、支持体とゲル分率が95.0%以上の粘着剤からなる層(b)とを有する。
<層(b)>
層(b)は、ゲル分率が95.0%以上の粘着剤からなる。
粘着剤のゲル分率が95.0%以上であることで、粘着フィルムを剥離して反射防止フィルムを製造する際に、粘着剤成分が反射防止フィルム表面に残りにくく、洗浄を行わなくても、十分に反射率が低い反射防止フィルムを得ることができる。
粘着剤のゲル分率は、95.0%以上99.9%以下であることが好ましく、97.0%以上99.9%以下であることがより好ましく、98.0%以上99.9%以下であることが更に好ましい。
粘着剤のゲル分率は、粘着剤を、25℃で、テトラヒドロフラン(THF)に12時間浸漬した後の不溶解分の比率であり、下記式から求められる。
ゲル分率=(粘着剤のTHFへの不溶解分の質量)/(粘着剤の総質量)×100(%)
粘着剤におけるゾル成分の重量平均分子量が10000以下であることが好ましく、7000以下であることがより好ましく、5000以下であることが最も好ましい。ゾル成分の重量平均分子量を上記範囲にすることによって粘着フィルムを剥離して反射防止フィルムを製造する際に、粘着剤成分が反射防止フィルム表面に残りにくくすることができる。
粘着剤のゾル成分は、粘着剤を、25℃で、テトラヒドロフラン(THF)に12時間浸漬した後のTHFへの溶解分を表す。重量平均分子量はゲル浸透クロマトグラフィー(GPC)で分析することができる。
層(b)の膜厚は0.1μm以上50μm以下であることが好ましく、1μm以上30μm以下であることがより好ましく、1μm以上20μm以下であることが更に好ましい。
層(b)は、剥離速度0.3m/minでの被着体の表面に対する剥離強度(粘着力)が、0.03〜0.3N/25mm程度の、微粘着力を有する粘着剤層であることが、被着体である層(a)から粘着フィルムを剥がす時の操作性に優れることから好ましい。
粘着剤としては、重合体を含むことが好ましく、(メタ)アクリル系重合体を含むことがより好ましい。特に、アルキル基の炭素数が1〜18の(メタ)アクリル酸アルキルエステルモノマーの少なくとも1種のモノマーの重合体(2種以上のモノマーの場合は共重合体)が好ましい。(メタ)アクリル系重合体の重量平均分子量は、20万〜200万であることが好ましい。
アルキル基の炭素数が1〜18の(メタ)アクリル酸アルキルエステルモノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、イソセチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ミリスチル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート等のアルキル(メタ)アクリレートモノマーが挙げられる。アルキル(メタ)アクリレートモノマーのアルキル基は、直鎖、分枝状、環状のいずれでもよい。上記モノマーは2種以上併用されてもよい。
脂肪族環を有する(メタ)アクリレートモノマーの好適な例としては、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。中でもシクロヘキシル(メタ)アクリレートであることが特に好ましい。
(メタ)アクリル系重合体は、アルキル基の炭素数が1〜18の(メタ)アクリル酸アルキルエステルモノマーの少なくとも1種と、他の共重合性モノマーの少なくとも1種とからなる共重体であってもよい。この場合、他の共重合性モノマーとしては、水酸基、カルボキシル基、及びアミノ基から選ばれる少なくとも1種の基を含有する共重合性ビニルモノマー、ビニル基を有する共重合性ビニルモノマー、芳香族系モノマー等が挙げられる。
水酸基を含有する共重合性ビニルモノマーとしては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、6−ヒドロキシヘキシル(メタ)アクリレート、8−ヒドロキシオクチル(メタ)アクリレート等の水酸基含有(メタ)アクリル酸エステル類、及び、N−ヒドロキシ(メタ)アクリルアミド、N−ヒドロキシメチル(メタ)アクリルアミド、N−ヒドロキシエチル(メタ)アクリルアミド等の水酸基含有(メタ)アクリルアミド類などが挙げられ、これらの化合物群の中から選択された、少なくとも1種であることが好ましい。
(メタ)アクリル系重合体の100質量部に対して、水酸基を含有する共重合性ビニルモノマーを0.1〜15質量部含有することが好ましい。
カルボキシル基を含有する共重合性ビニルモノマーとしては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレートからなどが挙げられ、これらの化合物群の中から選択された、少なくとも1種であることが好ましい。
(メタ)アクリル共重合体の100質量部に対して、カルボキシル基を含有する共重合性ビニルモノマーを0.1〜2質量部含有することが好ましい。
アミノ基を含有する共重合性ビニルモノマーとしては、モノメチルアミノエチル(メタ)アクリレート、モノエチルアミノエチル(メタ)アクリレート、モノメチルアミノプロピル(メタ)アクリレート、モノエチルアミノプロピル(メタ)アクリレート等のモノアルキルアミノアルキル(メタ)アクリレート等が挙げられる。
芳香族系モノマーとしては、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香族基含有(メタ)アクリル酸エステル類のほか、スチレン等が挙げられる。
上記以外の共重合性ビニルモノマーとしては、アクリルアミド、アクリロニトリル、メチルビニルエーテル、エチルビニルエーテル、酢酸ビニル、塩化ビニルなどの各種ビニルモノマーが挙げられる。
粘着剤は、粘着剤を形成するための組成物(粘着剤組成物ともいう)の硬化物を含むものであってもよい。
粘着剤組成物は、上記重合体と架橋剤とを含むことが好ましく、熱又は紫外線(UV)などを用いて架橋しても良い。架橋剤としては、2官能以上のイソシアネート系架橋剤、2官能以上のエポキシ系架橋剤、アルミニウムキレート系架橋剤からなる化合物群のうちから選択される1種以上の架橋剤が好ましい。架橋剤を用いる場合は、粘着フィルムを剥離して反射防止フィルムを製造する際に、粘着剤成分を反射防止フィルム表面に残りにくくする観点から、上記重合体の100質量部に対して、0.1〜15質量部含有することが好ましく、3.5〜15質量部含有することがより好ましく、5.1〜10質量部含有することが更に好ましい。
2官能以上のイソシアネート系化合物としては、1分子中に少なくとも2個以上のイソシアネート(NCO)基を有するポリイソシアネート化合物であればよく、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート等のジイソシアネート類(1分子中に2個のNCO基を有する化合物)のビュレット変性体、及びイソシアヌレート変性体、トリメチロールプロパン又はグリセリン等の3価以上のポリオール(1分子中に少なくとも3個以上のOH基を有する化合物)とのアダクト体(ポリオール変性体)などが挙げられる。
また、3官能以上のイソシアネート化合物が、1分子中に少なくとも3個以上のイソシアネート(NCO)基を有するポリイソシアネート化合物であり、特にヘキサメチレンジイソシアネート化合物のイソシアヌレート体、イソホロンジイソシアネート化合物のイソシアヌレート体、ヘキサメチレンジイソシアネート化合物のアダクト体、イソホロンジイソシアネート化合物のアダクト体、ヘキサメチレンジイソシアネート化合物のビュレット体、イソホロンジイソシアネート化合物のビュレット体からなる化合物群の中から選択された、少なくとも一種以上であることが好ましい。
2官能以上のイソシアネート系架橋剤は、重合体100質量部に対して、0.01〜5.0質量部含まれることが好ましく、0.02〜3.0質量部含まれることがより好ましい。
粘着剤組成物は、帯電防止性能を付与するため、帯電防止剤を含有してもよい。帯電防止剤はイオン化合物であることが好ましく4級オニウム塩であることがさらに好ましい。
4級オニウム塩である帯電防止剤としては、例えば、炭素数8〜18のアルキル基を有するアルキルジメチルベンジルアンモニウム塩、炭素数8〜18のアルキル基を有するジアルキルメチルベンジルアンモニウム塩、炭素数8〜18のアルキル基を有するトリアルキルベンジルアンモニウム塩、炭素数8〜18のアルキル基を有するテトラアルキルアンモニウム塩、炭素数8〜18のアルキル基を有するアルキルジメチルベンジルホスホニウム塩、炭素数8〜18のアルキル基を有するジアルキルメチルベンジルホスホニウム塩、炭素数8〜18のアルキル基を有するトリアルキルベンジルホスホニウム塩、炭素数8〜18のアルキル基を有するテトラアルキルホスホニウム塩、炭素数14〜20のアルキル基を有するアルキルトリメチルアンモニウム塩、炭素数14〜20のアルキル基を有するアルキルジメチルエチルアンモニウム塩などを用いることができる。これらのアルキル基は、不飽和結合を有するアルケニル基であってもよい。
炭素数8〜18のアルキル基としては、オクチル基、ノニル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基などが挙げられる。天然油脂に由来する混合アルキル基であってもよい。炭素数8〜18のアルケニル基としては、オクテニル基、ノネニル基、デセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、オレイル基、リノレイル基などが挙げられる。
炭素数14〜20のアルキル基としては、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基などが挙げられる。天然油脂に由来する混合アルキル基であってもよい。炭素数14〜20のアルケニル基としては、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、オレイル基、リノレイル基、ノナデセニル基、イコセニル基などが挙げられる。
4級オニウム塩のカウンターアニオンとしては、クロリド(Cl)、ブロミド(Br)、メチルサルフェート(CHOSO )、エチルサルフェート(COSO )、パラトルエンスルホネート(p−CHSO )等が挙げられる。
4級オニウム塩の具体例としては、ドデシルジメチルベンジルアンモニウムクロリド、ドデシルジメチルベンジルアンモニウムブロミド、テトラデシルジメチルベンジルアンモニウムクロリド、テトラデシルジメチルベンジルアンモニウムブロミド、ヘキサデシルジメチルベンジルアンモニウムクロリド、ヘキサデシルジメチルベンジルアンモニウムブロミド、オクタデシルジメチルベンジルアンモニウムクロリド、オクタデシルジメチルベンジルアンモニウムブロミド、トリオクチルベンジルアンモニウムクロリド、トリオクチルベンジルアンモニウムブロミド、トリオクチルベンジルホスホニウムクロリド、トリオクチルベンジルホスホニウムブロミド、トリス(デシル)ベンジルアンモニウムクロリド、トリス(デシル)ベンジルアンモニウムブロミド、トリス(デシル)ベンジルホスホニウムクロリド、トリス(デシル)ベンジルホスホニウムブロミド、テトラオクチルアンモニウムクロリド、テトラオクチルアンモニウムブロミド、テトラオクチルホスホニウムクロリド、テトラオクチルホスホニウムブロミド、テトラノニルアンモニウムクロリド、テトラノニルアンモニウムブロミド、テトラノニルホスホニウムクロリド、テトラノニルホスホニウムブロミド、テトラキス(デシル)アンモニウムクロリド、テトラキス(デシル)アンモニウムブロミド、テトラキス(デシル)ホスホニウムクロリド、テトラキス(デシル)ホスホニウムブロミド、等が挙げられる。
なお、「トリス(デシル)」、「テトラキス(デシル)」は、炭素数10のアルキル基であるデシル基を3個又は4個有することを意味し、炭素数13のアルキル基であるトリデシル基、及び炭素数14のアルキル基であるテトラデシル基とは区別される。
帯電防止剤としては、他にノニオン系、カチオン系、アニオン系、両性系の界面活性剤、イオン性液体、アルカリ金属塩、金属酸化物、金属微粒子、導電性ポリマー、カーボン、カーボンナノチューブなども用いることができる。
ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、ポリオキシエチレン脂肪酸エステル類、グリセリン脂肪酸エステル類、プロピレングリコール脂肪酸エステル類、ポリオキシアルキレン変性シリコーン類などが挙げられる。
アニオン界面活性剤としては、モノアルキル硫酸塩類、アルキルポリオキシエチレン硫酸塩類、アルキルベンゼンスルホン酸塩類、モノアルキルリン酸塩類などが挙げられる。
また、両性界面活性剤としては、アルキルジメチルアミンオキシド、アルキルカルボキシベタインなどが挙げられる。
イオン性液体としては、陰イオンと陽イオンとから成り、常温(例えば25℃)で液体である非高分子物質である。陽イオン部分としては、イミダゾリウムイオンなどの環状アミジンイオン、ピリジニウムイオン、アンモニウムイオン、スルホニウムイオン、ホスホニウムイオン等が挙げられる。また、陰イオン部分としては、C2n+1COO、C2n+1COO、NO 、C2n+1SO 、(C2n+1SO、(C2n+1SO、PO 2−、AlCl 、AlCl 、ClO 、BF 、PF 、AsF 、SbF 等が挙げられる。
アルカリ金属塩としては、リチウム、ナトリウム、カリウムからなる金属塩などが挙げられ、イオン性物質の安定化のため、ポリオキシアルキレン構造を含有する化合物を添加しても良い。
帯電防止剤は、重合体100質量部に対して、0.1〜10質量部含有することが好ましい。
粘着剤組成物は、さらに帯電防止補助剤としてHLBが7〜15のポリエーテル変性シロキサン化合物を含有することもできる。
HLBとは、例えばJIS K3211(界面活性剤用語)等で規定する親水親油バランス(親水性親油性比)である。
粘着剤組成物は、さらに架橋促進剤を含有することもできる。架橋促進剤は、ポリイソシアネート化合物を架橋剤とする場合に、共重合体と架橋剤との反応(架橋反応)に対して触媒として機能する物質であればよく、第三級アミン等のアミン系化合物、金属キレート化合物、有機錫化合物、有機鉛化合物、有機亜鉛化合物等の有機金属化合物等が挙げられる。本発明では、架橋促進剤として、金属キレート化合物又は有機錫化合物が好ましい。
金属キレート化合物としては、中心金属原子Mに、1以上の多座配位子Lが結合した化合物である。金属キレート化合物は、金属原子Mに結合する1以上の単座配位子Xを有してもよく、有しなくてもよい。例えば、金属原子Mが1つである金属キレート化合物の一般式を、M(L)(X)で表すとき、m≧1、n≧0である。mが2以上の場合、m個のLは同一の配位子でもよく、異なる配位子でもよい。nが2以上の場合、n個のXは同一の配位子でもよく、異なる配位子でもよい。
金属原子Mとしては、Fe,Ni,Mn,Cr,V,Ti,Ru,Zn,Al,Zr,Sn等が挙げられる。多座配位子Lとしては、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸オクチル、アセト酢酸オレイル、アセト酢酸ラウリル、アセト酢酸ステアリル等のβ−ケトエステル、アセチルアセトン(別名2,4−ペンタンジオン)、2,4−ヘキサンジオン、ベンゾイルアセトン等のβ−ジケトンが挙げられる。これらは、ケトエノール互変異性体化合物であり、多座配位子Lにおいてはエノールが脱プロトンしたエノラート(例えばアセチルアセトネート)であってもよい。
単座配位子Xとしては、塩素原子、臭素原子等のハロゲン原子、ペンタノイル基、ヘキサノイル基、2−エチルヘキサノイル基、オクタノイル基、ノナノイル基、デカノイル基、ドデカノイル基、オクタデカノイル基等のアシルオキシ基、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、ブトキシ基等のアルコキシ基などが挙げられる。
金属キレート化合物の具体例としては、トリス(2,4−ペンタンジオナト)鉄(III
)、鉄トリスアセチルアセトネート、チタニウムトリスアセチルアセトネート、ルテニウムトリスアセチルアセトネート、亜鉛ビスアセチルアセトネート、アルミニウムトリスアセチルアセトネート、ジルコニウムテトラキスアセチルアセトネート、トリス(2,4−ヘキサンジオナト)鉄(III)、ビス(2,4−ヘキサンジオナト)亜鉛、トリス(2,
4−ヘキサンジオナト)チタン、トリス(2,4−ヘキサンジオナト)アルミニウム、テトラキス(2,4−ヘキサンジオナト)ジルコニウム等が挙げられる。
有機錫化合物としては、ジアルキル錫オキシド、ジアルキル錫の脂肪酸塩、第1錫の脂肪酸塩等が挙げられる。ジオクチル錫化合物等の長鎖アルキル錫化合物が好ましい。具体的な有機錫化合物としては、ジオクチル錫オキシド、ジオクチル錫ジラウレート等が挙げられる。
架橋促進剤は、共重合体の100質量部に対して、0.001〜0.5質量部含まれることが好ましい。
<支持体>
粘着フィルムにおける支持体について説明する。
支持体としては、透明性及び可撓性を有する樹脂からなるプラスチックフィルムが好ましく用いられる。支持体用のプラスチックフィルムとしては、好適には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレートのようなポリエステルフィルム、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、環状ポリオレフィン系樹脂、セルロースアシレート等のセルロース系樹脂等からなるフィルムが挙げられる。ただし、上記(メタ)アクリル系樹脂は、ラクトン環構造を有する重合体、無水グルタル酸環構造を有する重合体、グルタルイミド環構造を有する重合体を含む。
このほか、必要な強度を有しかつ光学適性を有するものであれば、他のプラスチックフィルムも使用可能である。支持体は、無延伸フィルムであっても、一軸または二軸延伸されていてもよく、また、延伸倍率又は延伸の結晶化に伴い形成される軸方法の角度を制御したプラスチックフィルムでもよい。
支持体としては、紫外線透過性を有するものが好ましい。紫外線透過性を有することで、工程(4)において層(a)を硬化する際、塗工層側から紫外線照射が可能になるため、製造適性上好ましい。
具体的には、支持体の波長250nm〜300nmにおける最大透過率が20%以上であることが好ましく、40%以上であることがさらに好ましく、60%以上であることが最も好ましい。波長250nm〜300nmにおける最大透過率が20%以上であると塗工層側から紫外線を照射して層(a)を硬化させやすく好ましい。
また、支持体上に層(b)を形成した粘着フィルムの波長250nm〜300nmにおける最大透過率が20%以上であることが好ましく、40%以上であることがさらに好ましく、60%以上であることが最も好ましい。
支持体の膜厚は特に限定されないが、10μm以上100μm以下であることが好ましく、10μm以上50μm以下であることがより好ましく、10μm以上40μm以下であることが更に好ましい。
支持体上に層(b)を形成した粘着フィルムとしては、市販の保護フィルムを好適に用いることができる。具体的には、藤森工業(株)製のAS3−304、AS3−305、AS3−306、AS3−307、AS3−310、AS3−0421、AS3−0520、AS3−0620、LBO−307、NBO−0424、ZBO−0421、S−362、TFB−4T3−367AS等が挙げられる。
本発明においては、工程(4)で、粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態を維持しながら層(a)を硬化するが、工程(4)の前の段階で、層(a)の界面から突出した粒子(a2)によって形成された凹凸形状を有していることが好ましい。こうすることで、工程(4)で層(a)を硬化した後、工程(5)で層(b)を剥離すると、層(a)の表面から粒子(a2)が突出した状態の反射防止フィルムを得ることができる。
本発明では、工程(1)と工程(2)の間に層(a)中の硬化性化合物(a1)の一部を硬化させ、硬化された化合物(a1c)を得る工程(1−2)を含んでもよい。
硬化性化合物(a1)の一部を硬化させるとは、硬化性化合物(a1)のすべてではなく、一部のみを硬化させることを表す。工程(1−2)で硬化性化合物(a1)の一部のみを硬化させることで、工程(3)で粒子(a2)が層(a)のプラスチック基材側の界面とは反対側の界面から突出するように層(a)と層(b)の界面の位置をプラスチック基材側に下げた際の粒子の凝集を抑制することができ、反射率や全光線透過率が良好な反射防止フィルムが得られるため実施することが好ましい。工程(1−2)における最適な硬化条件は層(a)の処方により異なるため、適宜最適な硬化条件を選択すればよい。
[工程(3)]
工程(3)は、粒子(a2)が、層(a)及び層(b)を合わせた層中に埋没し、かつ、層(a)のプラスチック基材側の界面とは反対側の界面から突出するように、層(a)と層(b)の界面の位置をプラスチック基材側に移動させる工程である。
本発明では、「粒子(a2)が、層(a)及び層(b)を合わせた層中に埋没」するということは、層(a)及び層(b)を合わせた層の厚みが粒子(a2)の平均一次粒径の0.8倍以上であることを表すものとする。
工程(3)は、硬化性化合物(a1)の一部を粘着剤層に浸透させることにより行われることが好ましい。
工程(3)において、硬化性化合物(a1)の一部を粘着剤層に浸透させる場合、プラスチック基材、層(a)、及び層(b)を有する積層体を60℃以下に保つことが好ましく、40℃以下に保つことがより好ましい。温度を60℃以下に保つことで、硬化性化合物(a1)及び粘着剤の粘度を高く保つことができるとともに、粒子の熱運動を抑制することができるため、粒子の凝集による反射防止能の低下、ヘイズ及び白濁感の上昇を防ぐ効果が大きい。プラスチック基材、層(a)、及び層(b)を有する積層体を保つ温度の下限は特に限定されるものではなく、室温(25℃)であっても、室温より低い温度であってもよい。
[工程(4)]
工程(4)は、粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態で層(a)を硬化する工程である。
本発明では、「粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態」とは、層(a)及び層(b)を合わせた層の厚みが粒子(a2)の平均一次粒径の0.8倍以上であることを表すものとする。
層(a)を硬化するとは、層(a)に含まれる硬化性化合物(a1)を重合させることを表し、これにより、反射防止フィルムの反射防止層におけるバインダー樹脂を形成することができる。工程(4)で粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態を維持することで、粒子(a2)の凝集を抑制し、良好な凹凸形状を形成することができる。
粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態を維持することで粒子凝集が抑制されるメカニズムとしては、層(a)が硬化するまでに粒子(a2)が空気界面に露出すると、横毛管力と言われる表面張力由来の大きな引力が働く事が知られており、層(a)及び層(b)を合わせた層中に粒子(a2)を埋没させておくことで上記引力を小さくできるためと推定している。
硬化は電離放射線を照射することで行うことができる。電離放射線の種類については、特に制限はなく、X線、電子線、紫外線、可視光、赤外線などが挙げられるが、紫外線が広く用いられる。例えば塗膜が紫外線硬化性であれば、紫外線ランプにより10mJ/cm〜1000mJ/cmの照射量の紫外線を照射して層(a)の硬化性化合物(a1)を硬化するのが好ましい。50mJ/cm〜1000mJ/cmであることがより好ましく、100mJ/cm〜500mJ/cmであることがさらに好ましい。照射の際には、上記エネルギーを一度に当ててもよいし、分割して照射することもできる。紫外線ランプ種としては、メタルハライドランプ又は高圧水銀ランプ等が好適に用いられる。
硬化時の酸素濃度は0〜1.0体積%であることが好ましく、0〜0.1体積%であることがさらに好ましく、0〜0.05体積%であることが最も好ましい。硬化時の酸素濃度を1.0体積%よりも小さくすることで、酸素による硬化阻害の影響を受けにくくなり、強固な膜となる。
工程(2)〜(4)において、プラスチック基材の表面に直交する方向には粒子(a2)が複数存在しないことが好ましい。
工程(2)〜(4)において、層(a)の膜厚と層(b)の膜厚の合計の膜厚が、粒子(a2)の平均一次粒径よりも大きいことが好ましい。
層(a)の膜厚と層(b)の膜厚の合計の膜厚が、粒子(a2)の平均一次粒径よりも大きいと粒子(a2)が層(a)及び層(b)を合わせた層中に埋没した状態にすることができ、好ましい。
ただし、後述する工程(5)で層(b)を含む粘着フィルムを剥離した場合に層(a)の表面から粒子(a2)が突出した形状(モスアイ構造)を得るという理由から、工程(4)において、層(a)の膜厚は粒子(a2)の平均一次粒径よりも小さいことが好ましく、粒子(a2)の平均一次粒径の半分以下であることがより好ましい。
工程(4)における層(a)の膜厚は、これを硬化して得られた層(ca)のプラスチック基材側の界面とは反対側の界面の高さが、粒子(a2)の平均一次粒径の半分以下となるように調整するのが好ましく、より好ましくは層(ca)の膜断面を、走査型電子顕微鏡(SEM)で観察し、任意に100箇所の膜厚を計測してその平均値を求めた場合に、10nm〜100nm(より好ましくは20nm〜90nm、さらに好ましくは30nm〜70nm)となるように調整するのが好ましい。
[工程(5)]
工程(5)は、層(b)を層(a)から剥離する工程である。
層(b)を剥離した際に層(a)側に粘着剤が残る場合は、プラスチック基材及び硬化後の層(a)は溶解せずに、粘着剤を溶解する溶剤を用いて洗浄してもよい。
工程(5)により層(b)を含む粘着フィルムを剥離した後には、層(a)の表面に粒子(a2)によって形成された凹凸形状からなるモスアイ構造を有する反射防止フィルムが得られる。
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質の量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。
<実施例1>
(ハードコート層形成用組成物の調製)
下記に記載の組成で各成分を混合し、得られた組成物をミキシングタンクに投入し、攪拌し、孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層塗布液HC−1とした。
(ハードコート層塗布液HC−1)
A−TMMT 24.4質量部
AD−TMP 12.0質量部
イルガキュア127 1.6質量部
AS−1 2.0質量部
エタノール 3.5質量部
メタノール 8.8質量部
1−ブタノール 6.0質量部
メチルエチルケトン(MEK) 20.3質量部
酢酸メチル 21.4質量部
FP−1 0.05質量部
A−TMMT:ペンタエリスリトールテトラアクリレート(新中村化学工業製)
AD−TMP:ジトリメチロールプロパンテトラアクリレート(新中村化学工業(株)製 NKエステル)
イルガキュア127:光重合開始剤(BASFジャパン(株)製)
AS−1:特許第4678451号公報の合成例6の反応温度と時間を70℃及び6時間としたこと以外は同様にして、上記特許文献の(A−6)に対応する化合物AS−1を作製した。出来上がった化合物AS−1は、エチレンオキサイド鎖を有する4級アンモニウム塩含有ポリマーであり、GPCで測定した重量平均分子量は約6万であった。
FP−1:下記式で表される含フッ素化合物のメチルエチルケトン溶液、固形分濃度は40質量%である
Figure 2018132751
[シリカ粒子P1の合成]
撹拌機、滴下装置および温度計を備えた容量200Lの反応器に、メチルアルコール67.54kgと、28質量%アンモニア水(水および触媒)26.33kgとを仕込み、撹拌しながら液温を33℃に調節した。一方、滴下装置に、テトラメトキシシラン12.70kgをメチルアルコール5.59kgに溶解させた溶液を仕込んだ。反応器中の液温を33℃に保持しながら、滴下装置から上記溶液を37分間かけて滴下し、滴下終了後、さらに37分間、液温を上記温度に保持しながら撹拌することにより、テトラメトキシシランの加水分解および縮合を行い、シリカ粒子前駆体を含有する分散液を得た。この分散液を、瞬間真空蒸発装置(ホソカワミクロン(株)社製クラックス・システムCVX−8B型)を用いて加熱管温度175℃、減圧度200torr(27kPa)の条件で気流乾燥させることにより、シリカ粒子P1を得た。
シリカ粒子P1の平均一次粒径は170nm、粒径の分散度(CV値)は7.0%、押し込み硬度は340MPaであった。
[焼成シリカ粒子P2の作製]
5kgのシリカ粒子P1をルツボに入れ、電気炉を用いて900℃で2時間焼成した後、冷却して、次いで粉砕機を用いて粉砕し、分級前焼成シリカ粒子を得た。さらにジェット粉砕分級機(日本ニューマ社製IDS−2型)を用いて解砕および分級を行うことにより焼成シリカ粒子P2を得た。
[シランカップリング剤処理シリカ粒子P3の作製]
5kgの焼成シリカ粒子P2を、加熱ジャケットを備えた容量20Lのヘンシェルミキサ(三井鉱山株式会社製FM20J型)に仕込んだ。焼成シリカ粒子P2を撹拌しているところに、3−アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM5103)50gを、メチルアルコール90gに溶解させた溶液を滴下して混合した。その後、混合撹拌しながら150℃まで約1時間かけて昇温し、150℃で12時間保持して加熱処理を行った。加熱処理では、掻き落とし装置を撹拌羽根とは逆方向に常時回転させながら、壁面付着物の掻き落としを行った。また、適宜、へらを用いて壁面付着物を掻き落とすことも行った。加熱後、冷却し、ジェット粉砕分級機を用いて解砕および分級を行い、シランカップリング剤処理シリカ粒子P3を得た。
シランカップリング剤処理シリカ粒子P3の平均一次粒径は171nm、粒径の分散度(CV値)は7.0%、押し込み硬度は470MPaであった。
[シリカ粒子分散液PA−1の作製]
シランカップリング剤処理シリカ粒子P3を50g、MEK200g、直径0.05mmジルコニアビーズ600gを直径12cmの1L瓶容器に入れ、ボールミルV−2M(入江商会)にセットし、250回転/分で10時間分散した。このようにして、シリカ粒子分散液PA−1(固形分濃度20質量%)を作製した。
[化合物C3の合成]
還流冷却器、温度計を付けたフラスコに3−イソシアネートプロピルトリメトキシシラン19.3gとグリセリン1,3−ビスアクリラート3.9g、2−ヒドロキシエチルアクリレート6.8g、ジラウリン酸ジブチル錫0.1g、トルエン70.0gを添加し、室温で12時間撹拌した。撹拌後、メチルハイドロキノン500ppmを加え、減圧留去を行い化合物C3を得た。
Figure 2018132751
[層(a)形成用組成物の調製]
下記の組成となるように各成分をミキシングタンクに投入し、60分間攪拌し、30分間超音波分散機により分散し、塗布液とした。
組成物(A−1)
U−15HA 1.4質量部
化合物C3 1.5質量部
クエン酸アセチルトリエチル 5.8質量部
イルガキュア127 0.2質量部
化合物P 0.1質量部
シリカ粒子分散液PA−1 32.3質量部
化合物A 0.1質量部
エタノール 12.7質量部
メチルエチルケトン 33.3質量部
アセトン 12.7質量部
U−15HA、化合物C3、クエン酸アセチルトリエチルはバインダー用化合物であるが、U−15HA及び化合物C3は硬化性化合物(a1)であり、クエン酸アセチルトリエチルは重合性官能基を持たない化合物である。
それぞれ使用した化合物を以下に示す。
U−15HA(新中村化学工業(株)製):ウレタンアクリレート
イルガキュア127:光重合開始剤(BASFジャパン(株)製)
化合物P:2−(4−メトキシフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン(光酸発生剤、東京化成工業(株)製)
化合物A:F−784−F(DIC(株)製)
クエン酸アセチルトリエチル:東京化成工業(株)製
<反射防止フィルム1の作成>
(ハードコート層の形成)
プラスチック基材(TJ25、富士フイルム(株)製)上にハードコート層塗布液HC−1をダイコーターを用いて塗布した。30℃で90秒、続いて45℃で1分間乾燥した後、酸素濃度がおよそ0.3体積%の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度200mW/cm、照射量10mJ/cmの紫外線を照射して塗布層を硬化させ、厚さ5μmのハードコート層を形成した。上記ハードコート層付き基材をHC−1とする。
(工程(1) 層(a)の塗工)
上記ハードコート層付き基材HC−1のハードコート層上に、組成物(A−1)をダイコーターを用いて2.8ml/m塗布し、30℃で90秒乾燥させた。工程(1)における層(a)の膜厚は190nmである。
(工程(1−2) 層(a)中の硬化性化合物(a1)の一部を硬化させ、硬化された化合物(a1c)を得る工程)
酸素濃度が1.5体積%の雰囲気になるように窒素パージしながら、高圧水銀ランプ(Dr.honle AG社製 型式:33351N 部品番号:LAMP−HOZ 200 D24 U 450 E)を用いて層(a)側から照射量5.0mJで光照射し、硬化性化合物(a1)の一部を硬化させた。なお、照射量の測定は、アイグラフィック社製 アイ紫外線積算照度計 UV METER UVPF−A1にHEAD SENSER PD−365を取り付け、測定レンジ0.00にて測定した。
(工程(2) 粘着フィルムの貼り合わせ)
次いで、乾燥後の層(a)上に、AS3−304から剥離フィルムを剥離して得られる粘着フィルムを、粘着剤層(層(b))が層(a)側になるように貼り合わせた。貼り合わせには、業務用ラミネーターBio330(DAE−EL Co.製)を使用し、速度1で実施した。
なお、AS3−304は、支持体/粘着剤層/剥離フィルムから構成される積層体(保護フィルム)を指し、この積層体から剥離フィルムを剥がした、支持体/粘着剤層から構成される積層体が粘着フィルムである。
使用した積層体(保護フィルム)の詳細を以下に示す。
・AS3−304 藤森工業(株)製
支持体:ポリエステルフィルム(厚み38μm)
粘着剤層厚み:20μm
剥離フィルムを剥がした状態での波長250nm〜300nmにおける最大透過率:0.1%未満
透過率の測定は、島津製作所(株)製の紫外可視近赤外分光光度計UV3150を用いて行った。
(工程(3) 硬化性化合物(a1)の粘着剤層への浸透)
粘着フィルムを貼り合わせたまま、25℃で5分間静置し、硬化性化合物(a1)の一部を粘着剤層へ浸透させた。
(工程(4) 層(a)の硬化)
上記の静置に続いて、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、プラスチック基材の層(a)が塗布された面から粘着フィルム越しに照度200mW/cm、照射量300mJ/cmの紫外線を照射して層(a)を硬化させた。工程(4)の後であって、工程(5)を行う前の層(a)と粘着剤層(層(b))の膜厚はそれぞれ50nm、20μmであった。
(工程(5) 粘着フィルムの剥離)
上記作製した積層体から層(b)を含む粘着フィルム(AS3−304から剥離フィルムを剥がしたもの)を剥離した。層(b)を剥離した後の層(a)は、粘着剤層の剥離によって壊れない程度に硬化していた。粘着剤の剥離後、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、プラスチック基材の層(a)が塗布された面から照度200mW/cm、照射量300mJ/cmの紫外線を照射して層(a)を硬化させた。その後、粘着フィルムが貼り合わせてあった面にメチルイソブチルケトンを掛け流して粘着剤層の残渣を洗い流し、25℃で10分乾燥して反射防止フィルム1を得た。
<比較例1>
工程(3)での静置を120℃で15分間とした以外は、実施例1と同様にして反射防止フィルムR1を得た。
(積分反射率)
得られた反射防止フィルムにおいて、フィルムの裏面(プラスチック基材側)をサンドペーパーで粗面化した後に油性黒インキ(補填用マジックインキ:寺西化学)を塗り、裏面反射をなくした状態で、分光光度計V−550(日本分光(株)製)にアダプターARV−474を装着して、380〜780nmの波長領域において、入射角5°における積分反射率を測定し、平均反射率を算出して反射防止性を評価した。
(透過率)
反射防止層のプラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率、並びに、反射防止層のプラスチック基材とは反対側から入射した際の反射防止フィルムの波長480nmの光の透過率(T480)及び580nmの光の透過率(T580)を測定した。
全光線透過率の測定は、日本電色工業(株)製ヘーズメーターNDH4000を用いて行った。
波長480nmの光の透過率(T480)及び580nmの光の透過率(T580)の測定は、島津製作所(株)製の紫外可視近赤外分光光度計UV3150を用いて行った。
(logSR)
反射防止層の表面抵抗率は、25℃、相対湿度60%条件下に反射防止フィルム試料を2時間置いた後にAgilent 4339B High−Resistance meter (アジレント・テクノロジー株式会社製)を用いて測定し、常用対数(logSR)で示した。
(X、X+σ、粒子占有率)
反射防止フィルムの表面をSEM((株)日立ハイテクノロジーズ製S−4300)で観察し、粒子が占める面積/測定面積として粒子占有率を求めた。倍率は10000倍とした。また、ミクロトームで切削して断面を出し、10000倍でSEM観察を行い、隣り合う凸部の頂点間の距離Aを100点測長し、平均値X、標準偏差σを求めた。
<実施例2〜6>
実施例1において、ハードコート層塗布液HC−1を、それぞれ下記表1に記載の組成のハードコート層塗布液HC−2〜HC−6に代えた以外は同様にして、反射防止フィルム2〜6を作成した。
<実施例7>
実施例2のハードコート層上に、下記表1に記載の組成のハードコート層塗布液HC−7を用いて更に膜厚0.8μmのハードコート層を積層した。ハードコート層塗布液HC−7の乾燥及び硬化条件は実施例1のハードコート層塗布液HC−1と同様とした。
Figure 2018132751
DPCA60:日本化薬(株)製DPCA−60
irg127:イルガキュア127、光重合開始剤(BASFジャパン(株)製)
irg819:イルガキュア819、ホスフィンオキサイド系光重合開始剤(BASFジャパン(株)製)
[シリカ粒子P4の合成]
反応器中の液温を33℃に保持しながら、滴下装置からの溶液の滴下時間を25分に変更し、滴下終了後、液温を同じ温度に保持しながら撹拌した時間を25分に変更した以外は、シリカ粒子P1と同様の方法で、シリカ粒子P4を得た。
シリカ粒子P4の平均一次粒径は150nm、粒径の分散度(CV値)は11.0%、押し込み硬度は340MPaであった。
[シリカ粒子P5の合成]
反応器中の液温を33℃に保持しながら、滴下装置からの溶液の滴下時間を60分に変更し、滴下終了後、液温を同じ温度に保持しながら撹拌した時間を60分に変更した以外は、シリカ粒子P1と同様の方法で、シリカ粒子P5を得た。
シリカ粒子P5の平均一次粒径は205nm、粒径の分散度(CV値)は3.0%、押し込み硬度は340MPaであった。
[焼成シリカ粒子P6の作製]
シリカ粒子P1の代わりにシリカ粒子P4を用いた以外は、焼成シリカ粒子P2と同様の方法で、焼成シリカ粒子P6を得た。
[焼成シリカ粒子P7の作製]
シリカ粒子P1の代わりにシリカ粒子P5を用いた以外は、焼成シリカ粒子P2と同様の方法で、焼成シリカ粒子P7を得た。
[シランカップリング剤処理シリカ粒子P8の作製]
焼成シリカ粒子P2の代わりに焼成シリカ粒子P6を用い、3−アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM5103)の滴下量を65gに変更した以外は、シランカップリング剤処理シリカ粒子P3と同様の方法で、シランカップリング剤処理シリカ粒子P8を得た。
シランカップリング剤処理シリカ粒子P8の平均一次粒径は151nm、粒径の分散度(CV値)は11.0%、押し込み硬度は470MPaであった。
[シランカップリング剤処理シリカ粒子P9の作製]
焼成シリカ粒子P2の代わりに焼成シリカ粒子P7を用い、3−アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM5103)の滴下量を25gに変更した以外は、シランカップリング剤処理シリカ粒子P3と同様の方法で、シランカップリング剤処理シリカ粒子P9を得た。
シランカップリング剤処理シリカ粒子P9の平均一次粒径は206nm、粒径の分散度(CV値)は3.0%、押し込み硬度は470MPaであった。
[シリカ粒子分散液PA−2の作製]
シランカップリング剤処理シリカ粒子P3の代わりにシランカップリング剤処理シリカ粒子P8を用いた以外は、シリカ粒子分散液PA−1と同様の方法で、シリカ粒子分散液PA−2(固形分濃度20質量%)を作製した。
[シリカ粒子分散液PA−3の作製]
シランカップリング剤処理シリカ粒子P3の代わりにシランカップリング剤処理シリカ粒子P9を用いた以外は、シリカ粒子分散液PA−1と同様の方法で、シリカ粒子分散液PA−3(固形分濃度20質量%)を作製した。
<実施例8>
層(a)形成用組成物(A−1)のシリカ粒子分散液PA−1をシリカ粒子分散液PA−2に変更(この層(a)形成用組成物を組成物(A−2)という。)した以外は実施例1と同様にして反射防止フィルム8を作成した。
<実施例9>
層(a)形成用組成物(A−2)のクエン酸アセチルトリエチルをスベリン酸ジメチル(東京化成工業(株)製)に変更(この層(a)形成用組成物を組成物(A−3)という。)し、工程(1−2)における照射量を7.5mJとした以外は実施例8と同様にして反射防止フィルム9を作成した。
<実施例10>
層(a)形成用組成物(A−2)のクエン酸アセチルトリエチルをコハク酸ジブチル(東京化成工業(株)製)に変更(この層(a)形成用組成物を組成物(A−4)という。)し、工程(1−2)における照射量を10mJとした以外は実施例8と同様にして反射防止フィルム10を作成した。
<実施例11>
層(a)形成用組成物を以下の組成の(A−5)に変更し、工程(4)と工程(5)の間に140℃、15分の加熱を行うこと以外は実施例9と同様にして反射防止フィルム11を作成した。
組成物(A−5)
U−15HA 1.4質量部
化合物C3 1.5質量部
スベリン酸ジメチル 4.1質量部
A−TMPT 1.7質量部
イルガキュア127 0.2質量部
V−601 0.2質量部
化合物P−2 0.1質量部
シリカ粒子分散液PA−2 32.3質量部
化合物B 0.1質量部
エタノール 12.7質量部
メチルエチルケトン 33.3質量部
アセトン 12.7質量部
使用した化合物を以下に記載する。
A−TMPT:多官能アクリレート (新中村化学工業(株)製)
V−601:熱重合開始剤、ジメチル2,2’−アゾビス(2−メチルプロピオネート) (和光純薬(株)製)
化合物P−2:下記構造の化合物(和光純薬(株)製)
Figure 2018132751

Figure 2018132751
化合物Bの重量平均分子量は17000である。
<実施例12>
層(a)形成用組成物(A−1)のシリカ粒子分散液PA−1をシリカ粒子分散液PA−3に変更(この層(a)形成用組成物を組成物(A−6)という。)した以外は実施例1と同様にして反射防止フィルム12を作成した。
評価結果を下記表2に示す。
Figure 2018132751
実施例1の粒子占有率は47.6%であった。
実施例1〜12の反射防止フィルムは、良好な反射防止性能を有し、全光線透過率が高く、かつT580−T480が小さい、すなわち可視光の短波長領域の光の透過率が高いフィルムであった。一方、比較例1の反射防止フィルムは、実施例1の反射防止フィルムに比べてT580−T480が大きく、可視光の短波長領域の光の透過率が低いフィルムであった。
実施例1〜12の反射防止フィルムは、可視光の短波長領域の光の透過率が高いため、色味変化などが生じにくい。特に、タッチパネル付き液晶表示装置などにおいて反射防止フィルムを2枚用いた場合でも色味変化の発生を抑制できると考えられる。
1 プラスチック基材
2 反射防止層
3 金属酸化物粒子(粒子(a2))
4 バインダー樹脂(層(a))
5 支持体
6 層(b)
7 粘着フィルム
10、10a、10b 反射防止フィルム
11 エアギャップ
12 タッチパネル
13 液晶セル
14 保護フィルム
15 偏光子
20 モジュール
30タッチパネル付き液晶表示装置
A 隣り合う凸部の頂点間の距離
B 隣り合う凸部の頂点間の中心と凹部との距離

Claims (14)

  1. プラスチック基材と、反射防止層とを有する反射防止フィルムであって、
    前記反射防止層は、金属酸化物粒子及びバインダー樹脂を含み、
    前記反射防止層は、前記金属酸化物粒子によって形成された凹凸形状からなるモスアイ構造を有し、
    前記反射防止層の前記プラスチック基材とは反対側から入射した際の反射防止フィルムの全光線透過率が88%以上であり、かつ、
    前記反射防止層の前記プラスチック基材とは反対側から入射した際の反射防止フィルムの波長480nm及び580nmの光の透過率をそれぞれT480及びT580としたとき、T580−T480≦3.5%を満たす反射防止フィルム。
  2. 前記反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aの平均値をXとしたとき、X≦190nmを満たす請求項1に記載の反射防止フィルム。
  3. 前記反射防止層の凹凸形状は、前記Aの分布を表す標準偏差をσとしたとき、X+σ≦190nmを満たす請求項2に記載の反射防止フィルム。
  4. 前記金属酸化物粒子の平均一次粒径が100nm以上190nm以下である請求項1〜3のいずれか1項に記載の反射防止フィルム。
  5. 前記バインダー樹脂に、25℃における粘度が1〜20mPaである1分子中に2個以下の重合性官能基を有する化合物又は重合性官能基を有さない化合物を含む請求項1〜4のいずれか1項に記載の反射防止フィルム。
  6. 前記プラスチック基材と前記反射防止層との間に、ハードコート層を有する請求項1〜5のいずれか1項に記載の反射防止フィルム。
  7. 前記ハードコート層に4級アンモニウム塩含有ポリマーを含み、
    前記反射防止層の表面抵抗率を単位Ω/sqにてSRとした際の前記SRの常用対数値が11以下であり、かつ、前記反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aの平均値をXとし、前記Aの分布を表す標準偏差をσとしたとき、X+σ≦190nmを満たす請求項6に記載の反射防止フィルム。
  8. 請求項1〜7のいずれか1項に記載の反射防止フィルムを表面に有する反射防止物品。
  9. 偏光子と、前記偏光子を保護する少なくとも1枚の保護フィルムとを有する偏光板であって、前記保護フィルムの少なくとも1枚が請求項1〜7のいずれか1項に記載の反射防止フィルムである偏光板。
  10. 請求項1〜7のいずれか1項に記載の反射防止フィルム、又は請求項9に記載の偏光板を有する画像表示装置。
  11. 請求項1〜7のいずれか1項に記載の反射防止フィルムを2枚有し、前記2枚の反射防止フィルムがエアギャップを介して対向して設置されたモジュール。
  12. 前記2枚の反射防止フィルムは、前記反射防止層が前記プラスチック基材よりも前記エアギャップ側に配置された請求項11に記載のモジュール。
  13. 請求項12に記載のモジュールを含み、
    前記2枚の反射防止フィルムのうちの一方の反射防止フィルムの前記プラスチック基材の前記反射防止層側とは反対側にタッチパネルを有し、
    他方の反射防止フィルムの前記プラスチック基材の前記反射防止層側とは反対側に液晶セルを有する、タッチパネル付き表示装置。
  14. プラスチック基材上に、硬化性化合物と平均一次粒径が100nm以上190nm以下の金属酸化物粒子とを、前記硬化性化合物を含む層(a)中に前記金属酸化物粒子が埋没する厚みで設ける工程(1)、
    支持体及び前記支持体上にゲル分率が95.0%以上の粘着剤を含む層(b)を有する粘着フィルムの前記層(b)を、前記層(a)と貼り合わせる工程(2)、
    前記金属酸化物粒子が、前記層(a)及び前記層(b)を合わせた層中に埋没し、かつ、前記層(a)の前記プラスチック基材側の界面とは反対側の界面から突出するように、前記層(a)と前記層(b)の界面の位置を前記プラスチック基材側に移動させる工程(3)、
    前記金属酸化物粒子が、前記層(a)及び前記層(b)を合わせた層中に埋没した状態で前記層(a)を硬化する工程(4)、
    前記層(b)を前記層(a)から剥離する工程(5)、
    をこの順に有し、前記工程(1)〜(4)を行う際の温度が60℃以下である反射防止フィルムの製造方法。
JP2017072565A 2016-08-15 2017-03-31 反射防止フィルム、反射防止物品、偏光板、画像表示装置、モジュール、タッチパネル付き液晶表示装置、及び反射防止フィルムの製造方法 Active JP6778646B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/027315 WO2018034126A1 (ja) 2016-08-15 2017-07-27 反射防止フィルム、反射防止物品、偏光板、画像表示装置、モジュール、タッチパネル付き液晶表示装置、及び反射防止フィルムの製造方法
KR1020197004406A KR102253371B1 (ko) 2016-08-15 2017-07-27 반사 방지 필름, 반사 방지 물품, 편광판, 화상 표시 장치, 모듈, 터치 패널 부착 액정 표시 장치, 및 반사 방지 필름의 제조 방법
CN201780050120.4A CN109642963A (zh) 2016-08-15 2017-07-27 防反射膜、防反射物品、偏振片、图像显示装置、模块、带触摸面板的液晶显示装置及防反射膜的制造方法
US16/276,164 US10871596B2 (en) 2016-08-15 2019-02-14 Antireflection film, antireflection product, polarizing plate, image display device, module, liquid crystal display device with touch panel, and method of manufacturing antireflection film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016159295 2016-08-15
JP2016159295 2016-08-15
JP2017027380 2017-02-16
JP2017027380 2017-02-16

Publications (2)

Publication Number Publication Date
JP2018132751A true JP2018132751A (ja) 2018-08-23
JP6778646B2 JP6778646B2 (ja) 2020-11-04

Family

ID=63248394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072565A Active JP6778646B2 (ja) 2016-08-15 2017-03-31 反射防止フィルム、反射防止物品、偏光板、画像表示装置、モジュール、タッチパネル付き液晶表示装置、及び反射防止フィルムの製造方法

Country Status (4)

Country Link
US (1) US10871596B2 (ja)
JP (1) JP6778646B2 (ja)
KR (1) KR102253371B1 (ja)
CN (1) CN109642963A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021085149A1 (ja) * 2019-10-31 2021-05-06

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11240918B2 (en) * 2018-08-28 2022-02-01 Research And Business Foundation Sungkyunkwan University Method for flip-chip bonding using anisotropic adhesive polymer
CN111312797A (zh) * 2020-04-02 2020-06-19 武汉华星光电半导体显示技术有限公司 一种显示面板及其制作方法
KR102542408B1 (ko) * 2022-12-02 2023-06-14 율촌화학 주식회사 저반사 코팅층을 포함하는 저반사 필름 및 그 제조 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480904A (en) * 1987-09-22 1989-03-27 Nippon Sheet Glass Co Ltd Transparent plate stuck with conductive antireflection film
JP2008216733A (ja) * 2007-03-06 2008-09-18 Toshiba Matsushita Display Technology Co Ltd 表示素子
JP2012145748A (ja) * 2011-01-12 2012-08-02 Dainippon Printing Co Ltd 反射防止フィルム、および反射防止フィルムの製造方法
JP2014095731A (ja) * 2012-10-12 2014-05-22 Fujifilm Corp 光学フィルム、偏光板ならびに液晶表示装置
JP2015074087A (ja) * 2013-10-04 2015-04-20 富士フイルム株式会社 反射防止フィルム、偏光板、カバーガラス、及び画像表示装置、並びに反射防止フィルムの製造方法
JP2015169848A (ja) * 2014-03-07 2015-09-28 富士フイルム株式会社 反射防止フィルム、偏光板、画像表示装置、及び反射防止フィルムの製造方法
JP2016061794A (ja) * 2014-09-12 2016-04-25 富士フイルム株式会社 反射防止フィルム、偏光板、カバーガラス、画像表示装置、及び反射防止フィルムの製造方法
JP2016071133A (ja) * 2014-09-30 2016-05-09 富士フイルム株式会社 反射防止フィルム、偏光板、カバーガラス、及び画像表示装置、並びに反射防止フィルムの製造方法
JP2016136228A (ja) * 2014-03-31 2016-07-28 富士フイルム株式会社 反射防止フィルム、偏光板、カバーガラス、及び画像表示装置、並びに反射防止フィルムの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197459B1 (ko) * 2007-08-10 2012-11-09 다이니폰 인사츠 가부시키가이샤 하드 코트 필름
JP5359137B2 (ja) * 2007-09-12 2013-12-04 大日本印刷株式会社 光学積層体、その製造方法、偏光板及び画像表示装置
JP5187495B2 (ja) 2007-12-10 2013-04-24 株式会社豊田中央研究所 反射防止膜、反射防止膜の製造方法、反射防止膜用鋳型、反射防止膜用鋳型を用いて得られた反射防止膜及びレプリカ膜を用いて得られた反射防止
CN106164713B (zh) 2014-03-31 2018-01-09 富士胶片株式会社 防反射膜、偏振片、护罩玻璃、图像显示装置及防反射膜的制造方法
JP6275072B2 (ja) * 2014-08-28 2018-02-07 富士フイルム株式会社 反射防止積層体、偏光板、カバーガラス、画像表示装置、及び反射防止積層体の製造方法
US10338276B2 (en) * 2014-09-12 2019-07-02 Fujifilm Corporation Antireflective film, polarizing plate, cover glass, image display device, and method of manufacturing antireflective film
JP6412835B2 (ja) 2015-07-06 2018-10-24 富士フイルム株式会社 反射防止フィルムの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480904A (en) * 1987-09-22 1989-03-27 Nippon Sheet Glass Co Ltd Transparent plate stuck with conductive antireflection film
JP2008216733A (ja) * 2007-03-06 2008-09-18 Toshiba Matsushita Display Technology Co Ltd 表示素子
JP2012145748A (ja) * 2011-01-12 2012-08-02 Dainippon Printing Co Ltd 反射防止フィルム、および反射防止フィルムの製造方法
JP2014095731A (ja) * 2012-10-12 2014-05-22 Fujifilm Corp 光学フィルム、偏光板ならびに液晶表示装置
JP2015074087A (ja) * 2013-10-04 2015-04-20 富士フイルム株式会社 反射防止フィルム、偏光板、カバーガラス、及び画像表示装置、並びに反射防止フィルムの製造方法
JP2015169848A (ja) * 2014-03-07 2015-09-28 富士フイルム株式会社 反射防止フィルム、偏光板、画像表示装置、及び反射防止フィルムの製造方法
JP2016136228A (ja) * 2014-03-31 2016-07-28 富士フイルム株式会社 反射防止フィルム、偏光板、カバーガラス、及び画像表示装置、並びに反射防止フィルムの製造方法
JP2016061794A (ja) * 2014-09-12 2016-04-25 富士フイルム株式会社 反射防止フィルム、偏光板、カバーガラス、画像表示装置、及び反射防止フィルムの製造方法
JP2016071133A (ja) * 2014-09-30 2016-05-09 富士フイルム株式会社 反射防止フィルム、偏光板、カバーガラス、及び画像表示装置、並びに反射防止フィルムの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021085149A1 (ja) * 2019-10-31 2021-05-06
JP7287488B2 (ja) 2019-10-31 2023-06-06 信越化学工業株式会社 耐アルカリ性撥水部材及び該撥水部材の製造方法並びに撥水部材の耐アルカリ性と耐摩耗性の向上方法

Also Published As

Publication number Publication date
US10871596B2 (en) 2020-12-22
KR20190026022A (ko) 2019-03-12
KR102253371B1 (ko) 2021-05-20
CN109642963A (zh) 2019-04-16
JP6778646B2 (ja) 2020-11-04
US20190187336A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP2019196488A (ja) ハードコート層形成用塗布溶液、ハードコート層の形成方法および光学部材
JP6868103B2 (ja) 反射防止フィルム、偏光板、及び画像表示装置
KR102511645B1 (ko) 반사 방지 필름, 편광판, 커버 유리, 화상 표시 장치, 및 반사 방지 필름의 제조 방법
US10871596B2 (en) Antireflection film, antireflection product, polarizing plate, image display device, module, liquid crystal display device with touch panel, and method of manufacturing antireflection film
JP2011503658A (ja) 反射防止コーティング組成物、反射防止フィルムおよびその製造方法
JP2018533065A (ja) 反射防止フィルムおよびディスプレイ装置
JP6825095B2 (ja) 防眩性反射防止フィルム、防眩性反射防止フィルムの製造方法、偏光板、画像表示装置、及び自発光型ディスプレイ装置
JP6596572B2 (ja) 積層体、積層体の製造方法、及び反射防止フィルムの製造方法
US11988809B2 (en) Laminate, antireflection product, and manufacturing method thereof
KR20190132231A (ko) 반사 방지 필름, 편광판 및 디스플레이 장치
WO2015152308A1 (ja) 反射防止フィルム、偏光板、カバーガラス、及び画像表示装置、並びに反射防止フィルムの製造方法
JP6726804B2 (ja) 積層体、三次元曲面を有する反射防止物品、反射防止物品の製造方法
JP2016061794A (ja) 反射防止フィルム、偏光板、カバーガラス、画像表示装置、及び反射防止フィルムの製造方法
JP6343540B2 (ja) 反射防止フィルム、偏光板、カバーガラス、及び画像表示装置、並びに反射防止フィルムの製造方法
WO2018034126A1 (ja) 反射防止フィルム、反射防止物品、偏光板、画像表示装置、モジュール、タッチパネル付き液晶表示装置、及び反射防止フィルムの製造方法
WO2017163861A1 (ja) 反射防止フィルムの製造方法、反射防止フィルム、偏光板、カバーガラス、及び画像表示装置
JP6802906B2 (ja) 積層体、積層体の製造方法、及び反射防止フィルムの製造方法
JP6726809B2 (ja) 反射防止フィルム、反射防止物品、偏光板、及び画像表示装置
JP6811337B2 (ja) 透過フィルター及び液浸露光装置
JP2004291573A (ja) 反射防止ハードコートフィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6778646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250