JP2018042426A - 回転子積層鉄心の製造方法及び回転子積層鉄心の製造装置 - Google Patents

回転子積層鉄心の製造方法及び回転子積層鉄心の製造装置 Download PDF

Info

Publication number
JP2018042426A
JP2018042426A JP2016176553A JP2016176553A JP2018042426A JP 2018042426 A JP2018042426 A JP 2018042426A JP 2016176553 A JP2016176553 A JP 2016176553A JP 2016176553 A JP2016176553 A JP 2016176553A JP 2018042426 A JP2018042426 A JP 2018042426A
Authority
JP
Japan
Prior art keywords
core members
iron core
hole
weight
block body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016176553A
Other languages
English (en)
Other versions
JP6781597B2 (ja
Inventor
亮 長井
Akira Nagai
亮 長井
謙治 香月
Kenji Katsuki
謙治 香月
加藤 剛
Takeshi Kato
剛 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui High Tec Inc
Original Assignee
Mitsui High Tec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui High Tec Inc filed Critical Mitsui High Tec Inc
Priority to JP2016176553A priority Critical patent/JP6781597B2/ja
Priority to CA2977775A priority patent/CA2977775C/en
Priority to US15/694,967 priority patent/US10848039B2/en
Priority to CN201710794184.7A priority patent/CN107809156B/zh
Publication of JP2018042426A publication Critical patent/JP2018042426A/ja
Application granted granted Critical
Publication of JP6781597B2 publication Critical patent/JP6781597B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/16Centering rotors within the stator; Balancing rotors
    • H02K15/165Balancing the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

【課題】平坦性に優れた回転子積層鉄心を得る。【解決手段】回転子積層鉄心の製造方法は、複数のブロック体Bの重量アンバランスをそれぞれ測定する第1の工程と、第1の工程における測定結果に基づいて、重量アンバランスを調整するための複数のブロック体Bの積層条件を決定する第2の工程と、積層条件に基づいて複数のブロック体Bを積層する第3の工程とを含む。【選択図】図5

Description

本開示は、回転子積層鉄心の製造方法及び回転子積層鉄心の製造装置に関する。
回転子積層鉄心は、通常、金属板(例えば、電磁鋼板)を所定形状に打ち抜いて得られる複数の打抜部材を積層することにより得られる。一般に、金属板(例えば、電磁鋼板)の厚さは、完全に均一ではなく、僅かに変動している。そのため、金属板から打抜部材を所定形状で打ち抜いて1枚ずつ積層し、回転子積層鉄心を得た場合、回転子積層鉄心の積厚(積層方向における回転子積層鉄心の高さ)に偏りが生ずる場合がある。積厚の偏り(以下、「積厚偏差」という。)と回転子積層鉄心の重量バランスの偏り(以下、「重量アンバランス」という。)との間には正の相関が存在することが知られている。回転子積層鉄心に重量アンバランスが存在すると、当該回転子積層鉄心を用いてモータを構成した場合、モータのトルクにばらつき等が生じ、モータ性能に影響を及ぼすことがある。
そこで、特許文献1は、回転子積層鉄心の製造方法を開示している。当該製造方法は、金属板から打抜部材を打ち抜いて1枚ずつ積層することにより、積層方向に貫通する複数の空洞孔が設けられた積層体を得る工程と、積層体の積厚偏差を取得する工程と、取得した積厚偏差に基づいて各空洞孔に充填する樹脂量を決定する工程と、決定された樹脂量に基づいて各空洞孔に樹脂材料を充填して固化することにより、複数の打抜部材を一体化する工程とを含む。当該製造方法によれば、例えば、積層体のうち積厚偏差が小さい箇所に位置する空洞孔への樹脂量を多くすることにより、重量アンバランスを抑制することができる。
特開2012−100499号公報
ところで、回転子積層鉄心を用いて回転子(ロータ)を構成する場合、一般に、回転子積層鉄心のうちその積層方向における両端面にはそれぞれ、シャフトを固定するための端面板が取り付けられる。しかしながら、特許文献1に記載の製造方法によれば、回転子積層鉄心の重量アンバランスは抑制されるものの、積厚偏差は回転子積層鉄心に存在したままである。そのため、端面板と回転子積層鉄心の端面との間に隙間が生じ、端面板の回転子積層鉄心に対する組み付けが不安定になり得る。
そこで、本開示は、平坦性に優れた回転子積層鉄心を得ることが可能な回転子積層鉄心の製造方法及び回転子積層鉄心の製造装置を説明する。
本開示の一つの観点に係る回転子積層鉄心の製造方法は、複数の鉄心部材の重量アンバランスをそれぞれ測定する第1の工程と、第1の工程における測定結果に基づいて、重量アンバランスを調整するための複数の鉄心部材の積層条件を決定する第2の工程と、積層条件に基づいて複数の鉄心部材を積層する第3の工程とを含む。
本開示の一つの観点に係る回転子積層鉄心の製造方法では、第2の工程において、各鉄心部材の重量アンバランスの測定結果に基づいて、各鉄心部材の積層条件を決定している。重量アンバランスとは、鉄心部材の重量バランスの偏りを意味し、具体的には、鉄心部材の中心軸周りにおける重量分布、又は積層鉄心の重心位置の当該中心軸からのずれ量をいう。ここで、第2の工程において、各鉄心部材が積層されたときに重量アンバランスが最も小さくなるように積層条件を決定することにより、複数の鉄心部材が積層されることにより得られる積層体の重量アンバランスを抑制することが可能となる。しかも、積層体の空洞孔に樹脂材料を注入して積層体の完成後に重量アンバランスを調整していた特許文献1の方法に対して、本開示の一つの観点に係る回転子積層鉄心の製造方法では、各鉄心部材を所定の積層条件に基づいて積層することにより、樹脂材料等の他の部材に依らずに、積層体の形成時に重量アンバランスを調整している。そのため、積層体の積層方向における厚さが必然的に均一に近づく。従って、平坦性に優れた回転子積層鉄心を得ることが可能となる。
第2の工程では、積層条件として、複数の鉄心部材のそれぞれについて転積の要否を決定してもよい。
第2の工程では、積層条件として、複数の鉄心部材のそれぞれについて反転の要否を決定してもよい。
本開示の一つの観点に係る回転子積層鉄心の製造方法は、第1の工程における測定結果に基づいて、重量アンバランスを補助的に調整するための補助条件として、(A)複数の鉄心部材が積層された積層体の積層方向に延びるように積層体に設けられた貫通孔内に挿入される永久磁石の位置、(B)貫通孔内に挿入される永久磁石の重さ、又は(C)貫通孔内に充填される樹脂材料の量を決定する第4の工程と、第3及び第4の工程の後に、補助条件に基づいて、貫通孔内に永久磁石を挿通するか、又は貫通孔内に樹脂材料を充填する第5の工程とをさらに含んでもよい。この場合、完成後の積層体の重量アンバランスが補助条件A〜Cに基づいてさらに調整される。そのため、積層体の形成時のみならず、積層体の完成後においても、積層体の重量アンバランスを細かく調整できる。従って、積層体の重量アンバランスをいっそう抑制することが可能となる。
複数の鉄心部材はそれぞれ、金属板から打ち抜かれた複数の打抜部材が積層されたブロック体であり、第1の工程では、複数の鉄心部材の積厚をそれぞれ測定してもよい。重量アンバランスを直接測定する測定機は一般に高価であるため、測定対象を積厚とすることにより低コストで測定を行うことが可能となる。また、打抜部材は一般にごく薄いので、打抜部材の積厚を測定するには、やはり高価な測定機を要したり、測定作業が煩雑になったりしうる。しかしながら、複数の打抜部材が積層されたブロック体は相対的に大きな体積を有し、取り扱いやすいので、簡易且つ低コストでブロック体の積厚を測定することが可能となる。
本開示の他の観点に係る回転子積層鉄心の製造装置は、複数の鉄心部材の重量アンバランスをそれぞれ測定するように構成された測定部と、複数の鉄心部材を積層するように構成された積層部と、制御部とを備える。制御部は、測定部を制御して、複数の鉄心部材の重量アンバランスをそれぞれ測定させる第1の処理と、第1の処理における測定結果に基づいて、重量アンバランスを調整するための複数の鉄心部材の積層条件を決定する第2の処理と、積層部を制御して、積層条件に基づいて複数の鉄心部材を積層させる第3の処理とを実行する。
本開示の他の観点に係る回転子積層鉄心の製造装置では、制御部は、第2の処理において、各鉄心部材の重量アンバランスの測定結果に基づいて、各鉄心部材の積層条件を決定している。ここで、第2の処理において、各鉄心部材が積層されたときに重量アンバランスが最も小さくなるように積層条件を決定することにより、複数の鉄心部材が積層されることにより得られる積層体の重量アンバランスを抑制することが可能となる。しかも、積層体の空洞孔に樹脂材料を注入して積層体の完成後に重量アンバランスを調整していた特許文献1の方法に対して、本開示の他の観点に係る回転子積層鉄心の製造装置では、各鉄心部材を所定の積層条件に基づいて積層することにより、樹脂材料等の他の部材に依らずに、積層体の形成時に重量アンバランスを調整している。そのため、積層体の積層方向における厚さが必然的に均一に近づく。従って、平坦性に優れた回転子積層鉄心を得ることが可能となる。
制御部は、第2の処理において、積層条件として、複数の鉄心部材のそれぞれについて転積の要否を決定してもよい。
制御部は、第2の処理において、複数の鉄心部材のそれぞれについて反転の要否を決定してもよい。
本開示の他の観点に係る回転子積層鉄心の製造装置は、複数の鉄心部材が積層された積層体の積層方向に延びるように積層体に設けられた貫通孔内に、永久磁石の挿入作業又は樹脂材料の充填作業を行う作業部をさらに備え、制御部は、第1の処理における測定結果に基づいて、重量アンバランスを補助的に調整するための補助条件として、(A)貫通孔内に挿入される永久磁石の位置、(B)貫通孔内に挿入される永久磁石の重さ、又は(C)貫通孔内に充填される樹脂材料の量を決定する第4の処理と、第3及び第4の処理の後に作業部を制御して、補助条件に基づいて、貫通孔内に永久磁石を挿通させるか、又は貫通孔内に樹脂材料を充填させる第5の処理とをさらに実行してもよい。この場合、完成後の積層体の重量アンバランスが補助条件A〜Cに基づいてさらに調整される。そのため、積層体の形成時のみならず、積層体の完成後においても、積層体の重量アンバランスを細かく調整できる。従って、積層体の重量アンバランスをいっそう抑制することが可能となる。
複数の鉄心部材はそれぞれ、金属板から打ち抜かれた複数の打抜部材が積層されたブロック体であり、制御部は、第1の処理において測定部を制御して、複数の鉄心部材の積厚をそれぞれ測定させてもよい。重量アンバランスを直接測定する測定機は一般に高価であるため、測定対象を積厚とすることにより低コストで測定を行うことが可能となる。また、打抜部材は一般にごく薄いので、打抜部材の積厚を測定するには、やはり高価な測定機を要したり、測定作業が煩雑になったりしうる。しかしながら、複数の打抜部材が積層されたブロック体は相対的に大きな体積を有し、取り扱いやすいので、簡易且つ低コストでブロック体の積厚を測定することが可能となる。
本開示に係る回転子積層鉄心の製造方法及び回転子積層鉄心の製造装置によれば、平坦性に優れた回転子積層鉄心を得ることが可能となる。
図1は、回転子積層鉄心の一例を示す斜視図である。 図2は、図1のII−II線断面図である。 図3は、積層体の分解斜視図である。 図4は、回転子積層鉄心の製造装置の一例を示す概略図である。 図5は、積層装置の一例を示す概略斜視図である。 図6は、回転子積層鉄心の製造方法の一例を説明するためのフローチャートである。 図7は、積厚の測定方法を説明するための図である。 図8は、積層条件の決定方法を説明するための図である。 図9は、ブロック体の積層過程を説明するための図である。 図10は、回転子の一例を示す側面図である。 図11は、重量アンバランスが解消していない積層体を示す側面図である。
以下に説明される本開示に係る実施形態は本発明を説明するための例示であるので、本発明は以下の内容に限定されるべきではない。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。
[回転子積層鉄心の構成]
まず、図1〜図3を参照して、回転子積層鉄心1の構成について説明する。回転子積層鉄心1は、回転子2(ロータ)(図10参照。詳しくは後述する。)の一部である。回転子が固定子(ステータ)と組み合わせられることにより、電動機(モータ)が構成される。回転子積層鉄心1は、図1に示されるように、積層体10と、複数の永久磁石12と、複数の樹脂材料14とを備える。
積層体10は、複数のブロック体B(鉄心部材)がこの順に積層されている。図1〜図3に示される例では、積層体10は、6つのブロック体B1〜B6が上側から下側に向けてこの順に積層されている。ブロック体Bの積層方向(以下、単に「積層方向」という。)において隣り合うブロック体B同士は、例えば溶接等(図示せず)によって接合されて一体化されている。
ブロック体Bは、図2及び図3に示されるように、複数の打抜部材30が積み重ねられた積層体である。積層方向において隣り合う打抜部材30同士は、カシメ部16によって締結されている。積層方向において隣り合うブロック体B同士は、カシメ部16によって締結されていない。具体的には、カシメ部16は、図2に示されるように、ブロック体Bの最下層以外をなす打抜部材30に形成されたカシメ16aと、ブロック体Bの最下層をなす打抜部材30に形成された貫通孔16bとを有する。カシメ16aは、打抜部材30の表面側に形成された凹部と、打抜部材30の裏面側に形成された凸部とで構成されている。一の打抜部材30のカシメ16aの凹部は、当該一の打抜部材30の表面側に隣り合う他の打抜部材30のカシメ16aの凸部と接合される。一の打抜部材30のカシメ16aの凸部は、当該一の打抜部材30の裏面側において隣り合う更に他の打抜部材30のカシメ16aの凹部と接合される。貫通孔16bには、回転子積層鉄心1の最下層に隣接する打抜部材30のカシメ16aの凸部が接合される。貫通孔16bは、ブロック体Bを連続して製造する際、既に製造されたブロック体Bに対して次に製造するブロック体Bがカシメ16aによって締結されるのを防ぐ機能を有する。
積層体10は、図1に示されるように、円筒形状を呈している。積層体10の中央部分には、図1及び図2に示されるように、中心軸Axに沿って延びるように積層体10を貫通する軸孔10aが設けられている。軸孔10aは、積層体10の積層方向(以下、単に「積層方向」という。)に延びている。積層方向は、中心軸Axの延在方向でもある。軸孔10a内には、シャフト20(図10参照。詳しくは後述する。)が挿通される。
積層体10には、複数の磁石挿入孔10b(貫通孔)及び複数の凹部10cが形成されている。磁石挿入孔10bは、図1及び図3に示されるように、積層体10の外周縁に沿って所定間隔で並んでいる。磁石挿入孔10bは、図2に示されるように、中心軸Ax(積層方向)に沿って延びると共に積層体10を貫通している。
磁石挿入孔10bの形状は、本実施形態では、積層体10の外周縁に沿って延びる長孔である。磁石挿入孔10bの数は、本実施形態では8個である。磁石挿入孔10bの位置、形状及び数は、モータの用途、要求される性能などに応じて変更してもよい。
凹部10cは、軸孔10a内に配置されている。凹部10cは、図1〜図3に示されるように、軸孔10aの内周面から径方向外方に向けて窪んでいる。本実施形態では、一対の凹部10cが中心軸Axに対して対向している。すなわち、2つの凹部10cは、中心軸Axに関して180°おきに軸孔10a内に配置されている。凹部10cは、例えば、回転子積層鉄心1とシャフト20とを結合するキー部材が挿通されるキー溝として機能する。凹部10cの形状及び数は、モータの用途、要求される性能などに応じて変更してもよい。
永久磁石12は、図1及び図2に示されるように、磁石挿入孔10bに挿入されている。磁石挿入孔10b内に挿通される永久磁石12の数は、一つであってもよいし、複数であってもよい。永久磁石12は、磁石挿入孔10b内において、積層方向に複数並んでいてもよいし、積層体10の周方向に複数並んでいてもよいし、径方向に複数並んでいてもよい。永久磁石12の種類は、モータの用途、要求される性能などに応じて決定すればよく、例えば、焼結磁石であってもよいし、ボンド磁石であってもよい。
樹脂材料14は、永久磁石12が挿入された後の磁石挿入孔10b内に充填されている。樹脂材料14は、永久磁石12を磁石挿入孔10b内に固定する機能と、上下方向で隣り合う打抜部材30同士を接合する機能とを有する。樹脂材料14としては、例えば熱硬化性樹脂が挙げられる。熱硬化性樹脂の具体例としては、例えば、エポキシ樹脂と、硬化開始剤と、添加剤とを含む樹脂組成物が挙げられる。添加剤としては、フィラー、難燃剤、応力低下剤などが挙げられる。なお、樹脂材料14として熱可塑性樹脂を使用してもよい。
[回転子積層鉄心の製造装置]
続いて、図4及び図5を参照して、回転子積層鉄心1の製造装置100について説明する。なお、図5では、ブロック体Bを簡略化して示している。
製造装置100は、帯状の金属板である電磁鋼板W(被加工板)から回転子積層鉄心1を製造するための装置である。製造装置100は、図4に示されるように、アンコイラー110と、送出装置120と、打抜装置130と、積層装置140と、磁石取付装置150(作業部)と、コントローラ160(制御部)とを備える。
アンコイラー110は、コイル状に巻回された帯状の電磁鋼板Wであるコイル材111が装着された状態で、コイル材111を回転自在に保持する。送出装置120は、電磁鋼板Wを上下から挟み込む一対のローラ121,122を有する。一対のローラ121,122は、コントローラ160からの指示信号に基づいて回転及び停止し、電磁鋼板Wを打抜装置130に向けて間欠的に順次送り出す。
コイル材111を構成する電磁鋼板Wの長さは、例えば500m〜10000m程度であってもよい。電磁鋼板Wの厚さは、例えば0.1mm〜0.5mm程度であってもよい。電磁鋼板Wの厚さは、より優れた磁気的特性を有する回転子積層鉄心1を得る観点から、例えば0.1mm〜0.3mm程度であってもよい。電磁鋼板Wの幅は、例えば50mm〜500mm程度であってもよい。
打抜装置130は、コントローラ160からの指示信号に基づいて動作する。打抜装置130は、送出装置120によって間欠的に送り出される電磁鋼板Wを順次打ち抜き加工して打抜部材30を形成する機能と、打ち抜き加工によって得られた打抜部材30を順次積層しつつ重ね合わせて複数のブロック体Bを製造する機能と、複数のブロック体Bを仮積みして仮積層体11を構成する機能とを有する。仮積層体11は、打抜装置130から排出されると、打抜装置130と積層装置140との間を延びるように設けられたコンベアCv1に載置される。コンベアCv1は、コントローラ160からの指示に基づいて動作し、仮積層体11を積層装置140に送り出す。
積層装置140は、打抜装置130によって製造されたブロック体Bを所定の積層条件に基づいて積層する機能を有する。積層装置140は、図5に示されるように、回転テーブル141と、搬送アーム142,143と、積厚測定機144(測定部)とを有する。
回転テーブル141は、円形状を呈しており、コントローラ160からの指示信号に基づいて中心軸周りに回転可能に構成されている。回転テーブル141の主面には、複数の載置台(図5では6つの載置台)141aが設けられている。各載置台141aは、回転テーブル141の外周に沿って略等間隔に並んでいる。各載置台141aには、一つのブロック体Bが載置される。
搬送アーム142,143はそれぞれ、コントローラ160からの指示信号に基づいて動作する。搬送アーム142,143はそれぞれ、一つのブロック体Bを把持及び搬送可能に構成されている。具体的には、搬送アーム142は、コンベアCv1によって搬送された仮積層体11のうちから一つのブロック体Bを把持し、当該ブロック体Bを回転テーブル141の一つの載置台141a上に搬送する機能を有する。搬送アーム143(積層部)は、回転テーブル141の一つの載置台141a上に載置されている一つのブロック体Bを把持し、積層装置140の下流側のコンベアCv2上に搬送する機能を有する。コンベアCv2は、コントローラ160からの指示に基づいて動作し、仮積層体11を磁石取付装置150に送り出す。
積厚測定機144は、コントローラ160からの指示信号に基づいて動作する。積厚測定機144は、回転テーブル141のうち外周縁側の領域(載置台141aが位置する領域)の上方に位置している。積厚測定機144は、各ブロック体Bの積厚(積層方向におけるブロック体Bの高さ)をそれぞれ測定する機能を有する。積厚測定機144は、積層方向から所定の荷重をブロック体Bに付与した状態でブロック体Bの積厚を測定する。ブロック体Bに付与される荷重は、ブロック体Bのサイズによって種々の大きさとなりうるが、例えば、加圧後のブロック体Bの厚さTが、加圧前のブロック体Bの厚さTの99.9%以上で且つ厚さT未満(0.999T≦T<T)を満たす大きさであってもよい。積厚測定機144によって測定されたブロック体Bの積厚のデータは、コントローラ160に送信される。
図4に戻って、磁石取付装置150は、コントローラ160からの指示信号に基づいて動作する。磁石取付装置150は、各磁石挿入孔10b内に少なくとも一つの永久磁石12を挿通する作業を行う機能と、永久磁石12が挿通された各磁石挿入孔10b内に樹脂材料14を充填する作業を行う機能とを有する。
コントローラ160は、例えば、記録媒体(図示せず)に記録されているプログラム又はオペレータからの操作入力等に基づいて、送出装置120、打抜装置130、積層装置140及び磁石取付装置150をそれぞれ動作させるための指示信号を生成し、送出装置120、打抜装置130、積層装置140及び磁石取付装置150に当該指示信号をそれぞれ送信する。コントローラ160は、積厚測定機144において測定されたブロック体Bの積厚のデータを受信し、当該データに基づいて当該ブロック体Bの重量アンバランスを算出する。ブロック体Bの重量アンバランスとは、ブロック体Bの重量バランスの偏りを意味し、具体的には、ブロック体Bの中心軸Ax周りにおける重量分布、又はブロック体Bの重心位置の中心軸Axからのずれ量をいう。
[回転子積層鉄心の製造方法]
続いて、図5〜図10を参照して、回転子積層鉄心1の製造方法について説明する。なお、図7〜図9では、ブロック体Bを簡略化して示している。
まず、ブロック体B1〜B6を形成する(図6のステップS1参照)。具体的には、コントローラ160の指示に基づいて、送出装置120によって電磁鋼板Wを打抜装置130に送り出し、打抜装置130によって電磁鋼板Wの被加工部位を所定形状に打ち抜く。これにより、打抜部材30が形成される。この打ち抜き加工を繰り返すことにより、複数の打抜部材30が互いにカシメ部16によって締結されながら所定枚数積層されて、一つのブロック体Bが製造される。その後、打抜装置130は、当該ブロック体B上に複数の打抜部材30をさらに積み重ね、当該ブロック体B上に他のブロック体Bを積層する。打抜装置130は、この繰り返しにより、複数のブロック体B1〜B6を積層して、ブロック体B1〜B6が下方から上方に向けてこの順に積層された仮積層体11を形成する(図5参照)。このとき、仮積層体11を構成するブロック体B1〜B6同士は、互いに締結されておらず、移動や取り外しが自由に行える状態である。
続いて、コントローラ160の指示に基づいて、打抜装置130において形成された仮積層体11をコンベアCv1が積層装置140まで搬送する。仮積層体11が積層装置140に到達すると、コントローラ160が搬送アーム142及び回転テーブル141に指示する。これにより、回転テーブル141が間欠的に回転しつつ、搬送アーム142が、仮積層体11の最も上に位置するブロック体Bから順に把持し、空所の載置台141aにブロック体Bを一つずつ載置する。すなわち、搬送アーム142は、ブロック体B6〜B1の順に、各ブロック体Bを回転テーブル141(空所の載置台141a)に載置する。
回転テーブル141の回転に伴い載置台141aに載置されたブロック体Bが回転テーブル141の中心軸周りを回転する過程で、載置台141a上のブロック体Bは、積厚測定機144の下方を通過する。ブロック体Bが積厚測定機144の下方に位置しているときに、積厚測定機144は、図9に示されるように、コントローラ160の指示に基づいてブロック体Bの積厚を測定する(第1の工程;第1の処理;図6のステップS2参照)。従って、積厚測定機144においては、ブロック体B6〜B1の順に積厚が測定される。積厚測定機144は、例えば、図7に示されるように、ブロック体Bの外周縁部分における積厚を4箇所測定する。当該測定箇所は、図7においては、ブロック体Bの中心軸Ax周りに90°おきに設定されている。これにより、ブロック体Bの4箇所の積厚T〜Tが得られる。なお、測定箇所の数は、4箇所に限られず、2箇所以上であってもよい。測定位置は、中心軸Ax周りに等間隔であってもよいし、任意の間隔であってもよい。
ところで、打抜部材30はいずれも同じ金型から打ち抜かれているので、いずれの打抜部材30の大きさも略同一である。また、打抜部材30が打ち抜かれる電磁鋼板Wの密度も、いずれの打抜部材30においても略同一である。そのため、各積厚T〜Tの大きさは、それぞれの測定箇所における重量と正の相関がある。従って、各積厚T〜Tを測定することにより、ブロック体Bの重量アンバランスが得られる。具体的には、ブロック体Bの中心軸Axとブロック体Bの主面との交点を原点Oとし、各積厚T〜Tをそれぞれ原点Oから各測定箇所に向かうベクトル<T>〜<T>とみなすと、ブロック体Bの重量アンバランス<G>は式1で表すことができる。なお、本明細書において、「<」及び「>」の記号は、これらで囲まれる値がベクトル量であることを意味する。
<G>=<T>+<T>+<T>+<T> ・・・(1)
コントローラ160は、積厚測定機144から各ブロック体B1〜B6の積厚のデータを受信すると、図8に示されるように、式1に基づいて各ブロック体B1〜B6の重量アンバランス<GB1>〜<GB6>を算出する。次に、コントローラ160は、各ブロック体B1〜B6について、転積の要否を決定する。ここで、「転積」とは、ブロック体B1〜B6を積層する際に、ブロック体B1〜B6同士の角度を相対的にずらすことをいい、ブロック体B1〜B6を回転させつつ積層することを含む。転積は、主に打抜部材30の板厚偏差を相殺することを目的に実施される。本実施形態では、各ブロック体B1〜B6には中心軸Axに関して対向する一対の凹部10cが設けられていることから、転積の角度が180°に設定されているが、ブロック体Bの形状に応じて転積の角度を任意の大きさに設定してもよい。転積処理は、本実施形態では打抜装置130の外部において行われるが(いわゆる型外転積)、打抜装置130の内部において行われてもよい。
コントローラ160による各ブロック体B1〜B6の転積の要否は、具体的には、次のように判定される。本実施形態では、転積の角度が180°に設定されているので、ブロック体Bの姿勢は、「転積不要」の場合と「転積要」の場合との2通りが存在する。「転積不要」の場合にはブロック体Bの重量アンバランス<G>が加算され、「転積要」の場合にはブロック体Bの重量アンバランス<G>が減算される。例えば、全てのブロック体B1〜B6が「転積不要」の場合には、ブロック体B1〜B6が積層された積層体10の重量アンバランス<GALL>は式2で表される。
<GALL>=+<GB1>+<GB2>+<GB3
+<GB4>+<GB5>+<GB6> ・・・(2)
また、例えば、ブロック体B1,B3,B5が「転積不要」で且つブロック体B2,B4,B6が「転積要」の場合には、ブロック体B1〜B6が積層された積層体10の重量アンバランス<GALL>は式3で表される。
<GALL>=+<GB1>−<GB2>+<GB3
−<GB4>+<GB5>−<GB6> ・・・(3)
各ブロック体B1〜B6の転積の要否を全て考慮すると、ブロック体B1〜B6が積層されて得られる積層体10の組み合わせの数は64通り(=2)存在する。すなわち、コントローラ160は、64通りの重量アンバランス<GALL>を算出し、これらの64通りの重量アンバランス<GALL>の大きさ|<GALL>|が最も小さい積層体10における各ブロック体B1〜B6の転積の要否を積層条件として決定する(第2の工程;第2の処理;ステップS3)。すなわち、コントローラ160は、転積の要否に関する全ての組み合わせについて仮想的な積層体10を得た後に、仮想的な積層体10のうち大きさ|<GALL>|が最も小さいものを判別している。なお、ベクトル量が記号「|」で囲まれたものは、当該ベクトル量の絶対値(スカラー)を示す。
こうして積層条件が得られると、コントローラ160は、図9に示されるように、搬送アーム143に指示し、当該積層条件に基づいてブロック体B1〜B6の姿勢を変化させつつこれらを積層する(第3の工程;第3の処理;図6のステップS4参照)。例えば、積層条件が以下のとおりであった場合には、搬送アーム143は、コントローラ160からの指示に基づいて、次のように動作する。
<積層条件>
ブロック体B1:転積不要
ブロック体B2:転積要
ブロック体B3:転積不要
ブロック体B4:転積要
ブロック体B5:転積不要
ブロック体B6:転積要
すなわち、搬送アーム143は、まず、載置台141a上のブロック体B6を把持し、それを180°回転させた後に、姿勢が変化された後のブロック体B6をコンベアCv2上に載置する。次に、搬送アーム143は、載置台141a上のブロック体B5を把持し、その姿勢を変えずに、ブロック体B5をコンベアCv2上のブロック体B6に重なるように載置する。次に、搬送アーム143は、載置台141a上のブロック体B4を把持し、それを180°回転させた後に、姿勢が変化された後のブロック体B4をコンベアCv2上のブロック体B5に重なるように載置する。次に、搬送アーム143は、載置台141a上のブロック体B3を把持し、その姿勢を変えずに、ブロック体B3をコンベアCv2上のブロック体B4に重なるように載置する。次に、搬送アーム143は、載置台141a上のブロック体B2を把持し、それを180°回転させた後に、姿勢が変化された後のブロック体B2をコンベアCv2上のブロック体B3に重なるように載置する。次に、搬送アーム143は、載置台141a上のブロック体B1を把持し、その姿勢を変えずに、ブロック体B1をコンベアCv2上のブロック体B2に重なるように載置する。こうして、所定の積層条件に従ってブロック体B1〜B6が上側から下側に向けてこの順に積層された積層体10が得られる。
次に、コントローラ160の指示に基づいて、得られた積層体10をコンベアCv2が磁石取付装置150まで搬送する。積層体10が磁石取付装置150に到達すると、コントローラ160が磁石取付装置150に指示して、積層体10の各磁石挿入孔10b内に永久磁石12一つずつ挿入させる(第5の工程;第5の処理;図6のステップS5)。次に、コントローラ160が磁石取付装置150に指示して、各磁石挿入孔10b内に溶融状態の樹脂材料14を充填及び固化させる(第5の工程;第5の処理;図6のステップS6参照)。こうして、固化した樹脂材料14によって、各永久磁石12が各磁石挿入孔10b内に固定される。次に、各ブロック体B1〜B6を溶接等によって一体化する(図6のステップS7参照)。これにより、回転子積層鉄心1が得られる。
その後、図10に示されるように、軸孔10aにシャフト20を挿通して、シャフト20と凹部10cとの間にキー(図示せず)を圧入することにより、シャフト20を積層体10に固定する。次に、積層体10のうちその積層方向における両端面に対して、端面板22をそれぞれ配置する。端面板22は、例えば、積層体10の端面とカシメにより固定されてもよいし、ナットをシャフト20に螺合することにより積層体10に対して固定されてもよいし、キー等によりシャフト20に対して固定されてもよい。こうして、回転子積層鉄心1と、シャフト20と、端面板22とを備える回転子2が得られる。
[作用]
一般に、電磁鋼板Wの厚さは、完全に均一ではなく、僅かに変動している。そのため、電磁鋼板Wが所定形状に打ち抜かれた打抜部材30を1枚ずつ積層してブロック体B1〜B6を構成すると、ブロック体B1〜B6の積厚に偏りが生じうる。例えば、図10及び図11に示されるように、ブロック体B1〜B6は、側方から見て僅かに台形状を呈している。そのため、ブロック体B1〜B6が適切な積層条件で積層されない場合、図11に示されるように、ブロック体B1〜B6が積層された積層体10の積厚にも偏りが生じ、積層体10に重量アンバランスが生じうる。
しかしながら、以上のような本実施形態では、各ブロック体B1〜B6の重量アンバランスの測定結果に基づいて、各ブロック体B1〜B6の積層条件を決定している。具体的には、各ブロック体B1〜B6が積層されたときに積層体10の重量アンバランスが最も小さくなるように、積層条件が決定される。そのため、当該積層条件に従って各ブロック体B1〜B6を積層することにより、重量アンバランスが抑制された積層体10を得ることができる。しかも、本実施形態では、永久磁石12、樹脂材料14等の他の部材に依らずに、積層体10の形成時に重量アンバランスを調整している。従って、積層体10の積層方向における厚さが必然的に均一に近づく。その結果、図10に示されるように、平坦性に優れた回転子積層鉄心1を得ることが可能となる。よって、積層体10の端面と端面板22との間に隙間が生ずることを抑制できる。
本実施形態では、複数のブロック体B1〜B6を積層することにより積層体10を構成している。本実施形態では、積層条件を決定する際に、各ブロック体B1〜B6の積厚をそれぞれ測定している。重量アンバランスを直接測定する測定機は一般に高価であるため、測定対象を積厚とすることにより低コストで測定を行うことが可能となる。また、打抜部材30は一般にごく薄いので、打抜部材30の積厚を測定するには、やはり高価な測定機を要したり、測定作業が煩雑になったりしうる。しかしながら、複数の打抜部材30が積層されたブロック体Bは相対的に大きな体積を有し、取り扱いやすいので、簡易且つ低コストでブロック体Bの積厚を測定することが可能となる。
[他の実施形態]
以上、本開示に係る実施形態について詳細に説明したが、本発明の要旨の範囲内で種々の変形を上記の実施形態に加えてもよい。例えば、上記の実施形態では転積の角度が180°に設定されていたが、転積の角度が180°以外であっても、上記の実施形態と同様に積層条件を決定しうる。例えば転積の角度が120°に設定されている場合、ブロック体Bの姿勢は3通り存在する。この場合、ブロック体B1〜B6が積層されて得られる積層体10の組み合わせの数は729通り(=3)存在する。この場合も、全ての組み合わせについて重量アンバランス<GALL>を算出し、大きさ|<GALL>|が最も小さい積層体10を判別してもよい。なお、転積の角度をθ[°](ただし、θは180以下の自然数であり且つ360の約数。)とし、積層されるブロック体Bの数をN個(ただし、Nは2以上の自然数。)とすると、N個のブロック体Bが積層されて得られる積層体10の組み合わせの数Pは、式4で表すことができる。
P=(360/θ) ・・・(4)
上記の実施形態では、各ブロック体Bにおける転積の要否を積層条件としていたが、各ブロック体Bにおける上下反転の要否を積層条件としてもよい。この場合も、上下反転前におけるブロック体Bの重量アンバランスが+<GALL>であるとき、上下反転後のブロック体Bの重量アンバランスが−<GALL>となる。積層条件として、各ブロック体における転積の要否と上下反転の要否とを組み合わせて用いてもよい。
重量アンバランスが最も小さくなる積層条件に基づいて得られた積層体10に、依然として重量アンバランスが残存している場合(残存重量アンバランスが存在している場合)には、コントローラ160は、図6のステップS3において、当該残存重量アンバランスを補助的に調整するための補助条件として、(A)磁石挿入孔10b内に挿入される永久磁石12の位置、(B)磁石挿入孔10b内に挿入される永久磁石12の重さ、又は(C)磁石挿入孔10b内に充填される樹脂材料14の量を、当該残存重量アンバランスに基づいて決定してもよい(第4の工程;第4の処理)。具体的には、(A)積層体10のうち重量アンバランスが大きな領域(積厚偏差が大きな領域)寄りに永久磁石12が位置するように、磁石挿入孔10b内に永久磁石12を挿通してもよい。(B)積層体10のうち重量アンバランスが大きな領域(積厚偏差が大きな領域)寄りの磁石挿入孔10b内に配置される永久磁石12の重さが、積層体10のうち重量アンバランスが小さな領域(積厚偏差が小さな領域)寄りの磁石挿入孔10b内に配置される永久磁石12の重さよりも軽くてもよい(永久磁石12の重さが0の場合も含む。)。(C)積層体10のうち重量アンバランスが大きな領域(積厚偏差が大きな領域)寄りの磁石挿入孔10b内に充填される樹脂材料14の量が、積層体10のうち重量アンバランスが小さな領域(積厚偏差が小さな領域)寄りの磁石挿入孔10b内に充填される樹脂材料14の量よりも少なくてもよい(樹脂材料14の量が0の場合も含む。)。これらの補助条件A〜Cが組み合わせられていてもよい。コントローラ160においてこれらの補助条件A〜Cが決定されると、図6のステップS5,S6において、補助条件A〜Cに基づいて、永久磁石12の磁石挿入孔10b内への挿入作業又は樹脂材料14の磁石挿入孔10b内への充填作業が行われる。この場合、完成後(複数のブロック体Bの積層後)の積層体10の残存重量アンバランスが補助条件A〜Cに基づいてさらに調整される。そのため、積層体10の形成時のみならず、積層体10の完成後においても、積層体10の重量アンバランスを細かく調整できる。従って、積層体10の重量アンバランスをいっそう抑制することが可能となる。
上記の実施形態では、磁石挿入孔10b内に対して永久磁石12の挿入と樹脂材料14の充填とを行っていたが、各磁石挿入孔10b内において、少なくとも一方のみを行ってもよいし、どちらも行わなくてもよい。
上記の実施形態では、ブロック体Bの積厚に基づいて重量アンバランスを計算していたが、重量アンバランスを直接測定してもよい。重量アンバランスを直接測定する装置としては、例えば、回転式アンバランス測定機、静荷重測定式アンバランス測定機等が挙げられる。
上記の実施形態では、複数のブロック体Bを積層して積層体10を得たが、複数の打抜部材30を積層して積層体10を得てもよい。この場合、打抜部材30の重量アンバランスを一枚ずつ測定して、各打抜部材30の積層条件を決定する。
仮積層体11及び積層体10は、コンベアCv1,Cv2等の搬送装置で自動的に次の工程に搬送されてもよいし、作業者によって次の工程に搬送されてもよい。作業者が仮積層体11及び積層体10を搬送する際には、台車等を利用してもよいし、手で抱えてもよい。
永久磁石12の磁石挿入孔10b内への挿入後で且つ樹脂材料14の磁石挿入孔10b内への充填前に、各端面板22を積層体10に取り付けもよい。この場合、端面板22に設けられた貫通孔を介して、樹脂材料14が各磁石挿入孔10b内に充填されうる。
積厚測定機144による各ブロック体Bの積厚測定の前に、各ブロック体Bに対してバリ除去処理を実行してもよい。具体的には、まず、搬送アーム142は、各ブロック体Bの上下を反転させつつ各ブロック体Bを載置台141aに載置し、各ブロック体Bの裏面が上方を向いた状態とする。この状態で、バリ除去装置は、各ブロック体Bのうち打抜孔の周囲において当該裏面側に突出しているバリを除去する。当該バリ除去装置によるバリ除去方法としては、例えば、ショトブラスト、ベルト研磨などが挙げられる。あるいは、バリ除去装置に代えて作業者が人手でバリが除去されてもよい。この場合、各ブロック体Bの上下が反転された後に各ブロック体Bが順に積層されるので、仮積層体11と積層体10とで各ブロック体Bの積層順を同じにすることができる。また、各ブロック体Bのバリが除去されることにより、ブロック体Bからのバリの脱落が抑制されるので、脱落したバリによって電動機が影響を受け難い。
各ブロック体Bがそれらの中心軸に対して互いに回転対称であるような場合には、積厚測定機144による積厚測定後の各ブロック体Bの積層順は特に限定されず、各ブロック体Bが任意の順で積層されることにより積層体10が構成されてもよい。一方、各ブロック体Bのうち少なくとも一つの形状が他と異なる場合には、各ブロック体Bは任意の順ではなく特定の順で積層されてもよい。
回転子積層鉄心1のみならず固定子積層鉄心に対しても、本発明を適用してもよい。
1…回転子積層鉄心、2…回転子、10…積層体、10b…磁石挿入孔(貫通孔)、12…永久磁石、14…樹脂材料、20…シャフト、22…端面板、30…打抜部材(鉄心部材)、100…製造装置、140…積層装置、143…搬送アーム(積層部)、144…積厚測定機(測定部)、160…コントローラ(制御部)、150…磁石取付装置(作業部)、B…ブロック体(鉄心部材)。

Claims (10)

  1. 複数の鉄心部材の重量アンバランスをそれぞれ測定する第1の工程と、
    前記第1の工程における測定結果に基づいて、前記重量アンバランスを調整するための前記複数の鉄心部材の積層条件を決定する第2の工程と、
    前記積層条件に基づいて前記複数の鉄心部材を積層する第3の工程とを含む、回転子積層鉄心の製造方法。
  2. 前記第2の工程では、前記積層条件として、前記複数の鉄心部材のそれぞれについて転積の要否を決定する、請求項1に記載の方法。
  3. 前記第2の工程では、前記積層条件として、前記複数の鉄心部材のそれぞれについて反転の要否を決定する、請求項1又は2に記載の方法。
  4. 前記第1の工程における測定結果に基づいて、前記重量アンバランスを補助的に調整するための補助条件として、(A)前記複数の鉄心部材が積層された積層体の積層方向に延びるように前記積層体に設けられた貫通孔内に挿入される永久磁石の位置、(B)前記貫通孔内に挿入される永久磁石の重さ、又は(C)前記貫通孔内に充填される樹脂材料の量を決定する第4の工程と、
    前記第3及び第4の工程の後に、前記補助条件に基づいて、前記貫通孔内に永久磁石を挿通するか、又は前記貫通孔内に樹脂材料を充填する第5の工程とをさらに含む、請求項1〜3のいずれか一項に記載の方法。
  5. 前記複数の鉄心部材はそれぞれ、金属板から打ち抜かれた複数の打抜部材が積層されたブロック体であり、
    前記第1の工程では、前記複数の鉄心部材の積厚をそれぞれ測定する、請求項1〜4のいずれか一項に記載の方法。
  6. 複数の鉄心部材の重量アンバランスをそれぞれ測定するように構成された測定部と、
    前記複数の鉄心部材を積層するように構成された積層部と、
    制御部とを備え、
    前記制御部は、
    前記測定部を制御して、前記複数の鉄心部材の重量アンバランスをそれぞれ測定させる第1の処理と、
    前記第1の処理における測定結果に基づいて、前記重量アンバランスを調整するための前記複数の鉄心部材の積層条件を決定する第2の処理と、
    前記積層部を制御して、前記積層条件に基づいて前記複数の鉄心部材を積層させる第3の処理とを実行する、回転子積層鉄心の製造装置。
  7. 前記制御部は、前記第2の処理において、前記積層条件として、前記複数の鉄心部材のそれぞれについて転積の要否を決定する、請求項6に記載の装置。
  8. 前記制御部は、前記第2の処理において、前記複数の鉄心部材のそれぞれについて反転の要否を決定する、請求項6又は7に記載の装置。
  9. 前記複数の鉄心部材が積層された積層体の積層方向に延びるように前記積層体に設けられた貫通孔内に、永久磁石の挿入作業又は樹脂材料の充填作業を行う作業部をさらに備え、
    前記制御部は、
    前記第1の処理における測定結果に基づいて、前記重量アンバランスを補助的に調整するための補助条件として、(A)前記貫通孔内に挿入される永久磁石の位置、(B)前記貫通孔内に挿入される永久磁石の重さ、又は(C)前記貫通孔内に充填される樹脂材料の量を決定する第4の処理と、
    前記第3及び第4の処理の後に前記作業部を制御して、前記補助条件に基づいて、前記貫通孔内に永久磁石を挿通させるか、又は前記貫通孔内に樹脂材料を充填させる第5の処理とをさらに実行する、請求項6〜8のいずれか一項に記載の装置。
  10. 前記複数の鉄心部材はそれぞれ、金属板から打ち抜かれた複数の打抜部材が積層されたブロック体であり、
    前記制御部は、前記第1の処理において前記測定部を制御して、前記複数の鉄心部材の積厚をそれぞれ測定させる、請求項6〜9のいずれか一項に記載の装置。
JP2016176553A 2016-09-09 2016-09-09 回転子積層鉄心の製造方法及び回転子積層鉄心の製造装置 Active JP6781597B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016176553A JP6781597B2 (ja) 2016-09-09 2016-09-09 回転子積層鉄心の製造方法及び回転子積層鉄心の製造装置
CA2977775A CA2977775C (en) 2016-09-09 2017-08-30 Method of manufacturing laminated rotor core and apparatus for manufacturing laminated rotor core
US15/694,967 US10848039B2 (en) 2016-09-09 2017-09-04 Method of manufacturing laminated rotor core
CN201710794184.7A CN107809156B (zh) 2016-09-09 2017-09-06 转子层叠铁芯的制造方法及转子层叠铁芯的制造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016176553A JP6781597B2 (ja) 2016-09-09 2016-09-09 回転子積層鉄心の製造方法及び回転子積層鉄心の製造装置

Publications (2)

Publication Number Publication Date
JP2018042426A true JP2018042426A (ja) 2018-03-15
JP6781597B2 JP6781597B2 (ja) 2020-11-04

Family

ID=61557424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016176553A Active JP6781597B2 (ja) 2016-09-09 2016-09-09 回転子積層鉄心の製造方法及び回転子積層鉄心の製造装置

Country Status (4)

Country Link
US (1) US10848039B2 (ja)
JP (1) JP6781597B2 (ja)
CN (1) CN107809156B (ja)
CA (1) CA2977775C (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018143034A (ja) * 2017-02-27 2018-09-13 株式会社三井ハイテック 積層鉄心の製造装置
WO2019172265A1 (ja) * 2018-03-07 2019-09-12 株式会社三井ハイテック 積層鉄心の製造方法
WO2019235264A1 (ja) * 2018-06-05 2019-12-12 株式会社三井ハイテック 積層鉄心の製造装置及び積層鉄心の製造方法
JP2020088313A (ja) * 2018-11-30 2020-06-04 株式会社三井ハイテック 積層鉄心製品の製造方法
KR102182782B1 (ko) * 2020-03-13 2020-11-25 이도영 자동차 시트 모터용 요크조립체 제조장치
JP2021122168A (ja) * 2020-01-31 2021-08-26 トヨタ紡織株式会社 モータコアの検査方法およびモータコアの製造方法
JP7442841B2 (ja) 2018-07-25 2024-03-05 デマ エッセ.エッレ.エッレ. 金属積層物の集合体を自動的に形成するための方法及び装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411537B2 (en) * 2016-08-22 2019-09-10 American Axle & Manufacturing, Inc. Rotor lamination and related rotor and electric motor incorporating same
JP7059102B2 (ja) * 2018-05-14 2022-04-25 株式会社三井ハイテック 積層体の製造方法
US10879775B2 (en) * 2018-05-23 2020-12-29 Ford Global Technologies, Llc Surface treatments of electrical steel core devices
JP7090497B2 (ja) * 2018-07-31 2022-06-24 株式会社三井ハイテック 金属積層体及び金属積層体の製造方法
JP6933624B2 (ja) * 2018-10-05 2021-09-08 株式会社三井ハイテック 回転子の製造方法
JP6915823B2 (ja) * 2018-12-21 2021-08-04 株式会社三井ハイテック 積層鉄心及び積層鉄心の製造方法
JP6975129B2 (ja) * 2018-12-27 2021-12-01 本田技研工業株式会社 回転電機のロータ
JP2021158852A (ja) * 2020-03-27 2021-10-07 日本電産株式会社 積層体製造装置及び積層体製造方法
US11190090B1 (en) * 2020-05-22 2021-11-30 Gallant Micro. Machining Co., Ltd. Apparatus for automated encapsulation of motor rotor core with magnet steel
US11223262B1 (en) * 2020-10-20 2022-01-11 Tempel Steel Company Rotating punch with a relief feature for forming IPM motor rotor
DE102021112815A1 (de) * 2021-05-18 2022-11-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotor mit einer Rotationsachse für eine elektrische Antriebsmaschine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283903A (ja) * 2009-06-02 2010-12-16 Hitachi Automotive Systems Ltd 回転電機及びその製造方法
JP2012125075A (ja) * 2010-12-09 2012-06-28 Toyota Motor Corp 積層鉄心の製造方法及び積層鉄心製造システム
JP2016019381A (ja) * 2014-07-09 2016-02-01 株式会社三井ハイテック 回転子積層鉄心及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4306062B2 (ja) 1999-03-10 2009-07-29 株式会社デンソー アーマチャのバランス修正方法
JP2002010588A (ja) 2000-06-22 2002-01-11 Denso Corp 回転体
EP1330010A4 (en) * 2000-09-01 2007-06-20 Matsushita Electric Ind Co Ltd ELECTRIC MOTOR
JP2012100499A (ja) * 2010-11-05 2012-05-24 Toyota Motor Corp 回転電機用ロータの製造方法
DE102013215080A1 (de) 2013-08-01 2015-02-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Auswuchten eines Rotors einer elektrischen Maschine
JP6275457B2 (ja) 2013-11-19 2018-02-07 日本電産サンキョー株式会社 ロータおよびモータ
EP2928047A1 (de) * 2014-03-31 2015-10-07 Siemens Aktiengesellschaft Reluktanzrotor mit mechanischer Stabilisierung
JP6427425B2 (ja) 2015-01-19 2018-11-21 本田技研工業株式会社 回転電機のロータ及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283903A (ja) * 2009-06-02 2010-12-16 Hitachi Automotive Systems Ltd 回転電機及びその製造方法
JP2012125075A (ja) * 2010-12-09 2012-06-28 Toyota Motor Corp 積層鉄心の製造方法及び積層鉄心製造システム
JP2016019381A (ja) * 2014-07-09 2016-02-01 株式会社三井ハイテック 回転子積層鉄心及びその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018143034A (ja) * 2017-02-27 2018-09-13 株式会社三井ハイテック 積層鉄心の製造装置
JP7078425B2 (ja) 2018-03-07 2022-05-31 株式会社三井ハイテック 積層鉄心の製造方法
WO2019172265A1 (ja) * 2018-03-07 2019-09-12 株式会社三井ハイテック 積層鉄心の製造方法
JP2019161699A (ja) * 2018-03-07 2019-09-19 株式会社三井ハイテック 積層鉄心の製造方法
US11770056B2 (en) 2018-03-07 2023-09-26 Mitsui High-Tec, Inc. Manufacturing method of laminated iron core
WO2019235264A1 (ja) * 2018-06-05 2019-12-12 株式会社三井ハイテック 積層鉄心の製造装置及び積層鉄心の製造方法
JP7442841B2 (ja) 2018-07-25 2024-03-05 デマ エッセ.エッレ.エッレ. 金属積層物の集合体を自動的に形成するための方法及び装置
JP7187287B2 (ja) 2018-11-30 2022-12-12 株式会社三井ハイテック 積層鉄心製品の製造方法
US11451122B2 (en) 2018-11-30 2022-09-20 Mitsui High-Tec, Inc. Method for manufacturing laminated iron core product
JP2020088313A (ja) * 2018-11-30 2020-06-04 株式会社三井ハイテック 積層鉄心製品の製造方法
JP2021122168A (ja) * 2020-01-31 2021-08-26 トヨタ紡織株式会社 モータコアの検査方法およびモータコアの製造方法
JP7342724B2 (ja) 2020-01-31 2023-09-12 トヨタ紡織株式会社 モータコアの検査方法およびモータコアの製造方法
KR102182782B1 (ko) * 2020-03-13 2020-11-25 이도영 자동차 시트 모터용 요크조립체 제조장치

Also Published As

Publication number Publication date
CA2977775C (en) 2019-09-24
US10848039B2 (en) 2020-11-24
JP6781597B2 (ja) 2020-11-04
CA2977775A1 (en) 2018-03-09
CN107809156B (zh) 2021-02-05
US20180076700A1 (en) 2018-03-15
CN107809156A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
JP6781597B2 (ja) 回転子積層鉄心の製造方法及び回転子積層鉄心の製造装置
JP6162656B2 (ja) 回転子積層鉄心及びその製造方法
JP6694771B2 (ja) 積層鉄心及びその製造方法
CN101908783B (zh) 旋转电机及其制造方法
JP6343557B2 (ja) 回転子用積層体及びその製造方法並びに回転子の製造方法
JP2018068073A (ja) 回転子積層鉄心の製造方法、回転子積層鉄心の製造装置及び回転子積層鉄心
JP5691462B2 (ja) 積層鉄心の製造方法及び積層鉄心製造システム
EP2191559A2 (en) Method of balancing an embedded permanent magnet motor rotor
JP2017022885A5 (ja)
JP2017022885A (ja) 積層鉄心の製造方法及びその製造装置
JP2012100499A (ja) 回転電機用ロータの製造方法
JP6401605B2 (ja) ダミーカシメを有する積層体及びその製造方法、並びに積層鉄心の製造方法
JP6401486B2 (ja) 回転子積層鉄心及び回転子積層鉄心の製造方法
JP6434254B2 (ja) 積層鉄心の製造方法及び積層鉄心の製造装置
CN112673549A (zh) 铁芯、定子及旋转电机
JP6546486B2 (ja) 回転子鉄心の磁石挿入装置及びその磁石挿入方法
US20220399789A1 (en) Method of producing iron core product and apparatus for producing iron core product
KR102220863B1 (ko) 로터, 이를 포함하는 모터 및 로터의 밸런스 교정방법
JP6761762B2 (ja) 回転子積層鉄心及びその製造方法
JP6901907B2 (ja) 回転子鉄心の製造方法
JP2018098904A (ja) 積層鉄心の製造方法及び積層鉄心の製造装置
JP2020072626A (ja) 回転電機のステータコア
JP2020102958A (ja) 積層鉄心及び積層鉄心の製造方法
KR102272603B1 (ko) 영구자석 로터 및 영구자석 로터의 제조방법
JP2020054034A (ja) 電磁鋼板積層体の製造方法及び製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201016

R150 Certificate of patent or registration of utility model

Ref document number: 6781597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250