JP2018034474A - 液体吐出装置 - Google Patents

液体吐出装置 Download PDF

Info

Publication number
JP2018034474A
JP2018034474A JP2016171450A JP2016171450A JP2018034474A JP 2018034474 A JP2018034474 A JP 2018034474A JP 2016171450 A JP2016171450 A JP 2016171450A JP 2016171450 A JP2016171450 A JP 2016171450A JP 2018034474 A JP2018034474 A JP 2018034474A
Authority
JP
Japan
Prior art keywords
electrode
terminal
power supply
supply circuit
high potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016171450A
Other languages
English (en)
Other versions
JP6759875B2 (ja
Inventor
郁佳 八太
Ayaka Hatta
郁佳 八太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2016171450A priority Critical patent/JP6759875B2/ja
Publication of JP2018034474A publication Critical patent/JP2018034474A/ja
Application granted granted Critical
Publication of JP6759875B2 publication Critical patent/JP6759875B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

【課題】駆動電極用の電源回路とは別に、高電位電極専用の電源回路を備えた液体吐出装置を提供すること。【解決手段】インクジェットヘッド4は、圧電素子47と、圧電素子47の駆動電極と接続されたVDD電源回路21と、圧電素子47のVCOM電極に接続されたVCOM電源回路22と、圧電素子47のグランド電極に接続されたグランド線77(79)と、VDD電源回路21と駆動電極との間の経路に設けられたスイッチSW1と、グランド線77(79)と駆動電極との間の経路に設けられたスイッチSW2と、VCOM電源回路21とVCOM電極との間に配置されたダイオードDと、一方の端子がダイオードDとVCOM電極との間の経路と接続され、他方の端子がグランド線77に繋がるコンデンサCvcと、を備えている。【選択図】図13

Description

本発明は、液体吐出装置に関する。
特許文献1の液体吐出ヘッドは、ノズルから液体を吐出させるための圧電アクチュエータと、この圧電アクチュエータと電源回路を電気的に接続する配線構造を有する。具体的には、圧電アクチュエータの各圧電素子は、ドライバICが実装されたCOF、及び、FPCを介して電源回路と接続されている。
圧電素子は、駆動電極(個別電極)、高電位電極、及び、低電位電極の3種類の電極を有する。また、圧電素子は、駆動電極と高電位電極に挟まれた第1活性部と、駆動電極と低電位電極に挟まれた第2活性部の、2つの活性部を有するものである。
駆動電極は、ドライバIC内のスイッチを介して電源線と接続され、また、ドライバIC内の別のスイッチを介してグランド線とも接続されている。2つのスイッチのON/OFFの切り換えにより、駆動電極の電位が駆動電位とグランド電位との間で変化する。高電位電極は電源線と接続されており、高電位電極には上記駆動電位が常に印加される。低電位電極はグランド線に接続されており、その電位は常にグランド電位に維持されている。
駆動電極に駆動電位が印加されると、駆動電極と高電位電極が等電位になるため、第1活性部には圧電変形が生じない。一方、駆動電極と低電位電極との間には電位差が生じ、第2活性部に圧電変形が生じる。逆に、駆動電極の電位がグランド電位になると、駆動電極と高電位電極との間に電位差が発生して、第1活性部に圧電変形が生じる。一方、駆動電極と低電位電極は等電位となり、第2活性部には圧電変形が生じない。このように、駆動電極の電位を変化させ、第1活性部と第2活性部に圧電変形を交互に生じさせることで、ノズル内のインクに圧力を発生させて液滴を吐出させる。
尚、第1活性部と第2活性部は、共に、誘電体である圧電材料層が2つの電極に挟まれた構造を有する。そのため、2つの電極間の電位差が変化したときには、電荷の充放電が生じる。即ち、駆動電極の電位が駆動電位なると、駆動電極と高電位電極が等電位になり、第1活性部を挟む電極間に蓄えられていた電荷が放電される。このとき、駆動電極と低電位電極との間には電位差が生じるため、第2活性部を挟む電極間に電荷が充電される。これとは逆に、駆動電極の電位がグランド電位になる、第1活性部を挟む電極間に電荷が充電され、第2活性部を挟む電極間に電荷が放電される。
尚、上記特許文献1の構成では、1つの電源回路の出力に繋がる電源線が、駆動電極だけでなく高電位電極にも接続されている。即ち、上記1つの電源回路が、駆動電極への駆動電位の印加と、高電位電極の駆動電位の維持を行っている。
特開2010−173275号公報
上記特許文献1では、駆動電極に接続される電源回路と高電位電極に接続される電源回路とが共通であるが、高電位電極用の電源回路を、駆動電極用の電源回路とは別にすることが望ましい場合がある。
本発明の目的は、駆動電極用の電源回路とは別に、高電位電極専用の電源回路を備えた液体吐出装置を提供することである。
本発明の液体吐出装置は、駆動電極と、高電位電極と、低電位電極と、前記駆動電極と前記高電位電極に挟まれた第1活性部と、前記駆動電極と前記低電位電極に挟まれた第2活性部とを有し、ノズルから液体を吐出させるための圧電素子と、前記駆動電極と接続された第1電源回路と、前記高電位電極に接続された第2電源回路と、前記低電位電極に接続されたグランド線と、前記第1電源回路と前記駆動電極との間の経路に設けられた第1スイッチと、前記グランド線と前記駆動電極との間の経路に設けられた第2スイッチと、前記第2電源回路と前記高電位電極との間に配置され、前記第2電源回路から前記高電位電極に向かう方向を順方向とするダイオードと、一方の端子が前記ダイオードと前記高電位電極との間の経路と接続され、他方の端子が前記グランド線に繋がるコンデンサと、を備えていることを特徴とするものである。
本発明の液体吐出装置は、ノズル内の液体にエネルギーを与えて液体を吐出させるための圧電素子を有する。圧電素子は、駆動電極、高電位電極、低電位電極の3種類の電極と、駆動電極と高電位電極に挟まれた第1活性部、及び、駆動電極と低電位電極に挟まれた第2活性部を備える。駆動電極は、第1スイッチを介して第1電源回路と接続され、第2スイッチを介してグランド線と接続されている。高電位電極は第2電源回路と接続され、低電位電極はグランド線と接続されている。下記のように、第1スイッチ、第2スイッチのON/OFFを切り換えることにより、第1活性部を挟む駆動電極と高電位電極間の電荷の充放電と、第2活性部を挟む駆動電極と低電位電極間の電荷の充放電が交互に繰り返される。
(第1スイッチON、第2スイッチOFF)
駆動電極は第1電源回路と接続されるため、駆動電極と高電位電極との電位差は小さくなり、これら2つの電極に蓄えられた電荷が放電される。一方、駆動電極と低電位電極との電位差は大きくなり、これら2つの電極間に電荷が充電される。
(第1スイッチOFF、第2スイッチON)
駆動電極がグランド線と接続されるため、駆動電極と高電位電極との電位差が大きくなり、これら2つの電極間に電荷が充電される。一方、駆動電極と低電位電極との電位差が小さくなり、これら2つの電極に蓄えられた電荷が放電される。
上記構成では、高電位電極の電位を駆動電極の電位とは無関係に一定に維持することができる。さらに、本発明では、第2電源回路と高電位電極の間の経路にダイオードが配置されている。さらに、上記経路とグランド線との間にはコンデンサが配置されている。第1活性部からの放電時には、第1活性部から放電された電荷が第2電源回路へ流れることが、ダイオードによって抑えられる。また、その放電された電荷はどこへ流れるかというと、ダイオードと高電位電極の間の経路に接続されたコンデンサに一時的に蓄えられる。また、第1活性部を挟む駆動電極と高電位電極間への充電時には、コンデンサに蓄えられた電荷が、逆戻りするように第1活性部へ流れる。
つまり、最初に、第2電源回路から、第1活性部を挟む駆動電極と高電位電極間に充電が行われた後は、コンデンサと第1活性部との間で充放電が繰り返される。ここで、最初の第1活性部に対する充電は、圧電素子の駆動開始前に小さい電流で時間をかけて充電することが可能であり、第2電源回路は、出力電流の小さい回路とすることができる。従って、最初の充電時以外は、第2電源回路ではほとんど電流を必要としないため、第2電源回路を小型化することが可能となる。
本実施形態に係るプリンタの概略的な平面図である。 プリンタの電気的構成を概略的に示す図である。 インクジェットヘッドの斜視図である。 流路ユニット及び圧電アクチュエータの上面図である。 図4の一部拡大図である。 図5のVI-VI線断面図である。 図5のVII-VII線断面図である。 圧電素子の動作を示す図である。 最上層の圧電シートの上面図である。 中間層の圧電シートの上面図である。 最下層の圧電シートの上面図である。 2つのVDD電源回路、VCOM電源回路、2つのドライバIC、及び、圧電アクチュエータの複数の圧電素子の間の接続を概略的に示す回路図である。 圧電素子と2種類の電源回路との接続を示す電気回路図である。 2つのVDD電源回路に対応したドライバICの回路図である。 2種類の活性部にそれぞれ対応するC1,C2の充放電経路を示す図である。 駆動電極とVCOM電極とで電源回路を別にした、本実施形態に対する比較回路構成を示す図である。 COFとFPCの上面図である。 図17のFPCの先端部の拡大図である。 圧電アクチュエータとの電気的接続を示すCOFの平面図である。 変更形態に係る圧電素子の断面図である。
次に、本発明の実施の形態について説明する。図1は、本実施形態のインクジェットプリンタの概略構成図である。図2は、プリンタの電気的構成を概略的に示す図である。尚、図1に示す前後左右の各方向をプリンタの「前」「後」「左」「右」と定義する。また、紙面手前側を「上」、紙面向こう側を「下」とそれぞれ定義する。以下では、前後左右上下の各方向語を適宜使用して説明する。
[プリンタの概略構成]
図1、図2に示すように、インクジェットプリンタ1は、プラテン2と、キャリッジ3と、インクジェットヘッド4と、搬送部5と、制御基板6と、電源基板7等を備えている。
プラテン2の上面には、被記録媒体である記録用紙100が載置される。キャリッジ3は、プラテン2と対向する領域において2本のガイドレール10,11に沿って走査方向に往復移動可能に構成されている。キャリッジ3には無端ベルト13が連結され、キャリッジ駆動モータ14によって無端ベルト13が駆動されることで、キャリッジ3は走査方向に往復移動する。
インクジェットヘッド4はキャリッジ3に搭載されており、キャリッジ3とともに走査方向に往復移動する。インクジェットヘッド4は、インクカートリッジ16が装着されるカートリッジホルダ8と、チューブ15によって接続されている。インクジェットヘッド4は、その下面(図1の紙面向こう側の面)に形成された複数のノズル38(図4〜図7参照)を有する。各ノズル38は、インクカートリッジ16から供給されたインクを、プラテン2上の記録用紙100に向けて吐出する。インクジェットヘッド4の詳細構成については、後で説明する。
図1に示すように、搬送部5は、前後方向にプラテン2を挟むように配置された2つの搬送ローラ18,19を有する。2つの搬送ローラ18,19は、図示しないモータによって同期して駆動され、プラテン2に載置された記録用紙100を、走査方向と直交する搬送方向に搬送する。
図2に示すように、電源基板7は、FPC30、COF29によってインクジェットヘッド4と接続されている。また、制御基板6も、電源基板7を経由してインクジェットヘッド4と接続されている。制御基板6は、CPU(Central Processing Unit)23、ROM(Read Only Memory)24、RAM(Random Access Memory)25、各種制御回路を含むASIC(Application Specific Integrated Circuit)26等を備える。
ASIC26は、記録用紙100への印刷処理など、プリンタ1の動作に関する各種処理を実行する。例えば、印刷処理においては、ASIC26は、PC等の外部装置から入力された印刷指令に基づいて、インクジェットヘッド4、キャリッジ駆動モータ14、搬送ローラ18,19を駆動する搬送モータ等を制御して、記録用紙100に画像等を印刷させる。具体的には、キャリッジ3とともにインクジェットヘッド4を走査方向に移動させながらインクを吐出させるインク吐出動作と、搬送ローラ18,19によって記録用紙100を搬送方向に所定量搬送する搬送動作とを、交互に行わせる。
また、図2に示すように、プリンタ1は、2つのVDD電源回路21(211,212)とVCOM電源回路22とが実装された電源基板7を有する。尚、以下の説明において、2つのVDD電源回路211,212を区別せずに総称する場合は、「VDD電源回路21」と呼ぶ。VDD電源回路21及びVCOM電源回路22は、それぞれDC−DCコンバータを用いればよい。
尚、後でも説明するが、2つのVDD電源回路21(211,212)は、異なる電圧をそれぞれ出力する。具体的には、VDD電源回路212の出力電圧は、VDD電源回路の出力電圧よりも高い。また、VCOM電源回路22は、VDD電源回路212の出力電圧よりも、さらに高い電圧を出力する。VDD電源回路21及びVCOM電源回路22は、インクジェットヘッド4の圧電アクチュエータ28(後述)を駆動するためのものであるが、具体的な駆動手法については、後ほど詳述する。
[インクジェットヘッドの詳細構成]
次に、インクジェットヘッド4について説明する。図3は、インクジェットヘッド4の斜視図である。図4は、インクジェットヘッド4の流路ユニット27及び圧電アクチュエータ28の上面図である。図5は図4の一部拡大図、図6は図5のVI-VI線断面図、図7は図5のVII-VII線断面図である。
図3に示すように、インクジェットヘッド4は、流路ユニット27と、圧電アクチュエータ28と、COF(Chip On Film)29、FPC(Flexible Printed Circuit)30を備えている。流路ユニット27の上面には圧電アクチュエータ28が配置されている。圧電アクチュエータ28の上面には、2つのドライバIC40が実装されたCOF29が電気的に接合されている。COF29の両端部は上方に折り返され、このCOF29の両端部にFPC30が接続されている。FPC30は、プリンタ1の制御基板6及び電源基板7(図2参照)に接続される。
なお、上記構成に関連して、特開2013−159105号公報にも、圧電アクチュエータ28に、2種類の配線基板が接続された構成が開示されている。しかし、図12、図18等で詳述する、本実施形態でのFPC30の端子や配線の配置は上記文献とは異なる新規なものであり、また、コンデンサCvcについても上記文献には開示はない。
以下、流路ユニット27、圧電アクチュエータ28、COF29、FPC30等のインクジェットヘッド4の主要構成について、順に説明する。
<流路ユニット>
図6に示すように、流路ユニット27は、複数枚のプレート31〜37の積層体である。複数枚のプレート31〜37のうちの最下層のプレートは、ポリイミド等の合成樹脂からなるノズルプレート37である。ノズルプレート37には、搬送方向に配列された複数のノズル38が形成されている。図4に示すように、複数のノズル38は、12列のノズル列を構成している。
流路ユニット27を構成する、ノズルプレート37以外の他のプレート31〜36は、ステンレス鋼などの金属材料からなるプレートである。これらのプレート31〜36には、上記の複数のノズル38に連通する、次述のマニホールド42や圧力室43等を含む、インク流路が形成されている。
図3、図4に示すように、最上層のプレート31には、4つのインク供給孔41が走査方向に並んで形成されている。各インク供給孔41には、ホルダ8のインクカートリッジ16(図1参照)からインクがそれぞれ供給される。また、図6において、上から4番目のプレート34と5番目のプレート35には、搬送方向に延在する合計12本のマニホールド42が形成されている。1つのインク供給孔41と3本のマニホールド42が、プレート31〜33に形成された連通孔(図示省略)によって接続されている。
流路ユニット27の最上層のプレート31には、複数のノズル38にそれぞれ対応する複数の圧力室43が形成されている。各圧力室43は、走査方向に長い、略楕円の平面形状を有する。複数の圧力室43は、複数のノズル38に対応して搬送方向に配列され、12列の圧力室列を構成している。
複数の圧力室43は、圧電アクチュエータ28のインク分離膜46によって覆われている。図6に示すように、上から3番目に位置するプレート32には、マニホールド42と圧力室43を接続する絞り流路44が形成されている。また、最上層のプレート31とノズルプレート37との間に位置する合計5枚のプレート32〜36には、圧力室43とノズル38とを接続する連通流路45が形成されている。
以上より、インクカートリッジ16からインクが供給されるマニホールド42は、絞り流路44、圧力室43、及び、連通流路45を介して、その色のインクを吐出するノズル38と連通している。
<圧電アクチュエータ>
圧電アクチュエータ28は、複数の圧力室43を覆うインク分離膜46と、複数の圧力室43にそれぞれ対応した複数の圧電素子47を備えている。
(インク分離膜)
インク分離膜46は、例えば、ステンレス鋼等の金属製の板部材である。図6、図7に示すように、インク分離膜46は、流路ユニット27の最上層のプレート31の上面に接合され、複数の圧力室43を覆っている。
(圧電素子の構造)
圧電素子47は、圧力室43に対応して設けられ、圧力室43内のインクに圧力を付与してノズル38からインクを吐出させる。以下、1つの圧電素子47の具体的な構造について、主に、図5〜図7を参照して説明する。圧電素子47は、圧電層51、圧電層52、及び、圧電層53の3枚の圧電層と、駆動電極54、VCOM電極55、及び、グランド電極56の3種類の電極を有する。
インク分離膜46の上には、圧電層51を構成する圧電シート71、圧電層52を構成する圧電シート72、圧電層53を構成する圧電シート73の、3枚の圧電シート71〜73の積層体57が配置されている。3枚の圧電シート71〜73は、それぞれ、チタン酸ジルコン酸鉛などの強誘電性の圧電材料によって形成されている。図4に示すように、圧電シート71〜73の積層体57は、インク分離膜46の上面において、複数の圧力室43を共通に覆うように配置されている。尚、本実施形態では、圧電シート71,72,73のうちの1つの圧力室43を覆っている部分を、それぞれ、圧電層51、圧電層52、圧電層53とする。言い換えれば、複数の圧電素子47の間で3つの圧電層51〜53が繋がった構造である。
駆動電極54は、最上層の圧電層51の上面に設けられている。駆動電極54は、各圧電素子47に対して個別に設けられた、いわゆる個別電極である。駆動電極54は、圧力室43とほぼ同じ平面形状を有し、圧力室43のほぼ全域と対向している。駆動電極54は接続端子54aを有する。駆動電極54の圧力室43と対向する部分から、左方または右方へ接続端子54aが引き出されている。接続端子54aは、圧電アクチュエータ28を覆うように配置されたCOF29と、バンプ50を介して電気的に接続される。後で説明するが、駆動電極54の電位は、COF29に実装されたドライバIC40(図2、図3参照)によって、VDD電位とグランド電位の間で切り換えられる。
VCOM電極55は、圧電層52の上面、即ち、圧電層51と圧電層52の間に配置されている。また、VCOM電極55は、圧力室43の前後方向における中央部と対向している。即ち、VCOM電極55は、圧電層51を挟んで駆動電極54の中央部と対向している。後でも説明するが、複数の圧電素子47の間で、VCOM電極55同士が導通している。
グランド電極56は、圧電層53の上面、即ち、圧電層52と圧電層53の間に配置されている。グランド電極56は、圧力室43の前後方向における両端部とそれぞれ対向する2つの電極部分56a,56bを有する。即ち、グランド電極56は、圧電層52を挟んで駆動電極54の前後両端部と対向している。また、1つの圧電素子47のグランド電極56は、圧力室43の外側に位置する電極部分97を介して、隣接する他の圧電素子47のグランド電極56と導通している。
尚、図4に示すように、最上層の圧電シート71の上面の、複数の駆動電極54を取り囲む縁部には、2つのVCOM接続端子58と2つのグランド接続端子59が形成されている。2つのVCOM接続端子58は、圧電シート71の後半部左端と前半部右端にそれぞれ形成されている。2つのグランド接続端子59は、圧電シート71の後半部右端と前半部左端にそれぞれ配置されている。後で詳しく説明するが、各圧電素子47のVCOM電極55はVCOM接続端子58と導通し、グランド電極56はグランド接続端子59と導通している。また、VCOM接続端子58とグランド接続端子59は、それぞれ、上方に配置されたCOF29と電気的に接続される。これにより、印刷中には、VCOM電極55には、COF29から、VDD電位よりもやや高い定電位(VCOM電位)が印加される。また、グランド電極56はグランドと接続され、印刷中は、その電位はグランド電位に維持される。
図7に示すように、圧電層51の圧力室43の中央部と重なる部分は、駆動電極54とVCOM電極55に挟まれており、この部分を活性部61と呼ぶ。また、圧電層52の、圧力室43の前後方向両端部と重なる部分は、駆動電極54とグランド電極56に挟まれており、この部分を活性部62と呼ぶ。活性部61と活性部62はそれぞれ分極処理が施されている。図7に示すように、活性部61の分極方向は、VCOM電極55から駆動電極54に向かう、上向きの方向である。一方、活性部62の分極方向は、駆動電極54からグランド電極56に向かう、下向きの方向である。
(圧電素子の動作)
上記の圧電素子47の動作について図8を参照して説明する。ノズル38からインクを吐出しない待機状態においては、ドライバIC40により、各圧電素子47の駆動電極54にはそれぞれグランド電位が付与されている。また、VCOM電極55の電位はVCOM電位、グランド電極56の電位はグランド電位である。従って、この待機状態では、駆動電極54とVCOM電極55の間に電位差が発生し、活性部61にはその分極方向に等しい上向きの電界が作用する。これにより、図8(a)に示すように、活性部61が面方向に収縮して、積層体57が圧力室43側に凸となるように撓む。このとき、圧力室43は、積層体57がフラットな場合と比較して、容積が小さくなっている。
上記の待機状態から、ドライバIC40によって、駆動電極54の電位がVDD電位に切り換えられたとする。このとき、駆動電極54とVCOM電極55との間の電位差が小さくなって、活性部61の収縮が解消される。一方で、駆動電極54とグランド電極56との間に電位差が発生し、活性部62にはその分極方向に等しい下向きの電界が作用する。これにより、活性部62が面方向に収縮すると、図8(b)に示すように、積層体57の圧力室43の中央部と対向する部分が上方に引っ張られることとなり、積層体57は全体として圧力室43と反対側に凸となるように変形する。つまり、圧力室43の容積が増加する。
その後、ドライバIC40によって、駆動電極54の電位が再びグランド電位に戻されると、図8(a)のように活性部62の変形は元に戻る。同時に、活性部61が再び面方向に収縮して、積層体57が全体として圧力室43側に凸となる。このときに、圧力室43の容積が大きく減少するため、圧力室43内のインクの圧力が増加し、ノズル38からインクが吐出される。
(電極パターンの詳細)
3つの圧電層51〜53をそれぞれ構成する3枚の圧電シート71〜73には、複数の圧電素子47に関する電極パターンがそれぞれ形成されている。以下、3枚の圧電シート71〜73のそれぞれの電極パターンの詳細について説明する。図9は、最上層の圧電シート71の上面図、図10は、中間層の圧電シート72の上面図、図11は、最下層の圧電シート73の上面図である。
(1)最上層の電極パターン
図9に示すように、圧電層51を構成する最上層の圧電シート71の上面には、複数の圧力室43に対応して駆動電極54が前後方向に配列されている。また、圧電シート71の左右の縁部には、2つのVCOM接続端子58(58a,58b)と2つのグランド接続端子59(59a,59b)が配置されている。2つのVCOM接続端子58は、VCOM電極55に接続されるものであり、圧電シート71の後半部左端と前半部右端にそれぞれ配置されている。また、2つのグランド接続端子59は、グランド電極56に接続されるものであり、圧電シート71の後半部右端と前半部左端にそれぞれ配置されている。
(2)中間層の電極パターン
圧電層52を構成する中間層の圧電シート72の上面には、VCOM電極55を含む電極パターンが形成されている。
図10に示すように、圧電シート72の上面には、複数の圧力室43の配列に対応して、複数のVCOM電極55が前後方向に12列に配列されている。尚、先の圧電素子47の説明からも理解されるように、1つの圧電素子47のVCOM電極55は、図10に示される圧電シート72の上面の導電パターンのうちの、1つの駆動電極54の中央部と対向する導電部分のことである。
圧電シート72の後半部左端と前半部右端には、2つの接続電極60(60a,60b)がそれぞれ形成されている。2つの接続電極60は、圧電シート71の上面の2つのVCOM接続端子58(図9参照)と、圧電シート71を貫通する導電部63を介して接続されている。一方で、前後方向に並ぶ複数のVCOM電極55は、前後に延びる連結部64によって互いに導通している。さらに連結部64は、圧電シート72の前後の縁部において左右に延びる連結部65を介して、接続電極60に接続されている。尚、連結部64,65、及び、接続電極60の境界を理解しやすくするため、図10には、連結部64と連結部65の境界線a、接続電極60の連結部64及び連結部65と接続電極60との境線bが、それぞれ二点鎖線で示されている。これにより、複数のVCOM電極55は、連結部64、接続電極60を介して、圧電シート71の上面のVCOM接続端子58と接続されている。
尚、上記のVCOM電極55の電極パターンは、左右2系統に分離されている。即ち、12列に配列されたVCOM電極55のうち、左側5列のVCOM電極55は、後側の縁部に形成された連結部65を介して、左後方の接続電極60aに接続されている。一方、右側7列のVCOM電極55は、前側の縁部に形成された連結部65を介して、右前方の接続電極60bに接続されている。
圧電シート72の後半部右端と前半部左端には、グランド電極56用の2つの接続電極66(66a,66b)が形成されている。これら2つの接続電極66は、圧電シート71の2つのグランド接続端子59(図9参照)と、圧電シート71を貫通する導電部67を介して導通している。
(3)最下層の電極パターン
圧電層53を構成する最下層の圧電シート73の上面には、グランド電極56を含む電極パターンが形成されている。
図11に示すように、圧電シート73の上面には、複数の圧力室43の配列に対応して、複数のグランド電極56が、前後方向に12列に配列されている。先の説明からも理解されるが、1つのグランド電極56は、1つの駆動電極54の前後方向両端部とそれぞれ対向する2つの電極部分56a,56bを有する。尚、図11では、複数の凸部95が前後に並んでいるが、1つの凸部95は、前後に隣接する2つのグランド電極56の電極部分56aと電極部分56bと、電極部分56a,56bを繋ぐ電極部分97からなる(図7参照)。
圧電シート73の後半部右端と前半部左端には、2つの接続電極68(68a,68b)がそれぞれ配置されている。2つの接続電極68は、圧電シート72の接続電極66(図10参照)と、圧電シート72を貫通する導電部69を介して導通し、さらに、圧電シート71のグランド接続端子59(図9参照)と導通している。
前後方向に並ぶ複数のグランド電極56は、前後に延びる連結部70によって互いに導通している。また、連結部70は、圧電シート73の前後の縁部において左右に延びる連結部90を介して、接続電極68に接続されている。尚、凸部95、連結部70,90、及び、接続電極68の境界を理解しやすくするため、図11には、凸部95と連結部70の境界線c、連結部70と連結部90の境界線d、連結部90と接続電極68の境界線eが、それぞれ二点鎖線で示されている。これにより、複数のグランド電極56は、連結部70、接続電極68、接続電極66(図10参照)を介して、圧電シート71の上面のグランド接続端子59(図9参照)と接続されている。
また、グランド電極56のうち、左側5列のグランド電極56は、前側の縁部に形成された連結部90を介して、左前方の接続電極68bに接続されている。右側7列のグランド電極56は、後側の縁部に形成された連結部90を介して、右後方の接続電極68aに接続されている。さらに、2つの接続電極68a、68bは、左から5列目のグランド電極56と右から7列目のグランド電極56を繋ぐ連結部70によって接続されている
<圧電アクチュエータと基板の接続構造>
次に、COF29及びFPC30による、圧電アクチュエータ28と制御基板6及び電源基板7の間の電気的な接続について詳細に説明する。
(概要)
図3に示すように、COF29は、圧電アクチュエータ28の上面を覆うように配置されている。COF29は、ポリイミドフィルム等の可撓性基材を主体とする配線部材であり、搬送方向に長い形状を有する。COF29の長手方向中央部には、圧電アクチュエータ28と接続される多数の端子(図示省略)が形成されている。一方、図3及び後述の図15、図17に示すように、COF29の長手方向両端部には、2つのドライバIC40がそれぞれ実装されている。COF29の長手方向両端部の、ドライバIC40よりもさらに端側には、2つのドライバIC40に対応した2つの端子群74(図17参照)が設けられている。
COF29の長手方向中央部は、圧電アクチュエータ28の上面の複数の駆動電極54の接続端子54a、2つのVCOM接続端子58、及び、2つのグランド接続端子59(図4、図9参照)と接続される。また、COF29の長手方向両端部はそれぞれ上方へ折り返され、2つのドライバIC40と2つの端子群74は、圧電アクチュエータ28の上方に配置される。
FPC30も、可撓性基材を主体とする細長い配線部材である。このFPC30の一端部は、上述したCOF29の、上方へ折り返された長手方向両端部の2つの端子群74と電気的に接続される。尚、図3に示すように、COF29の長手方向両端部とFPC30の端部は、その下側に配置された支え部材75によって支持されている。FPC30は、COF29と重なる位置から水平方向において左方に延び、FPC30のCOF29と反対側の左端部は、制御基板6及び電源基板7(図2参照)と接続されている。
以上の構成により、圧電アクチュエータ28は、COF29及びFPC30を介して、電源回路21,22を有する電源基板7(図2参照)と接続されている。VDD電源回路21は、各圧電素子47の駆動電極54にVDD電位を印加するための電源回路であり、VCOM電源回路22は、各圧電素子47のVCOM電極55にVCOM電位を印加するための電源回路である。また、制御基板6は、FPC30を介してCOF29のドライバIC40と電気的に接続されている。制御基板6のASIC26は、ドライバIC40を制御し、各圧電素子47の駆動電極54の電位をVDD電位とグランド電位との間で切り換える。
(電気的接続の詳細)
圧電アクチュエータ28と電源基板7との接続について詳述する。図12は、2つのVDD電源回路21、VCOM電源回路22、2つのドライバIC40、及び、圧電アクチュエータ28の複数の圧電素子47の間の接続を概略的に示す回路図である。また、図12では、圧電アクチュエータ28の複数の圧電素子47を、まとめて「圧電素子群96」と総称している。
2つのVDD電源回路211,212及びVCOM電源回路22と、圧電素子群96を構成する複数の圧電素子47の間の接続を説明する。複数の圧電素子47は、2つのVDD電源回路21(211,212)と、COF29のドライバIC40を介して並列的に接続されている。また、複数の圧電素子47は、VCOM電源回路22とも並列的に接続されている。
2つのVDD電源回路21(211,212)は、COF29のドライバIC40と、VDD電源線76(761,762)によって接続されている。尚、電源線761は、VDD電源回路211とドライバIC40を接続する電源線76であり、電源線762は、VDD電源回路212とドライバIC40を接続する電源線76である。ドライバIC40にはグランド線77(VSS)も接続されている。
ドライバIC40は、複数の圧電素子47の駆動電極54と、配線92により接続されている。後で説明するが、ドライバIC40は、個々の圧電素子47の個別電極54に対して、2つのVDD電源回路211,212の何れかのVDD電位を選択的に印加する。
一方、VCOM電源回路22は、ドライバIC40を介さずに、VCOM電源線78によって複数の圧電素子47のVCOM電極55と直接接続されている。また、圧電素子47のグランド電極56にはグランド線79(COM)が接続されている。
尚、図2、図12に示すように、FPC30のグランド線には、ドライバIC40に接続されるグランド線77(VSS)と、圧電素子47のグランド電極56に接続されるグランド線79(COM)とが存在する。ただ、何れも、図示しないフレームと接続されて、共にグランド電位に維持されている。また、上記フレームは接地されていてもよい。
図13は、圧電素子47とVDD電源回路21及びVCOM電源回路22との接続を示す電気回路図である。図13では、図面の簡単化のため、図12の複数の圧電素子47のうちの1つの圧電素子47のみを抽出して示している。また、図13では、2つのVDD電源回路211,212のうち、出力電圧の高いVDD電源回路212と圧電素子47とが接続された状態が示されている。尚、図13において、Voutは駆動電極54の電位、V1はVCOM電極55の電位、V2はグランド電極56の電位を示している。
図12、図13を参照して、圧電素子47と電源回路21,22との接続構成について、さらに詳細に説明する。上述したように、圧電素子47は、駆動電極54とVCOM電極55に挟まれた活性部61と、駆動電極54とグランド電極56に挟まれた活性部62を有する。駆動電極54の電位が切り換えられることにより、活性部61(62)を挟む上下2つの電極間に電位差が生じたときには、上記2つの電極間に電荷が蓄えられ(充電)、電位差が解消したときに蓄えられた電荷を放出する(放電)。そこで、本実施形態では、活性部61、及び、この活性部61を挟む駆動電極54とVCOM電極55からなる構成を一種のコンデンサと見なし、図13等ではC1という記号を付して説明する。同様に、活性部62、及び、この活性部62を挟む駆動電極54とグランド電極56からなる構成を一種のコンデンサとみなし、これにC2という記号を付して説明する。
ドライバIC40は、駆動電極54の電位(Vout)を切り換えるためのスイッチSW1とスイッチSW2を有する。スイッチSW1及びスイッチSW2は、抵抗R1を介して圧電素子47の駆動電極54に接続されている。スイッチSW1は駆動電極54とVDD電源回路212の間の経路であるVDD電源線762に設けられ、スイッチSW2は駆動電極54とグランド線77との間に設けられている。
スイッチSW1とスイッチSW2は、制御基板6のASIC26(図2参照)からの信号に基づき、一方がONとなったときに他方がOFFになるように、それぞれのON/OFFが切り換えられる。スイッチSW1がONのときには駆動電極54の電位(Vout)はVDD電位となり、スイッチSW2がONのときには駆動電極54の電位(Vout)はグランドとなる。尚、VDD電源線76とグランド線77(VSS)との間には、スイッチSW1のON/OFF時の、VDD電位の変動を吸収するためのコンデンサCvが設けられている。
また、先にも触れたが、本実施形態のプリンタ1は、2つのVDD電源回路21(211,212)を備えている。2つのVDD電源回路21はそれぞれ異なる電圧を出力する。具体的には、本実施形態では、VDD電源回路212の出力電圧が、VDD電源回路211の出力電圧よりも高くなっている。そして、ドライバIC40は、圧電素子47毎に、2種類のVDD電位から1つを選択して印加する。これについて、図14を参照して説明する。図14は、2つのVDD電源回路21に対応したドライバIC40の回路図である。
図14に示すように、ドライバIC40は、1つの圧電素子47の駆動電極54に対して、2つのVDD電源回路21(211,212)にそれぞれ繋がる2つの第1スイッチSW1(SW1_1,SW1_2)を有する。駆動電極54にVDD電位を印加する場合、制御基板6のASIC26からの信号に基づいて、1つの圧電素子47に対して2つのスイッチSW1_1,SW1_2の何れか一方がONにされ、2つのVDD電源回路21の一方と駆動電極54が接続される。これにより、駆動電極54には、接続されたVDD電源回路21の出力電圧に応じた、VDD電位が印加される。上記の構成は、複数のノズル38の間で、吐出されるインクの液滴量や液滴速度がばらついている場合に、そのばらつきを抑えるため、駆動電極54に印加するVDD電位を圧電素子47毎に異ならせる場合などに、特に有効である。
図12、図13に示すように、圧電素子47のVCOM電極55には、VCOM電源線78によってVCOM電源回路22が接続され、VCOM電極55の電位(V1)はVCOM電位に維持される。尚、VCOM電位は、VDD電位よりも少し高い電位である。VCOM電極55とVCOM電源回路22との間には、ダイオードDが配置されている。ダイオードDは、複数の圧電素子47に対して共通に設けられている。具体的には、ダイオードDは、1つのインクジェットヘッド4に対して1つ設けられている。このダイオードDの順方向は、VCOM電源回路22からVCOM電極55に向かう方向である。つまり、VCOM電源回路22からVCOM電極55へは電流が流れるが、逆方向へは、電流が流れにくくなっている。
また、VCOM電源線78には8個のコンデンサCvcが設けられている。尚、説明の便宜上、図12にも示されているように、8個のコンデンサCvcの合成容量をCzとする。各コンデンサCvcの一方のコンデンサ端子93は、VCOM電源線78のダイオードDとVCOM電極55との経路に接続され、他方のコンデンサ端子94はグランド線77(VSS)に接続されている。尚、図12において、コンデンサCvcの一方の端子93が、圧電素子群96の複数の圧電素子47のVCOM電極55に繋がる、VCOM電源線78に接続されていることからも分かるように、コンデンサCvcは、複数の圧電素子47に対して個別に設けられるものではない。
さらに、VCOM電源線78の、ダイオードDとVCOM電極55の間の経路から分岐経路80が分岐し、この分岐経路80には放電抵抗Rvcが設けられている。上記のダイオードD、コンデンサCvc、及び、抵抗Rvcが設けられている理由等については、後で詳しく述べる。
圧電素子47のグランド電極56はグランド線79(COM)に接続され、グランド電極56の電位(V2)はグランド電位に維持される。
(充放電経路)
次に、圧電素子47の駆動時における活性部61,C2の充放電について説明する。図15は、活性部61、62にそれぞれに対応するC1,C2の充放電経路を示す図である。尚、図15において、実線は活性部61に対応するC1の充放電経路を示し、破線は活性部62に対応するC2の充放電経路を示す。
図8(a)に示される圧電素子47の待機状態では、スイッチSW1がOFF、スイッチSW2がONの状態であり、駆動電極54はグランド線77(VSS)に接続されている。このとき、駆動電極54とVCOM電極55の間では、電位差が(VCOM電位−グランド電位)と大きく、C1には電荷が蓄えられる。一方、駆動電極54とグランド電極56の間では電位差がないために、C2には電荷は蓄えられていない。
上記の待機状態から、図15(a)に示すように、スイッチSW1がON、第2スイッチがOFFに切り換えられたとする。駆動電極54はVDD電源回路21と接続され、駆動電極54にはVDD電位が印加される。これにより、駆動電極54とVCOM電極55の間の電位差は小さくなり、図中実線の矢印で示す経路に沿ってC1から電荷が放電される。一方、駆動電極54とグランド電極56の間の電位差は大きくなるため、破線の矢印で示す経路に沿って、VDD電源回路21からC2へ電荷が充電される。
次に、図15(b)に示すように、スイッチSW1がOFF、スイッチSW2がONに切り換えられると、再び、駆動電極54はグランド線77(VSS)と接続される。このとき、駆動電極54とVCOM電極55の間の電位差は大きくなり、実線の矢印で示す経路に沿ってC1に電荷が充電される。一方、駆動電極54とグランド電極56の間の電位差は小さくなり、破線の矢印で示す経路に沿ってC2から電荷が放電される。
ところで、本実施形態では、圧電素子47のVCOM電極55に対して、駆動電極54に接続されたVDD電源回路21とは別の、専用のVCOM電源回路22が設けられている。VCOM電源55の電位を、駆動電極54のVDD電位とは無関係に一定に維持することができる。
但し、ただ単に、VCOM電極55に専用のVCOM電源回路を接続するのでは、VCOM電源回路の回路規模が大きなものとなってしまう。これについて、図16を参照して説明する。図16は、駆動電極54とVCOM電極55とで電源回路を別にした、本実施形態に対する比較回路構成を示す図である。尚、図16では、先の図13と同様、電源回路と接続される圧電素子47が1つしか示されていないが、実際には、複数の圧電素子47が電源回路21,122と並列に接続されている。
圧電素子47の駆動電極54は、ドライバIC40のスイッチSW1を介してVDD電源回路21に接続され、スイッチSW2を介してグランド線(VSS)に接続されている。VCOM電極55は、VDD電源回路21とは別の、VCOM電源回路122と接続されている。
図19(a)のように、スイッチSW1がON、スイッチSW2がOFFの場合には、VDD電源回路21と駆動電極54が接続されて、駆動電極54に駆動電位が印加される。このとき、C1においては、図16の実線で示すように、VCOM電源回路122を経由する経路で電荷が放電され、C2には、VDD電源回路21から破線の経路で電荷が充電される。逆に、図19(b)のように、スイッチSW1がOFF、スイッチSW2がONの場合には、駆動電極54はグランドに接続されて、駆動電極54の電位はグランド電位となる。このとき、C1には、VCOM電源回路122から実線の経路で充電が行われ、C2からは破線の経路で充電が行われる。
図16の回路構成では、スイッチSW1がONのときに、C1の電荷が放電の際に消費される。そのため、その後に、スイッチSW1がOFFにされたときには、改めて、VCOM電源回路122からC1へ充電を行う必要がある。つまり、駆動電極54の電位を切り換えるたびに、VCOM電源回路122からC1へ繰り返し充電を行う必要がある。
また、上記のC1への充電は、圧電素子47の高い駆動周波数(例えば、数十kHz)で行う必要がある。つまり、大きな電流によって短時間でC1を充電する必要があるため、VCOM電源回路122としては出力電流の大きいものが必要となる。また、VCOM電源回路122の出力平均電流も大きくなるため、電源回路の損失による熱発生も大きくなる。そのため、速やかな放熱を可能とするために電源回路の規模を大きくする必要がある。以上より、VCOM電源回路122は、駆動電極54用のVDD電源回路21と同程度に、回路構成が大きなものをならざるを得ない。
この点、本実施形態では、図3、図12、図13等に示されるように、C1の充放電に関し、VCOM電源回路22と、複数の圧電素子47のVCOM電極55との間に、1つのダイオードDと8つのコンデンサCvcが設けられている。この場合、図15(a)のように、C1からの放電時には、C1からの電荷がVCOM電源回路22へ流れることが、ダイオードDによって抑えられる。では、その放電された電荷はどこへ流れるかというと、VCOM電源線78とグランド線79との間のコンデンサCvcに一時的に蓄えられる。そして、図15(b)のように、C1への充電時には、コンデンサCvcに蓄えられた電荷が、逆戻りするようにC1へ流れ、C1が充電される。
つまり、最初に、VCOM電源回路22からC1に充電が行われた後は、コンデンサCvcとC1との間で充放電が繰り返される。最初のC1への充電は、圧電素子47の駆動開始前に小さい電流で時間をかけて充電することが可能であり、VCOM電源回路22は、出力電流の小さい回路とすることができる。尚、C1から放電された電荷が全てコンデンサCvcに蓄えられるわけではなく、ダイオードDからの漏れや後述する分岐経路80への放電によって一部の電荷が放電されてしまうため、その放電分の電荷をVCOM電源回路22から補う必要はあるが、その量は微々たるものである。従って、最初の充電時以外は、VCOM電源回路22ではほとんど電流を必要としないため、VCOM電源回路22を小型化することが可能となる。
尚、C1から放電された電荷がコンデンサCvcに蓄えられたときに、コンデンサCvcの電位差の分だけ、VCOM電位が上昇する。コンデンサの関係式Q=CVの関係から理解されるように、コンデンサCvcの容量が大きいほど、コンデンサCvcの両端電位差が小さくなり、VCOM電位の上昇は抑えられる。
また、8つのコンデンサCvcは、1つのインクジェットヘッド4の全ての圧電素子47を充放電対象とする。そこで、全ての圧電素子47が同時に駆動され、複数のC1から同時に電荷が放電されたときでも、VCOM電位の上昇を一定以下に抑えられるように、8つのコンデンサCvcの容量が設定されることが好ましい。具体的には、8つのコンデンサCvcの合成容量をC、コンデンサC1の静電容量をCx、8つのコンデンサCvcに繋がる圧電素子47の個数をnとしたときに、C≧50×n×Cx、即ち、Cは、C1からの最大放電電荷(n×C1)の50倍以上であることが好ましい。また、部品の調達コストを下げる等の観点で、8つのコンデンサCvcに全て同じ容量のコンデンサを使用する場合は、1つのコンデンサCvcの静電容量は、((n×C1)/8)の50倍以上とすればよい。
尚、先の図7で説明したが、C1は、VCOM電極55から駆動電極54に向けて分極されている。この構成において、駆動電極54の電位がVCOM電極55の電位よりも高い状況は発生すると、C1に、その分極方向と逆方向の電界が生じて分極劣化が生じる虞がある。そこで、上記の分極劣化を防ぐため、VCOM電極55に印加されるVCOM電位は、常に、駆動電極54に印加されるVDD電位以上の電位であることが望まれる。そのためには、VCOM電源回路22の出力電圧は、VDD電源回路21の出力電圧よりも高いことが好ましい。また、本実施形態のように、2つのVDD電源回路21が存在する場合には、VCOM電源回路22の出力電圧は、2つのVDD電源回路21のうちの高い方の出力電圧、具体的には、VDD電源回路212の出力電圧よりも高いことが好ましい。
尚、VCOM電源回路22とVCOM電極55との間の経路にはダイオードDが設けられている。上記ダイオードDにおける電圧降下のため、VCOM電極55のVCOM電位は、VCOM電源回路22の出力電圧と比べて、ダイオードDの順電圧の分だけ低下する。そこで、VCOM電源回路22とVDD電源回路21の出力電圧差は、少なくとも、ダイオードDの順電圧以上であることが好ましい。これにより、VCOM電位がVDD電位以上となる状態を確実に維持することができる。例えば、VDD電源回路21の最大出力電圧が31V、ダイオードDの順電圧が1Vであるときに、VCOM電源回路22の出力電圧は32V以上とすればよい。
また、ダイオードDでの電力損失を抑える観点から、順電圧が低いダイオードを使用することが好ましい。そのようなダイオードとしては、ショットキーダイオードが知られている。但し、ショットキーダイオードは、他の種類のダイオードと比べると漏れ電流が大きい。漏れ電流が大きいとVCOM電源回路22へ流れる電荷量も大きくなることから、その分、コンデンサCvcに蓄えられる電荷が少なくなる。つまり、C1への充電時に、VCOM電源回路22からの補充電荷量が大きくなる。従って、ショットキーダイオードを用いる場合は、その中でも、漏れ電流が少ないショットキーダイオードとし、漏れ電流が200μA以下のダイオードDを使用することが好ましい。
尚、プリンタ1の印刷動作が終了したときには、コンデンサCvcに蓄えられている電荷は不要となることから、速やかに放電しておくことが好ましい。しかし、本実施形態では、コンデンサCvcとVCOM電源回路22までの間にダイオードDがあるため、コンデンサCvcの電荷の行き場がほとんどなく、放電時間が長くなる。そこで、コンデンサCvcの電荷を速やかに放電させるため、図13では、VCOM電源線78の、ダイオードDとVCOM電極55の間の経路から分岐経路80が分岐している。尚、分岐経路80が設けられる場所は特に限定されないが、本実施形態では、分岐経路80はVCOM電源回路22に設けられている。上記構成では、コンデンサCvcの一方のコンデンサ端子93から分岐経路80を経由して他方のコンデンサ端子94まで繋がる放電経路が形成されるため、コンデンサCvcの放電時間が短くなる。
但し、上記放電経路の抵抗が小さいと、インクジェットヘッド4の駆動時に、C1の充放電を繰り返す間にも一部の電荷が放電されてしまうため、VCOM電源回路22からC1への電荷の補充が増えてしまう。そこで、本実施形態では、分岐経路80には、抵抗Rvsが設けられている。その上で、コンデンサCvcの一方のコンデンサ端子93から分岐経路80を経由して他方のコンデンサ端子94に至る、抵抗Rvsを含む放電経路全体の電気抵抗Rが、適切に定められることが好ましい。
具体的には、上記放電経路の電気抵抗Rの範囲は、以下のような考えに基づいて決定されることが好ましい。
(抵抗の下限値)
放電経路の抵抗Rが小さいと、圧電素子47の駆動時に、上記放電経路からの電荷の放電が大きくなる。そこで、放電電流が一定以下に抑えられるように抵抗Rの下限値を決定するとよい。例えば、VCOM電位が32V、放電電流の許容値Iを5mAとすると、抵抗R≦VCOM/I=6.4kΩとなる。
(抵抗の上限値)
放電経路の抵抗Rが大きいと、インクジェットヘッド4の駆動を停止させてから、コンデンサCvcの放電が完了するまでの時間が長くなる。そこで、放電時間が所定時間以下に収まるように、抵抗Rの上限値を決定するとよい。例えば、VCOM電位が32V、コンデンサの容量が25μFであるときに、放電時間を1秒以下に抑えるとすると、下記式より、抵抗Rは40kΩ以下とするとよい。
Q=C×V=25μF×32V
一方で、Q=di/dt=i(t=1秒)
従って、抵抗R=V/i=32V/(25μF×32V)=40kΩ
以上の考えに基づき、抵抗Rは、例えば、1kΩ以上100kΩ以下であることが好ましい。
次に、図12、図13の電気回路図で示される電気的接続の、COF29及びFPC30による具体的な接続構造について説明する。図17は、COF29とFPC30の上面図である。尚、図17では、COF29及びFPC30の配置が理解されやすくなるように、COF29の下側に配置されている流路ユニット27を二点鎖線で示している。図18は、図17のFPC30の先端部の拡大図である。
(基板→FPC→COFの接続)
まず、制御基板6、電源基板7から、FPC30を経て、COF29までの電気接続について説明する。先にも述べたが、電源基板7に接続されたFPC30は、細長い配線部材である。図17、図18に示すように、FPC30の基板6,7とは反対側の先端部には、幅広の電気接続部30aが形成されている。このFPC30の電気接続部30aには、上方に折り返されたCOF29の両端部が重ね合わされて接合される。
図18に示すように、FPC30の電気接続部30aの上面には、前後2つのドライバIC40に対応して、前後に分かれて配置された2つの端子群82が設けられている。2つの端子群82は、COF29の両端部に設けられた2つの端子群74(図17参照)と接続される。尚、以下の説明では、後側に位置するドライバIC40を“IC_A”、前側に位置するドライバIC40を“IC_B”と表記し、IC_A、IC_Bにそれぞれ対応する端子群82を、端子群82a、端子群82bと表記する。
2つの端子群82の各々は、左右方向、即ち、2つのドライバIC40の離間方向と直交する方向に並ぶ、複数の接続端子83からなる。複数の接続端子83には、VDD電源回路21に接続されるVDD端子(VDD_1,VDD_2)、VCOM電源回路22に接続されるVCOM端子、グランド端子(VSS、COM)、制御基板6から印字データが入力される信号入力端子(SIN)、波形データが入力される波形入力端子(FIRE)、クロックが転送されるクロック端子(CLK)(図18では図示省略)等が含まれる。尚、図18では、端子群82aに含まれる接続端子83については“A”の記号を付け、端子群82bに含まれる接続端子には“B”の符号を付けている。例えば、“VDD_2B”とは、端子群Bに含まれる、VDD電源回路212に接続される接続端子83のことである。
図18に示すように、端子群82aにおいては、左端から、VCOM端子(VCOM_
A)、グランド端子(VSS_A)、VDD端子(VDD_1A、VDD_2A)が順に並んでいる。また、右端からは、グランド端子(COM_A)、グランド端子(VSS_A)、VDD端子(VDD_1A、VDD_2A)が順に並んでいる。また、端子群82aの中央部には、信号入力端子(SIN_A)、波形入力端子(FIRE_A)等の制御基板6と接続される入力端子が並んでいる。
一方、端子群82bは、端子群82aに対して点対称な端子配置となっている。即ち、右端から、VCOM端子(VCOM_B)、グランド端子(VSS_B)、VDD端子(VDD_1B、VDD_2B)が順に並んでいる。また、左端からは、グランド端子(COM_B)、VSS端子(VSS_B)、VDD端子(VDD_1B、VDD_2B)が順に並んでいる。さらに、端子群82aの中央部には、信号入力端子(SIN_B)、波形入力端子(FIRE_B)等の入力端子が並んでいる。
電源基板7に繋がる電源線76,78や、グランドに繋がるグランド線77は、左側から2つの端子群82a,82bの間に延び、さらに前後に分かれて、2つの端子群82a,82bのVDD端子、VCOM端子、グランド端子(VSS,COM)に接続されている。言い換えれば、FPC30の電気接続部30aの2つの端子群82a,82bの間には、これら2つの端子群82a,82b間で、VDD端子(VDD_1、VDD_2)同士を繋ぐ配線部分851,852、VCOM端子同士を繋ぐ配線部分86、グランド端子(VSS、COM)同士を繋ぐ配線部分84,87が形成されている。一方、制御基板6に繋がる信号線88,89は、2つの端子群82a,82bの前後外側から、信号入力端子(SIN)や波形入力端子(FIRE)に接続されている。
特に、グランド端子(VSS、COM)の接続については、まず、2つの端子群82a,82bの左側のVSS端子(VSS_A,VSS_B)が、左側の配線部分87によって接続されている。また、2つの端子群82a,82bの右側のVSS端子(VSS_A,VSS_B)が、右側の配線部分87によって接続されている。また、2本の配線部分87は、前後に延びる配線部分84によって接続されている。さらに、この配線部分84に、2つの端子群82a,82bのCOM端子(COM_A,COM_B)が接続されている。
端子群82aの左端に位置するVCOM端子(VCOM_A)の近傍には、このVCOM端子とグランド端子(VSS_A)との間に3つのコンデンサCvcが配置されている。一方、端子群82bの右端に位置するVCOM端子(VCOM_B)の近傍には、このVCOM端子とグランド端子(VSS_B)との間に5つのコンデンサCvcが配置されている。尚、端子群82aのVCOM端子と端子群82bのVCOM端子とで、近くに配置されているコンデンサCvcの数が異なっている理由については、後で説明する。
コンデンサCvcはVCOM電源線78に繋がっていればよく、その設置位置は限定されない。即ち、コンデンサCvcがVCOM端子のすぐ近くにある必要はない。さらには、FPC30上にある必要もなく、例えば、コンデンサCvcが電源基板7に設けられていてもよい。但し、各圧電素子47のC1とコンデンサCvcとの距離が遠くなると、C1の充放電に遅れが生じて挙動も安定しないため、コンデンサCvcはなるべくC1の近くに配置されることが好ましい。この観点から、本実施形態では、コンデンサCvcはFPC30に配置されている。さらに、コンデンサCvcは、FPC30の電気接続部30aにおいて、圧電素子47のVCOM電極55に繋がるVCOM端子の近傍位置に配置されている。これにより、コンデンサCvcとC1との距離が短くなることから、C1の充放電を、速やかに安定して行うことができる。
尚、FPC30のうち、COF29から引き出された、電気接続部30aと繋がる引出部分30bは、インクジェットヘッド4の各部品の組付の制約などから、折れ曲げて配置できるように、電気接続部30aよりも剛性が低くなっている。具体的には、電気接続部30aと比べて、引出部分30bは、FPC30を構成する基材の積層数が少なくなっている。例えば、電気接続部30aが4層、引出部分30bは2層である。その上で、本実施形態では、コンデンサCvcは、引出部分30bよりもVCOM端子に近い、電気接続部30aに配置されている。
先の図13、図15に示されるように、C1の充放電経路は以下の通りである。
<充電>(図15(b)参照)
コンデンサCvc→C1→第2スイッチSW2→スイッチSW2接続のグランド端子(VSS)→Cvc接続グランド端子(VSS)→コンデンサCvc
<放電>(図15(a)参照)
C1→コンデンサCvc→Cvc接続グランド端子(VSS)→VDD電源回路21及びCvに接続のグランド端子(VSS)→VDD電源回路21及びコンデンサCv
ここで、C1の充放電を速やかに行うためには、充放電経路を短くすることが重要となる。まず、C1の充電に関しては、C1とコンデンサCvcの間のグランド側の経路、即ち、図13に太い実線で示される、コンデンサCvcのグランド側端子94と、スイッチSW2接続のグランド端子(VSS)の間の経路aを短くすることが効果的である。また、C1の放電に関しては、コンデンサCvcのグランド側端子94と、VDD電源回路21及びコンデンサCvに接続されたグランド端子(VSS)の経路bを短くすることが効果的である。
尚、C2についても、当然ながら充放電経路は短いことが好ましい。即ち、C2の充電に関しては、C2接続のグランド端子(COM)と、VDD電源回路21及びコンデンサCvに接続されたグランド端子(VSS)との間の経路が短いことが好ましい。また、C2の放電に関しては、スイッチSW2接続のグランド端子(VSS)と、C2接続のグランド端子(COM)の間の経路が短いことが好ましい。
本実施形態では、図18に示すように、FPC30の電気接続部30aにおいて、コンデンサCvcのグランド側端子、及び、COM端子が、FPC30上の配線部分84、あるいは、配線部分87を介して、VSS端子と接続されている。即ち、図18の太線で示されるように、コンデンサCvc_Aのグランド側の端子は、配線部分84によって、VSS端子と接続されている。また、コンデンサCvc_Bのグランド側の端子は、配線部分87によって、VSS端子と接続されている。これにより、C1及びC2の充放電経路を短くすることができる。
(COF、ドライバIC→圧電アクチュエータの接続)
次に、COF29及びドライバIC40と圧電アクチュエータ28との接続について説明する。図19は、圧電アクチュエータ28との電気的接続を示すCOF29の平面図である。尚、図19では、本来、COF29に隠れて見えない圧電アクチュエータ28を、あえて実線で示してある。
図19に示すように、COF29には、2つのドライバIC40(IC_A、IC_B)にそれぞれ対応して端部に配置された2つの端子群74を有する。2つの端子群74は、前述のFPC30の2つの端子群82(図18参照)とそれぞれ接続される。それ故、COF29の端子群74も、FPC30の端子群82と同様、VDD端子、VCOM端子、グランド端子(VSS、COM)等の複数の接続端子91で構成されている。
各端子群74のVDD端子(VDD_1、VDD_2)、グランド端子(VSS)、信号入力端子(SIN)、波形入力端子(FIRE)は、それぞれ対応するドライバIC40に接続されている。また、ドライバIC40は、COF29上の配線92を介して、圧電アクチュエータ28の複数の駆動電極54と接続されている。一方、各端子群74のVCOM端子は、圧電アクチュエータ28の上面のVCOM接続端子58と接続され、グランド端子(COM)は、圧電アクチュエータ28の上面のグランド接続端子59と接続されている。
前後2つのドライバIC40及び前後2つの端子群74と、圧電アクチュエータ28の複数の圧電素子47とが、どのように接続されているかについて、より詳細に説明する。
(ドライバICと圧電素子の接続)
複数の圧電素子47の駆動電極54は、図19の二点鎖線Bを境にして、前後何れのドライバIC40と接続されるかが分かれている。即ち、後側のIC_Aは、後半分の圧電素子47の駆動電極54と接続され、前側のIC_Bは、前半分の圧電素子47の駆動電極54と接続されている。
(VCOM端子、COM端子と圧電素子の接続)
上記のように、複数の圧電素子47は、2つのドライバIC40との接続関係で言えば前後に分かれている。しかし、2つの端子群74に含まれるVCOM端子、グランド端子(COM)との関係では、複数の圧電素子47は左右に分かれている。
まず、VCOM端子の接続について説明する。後側の端子群74aの左端に位置するVCOM端子(VCOM_A)は、後半部左端に配置されたVCOM接続端子58aに接続されている。先に図10で説明したように、VCOM接続端子58aは、左側5列のVCOM電極55に接続されている。また、前側の端子群74bの右端に位置するVCOM端子(VCOM_B)は、前半部右端に配置されたVCOM接続端子58bに接続されている。このVCOM接続端子58bは、右側7列のVCOM電極55に接続されている。
つまり、後側の端子群74aのVCOM端子は、左側5列の圧電素子47のVCOM電極55に接続され、前側の端子群74bのVCOM端子は、右側7列の圧電素子47のVCOM電極55に接続されている。
次に、COM端子の接続について説明する。後側の端子群74aの右端に位置するCOM端子(COM_A)は、後半部右端に配置されたグランド接続端子59aに接続されている。図11で説明したように、グランド接続端子59aは、右側7列のグランド電極56に接続されている。前側の端子群74bの左端に位置するCOM端子(COM_B)は、前半部左端に配置されたグランド接続端子59bに接続されている。グランド接続端子59bは、左側5列のグランド電極56に接続されている。尚、COM端子(COM_A)に繋がる後側のグランド接続端子59aと、COM端子(COM_B)に繋がる前側のグランド接続端子59bは、図11に示すように1つの連結部70によって接続されている。
つまり、右側7列の圧電素子47のグランド電極56は、後側の端子群74aのCOM端子と、前側の端子群74bのCOM端子よりも近い距離で接続されている。また、左側5列の圧電素子47のグランド電極56は、前側の端子群74bのCOM端子と、後側の端子群74aのCOM端子よりも近い距離で接続されている。
以上をまとめると、図19において、複数の圧電素子47が配置された領域全体を4つの領域(A)〜(D)に分けたときに、各領域の圧電素子47と、ドライバIC40、VCOM端子、及び、COM端子との接続関係は、次のようになる。
(領域A)IC_A、VCOM_A、COM_B
(領域B)IC_B、VCOM_A、COM_B
(領域C)IC_A、VCOM_B、COM_A
(領域D)IC_B、VCOM_B、COM_A
図18のFPC30上で見ると、1つの圧電素子47のVCOM電極55が接続されるVCOM端子が属する端子群82と、駆動電極54及びグランド電極56が接続されるグランド端子(VSS、COM)が属する端子群82とが、異なっている。つまり、各圧電素子47について、VCOM電極55に繋がるコンデンサCvcと、駆動電極54と接続されるグランド端子(VSS)、及び、グランド電極56と近い距離で繋がるグランド端子(COM)の配置位置が、後方のA側と前方のB側とに分かれることとなる。
この場合に、FPC30の2つの端子群82a,82bの間で、グランド端子(VSS、COM)同士が繋がっていないと、C1、C2の充放電経路が長くなってしまう。具体的には、一例として、領域Aの圧電素子47では、C1の充電時において、端子群82aのVCOM端子(VCOM_A)に接続されたコンデンサCvcから、端子群82bに接続されたVSS端子(VSS_B)経由で、遠く離れた電源基板7を回って、端子群82aのコンデンサCvcに接続されるグランド端子(VSS_A)に至る、大変長い充放電回路となる。
この点、本実施形態では、図18に示すように、FPC30の電気接続部30aに形成された左右2つの配線部分87と配線部分84によって、端子群82aのグランド端子(VSS_A、COM_A)と、端子群82bのグランド端子(VSS_B、COM_B)が接続されている。即ち、図18で太線で示されるように、端子群82aのVCOM端子(VCOM_A)と接続されたコンデンサCvc_Aは、FPC30上の左側の配線部分87を介して、端子群82bのグランド端子(COM_B、VSS_B)と接続されている。また、端子群82bのVCOM端子(VCOM_B)と接続されたコンデンサCvc_Bは、FPC30上の右側の配線部分87を介して、端子群82aのグランド端子(COM_A、VSS_A)と接続されている。これにより、各圧電素子47について、VCOM端子と、その圧電素子47と距離が近い位置にあるグランド端子(VSS、COM)とが、A側とB側の前後に分かれた構成であっても、C1、C2の充放電経路を短くすることができる。
尚、図18に示すように、端子群82aのVCOM端子は、この端子群82aの中の左側位置に配置されており、VCOM端子に接続されるコンデンサCvc(Cvc_A)は、VCOM端子の近く、即ち、電気接続部30aの左端部に配置されている。一方、端子群82bのVCOM端子はこの端子群82bの中の右側位置に配置され、VCOM端子に接続されるコンデンサCvc(Cvc_B)は電気接続部30aの右端部に配置されている。
ここで、右側に位置するコンデンサCvc_Bの数は5個で、左側に位置するコンデンサCvc_Aの3個よりも多い。また、FPC30上において、コンデンサCvcの配置数が多い側では、その分、制御基板6や電源基板7と接続される配線を配置するためのスペースが少なくなる。そこで、本実施形態では、FPC30は、COF29との接続部分から左側に延びるように配置されている。図19から分かるように、FPC30が引き出される側である、電気接続部30aの左端部ではFPC30上の配線数が増えるが、左側に配置されているコンデンサの数は右側と比べて少ないため、配線を配置しやすくなる。
また、端子群82bのVCOM端子に接続されるコンデンサCvc_Bは、右側7列のVCOM電極55に接続されるものであり、端子群82aの左側5列のVCOM端子に接続されるコンデンサCvc_Aよりも、圧電素子47のVCOM電極55の接続数が多い。つまり、右側のコンデンサCvc_Bによって充放電されるC1の数は、左側のコンデンサCvc_Aよりも多いため、コンデンサCvc_Bの容量は、コンデンサCvc_Aの容量よりも大きくする必要がある。この観点から、端子群82bのVCOM端子に接続されるコンデンサCvc_Bの数は、端子群82aのVCOM端子に接続されるコンデンサCvc_Aよりも多くなっている。
以上説明した実施形態において、インクジェットヘッド4が、本発明の「液体吐出装置」に相当する。VDD電源回路21(211)が本発明の「第1電源回路」、VCOM電源回路22が本発明の「第2電源回路」、VDD電源回路21(212)が本発明の「第3電源回路」に相当する。駆動電極54が本発明の「駆動電極」「第1電極」、VCOM電極55が本発明の「高電位電極」「第2電極」、グランド電極56が本発明の「低電位電極」「第3電極」に相当する。活性部61が本発明の「第1活性部」、活性部62が本発明の「第2活性部」に相当する。スイッチSW1_1が本発明の「第1スイッチ」、スイッチSW2が本発明の「第2スイッチ」、スイッチSW1_2が本発明の「第3スイッチ」に相当する。COF29が本発明の「第1配線部材」、FPC30が本発明の「第2配線部材」に相当する。FPC30のVCOM端子が本発明の「高電位端子」に相当する。
次に、前記実施形態に種々の変更を加えた変更形態について説明する。但し、前記実施形態と同様の構成を有するものについては、同じ符号を付して適宜その説明を省略する。
1]前記実施形態では、図19に示すように、各圧電素子47について、VCOM電極55が接続されるVCOM端子が属する端子群82と、グランド電極56が接続されるグランド端子(COM)が属する端子群82が異なっている。これに対して、各圧電素子47について、VCOM電極55とグランド電極56の接続先の端子群82が、同じであってもよい。
2]前記実施形態では、複数の圧電素子47に対してコンデンサCvcが複数設けられている。例えば、左側の圧電素子47に対して3個のコンデンサCvc_Aが設けられ、右側の圧電素子47に対して5個のCvc_Bが設けられている。しかし、コンデンサCvcが複数であることは必須ではない。例えば、図18において、右側の5個のコンデンサCvc_Bの総容量に等しい、1つのコンデンサが設けられてもよい。
また、8つのコンデンサCvcの総容量に等しい静電容量を有する、1つのコンデンサのみが設けられてもよい。この場合、このコンデンサの静電容量は、コンデンサCvcが8つある場合と同様に設定されるとよい。即ち、コンデンサC1の静電容量をCx、圧電素子の個数をnとしたときに、上記1つのコンデンサの容量Cは、C≧50×n×Cxであることが好ましい。
3]1つの圧電素子の3種類の電極の配置は、前記実施形態の構成に限られるものではない。例えば、図20(a)では、VCOM電極155が、圧力室43の前後方向における両側の縁部と重なるように配置されている。また、グランド電極156は、圧力室43の中央部と重なる領域にも配置されている。(特開2009−241550号公報参照)
図20(b)では、圧電層51と圧電層52の間に駆動電極254、圧電層51の上面にVCOM電極255、圧電層52と圧電層53との間にグランド電極255が配置されている。(特開2015−30134号公報参照)
図20(c)では、2枚の圧電層351、352が互いに積層されている。上層の圧電層351の上面には、圧力室43の全域と重なるように駆動電極354が配置されている。また、上層の圧電層351と下層の圧電層352の間には、VCOM電極355とグランド電極356が同じ層に配置されている。VCOM電極355は圧力室43の中央部と重なる位置に配置され、グランド電極356は圧力室43の縁部と重なる領域に配置されている。(特開2011−206929号公報参照)
4]前記実施形態では、駆動電極54に接続されるVDD電源回路が2つある例を開示したが、VDD電源回路が3つ以上あってもよい。
また、VCOM電源回路を、VDD電源回路の1つとして使用してもよい。具体的には、1以上のVDD電源回路と、VDD電源回路よりも高い電圧を出力するVCOM電源回路を有する構成において、一部の圧電素子47の駆動電極54に対してVCOM電源回路の出力電圧を印加する。この場合、VCOM電源回路は、最大のVDD電位を駆動電極に印加する、VDD電源回路の1つとして機能する。
5]前記実施形態のインクジェットヘッド4は、キャリッジ3とともに走査方向に移動しながら、記録用紙100に対してインクを吐出する、いわゆるシリアルタイプのヘッドである。しかし、本発明の適用は上記シリアルヘッドには限られない。例えば、記録用紙の幅方向に配列された複数のノズルを有する、いわゆるラインヘッドに本発明を適用することも可能である。
以上説明した実施形態は、本発明を、記録用紙にインクを吐出して画像等を印刷するインクジェットヘッドに適用したものであるが、画像等の印刷以外の様々な用途で使用される液体吐出装置においても本発明は適用されうる。例えば、基板に導電性の液体を吐出して、基板表面に導電パターンを形成する液体吐出装置にも、本発明を適用することは可能である。
4 インクジェットヘッド
21,211,212 VDD電源回路
21 VCOM電源回路
38 ノズル
40 ドライバIC
47 圧電素子
54 駆動電極
55 VCOM電極
56 グランド電極
61 活性部
62 活性部
76 VDD電源線
77 グランド線
78 VCOM電源線
79 グランド線
80 分岐経路
82 端子群
83 接続端子
87 配線部分
155 VCOM電極
156 グランド電極
254 駆動電極
255 グランド電極
255 VCOM電極
354 駆動電極
355 VCOM電極
356 グランド電極
Cvc コンデンサ
D ダイオード
SW1 スイッチ
SW2 スイッチ

Claims (21)

  1. 駆動電極と、高電位電極と、低電位電極と、前記駆動電極と前記高電位電極に挟まれた第1活性部と、前記駆動電極と前記低電位電極に挟まれた第2活性部とを有し、ノズルから液体を吐出させるための圧電素子と、
    前記駆動電極と接続された第1電源回路と、
    前記高電位電極に接続された第2電源回路と、
    前記低電位電極に接続されたグランド線と、
    前記第1電源回路と前記駆動電極との間の経路に設けられた第1スイッチと、
    前記グランド線と前記駆動電極との間の経路に設けられた第2スイッチと、
    前記第2電源回路と前記高電位電極との間に配置され、前記第2電源回路から前記高電位電極に向かう方向を順方向とするダイオードと、
    一方の端子が前記ダイオードと前記高電位電極との間の経路と接続され、他方の端子が前記グランド線に繋がるコンデンサと、
    を備えていることを特徴とする液体吐出装置。
  2. 前記コンデンサと並列に接続された他のコンデンサをさらに備えたことを特徴とする請求項1に記載の液体吐出装置。
  3. 前記第1活性部は、前記高電位電極から前記駆動電極に向かう方向に分極され、
    前記第2電源回路の出力電圧は、前記第1電源回路の出力電圧よりも高いことを特徴とする請求項1又は2に記載の液体吐出装置。
  4. 前記第2電源回路と前記第1電源回路の出力電圧差は、前記ダイオードの順電圧以上であることを特徴とする請求項3に記載の液体吐出装置。
  5. 前記ダイオードは、ショットキーダイオードであることを特徴とする請求項3又は4に記載の液体吐出装置。
  6. 前記ダイオードの漏れ電流が、200μA以下であることを特徴とする請求項5に記載の液体吐出装置。
  7. 前記高電位電極と前記ダイオードとの間の位置から分岐し、前記グランド線と接続される分岐経路を備え、
    前記コンデンサの前記一方の端子から前記分岐経路を経由して前記他方の端子まで繋がる経路の抵抗値をRとしたときに、1kΩ≦R≦100kΩであることを特徴とする請求項6に記載の液体吐出装置。
  8. 前記第1電源回路よりも高い電圧を出力する第3電源回路と、前記第3電源回路と前記駆動電極との間の経路に設けられた第3スイッチと、を備えていることを特徴とする請求項1〜7の何れかに記載の液体吐出装置。
  9. 前記第1活性部は、前記高電位電極から前記駆動電極に向かう方向に分極され、
    前記第2電源回路の出力電圧は、前記第3電源回路の出力電圧よりも高いことを特徴とする請求項8に記載の液体吐出装置。
  10. 前記第2電源回路と前記第3電源回路の出力電圧差は、前記ダイオードの順電圧以上であることを特徴とする請求項9に記載の液体吐出装置。
  11. 前記第1スイッチ及び前記第2スイッチを有するICが実装され、前記圧電素子の端子と接続された第1配線部材と、
    前記第1配線部材と接続された第2配線部材と、を備え、
    前記第2配線部材には、前記第1配線部材を介して前記高電位電極と接続される高電位端子が設けられ、
    前記第2配線部材に、前記一方の端子が前記高電位端子に接続された前記コンデンサが設けられていることを特徴とする請求項1〜10の何れかに記載の液体吐出装置。
  12. 前記第2配線部材には、前記ICの前記第2スイッチを介して前記駆動電極に接続されるグランド端子が設けられ、
    前記グランド線は、前記第2配線部材に設けられ、且つ、前記グランド端子に接続された配線部分を有し、
    前記コンデンサの前記他方の端子が、前記グランド線の前記配線部分と接続されていることを特徴とする請求項11に記載の液体吐出装置。
  13. それぞれが、駆動電極と、高電位電極と、低電位電極と、前記駆動電極と前記高電位電極に挟まれた第1活性部と、前記駆動電極と前記低電位電極に挟まれた第2活性部と、を有する複数の圧電素子と、
    前記複数の圧電素子の前記駆動電極と接続された第1電源回路と、
    前記複数の圧電素子の前記高電位電極に接続された第2電源回路と、
    前記複数の圧電素子の前記低電位電極に接続されたグランド線と、
    前記複数の圧電素子にそれぞれ対応して、前記第1電源回路と前記駆動電極との間の経路に設けられた、複数の第1スイッチと、
    前記複数の圧電素子にそれぞれ対応して、前記グランド線と前記駆動電極との間の経路に設けられた、複数の第2スイッチと、
    前記第2電源回路と前記複数の圧電素子の前記高電位電極との間に配置され、前記第2電源回路から前記高電位電極に向かう方向を順方向とするダイオードと、
    一方の端子が前記ダイオードと前記複数の圧電素子の前記高電位電極との間の経路と接続され、他方の端子が前記グランド線に繋がるコンデンサと、
    を備えていることを特徴とする液体吐出装置。
  14. 前記駆動電極は、各圧電素子に個別に設けられた電極であり、
    前記複数の圧電素子の間で、前記高電位電極同士が互いに導通し、且つ、前記低電位電極同士が互いに導通していることを特徴とする請求項13に記載の液体吐出装置。
  15. 前記コンデンサの容量をC、1つの前記圧電素子の前記駆動電極と前記高電位電極間の静電容量をCx、前記圧電素子の個数をnとしたときに、
    C≧50×n×Cxであることを特徴とする請求項14に記載の液体吐出装置。
  16. 前記コンデンサと並列接続された少なくとも1つ以上の他のコンデンサをさらに備え、
    前記コンデンサと前記少なくとも1つ以上の他のコンデンサの合成容量をC、1つの前記圧電素子の前記駆動電極と前記高電位電極間の静電容量をCx、前記圧電素子の個数をnとしたときに、
    C≧50×n×Cxであることを特徴とする請求項14に記載の液体吐出装置。
  17. 前記複数の第1スイッチ及び前記複数の第2スイッチを有するICが実装され、前記複数の圧電素子の端子と接続された第1配線部材と、
    前記第1配線部材と接続された第2配線部材と、を備え、
    前記第2配線部材には、前記第1配線部材を介して前記複数の圧電素子の前記高電位電極と接続される高電位端子が設けられ、
    前記第2配線部材に、前記一方の端子が前記高電位端子に接続された前記コンデンサが設けられていることを特徴とする請求項13〜16の何れかに記載の液体吐出装置。
  18. 前記第1配線部材には、前記第1スイッチと前記第2スイッチを有するICとして、IC_AとIC_Bが距離を空けて実装され、
    前記第2配線部材の前記第1配線部材との接続部には、前記第1配線部材と接続される端子群として、前記IC_A側に配置された端子群Aと前記IC_B側に配置された端子群Bが設けられ、
    前記端子群Aは、前記第2電源回路に繋がる高電位端子Aと、前記グランド線に接続されたグランド端子Aを含み、
    前記端子群Bは、前記第2電源回路に繋がる高電位端子Bと、前記グランド線に接続されたグランド端子Bを含み、
    前記複数の圧電素子の一部は、前記端子群Bの前記高電位端子Bに接続され、
    前記第2配線部材に、前記高電位端子Bに接続された前記コンデンサが設けられ、
    前記グランド線は、前記第2配線部材に設けられ、且つ、前記グランド端子Aに接続された配線部分を有し、
    前記高電位端子Bに接続された前記コンデンサは、前記グランド線の前記配線部分を介して前記グランド端子Aに繋がっていることを特徴とする請求項17に記載の液体吐出装置。
  19. 前記高電位端子Bに接続された前記コンデンサと、このコンデンサに並列接続された少なくとも1つ以上の他のコンデンサからなる、複数のコンデンサCBと、
    前記高電位端子Aに接続された少なくとも1つ以上のコンデンサCAと、をさらに備え、
    前記端子群Aを構成する複数の接続端子は、前記IC_Aと前記IC_Bの離間方向と直交する直交方向に配列され、前記高電位端子Aは、前記端子群A内の配列方向における一方側に配置され、
    前記端子群Bを構成する複数の接続端子も前記配列方向に配列され、前記高電位端子Bは前記端子群B内の、前記配列方向における他方側に配置され、
    前記第2配線部材は、前記第1配線部材との接続部分から前記配列方向における一方側に延び、
    前記高電位端子Bに接続される前記コンデンサCBの数が、前記高電位端子Aに接続される前記コンデンサCAの数よりも多いことを特徴とする請求項18に記載の液体吐出装置。
  20. 前記高電位端子Bと接続される前記圧電素子の数が、前記高電位端子Aと接続される前記圧電素子の数よりも多いことを特徴とする請求項19に記載の液体吐出装置。
  21. 第1電極と、第2電極と、第3電極とを有する圧電素子と、
    前記第1電極と接続された第1電源回路と、
    前記第2電極に接続された第2電源回路と、
    前記第3電極に接続されたグランド線と、
    前記第1電源回路と前記第1電極との間の経路に設けられた第1スイッチと、
    前記グランド線と前記第1電極との間の経路に設けられた第2スイッチと、
    前記第2電源回路と前記第2電極との間に配置され、前記第2電源回路から前記第2電極に向かう方向を順方向とするダイオードと、
    一方の端子が前記ダイオードと前記第2電極との間の経路と接続され、他方の端子が前記グランド線に繋がるコンデンサと、
    を備えていることを特徴とする液体吐出装置。
JP2016171450A 2016-09-02 2016-09-02 液体吐出装置 Active JP6759875B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016171450A JP6759875B2 (ja) 2016-09-02 2016-09-02 液体吐出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016171450A JP6759875B2 (ja) 2016-09-02 2016-09-02 液体吐出装置

Publications (2)

Publication Number Publication Date
JP2018034474A true JP2018034474A (ja) 2018-03-08
JP6759875B2 JP6759875B2 (ja) 2020-09-23

Family

ID=61566772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171450A Active JP6759875B2 (ja) 2016-09-02 2016-09-02 液体吐出装置

Country Status (1)

Country Link
JP (1) JP6759875B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11285722B2 (en) 2020-03-30 2022-03-29 Brother Kogyo Kabushiki Kaisha Inkjet head and piezoelectric actuator
US11910717B2 (en) 2020-03-30 2024-02-20 Brother Kogyo Kabushiki Kaisha Piezoelectric actuator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072069A (ja) * 2001-08-31 2003-03-12 Seiko Epson Corp インクジェット式プリンタのヘッド駆動装置及び駆動方法
JP2003332623A (ja) * 2002-05-07 2003-11-21 Rohm Co Ltd 発光素子駆動装置及び、発光素子を備えた電子機器
JP2006256149A (ja) * 2005-03-17 2006-09-28 Fuji Xerox Co Ltd 圧電素子の駆動装置及び駆動方法、並びに液滴吐出装置
JP2009246059A (ja) * 2008-03-31 2009-10-22 Brother Ind Ltd 圧電アクチュエータ及び液体移送装置
JP2010173278A (ja) * 2009-01-31 2010-08-12 Brother Ind Ltd 液滴吐出ヘッドの配線構造
JP2015024531A (ja) * 2013-07-25 2015-02-05 ブラザー工業株式会社 圧電アクチュエータ、及び、液体吐出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072069A (ja) * 2001-08-31 2003-03-12 Seiko Epson Corp インクジェット式プリンタのヘッド駆動装置及び駆動方法
JP2003332623A (ja) * 2002-05-07 2003-11-21 Rohm Co Ltd 発光素子駆動装置及び、発光素子を備えた電子機器
JP2006256149A (ja) * 2005-03-17 2006-09-28 Fuji Xerox Co Ltd 圧電素子の駆動装置及び駆動方法、並びに液滴吐出装置
JP2009246059A (ja) * 2008-03-31 2009-10-22 Brother Ind Ltd 圧電アクチュエータ及び液体移送装置
JP2010173278A (ja) * 2009-01-31 2010-08-12 Brother Ind Ltd 液滴吐出ヘッドの配線構造
JP2015024531A (ja) * 2013-07-25 2015-02-05 ブラザー工業株式会社 圧電アクチュエータ、及び、液体吐出装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11285722B2 (en) 2020-03-30 2022-03-29 Brother Kogyo Kabushiki Kaisha Inkjet head and piezoelectric actuator
JP7415737B2 (ja) 2020-03-30 2024-01-17 ブラザー工業株式会社 圧電アクチュエータ
US11910717B2 (en) 2020-03-30 2024-02-20 Brother Kogyo Kabushiki Kaisha Piezoelectric actuator
JP7459614B2 (ja) 2020-03-30 2024-04-02 ブラザー工業株式会社 圧電アクチュエータ

Also Published As

Publication number Publication date
JP6759875B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
JP4557019B2 (ja) 液滴吐出ヘッド及び液滴吐出装置
JP6232802B2 (ja) 圧電アクチュエータ、及び、液体吐出装置
JP4788764B2 (ja) 圧電アクチュエータ及び液体移送装置
JP6604117B2 (ja) 液体吐出装置
JP2016132123A (ja) 液体吐出装置
JP6759875B2 (ja) 液体吐出装置
US8708460B2 (en) Piezoelectric actuator device and printer
JP6464842B2 (ja) 液体吐出装置
JP2010263002A (ja) 圧電アクチュエータ装置、及び、圧電アクチュエータ装置を備えた液体移送装置
JP6676981B2 (ja) 液体吐出装置
US20100231627A1 (en) Liquid ejecting apparatus and method for manufacturing liquid ejecting apparatus
JP2011206929A (ja) 液体吐出ヘッド
JP5392187B2 (ja) 圧電アクチュエータ及び液体噴射装置
JP2016124120A (ja) 液体吐出装置
JP6604035B2 (ja) 液体吐出装置、及び液体吐出装置の製造方法
JP4968253B2 (ja) 液滴吐出ヘッド及び液滴吐出装置
JP5206071B2 (ja) 圧電アクチュエータ及び液体移送装置
JP6379944B2 (ja) 液体吐出装置
JP4631977B2 (ja) 液滴吐出ヘッドの配線構造
JP6566098B2 (ja) 液体吐出装置
US11912029B2 (en) Liquid discharging head and printing apparatus
JP2010233428A (ja) 圧電アクチュエータの駆動装置
JP6995545B2 (ja) 波形生成装置及びインクジェット記録装置
JP2023176850A (ja) 液体吐出ヘッド
JP2024047749A (ja) 液体吐出ヘッド

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6759875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150