JP2018113288A - 炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
JP2018113288A
JP2018113288A JP2017001387A JP2017001387A JP2018113288A JP 2018113288 A JP2018113288 A JP 2018113288A JP 2017001387 A JP2017001387 A JP 2017001387A JP 2017001387 A JP2017001387 A JP 2017001387A JP 2018113288 A JP2018113288 A JP 2018113288A
Authority
JP
Japan
Prior art keywords
blade
silicon carbide
semiconductor substrate
main surface
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017001387A
Other languages
English (en)
Inventor
卓也 小松
Takuya Komatsu
卓也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2017001387A priority Critical patent/JP2018113288A/ja
Publication of JP2018113288A publication Critical patent/JP2018113288A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Dicing (AREA)

Abstract

【課題】品質の安定した半導体チップを得ることができる炭化珪素半導体装置の製造方法を提供すること。【解決手段】まず、1段目の切削工程において、ブレード11により、スクライブライン3に沿って炭化珪素ウエハ1を第1主面1a(Si面)側から切削し、炭化珪素ウエハ1の第1主面1aから所定の切削深さd1で切削溝4を形成する。切削溝4の深さd1は、炭化珪素ウエハ1の厚さt1よりも浅い。次に、2段目の切削工程において、ブレード11により切削溝4の深さd1’を深くして、炭化珪素ウエハ1の第2主面1b(C面)を切削し、スクライブライン3における炭化珪素ウエハ1の切り残し部をなくす。このとき、1段目の切削工程において炭化珪素ウエハ1のSi面をダウンカットで切削し、2段目の切削工程において炭化珪素ウエハ1のC面をアップカットで切削する。これにより、炭化珪素ウエハ1が複数の半導体チップに分離される。【選択図】図1A

Description

この発明は、炭化珪素半導体装置の製造方法に関する。
従来、IC(Integrated Circuit:集積回路)チップ等の半導体チップを製造するにあたって、半導体ウエハに複数の半導体チップを作り込んだ後に、当該半導体ウエハをダイシング(切断)することが一般的である。ダイシングとは、略矩形状の平面形状の半導体チップの4辺をなすスクライブライン(切り代)に沿って、例えばブレード(刃)を用いて半導体ウエハを切り分けて個々のチップ状に分離して個片化することである。
従来のダイシング方法について説明する。図7は、従来のダイシング時の半導体ウエハの状態を示す断面図である。図7では、ブレード111の、切削溝104の内部に位置する部分(炭化珪素ウエハ101と重なる部分)を破線で示す。図8は、従来のダイシング後の半導体ウエハの切削溝の状態を示す断面図である。図8には、ダイシング後の半導体ウエハ101の切削溝104付近の断面構造を示す。図8は、図7の半導体ウエハ101の進行方向Xと直交する方向Yに平行で、かつ半導体ウエハ101の主面101a,101bと直交する断面における半導体ウエハ101の断面構造である。
図7,8に示すように、半導体ウエハ101の第2主面101bをステージ(不図示)等に保持し、ブレード111により半導体ウエハ101の第1主面101a側から半導体ウエハ101を切削する。ブレード111は、所定の深さd101の切削溝104が形成されるまで同じ回転方向Rに回転させる。図7には、ブレード111の回転方向を例えば半導体ウエハ101の進行方向Xに対して、ブレード111の後方112でブレード111が炭化珪素ウエハ101に近づく回転方向Rに制御したダウンカットとした場合を示す。
ブレード111がスクライブライン103に沿って移動するように、半導体ウエハ101を進行方向Xに移動させる。ブレード111は、深さ方向Zに半導体ウエハ101を貫通する。このため、ブレード111がスクライブライン103に沿って1回移動しただけで、当該スクライブライン103において半導体ウエハ101が分離される。ブレード111による切削溝104の深さd101は、半導体ウエハ101の厚さt101と同じである。図8の符号102は、半導体ウエハ101の第1主面101a上の絶縁膜や電極層等の素子構造である。
切削溝104は、炭化珪素ウエハ101の第1主面101aの開口幅w101を第2主面101bへ向かうにしたがって狭くした略台形状の断面形状となる(w101>w102)。符号w102は、切削溝104の、炭化珪素ウエハ101の第2主面101bの開口幅である。上述した従来のダイシング方法では、ブレード111の回転方向Rおよび回転速度(回転数)や、半導体ウエハ101の送り速度等の条件を一定とし、1段(1回)の切削工程で半導体ウエハ101の厚さt101分の深さd101の切削溝104を形成し、半導体ウエハ101を複数の半導体チップに分離している。
シリコン(Si)からなる半導体ウエハ(以下、シリコンウエハとする)は、炭化珪素(SiC)からなる半導体ウエハ(以下、炭化珪素ウエハとする)に比べて切断しやすい。このため、例えば半導体ウエハ101がシリコンウエハである場合、上述したように1段の切削工程でシリコンウエハをダイシングしたとしても、シリコンウエハの加工品質への悪影響は小さく、所望の素子性能が得られる。しかしながら、炭化珪素ウエハは切削困難な材料であるため、1段の切削工程で炭化珪素ウエハを切削した場合、炭化珪素ウエハの加工品質に悪影響が及ぶ。その理由は、次の通りである。
炭化珪素には(0001)面、いわゆるSi面と、(000−1)面、いわゆるC面と、が存在する。このため、炭化珪素ウエハは、その両主面にそれぞれSi面およびC面が露出し、各主面で硬度や結晶性が異なっている。このため、炭化珪素ウエハのSi面におもて面素子構造を形成したデバイスと、C面におもて面素子構造を形成したデバイスと、では、同じ条件でダイシングを行った場合に、切削溝104の幅w101,w102のばらつきやチップ端部105のチッピング(欠け)等が生じ、半導体チップの形状や外観品質が異なってしまう。
そこで、ダイシングによる半導体チップの品質への悪影響を所定の規格内に抑えるために、ダイシングの条件を限定することになるが、そのトレードオフとしてブレードの回転速度を小さくしてダイシング速度を下げなければならない。このため、スループットが低下するという新たな問題が生じる。また、炭化珪素ウエハの従来のダイシングの別の方法として、半導体ウエハや半導体チップのチッピング等のダメージを減少させる方法が提案されている(例えば、下記特許文献1,2参照。)。
下記特許文献1では、まず、第1ブレードで炭化珪素ウエハの第2主面上の電極層を貫通する深さの切削溝を形成する。その後、当該切削溝の開口幅よりも幅の狭い第2ブレードで当該切削溝をさらに深くして炭化珪素ウエハの残りの部分を切断している(第0022〜0023段落、第2,3図)。すなわち、電極層を切削する第1ブレードと、半導体ウエハを切断する第2ブレードと、の2つブレードを用いて半導体ウエハを個々のチップ状に分離している。
下記特許文献1では、電極層を切削する第1ブレードで半導体ウエハの第2主面側から第1主面に達しない浅い深さで切削溝を形成することで、第1ブレードの目詰まりや目潰れによって炭化珪素ウエハの第1主面にチッピングが生じることを防止している。その後、切削溝の開口幅よりも幅の狭い第2ブレードを用いることで、炭化珪素ウエハの、すでに切削溝が形成されている第2主面にチッピングが生じることを防止している(第0027〜0028段落)。
下記特許文献2では、1段の切削工程で炭化珪素ウエハを個々のチップ状に切断している。このとき、炭化珪素ウエハの進行方向に対し、ブレードの後方でブレードが炭化珪素ウエハから遠ざかる回転方向にブレードを回転させて炭化珪素ウエハをSi面から切断(アップカット)している(第0020段落、第4図)。または、炭化珪素ウエハの進行方向に対し、ブレードの後方でブレードが炭化珪素ウエハに近づく回転方向にブレードを回転させて炭化珪素ウエハをC面から切削(ダウンカット)している(第0022段落、第6図)。また、ブレードの回転数を30000rpm(revolution per minute:回転毎分)としている(第0025段落)。
特開2013−161944号公報 特開2014−013812号公報
上述したように炭化珪素ウエハをダイシングするにあたって、半導体チップの品質維持とスループットの向上とはトレードオフの関係にある。このため、一般的には、半導体チップの品質が悪化する前に、所定の頻度でブレードのドレス(目立て)を行ってブレード表面をリセットしてブレードの目詰まりや目潰れを解消させてから、炭化珪素ウエハをダイシングしている。しかしながら、半導体チップの品質への悪影響を所定の規格内に抑えるだけであり、半導体チップの品質変動そのものをなくすことはできない。
この発明は、上述した従来技術による問題点を解消するため、品質の安定した半導体チップを得ることができる炭化珪素半導体装置の製造方法を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置の製造方法は、炭化珪素からなる半導体基板を切断して当該半導体基板から複数の半導体チップを切り出す炭化珪素半導体装置の製造方法であって、次の特徴を有する。まず、前記半導体基板を当該半導体基板の第1主面に平行な方向へ移動させながら、中心軸を固定された第1ブレードにより前記半導体基板を第1主面から切削し、前記半導体基板の第1主面から前記半導体基板の厚さ未満の深さの切削溝を形成する第1切削工程を行う。次に、前記半導体基板を当該半導体基板の第1主面に平行な方向へ移動させながら、中心軸を固定された第2ブレードにより前記切削溝の深さを深くして前記半導体基板の第2主面に達する深さで前記半導体基板を切削し、前記半導体基板を前記切削溝の部分で切断する第2切削工程を行う。前記半導体基板は第1主面がSi面で第2主面がC面である。前記第1切削工程では、前記半導体基板の前記第1主面に平行な方向に対し、前記第1ブレードの後方で当該第1ブレードが前記半導体基板に近づく回転方向に当該第1ブレードを回転させる。かつ、前記第2切削工程では、前記半導体基板の前記第1主面に平行な方向に対し、前記第2ブレードの後方で当該第2ブレードが前記半導体基板から遠ざかる回転方向に当該第2ブレードを回転させる。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置の製造方法は、炭化珪素からなる半導体基板を切断して当該半導体基板から複数の半導体チップを切り出す炭化珪素半導体装置の製造方法であって、次の特徴を有する。まず、前記半導体基板を当該半導体基板の第1主面に平行な方向へ移動させながら、中心軸を固定された第1ブレードにより前記半導体基板を第1主面から切削し、前記半導体基板の第1主面から前記半導体基板の厚さ未満の深さの切削溝を形成する第1切削工程を行う。次に、前記半導体基板を当該半導体基板の第1主面に平行な方向へ移動させながら、中心軸を固定された第2ブレードにより前記切削溝の深さを深くして前記半導体基板の第2主面に達する深さで前記半導体基板を切削し、前記半導体基板を前記切削溝の部分で切断する第2切削工程を行う。前記半導体基板は第1主面がC面で第2主面がSi面である。前記第1切削工程では、前記半導体基板の前記第1主面に平行な方向に対し、前記第1ブレードの後方で当該第1ブレードが前記半導体基板から遠ざかる回転方向に当該第1ブレードを回転させる。前記第2切削工程では、前記半導体基板の前記第1主面に平行な方向に対し、前記第2ブレードの後方で当該第2ブレードが前記半導体基板に近づく回転方向に当該第2ブレードを回転させる。
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第2切削工程では、前記半導体基板の前記第1主面に平行な方向を、前記第1切削工程時と同じ前記第1主面に平行な方向とし、前記第2ブレードの回転方向を、前記第1ブレードの回転方向と逆の回転方向にすることを特徴とする。
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第2切削工程では、前記第2ブレードの回転方向を、前記第1ブレードの回転方向と同じ回転方向とし、前記半導体基板の前記第1主面に平行な方向を、前記第1切削工程における前記半導体基板の前記第1主面に平行な方向と反対方向にすることを特徴とする。
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第2切削工程では、前記半導体基板を第1主面に平行に180度回転させて、前記半導体基板の結晶方向に対する前記半導体基板の前記第1主面に平行な方向を、前記第1切削工程時と同じ前記第1主面に平行な方向にすることを特徴とする。
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第2ブレードの刃幅は、前記第1ブレードの刃幅と等しいことを特徴とする。
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第2ブレードとして、前記第1ブレードを用いることを特徴とする。
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第2ブレードの刃幅は、前記第1ブレードの刃幅よりも狭いことを特徴とする。
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第1ブレードの回転数を5000rpm以上60000rpm以下とすることを特徴とする。
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第2ブレードの回転数を5000rpm以上60000rpm以下とすることを特徴とする。
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第1切削工程では、前記切削溝を形成した箇所に残る前記半導体基板の厚さを10μm以上350μm以下とすることを特徴とする。
本発明にかかる炭化珪素半導体装置の製造方法によれば、ブレードの表面状態が一定に保たれるため、半導体チップのチッピングを無くすまたは抑制することができる、もしくは、半導体チップのチッピングサイズを許容範囲内に抑えることができる。これにより、品質の安定した半導体チップを得ることができるという効果を奏する。
実施の形態にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である。 実施の形態にかかる炭化珪素半導体装置の製造途中の状態の別の一例を示す断面図である。 実施の形態にかかる炭化珪素半導体装置の製造途中の状態の別の一例を示す断面図である。 実施の形態にかかる炭化珪素半導体装置の製造途中の状態の別の一例を示す断面図である。 実施の形態にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である。 実施の形態にかかる炭化珪素半導体装置の製造途中の状態の別の一例を示す断面図である。 ダイシング時の炭化珪素ウエハの進行方向を示す平面図である。 ダイシング時の炭化珪素ウエハの進行方向を示す平面図である。 ブレードの回転数とチップ裏面端部のチッピングサイズとの関係を示す特性図である。 チップ裏面端部のチッピング発生率を示す特性図である。 従来のダイシング時の半導体ウエハの状態を示す断面図である。 従来のダイシング後の半導体ウエハの切削溝の状態を示す断面図である。
以下に添付図面を参照して、この発明にかかる炭化珪素半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本明細書では、ミラー指数の表記において、“−”はその直後の指数につくバーを意味しており、指数の前に“−”を付けることで負の指数を表している。
(実施の形態)
実施の形態にかかる炭化珪素半導体装置の構造方法について説明する。図1A,3Aは、実施の形態にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である。図1B,2A,2B,3Bは、実施の形態にかかる炭化珪素半導体装置の製造途中の状態の別の一例を示す断面図である。図1A,1B,2A,2Bには、炭化珪素(SiC)からなる半導体ウエハ(炭化珪素ウエハ)1のダイシング時の状態を示す。図3A,3Bには、ダイシング後の炭化珪素ウエハ1の切削溝4付近の断面構造を示す。図4A,4Bは、ダイシング時の炭化珪素ウエハの進行方向を示す平面図である。
まず、炭化珪素ウエハ1の第1主面1aの、個々の半導体チップとなる有効領域にそれぞれ所定のデバイスの回路パターンを形成する。所定のデバイスとは、1チップに作製可能なデバイスであればよく、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)やショットキーバリアダイオード(SBD:Schottky Barrier Diode)等である。
具体的には、炭化珪素ウエハ1の第1主面1a上にデバイスの各半導体領域や層間絶縁膜やおもて面電極などのおもて面素子構造2を形成し、第2主面1bに裏面電極(不図示)を形成する(図3A,3B参照)。また、炭化珪素ウエハ1の第1主面1aには、隣り合う半導体チップのおもて面素子構造2間に、例えば略矩形状の平面形状の半導体チップの4辺をなすスクライブライン(切り代)3が各半導体チップを囲む格子状のレイアウト(不図示)に形成される。すなわち、炭化珪素ウエハ1の第1主面1aに平行で、かつ互いに直交する方向X,Yにそれぞれ平行なスクライブライン3が形成される。
次に、炭化珪素ウエハ1の第2主面1bに、ポリ塩化ビニル(PVC:Polyvinyl chloride)やポリオレフィン(PO:polyolefin)、ポリエチレンテレフタレート(PET:Polyethyleneterephthalate)などを基材として用いたダイシングテープ(粘着テープ)を貼り付ける。そして、当該ダイシングテープを介して炭化珪素ウエハ1をダイシングフレームに固定する。
次に、ダイシングフレームに固定された炭化珪素ウエハ1を、第2主面1bを下側(ステージ側)にしてダイシング装置(不図示)のステージに載置する。ダイシング装置のステージは、炭化珪素ウエハ1を載置する面に、炭化珪素ウエハ1を吸着して保持する機構を備える。炭化珪素ウエハ1は、ダイシングテープ越しにダイシング装置のステージに吸着され固定される。また、ダイシング装置のステージは、ブレード11に対して、炭化珪素ウエハ1を第1主面1aに平行な方向X,Yに移動可能であり、かつ炭化珪素ウエハ1を第1主面1aに平行に回転可能な機構を備える。
ダイシング装置のブレード(刃)11は中心軸を固定され、所定の回転方向R,R’で回転し、かつ炭化珪素ウエハ1へ下降する機構を備える。また、ダイシング装置のブレード11は、炭化珪素ウエハ1の切削深さd1,d1’を一定に保つために、炭化珪素ウエハ1の第1主面1aに対するブレード11の高さを測定して自動調整可能な機構を備える。炭化珪素ウエハ1は、第1主面1aがブレード11の切削深さ方向(炭化珪素ウエハ1の第1主面1aから第2主面1bへ向かう深さ方向)Zと直交するように配置される。
次に、ブレード11により炭化珪素ウエハ1を第1主面1a側からダイシング(切断)して個々のチップ状に個片化する。具体的には、炭化珪素ウエハ1を載置したステージを可動し、炭化珪素ウエハ1の第1主面1aに平行な方向X,Yに移動させる。これにより、所定の回転方向R,R’に回転したブレード11に炭化珪素ウエハ1が接触し、ステージが炭化珪素ウエハ1の第1主面1aに平行な方向に移動することで炭化珪素ウエハ1が第1主面1aから切削される。
図1A,1B,2A,2B,4A,4Bには、X,X’方向に平行なスクライブライン3に沿って炭化珪素ウエハ1を切削する状態を示す。すなわち、X,X’方向が炭化珪素ウエハ1の進行方向(以下、炭化珪素ウエハ1の進行方向X,X’とする)である。ここで、炭化珪素ウエハ1の進行方向はステージが移動する炭化珪素ウエハ1の第1主面1aに平行な方向を示す。図3A,3Bには、図1A,1B,2A,2Bの炭化珪素ウエハ1の進行方向X,X’と直交する方向Yに平行で、かつ炭化珪素ウエハ1の主面1a,1bと直交する断面を示す。Y方向に平行なスクライブライン3に沿って炭化珪素ウエハ1を切削する場合には、炭化珪素ウエハ1を第1主面1aに平行に90度回転させた後に、後述する2段の切削工程を行えばよい。
また、ブレード11による炭化珪素ウエハ1の上記切削工程は2段(2回)連続で行い、当該2段の切削工程で炭化珪素ウエハ1の切削溝4の深さ(切り込み量)d1,d1’を段階的に深くして、切削溝4の部分で炭化珪素ウエハ1を分離する。この2段の切削工程で得られる炭化珪素ウエハ1の総切削深さ(すなわち切削溝4の最終的な深さ)d1’は、炭化珪素ウエハ1の厚さt1以上となる(t1≦d1’=d1+d2)。2段目の切削工程におけるブレード11の切削深さは、ダイシングテープに切り込みが入る程度であってもよい。
ブレード11の回転方向R,R’および回転速度(回転数)や、炭化珪素ウエハ1の進行方向X,X’、炭化珪素ウエハ1の送り速度、ブレード11の刃幅等の切削条件は2段の各切削工程それぞれで最適化され、半導体チップの品質向上が図られる。炭化珪素ウエハ1の送り速度とは、中心軸を固定したブレード11を、炭化珪素ウエハ1の第1主面1a上を一端から他端まで直線状に移動させるために(図4A,4B参照)、炭化珪素ウエハ1を移動させる際の速度である。炭化珪素ウエハ1の送り速度は、炭化珪素ウエハ1の切削深さd1,d2に基づいて設定される。
また、各切削工程の切削条件は、各切削工程でブレード11により切削する炭化珪素ウエハ1の主面1a,1bの結晶面に応じて調整する。具体的には、1段目の切削工程においては、ブレード11は、炭化珪素ウエハ1の第1主面1a側を切削した後、炭化珪素ウエハ1の所定の切削深さd1に達する。このため、1段目の切削工程の切削条件は、炭化珪素ウエハ1の第1主面1aの結晶面に応じて調整される。一方、2段目の切削工程においては、ブレード11は、炭化珪素ウエハ1の所定の切削深さd1の位置から炭化珪素ウエハ1の第2主面1bに達する程度にさらに深い所定の切削深さd2だけ降下して炭化珪素ウエハ1の第2主面1bを切削する。このため、2段目の切削工程の切削条件は、炭化珪素ウエハ1の第2主面1bの結晶面に応じて調整される。
より具体的には、図1A,1B,2A,2Bの左図に示すように、まず、ブレード11により、スクライブライン3に沿って炭化珪素ウエハ1を第1主面1a側から切削する(1段目の切削工程)。これにより、炭化珪素ウエハ1の第1主面1aから所定の切削深さd1で、炭化珪素ウエハ1の進行方向Xに平行な直線状に切削溝4(図3A,3B参照)が形成される。1段目の切削工程においては、炭化珪素ウエハ1の切削深さd1を炭化珪素ウエハ1の厚さt1よりも浅くする。この1段目の切削工程を連続して繰り返し行って例えば炭化珪素ウエハ1上のすべてのスクライブライン3にそれぞれ切削溝4を形成してから後述する2段目の切削工程を行ってもよい。または、1段目の切削工程と、後述する2段目の切削工程と、を交互に行ってもよい。
図1A,1B,2A,2Bにおいて、炭化珪素ウエハ1の第1主面1a側の薄いハッチング部分1cは、1段目の切削工程で切削溝4が形成された部分である。炭化珪素ウエハ1の第2主面1b側の濃いハッチング部分1dは、炭化珪素ウエハ1の、1段目の切削工程でスクライブライン3に切り残した部分(以下、切り残し部とする)である。また、図1A,1B,2A,2Bにおいては、ブレード11の、切削溝4の内部に位置する部分(炭化珪素ウエハ1と重なる部分)を破線で示す。1段目の切削工程における炭化珪素ウエハ1の切り残し部の厚さt2は、例えば、炭化珪素ウエハ1の厚さt1が80μm以上550μm以下程度の場合、10μm以上350μm以下程度である。図3A,3Bでは、炭化珪素ウエハ1のうち、1,2段目の切削工程の後に残る部分(すなわち半導体チップ)をハッチングで示す。
次に、図1A,1B,2A,2Bの右図に示すように、ブレード11により、炭化珪素ウエハ1の切り残し部の厚さt2以上の切削深さd2で、炭化珪素ウエハ1の切り残し部を貫通するように炭化珪素ウエハ1を切削し、切削溝4の深さd1’を深くする(2段目の切削工程)。すなわち、炭化珪素ウエハ1の厚さt1以上の深さd1’ の切削溝4を2段の切削工程(1,2段目の切削工程)で段階的に形成する。これにより、各切削溝4で炭化珪素ウエハ1が個々の半導体チップに分割され切り出される。このように、炭化珪素ウエハ1に対して2段の切削工程を行うにあたって、次のように2段の切削工程それぞれにおけるブレード11の回転方向R,R’を制御する(図1A)。または、次のように2段の切削工程それぞれにおける炭化珪素ウエハ1の進行方向X,X’を制御する(図1B)。
例えば、炭化珪素ウエハ1の第1主面1aを(0001)面、いわゆるSi面とし、第2主面1bを(000−1)面、いわゆるC面としたとする。すなわち、炭化珪素ウエハ1のSi面におもて面素子構造2を形成したデバイス(以下、Si面デバイスとする)であるとする。この場合、1段目の切削工程は、炭化珪素ウエハ1の進行方向Xに対し、ブレード11の後方12でブレード11が炭化珪素ウエハ1に近づく回転方向Rに回転するようにブレード11を制御したダウンカットとする。ダウンカットによる炭化珪素ウエハ1の切削においては、炭化珪素ウエハ1の進行方向Xに対し、ブレード11の前方13から切削屑が排出される。一方、2段目の切削工程は、炭化珪素ウエハ1の進行方向Xに対し、ブレード11の後方12でブレード11が炭化珪素ウエハ1から遠ざかる回転方向に回転するようにブレード11を制御したアップカットとする。アップカットによる炭化珪素ウエハ1の切削においては、炭化珪素ウエハ1の進行方向Xに対し、ブレード11の後方12から切削屑が排出される。
すなわち、1段目の切削工程において炭化珪素ウエハ1のSi面(第1主面1a)がダウンカットで切削され、2段目の切削工程において炭化珪素ウエハ1のC面(第2主面1b)がアップカットで切削される。2段目の切削工程をアップカットとするにあたって、炭化珪素ウエハ1の進行方向を1段目の切削工程時と同じ進行方向Xとし、ブレード11を1段目の切削工程時のブレード11の回転方向Rと逆の回転方向R’に回転させる(図1A:回転方向制御)。または、ブレード11の回転方向を1段目の切削工程時と同じ回転方向Rとし、炭化珪素ウエハ1を1段目の切削工程時における炭化珪素ウエハ1の進行方向Xと反対の進行方向X’に移動させる(図1B:ウエハ進行方向制御)。
また、図2A,2Bに示すように、例えば、炭化珪素ウエハ1の第1主面1aをC面とし、第2主面1bをSi面としたとする。すなわち、炭化珪素ウエハ1のC面におもて面素子構造2を形成したデバイス(以下、C面デバイスとする)であるとする。この場合、1段目の切削工程は、炭化珪素ウエハ1の進行方向Xに対し、ブレード11の後方12でブレード11が炭化珪素ウエハ1から遠ざかる回転方向Rに回転するようにブレード11を制御したアップカットとする。一方、2段目の切削工程においては、炭化珪素ウエハ1の進行方向Xに対し、ブレード11の後方12でブレード11が炭化珪素ウエハ1に近づく回転方向に回転するようにブレード11を制御したダウンカットとする。
すなわち、1段目の切削工程において炭化珪素ウエハ1のC面(第1主面1a)がアップカットで切削され、2段目の切削工程において炭化珪素ウエハ1のSi面(第2主面1b)がダウンカットで切削される。2段目の切削工程をダウンカットにするにあたって、炭化珪素ウエハ1の進行方向を1段目の切削工程時と同じ進行方向Xとし、ブレード11を1段目の切削工程時のブレード11の回転方向Rと逆の回転方向R’に回転させる(図2A:回転方向制御)。または、ブレード11の回転方向を1段目の切削工程時と同じ回転方向Rとし、炭化珪素ウエハ1を1段目の切削工程時における炭化珪素ウエハ1の進行方向Xと反対の進行方向X’に移動させる(図2B:ウエハ進行方向制御)。
また、回転方向制御およびウエハ進行方向制御のいずれにおいても、炭化珪素ウエハ1の結晶方向に対するブレード11による切削方向(すなわち炭化珪素ウエハ1の進行方向X)を、1,2段目の切削工程で同じにする。具体的には、図4Aに示すように、回転方向制御とする場合、1,2段目の切削工程とで炭化珪素ウエハ1の進行方向Xを変えないため、炭化珪素ウエハ1を第1主面1a側から見た配置は変更しない。すなわち、炭化珪素ウエハ1を主面1a側から見た配置を変えなくても、炭化珪素ウエハ1の結晶方向に対するブレード11による切削方向を、1,2段目の切削工程で合わせることができる。
一方、図4Bに示すように、ウエハ進行方向制御とする場合、上述したように1,2段目の切削工程とで炭化珪素ウエハ1を反対の進行方向X,X’に移動させている。このため、1段目の切削工程の後、例えばオリエンテーションフラット1eを基準として、炭化珪素ウエハ1を第1主面1a側から見た配置を第1主面1aに平行に180度回転させてから2段目の切削工程を行う。これにより、炭化珪素ウエハ1の結晶方向に対するブレード11による切削方向を、1,2段目の切削工程で合わせることができる。
ウエハ進行方向制御とする場合、例えば、1段目の切削工程を連続して繰り返し行ってすべてのスクライブライン3に切削溝4を形成した後に、炭化珪素ウエハ1を第1主面1aに平行に180度回転させる。そして、2段目の切削工程を連続して繰り返し行い、すべての切削溝4の深さd1’を深くしてもよい(右方向矢印)。または、1段目の切削工程と、炭化珪素ウエハ1を第1主面1aに平行に180度回転させる工程と、2段目の切削工程と、を1組とする工程を繰り返し行って、各スクライブライン3に順に最終的な深さd1’の切削溝4を形成してもよい(両方向矢印)。
図4A,4Bには、オリエンテーションフラット1eに平行なスクライブライン3で炭化珪素ウエハ1をダイシングする場合を示す。オリエンテーションフラット1eと直交するスクライブライン3で炭化珪素ウエハ1をダイシングする場合を図示省略するが、この場合においても、上述したように、炭化珪素ウエハ1の結晶方向とブレード11による切削方向とを合わせて、2段の切削工程で炭化珪素ウエハ1をダイシングすればよい。
ブレード11の回転数は、例えば5000rpm以上60000rpm以下程度であり、好ましくは10000rpm以上57500rpm以下程度であることがよい。ブレード11の回転数を上記範囲内とすることで、半導体チップのチッピング(欠け)不良を低減(すなわちチッピングサイズが許容範囲内にある良品チップを増加)させることができるとともに、ブレード11の割れを抑制することができる。また、1,2段目の切削工程ともにブレード11の回転速度(回転数)および炭化珪素ウエハ1の送り速度を同じ条件とすることで、ブレード11の割れが生じにくくなる。
半導体チップのおもて面側のチッピングサイズの許容範囲は、スクライブライン3を超えない範囲である。すなわち、チップおもて面端部5aが欠けることでチップおもて面端部5a付近に生じた形状変形部分(不図示)の、チップおもて面端部5aからチップ中央部へ向かう方向の幅w3が炭化珪素ウエハ1の第1主面1aに平行な方向X,Yにおもて面素子構造2に達しない範囲であればよい。半導体チップのおもて面とは、炭化珪素ウエハ1の第1主面1aである。チップおもて面端部5aとは、切削溝4の側壁と炭化珪素ウエハ1の第1主面1aとの交線である。
半導体チップの裏面側のチッピングサイズの許容範囲は、炭化珪素ウエハ1の第2主面1bの裏面電極の性能に悪影響を及ぼさない範囲である。半導体チップの裏面側のチッピングは組立工程時に半導体チップにかかる熱により半導体チップにクラックが生じる原因となり、例えば温度サイクル試験等で検証する半導体チップの信頼性を低下させる。温度サイクル試験とは、一般的に半導体チップを搭載したデバイスを保存温度範囲の上限温度と下限温度とに繰り返しさらして、半導体チップに生じるクラックおよび特性変動などの耐性を測定する試験である。このため、半導体チップの裏面側のチッピングサイズは可能な限り小さいことが好ましい。
具体的には、チップ裏面端部5bが欠けることでチップ裏面端部5b付近に生じた形状変形部分(不図示)の、チップ裏面端部5bからチップ中央部へ向かう方向の幅w4が例えば200μm以下がよく、好ましくは100μm以下であることがよい。半導体チップの裏面とは、炭化珪素ウエハ1の第2主面1bである。チップ裏面端部5bとは、切削溝4の側壁と炭化珪素ウエハ1の第2主面1bとの交線である。
また、ブレード11の軸受けの機構は、軸受タイプであってもよいし、エアスピンドルタイプであってもよい。ブレード11の軸受けの機構は、例えば、ブレード11の寿命や、ランニングコスト(消耗品費、維持費など)、メンテナンス頻度、剛性等を考慮して選択すればよい。
軸受タイプのブレード11は、ボールベアリングでスピンドル(回転軸)11aを回転させることでブレード11を回転させる機構を備える。軸受タイプのブレード11は、スピンドル11aにブレード11が接合されているため、エアスピンドルタイプと比べて回転速度が遅い。また、軸受タイプのブレード11は、ボールベアリングの摩耗によりランニングコストやメンテナンス(オーバーホール)頻度が増大するが、スピンドル11aにブレード11が接合されているため、剛性が高い。
また、軸受タイプのブレード11は、ブレード11の種類を種々選択可能であり、エアスピンドルタイプに比べてブレード11の摩耗代を多く取ることができる。このため、軸受タイプのブレード11は、エアスピンドルタイプに比べて、1枚のブレード11でダイシング可能な炭化珪素ウエハ1の枚数が多い。軸受タイプのブレード11を用いる場合、ブレード11の回転数は、例えば8000rpm以上15000rpm以下程度であることが好ましい。
エアスピンドルタイプのブレード11は、ブレード11を空気で浮かせて回転させる機構を備える。エアスピンドルタイプのブレード11は、スピンドル11aと接触しない状態で回転するため、軸受タイプと比べて振動に弱く、剛性が低いが、軸受タイプよりも高速回転可能である。エアスピンドルタイプのブレード11を用いる場合、ブレード11の回転数は、例えば40000rpm以上57500rpm以下程度であることが好ましい。
ブレード11には、例えばダイヤモンドカッター等の砥石を用いてもよい。また、ブレード11は、スピンドル11aを1本(1スピンドル)または2本(2スピンドル)とし、1段目の切削工程で形成した深さd1の切削溝4を、2段目の切削工程で切り込み量を変えてさらに深さd2分だけ切削して処理完了する制御機構を備える。また、ブレード11は、炭化珪素ウエハ1の主面1a,1bに対して刃先の突出量が一定となるように自動制御される。このため、炭化珪素ウエハ1の面内において切削溝4の深さd1,d2は一定に保たれる。また、ブレード11の刃幅は、1,2段目の切削工程ともに同じであってもよいし、2段目の切削工程で用いるブレード11の刃幅を1段目の切削工程で用いるブレード11の刃幅よりも狭くしてもよい。
ブレード11が1スピンドルの場合、例えば2段の切削工程に共通の1つのブレード11が用いられ、1,2段目の切削工程ともにブレード11の刃幅が同じとなる。1,2段目の切削工程ともにブレード11の刃幅が同じである場合、図3Aに示すように、切削溝4は、炭化珪素ウエハ1の第1主面1aから第2主面1bへ向かうにしたがって開口幅を狭くした略台形状の断面形状となる。すなわち、切削溝4は、ブレード11の刃幅に応じた上底の開口幅(第1主面1aの開口幅)w1および下底の開口幅(第2主面1bの開口幅)w2をもつ略台形状の断面形状となる。切削溝4は、炭化珪素ウエハ1の第1主面1aで最も開口幅(上底の開口幅)w1が広く、第2主面1bで最も開口幅(下底の開口幅)w2が狭い。切削溝4の側壁(すなわち半導体チップの側面)には、2段の切削工程に共通のブレード11の先端形状に応じた傾斜が形成される。
ブレード11が2スピンドルの場合、2段の切削工程それぞれで異なるブレード11を用いるため、2段目の切削工程で用いるブレード11の刃幅を1段目の切削工程で用いるブレード11の刃幅よりも狭くしてもよい。この場合、図3Bに示すように、切削溝4は、炭化珪素ウエハ1の第1主面1a側から深さd1の位置において、側壁に2つのブレード11の刃幅差による段差(以下、側壁段差とする)4aが形成される。切削溝4は、炭化珪素ウエハ1の第1主面1aから側壁段差4aまでの部分で、1段目の切削工程で用いるブレード11の刃幅に応じた上底および下底の開口幅w1,w11をもつ略台形状の断面形状となる。かつ、切削溝4は、側壁段差4aから炭化珪素ウエハ1の第2主面1bまでの部分で、炭化珪素ウエハ1の第1主面1aから側壁段差4aまでの部分の開口部に連続して、当該開口部よりも狭い上底および下底の開口幅w12,w2をもつ略台形状の断面形状となる。
次に、ダイシング装置からダイシングフレームを取り外し、一般的な方法によりダイシングテープから半導体チップを剥離(ピックアップ)することで、炭化珪素半導体装置チップが完成する。
以上、説明したように、実施の形態によれば、ブレードによる炭化珪素ウエハの切削工程を2段連続で行い、当該2段の切削工程で炭化珪素ウエハの切削溝の深さを段階的に深くして炭化珪素ウエハを切断する。このとき、炭化珪素ウエハのSi面をダウンカットで切削し、炭化珪素ウエハのC面をアップカットで切削することで、ブレードの割れが抑制され、ブレードの表面状態が一定に保たれる。これにより、半導体チップのチッピングを無くすまたは抑制することができる、もしくは、チッピングサイズを許容範囲内に抑えることができる。したがって、品質の安定した半導体チップを得ることができる。
(実施例1)
次に、チップ裏面端部5bのチッピングサイズ(チップ裏面端部5bのチッピングの幅w4)について検証した。図5は、ブレードの回転数とチップ裏面端部のチッピングサイズとの関係を示す特性図である。上述した実施の形態にかかる半導体装置の製造方法にしたがって、ブレード11の回転数を35000rpm〜55000rpmの範囲で種々変更して炭化珪素ウエハ1をダイシングした。ブレード11の軸受けの機構は、エアスピンドルタイプとした。切断した複数の半導体チップにおいて、チップ裏面端部5bのチッピングの幅w4を測定した結果を図5に示す。
図5に示す結果より、チップ裏面端部5bのチッピングの幅w4は、回転数を35000rpm〜55000rpmの範囲において、最大(Max.)で70μm以下程度になり、最小(Min.)で30μm以下程度になることが確認された。チップ裏面端部5bのチッピングの幅w4の平均値は、ほぼ40μm以下程度になった。すなわち、チップ裏面端部5bのチッピングサイズを許容範囲内に抑えることができる。この図5の結果は、炭化珪素ウエハ1の第1主面1aがSi面およびC面のいずれであっても(すなわち図1A,1B,2A,2Bのいずれの切削工程であっても)同様に得られることが発明者により確認されている。
また、図示省略するがブレード11の回転数が35000rpm未満である場合や、55000rpmを超える場合においても、図5と同程度の結果が得られることが発明者により確認されている。また、図示省略するがブレード11の軸受けの機構が軸受タイプである場合においても、ブレード11の回転数を8000rpm以上15000rpm以下程度とすることで、図5と同程度の結果が得られることが発明者によるシミュレーションにより確認されている。また、図示省略するが、チップおもて面端部5aのチッピングサイズ(チップおもて面端部5aのチッピングの幅w3)も許容範囲内に抑えることができた。
(実施例2)
次に、チップ裏面端部5bのチッピング発生率を検証した。図6は、チップ裏面端部のチッピング発生率を示す特性図である。実施例1の複数の試料(半導体チップ)のうち、ブレード11の回転数を40000rpm〜50000rpmの範囲とした1枚の炭化珪素ウエハ1をダイシングして切り出した複数の半導体チップについて、チップ裏面端部5bのチッピング発生率を算出した(以下、実施例2とする)。その結果を、チップ裏面端部5bのチッピングサイズごとに分けて棒グラフで図6に示す。図6の注釈中の数値はチップ裏面端部5bのチッピングサイズである。
また、比較として、従来のダイシング方法(図7,8参照)を用いて、炭化珪素ウエハ101をダイシングして複数の半導体チップを切り出した。この従来のダイシング方法による炭化珪素ウエハ101のダイシングは、9枚の炭化珪素ウエハ101に対して行った(以下、従来例1〜9とする)。これら従来例1〜9について、複数の半導体チップのチップ裏面端部5bのチッピング発生率を算出した結果も図6に示す。従来例1〜9のダイシング条件は、炭化珪素ウエハ101をダイシングするための切削工程を1段とした以外は実施例2と同様である。
図6に示す結果より、従来例1〜9では、チップ裏面端部のチッピングサイズが100μm以上となる半導体チップも存在することが確認された。それに対して、実施例2においては、すべての半導体チップにおいて、チップ裏面端部5bのチッピングサイズが50μm未満であることが確認された。また、実施例2においては、チップ裏面端部のチッピングサイズが50μm未満となる半導体チップ数が従来例1〜9よりも少ないことが確認された。すなわち、実施例2は、従来例1〜9よりも複数の半導体チップをほぼ同じ品質で安定して得ることができることがわかる。
以上において本発明は、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述したブレードによる炭化珪素ウエハをダイシングに超音波振動を併用して、ブレードに超音波振動を加えることで炭化珪素ウエハの加工負担を軽減させた構成としてもよい。また、炭化珪素ウエハは、炭化珪素からなる出発基板上に炭化珪素層をエピタキシャル成長させたエピタキシャルウエハであってもよい。
以上のように、本発明にかかる炭化珪素半導体装置の製造方法は、炭化珪素基板(半導体ウエハ)を用いて作製(製造)される半導体装置に有用である。
1 炭化珪素ウエハ
1a 炭化珪素ウエハの第1主面(おもて面)
1b 炭化珪素ウエハの第2主面(裏面)
1c 炭化珪素ウエハの、1段目の切削工程で切削溝が形成される第1主面側の部分
1d 炭化珪素ウエハの、1段目の切削工程の切り残し部
1e 炭化珪素ウエハのオリエンテーションフラット
2 おもて面素子構造
3 スクライブライン
4 切削溝
4a 切削溝の側壁段差
5a チップおもて面端部
5b チップ裏面端部
11 ブレード
11a スピンドル
12 炭化珪素ウエハの進行方向に対するブレードの後方
13 炭化珪素ウエハの進行方向に対するブレードの前方
d1 炭化珪素ウエハ1の切削深さ(1段目の切削工程後の切削溝の深さ)
d2 炭化珪素ウエハ1の切削深さ
d1’ 切削溝の最終的な深さ(2段目の切削工程後の切削溝の深さ)
R、R’ ブレードの回転方向
t1 炭化珪素ウエハの厚さ
t2 炭化珪素ウエハの、1段目の切削工程の切り残し部の厚さ
w1,w2,w11,w12 切削溝の開口幅
w3 チップおもて面端部のチッピングサイズ(チッピングの幅)
w4 チップ裏面端部のチッピングサイズ(チッピングの幅)
X,Y 炭化珪素ウエハの主面に平行な方向(炭化珪素ウエハの進行方向)
Z ブレードの切削深さ方向

Claims (14)

  1. 炭化珪素からなる半導体基板を切断して当該半導体基板から複数の半導体チップを切り出す炭化珪素半導体装置の製造方法であって、
    前記半導体基板を当該半導体基板の第1主面に平行な方向へ移動させながら、中心軸を固定された第1ブレードにより前記半導体基板を第1主面から切削し、前記半導体基板の第1主面から前記半導体基板の厚さ未満の深さの切削溝を形成する第1切削工程と、
    前記半導体基板を当該半導体基板の第1主面に平行な方向へ移動させながら、中心軸を固定された第2ブレードにより前記切削溝の深さを深くして前記半導体基板の第2主面に達する深さで前記半導体基板を切削し、前記半導体基板を前記切削溝の部分で切断する第2切削工程と、
    を含み、
    前記半導体基板は第1主面がSi面で第2主面がC面であり、
    前記第1切削工程では、前記半導体基板の前記第1主面に平行な方向に対し、前記第1ブレードの後方で当該第1ブレードが前記半導体基板に近づく回転方向に当該第1ブレードを回転させ、
    前記第2切削工程では、前記半導体基板の前記第1主面に平行な方向に対し、前記第2ブレードの後方で当該第2ブレードが前記半導体基板から遠ざかる回転方向に当該第2ブレードを回転させることを特徴とする炭化珪素半導体装置の製造方法。
  2. 前記第2切削工程では、
    前記半導体基板の前記第1主面に平行な方向を、前記第1切削工程時と同じ前記第1主面に平行な方向とし、
    前記第2ブレードの回転方向を、前記第1ブレードの回転方向と逆の回転方向にすることを特徴とする請求項1に記載の炭化珪素半導体装置の製造方法。
  3. 前記第2切削工程では、
    前記第2ブレードの回転方向を、前記第1ブレードの回転方向と同じ回転方向とし、
    前記半導体基板の前記第1主面に平行な方向を、前記第1切削工程における前記半導体基板の前記第1主面に平行な方向と反対方向にすることを特徴とする請求項1に記載の炭化珪素半導体装置の製造方法。
  4. 前記第2切削工程では、
    前記半導体基板を第1主面に平行に180度回転させて、前記半導体基板の結晶方向に対する前記半導体基板の前記第1主面に平行な方向を、前記第1切削工程時と同じ前記第1主面に平行な方向にすることを特徴とする請求項3に記載の炭化珪素半導体装置の製造方法。
  5. 炭化珪素からなる半導体基板を切断して当該半導体基板から複数の半導体チップを切り出す炭化珪素半導体装置の製造方法であって、
    前記半導体基板を当該半導体基板の第1主面に平行な方向へ移動させながら、中心軸を固定された第1ブレードにより前記半導体基板を第1主面から切削し、前記半導体基板の第1主面から前記半導体基板の厚さ未満の深さの切削溝を形成する第1切削工程と、
    前記半導体基板を当該半導体基板の第1主面に平行な方向へ移動させながら、中心軸を固定された第2ブレードにより前記切削溝の深さを深くして前記半導体基板の第2主面に達する深さで前記半導体基板を切削し、前記半導体基板を前記切削溝の部分で切断する第2切削工程と、
    を含み、
    前記半導体基板は第1主面がC面で第2主面がSi面であり、
    前記第1切削工程では、前記半導体基板の前記第1主面に平行な方向に対し、前記第1ブレードの後方で当該第1ブレードが前記半導体基板から遠ざかる回転方向に当該第1ブレードを回転させ、
    前記第2切削工程では、前記半導体基板の前記第1主面に平行な方向に対し、前記第2ブレードの後方で当該第2ブレードが前記半導体基板に近づく回転方向に当該第2ブレードを回転させることを特徴とする炭化珪素半導体装置の製造方法。
  6. 前記第2切削工程では、
    前記半導体基板の前記第1主面に平行な方向を、前記第1切削工程時と同じ前記第1主面に平行な方向とし、
    前記第2ブレードの回転方向を、前記第1ブレードの回転方向と逆の回転方向にすることを特徴とする請求項5に記載の炭化珪素半導体装置の製造方法。
  7. 前記第2切削工程では、
    前記第2ブレードの回転方向を、前記第1ブレードの回転方向と同じ回転方向とし、
    前記半導体基板の前記第1主面に平行な方向を、前記第1切削工程における前記半導体基板の前記第1主面に平行な方向と反対方向にすることを特徴とする請求項5に記載の炭化珪素半導体装置の製造方法。
  8. 前記第2切削工程では、
    前記半導体基板を第1主面に平行に180度回転させて、前記半導体基板の結晶方向に対する前記半導体基板の前記第1主面に平行な方向を、前記第1切削工程時と同じ前記第1主面に平行な方向にすることを特徴とする請求項7に記載の炭化珪素半導体装置の製造方法。
  9. 前記第2ブレードの刃幅は、前記第1ブレードの刃幅と等しいことを特徴とする請求項1〜8のいずれか一つに記載の炭化珪素半導体装置の製造方法。
  10. 前記第2ブレードとして、前記第1ブレードを用いることを特徴とする請求項1〜9のいずれか一つに記載の炭化珪素半導体装置の製造方法。
  11. 前記第2ブレードの刃幅は、前記第1ブレードの刃幅よりも狭いことを特徴とする請求項1〜8のいずれか一つに記載の炭化珪素半導体装置の製造方法。
  12. 前記第1ブレードの回転数を5000rpm以上60000rpm以下とすることを特徴とする請求項1〜11のいずれか一つに記載の炭化珪素半導体装置の製造方法。
  13. 前記第2ブレードの回転数を5000rpm以上60000rpm以下とすることを特徴とする請求項1〜12のいずれか一つに記載の炭化珪素半導体装置の製造方法。
  14. 前記第1切削工程では、前記切削溝を形成した箇所に残る前記半導体基板の厚さを10μm以上350μm以下とすることを特徴とする請求項1〜13のいずれか一つに記載の炭化珪素半導体装置の製造方法。
JP2017001387A 2017-01-06 2017-01-06 炭化珪素半導体装置の製造方法 Pending JP2018113288A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001387A JP2018113288A (ja) 2017-01-06 2017-01-06 炭化珪素半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001387A JP2018113288A (ja) 2017-01-06 2017-01-06 炭化珪素半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2018113288A true JP2018113288A (ja) 2018-07-19

Family

ID=62911313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001387A Pending JP2018113288A (ja) 2017-01-06 2017-01-06 炭化珪素半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2018113288A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009968A (ja) * 2019-07-03 2021-01-28 株式会社ディスコ デバイスチップの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009968A (ja) * 2019-07-03 2021-01-28 株式会社ディスコ デバイスチップの製造方法

Similar Documents

Publication Publication Date Title
US7964475B2 (en) Semiconductor wafer, method of manufacturing the same and semiconductor device
US7405137B2 (en) Method of dicing a semiconductor substrate into a plurality of semiconductor chips by forming two cutting grooves on one substrate surface and forming one cutting groove on an opposite substrate surface that overlaps the two cutting grooves
US7183137B2 (en) Method for dicing semiconductor wafers
JP4471852B2 (ja) 半導体ウェハ及びそれを用いた製造方法ならびに半導体装置
JP6132621B2 (ja) 半導体単結晶インゴットのスライス方法
TWI789481B (zh) 半導體裝置
JPH04276645A (ja) 化合物半導体ウエーハのダイシング方法
US20140273402A1 (en) Method for cutting wafer
JP2016009706A (ja) 半導体デバイスの製造方法、半導体基板および半導体デバイス
US20190035684A1 (en) Method for manufacturing silicon carbide semiconductor device
JP2010016188A (ja) 半導体装置の製造方法および半導体装置
JP6455166B2 (ja) 半導体ウエハおよび半導体チップの製造方法
JP2018113288A (ja) 炭化珪素半導体装置の製造方法
JP7209513B2 (ja) 半導体チップの製造方法および半導体ウェハ
JP4491036B2 (ja) 半導体装置の製造方法
JP2017022422A (ja) スクライブ方法及びスクライブ装置
JP2009016420A (ja) 半導体装置の製造方法
JP7135352B2 (ja) 半導体装置の製造方法
JP5181209B2 (ja) 半導体ウエハのダイシング方法
JP5886522B2 (ja) ウェーハ生産方法
JP5989422B2 (ja) 半導体装置の製造方法
JP2014003198A (ja) ウエーハの加工方法
KR102668028B1 (ko) 피가공물의 가공 방법
US9954059B1 (en) Semiconductor wafer and method of manufacturing semiconductor element
JP2000031096A (ja) 基板を切断する方法