JP2018027074A - チーズ - Google Patents

チーズ Download PDF

Info

Publication number
JP2018027074A
JP2018027074A JP2017017183A JP2017017183A JP2018027074A JP 2018027074 A JP2018027074 A JP 2018027074A JP 2017017183 A JP2017017183 A JP 2017017183A JP 2017017183 A JP2017017183 A JP 2017017183A JP 2018027074 A JP2018027074 A JP 2018027074A
Authority
JP
Japan
Prior art keywords
cellulose
cheese
compound
fiber
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017017183A
Other languages
English (en)
Other versions
JP7203484B2 (ja
Inventor
貴史 川崎
Takashi Kawasaki
貴史 川崎
丈史 中谷
Takeshi Nakatani
丈史 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Publication of JP2018027074A publication Critical patent/JP2018027074A/ja
Application granted granted Critical
Publication of JP7203484B2 publication Critical patent/JP7203484B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dairy Products (AREA)
  • Seeds, Soups, And Other Foods (AREA)

Abstract

【課題】本発明は、加熱時の保形性に優れたチーズ、及び保形性の優れたチーズを内包する食品を提供することを目的とする【解決手段】セルロースナノファイバーを含有することを特徴とするチーズ。さらに詳しくは、化学変性されたセルロースナノファイバー(特に、酸化セルロースナノファイバー、又はカルボキシメチル化セルロースナノファイバー、リン酸エステル化セルロースナノファイバー)をチーズに添加することにより、加熱時の保形性を向上させることができる。【選択図】図2

Description

本発明はセルロースナノファイバーを含有したチーズに関する。
チーズは、そのまま食べることもできるが、様々な食品にも利用されている。チーズを利用した食品としては、チーズを内包したチーズ入りパン、チーズを内包したチーズ入りハンバーグ等を例示することができる(特許文献1)。
特開2004-329015
しかしながら、チーズを内包するパンやハンバーグは加熱調理させるため、内包しているチーズが外に溶けだしてしまう、あるいはチーズの膨張・変形によってパンやハンバーグが破裂してしまう問題があった。
そこで、本発明は、加熱時の保形性に優れたチーズを提供することを目的とする。
本発明は、以下を提供する。
(1)セルロースナノファイバーを含有することを特徴とする、チーズ。
(2)前記セルロースナノファイバーが、化学変性セルロースナノファイバーであることを特徴とする、前記(1)に記載のチーズ。
(3)前記化学変性セルロースナノファイバーが、化学変性セルロースナノファイバーの絶乾重量に対して、カルボキシル基の量が0.5mmol/g〜3.0mmol/gである酸化セルロースナノファイバーであることを特徴とする、前記(2)に記載のチーズ。
(4)前記化学変性セルロースナノファイバーが、化学変性セルロースナノファイバーのグルコース単位当たりのカルボキシメチル置換度が0.01〜0.50であるカルボキシメチル化セルロースナノファイバーであることを特徴とする、前記(2)に記載のチーズ。
(5)請求項1〜4のいずれかに記載のチーズを内包した食品。
本発明によれば、加熱時の保形性に優れたチーズを提供することができる。
本発明は、チーズにセルロースナノファイバーを含有させることで、加熱時の保形性を向上させることができる。
チーズ中のセルロースナノファイバーの含有量は、チーズ(セルロースナノファイバーを含む)の全重量に対し、セルロースナノファイバーの絶乾重量が、0.05質量%以上1.0質量%以下、好ましくは0.1質量%以上1.0質量%以下、より好ましくは0.3質量%以上1.0質量%以下である。セルロースナノファイバーの添加量が0.05質量%より少ないと十分な効果を発揮しない。一方、添加量が1.0質量%より多いと、食感が低下する。
<チーズ>
本発明に用いられるチーズとしては、特に限定されるものではないが、ナチュラルチーズ、フレッシュチーズ、白かびチーズ、ウォッシュチーズ、シェーブルチーズ(山羊乳チーズ)、ブルーチーズ、半硬質チーズ、硬質チーズ(ハードチーズ)、超硬質チーズなどを例示することができる。
<セルロースナノファイバー>
本発明のチーズは、セルロースナノファイバーを含有することを特徴とする。セルロースナノファイバーとは、植物繊維をナノレベルまで細かくほぐすことによって製造される素材のことであり、一般に平均繊維径が3〜500nm程度、平均アスペクト比が50以上の微細繊維である。セルロースナノファイバーの平均繊維径および平均繊維長は、電界放出型走査電子顕微鏡(FE−SEM)を用いて、各繊維を観察した結果から得られる繊維径および繊維長を平均することによって得ることができる。また、アスペクト比は下記の式により算出することができる:アスペクト比=平均繊維長/平均繊維径
セルロースナノファイバーは、セルロース原料を未変性のまま、あるいは化学変性を施してから、強いせん断力をかけることにより製造することができる。本発明においては、セルロース原料は未変性であっても、化学変性されていてもよいが、化学変性されている方がより好ましい。化学変性を施したセルロース原料を用いて製造されたセルロースナノファイバーは、未変性のセルロース原料を用いて製造されたセルロースナノファイバーに対し、繊維長・繊維径が均一になるため、水中分散性が安定であり、より優れた効果を発揮すると推測される。化学変性の方法は特に制限されないが、例えば、酸化、エーテル化、リン酸化、エステル化、リン酸エステル化、シランカップリング、フッ素化、カチオン化などを行うことができる。中でも、N−オキシル化合物を用いた酸化、カルボキシメチル化、カチオン化のいずれかであることが好ましく、食品用途であることから、カルボキシメチル化またはオゾン酸化であることが特に好ましい。
(セルロース原料)
本発明において、セルロースナノファイバーを製造するためのセルロース原料としては、植物(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等を起源とするものが知られており、本発明ではそのいずれも使用できる。好ましくは植物又は微生物由来のセルロース繊維であり、より好ましくは植物由来のセルロース繊維である。
本発明に用いられるセルロース繊維原料の繊維径は特に制限されるものではなく、数平均繊維径としては1μmから1mmである。一般的な精製を経たものは50μm程度である。例えばチップ等の数cm大のものを精製したものである場合、リファイナーやビーター等の離解機で機械的処理を行い、50μm程度にすることが好ましい。
(酸化)
本発明において、セルロース原料の酸化は公知の方法を用いて行うことができ、特に限定されるものではないが、セルロースナノファイバーの絶乾重量に対して、カルボキシル基の量が0.5mmol/g〜3.0mmol/gになるように調整することが好ましい。
その一例として、セルロースをN−オキシル化合物、及び、臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で酸化剤を用いて水中で酸化することにより、得ることができる。この酸化反応により、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、表面にアルデヒド基と、カルボキシル基またはカルボキシレート基を有するセルロース系ファイバーを得ることができる。反応時のセルロースの濃度は特に限定されないが、5質量%以下が好ましい。N−オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。N−オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。
N−オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロースに対して、0.01〜10mmolが好ましく、0.02〜1mmolがより好ましく、0.05〜0.5mmolがさらに好ましい。また、反応系に対し0.1〜4mmol/L程度がよい。
臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化
アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのセルロースに対して、0.1〜100mmolが好ましく、0.1〜10mmolがより好ましく、0.5〜5mmolがさらに好ましい。
酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムは好ましい。酸化剤の適切な使用量は、例えば、絶乾1gのセルロースに対して、0.5〜500mmolが好ましく、0.7〜50mmolがより好ましく、1〜25mmolがさらに好ましく、3〜10mmolが最も好ましい。また、例えば、N−オキシル化合物1molに対して1〜40molが好ましい。
セルロースの酸化工程は、比較的温和な条件であっても反応を効率よく進行させられる。よって、反応温度は4〜40℃が好ましく、また15〜30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを8〜12、好ましくは10〜11程度に維持することが好ましい。反応媒体は、取扱い性の容易さや、副反応が生じにくいこと等から、水が好ましい。
酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常は0.5〜6時間、例えば、1〜4時間程度である。また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。
カルボキシル化(酸化)方法の別の例として、オゾンを含む気体とセルロース原料とを接触させることにより酸化する方法を挙げることができる。この酸化反応により、グルコピラノース環の少なくとも2位及び6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾンを含む気体中のオゾン濃度は、50〜250g/m3であることが好ましく、70〜220g/m3であることがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100質量部とした際に、0.1〜30質量部であることが好ましく、5〜30質量部であることがより好ましい。オゾン処理温度は、0〜50℃であることが好ましく、20〜50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、1〜360分程度であり、30〜300分程度が好ましい。
オゾン処理の条件がこれらの範囲内であると、セルロースが過度に酸化及び分解されることを防ぐことができ、酸化セルロースの収率が良好となる。オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。例えば、これらの酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作成し、溶液中にセルロース原料を浸漬させることにより追酸化処理を行うことができる。
セルロース系ファイバーのカルボキシル基、カルボキシレート基、アルデヒド基の量は、上記した酸化剤の添加量、反応時間をコントロールすることで調整することができる。カルボキシル基量の測定方法は例えば、酸化セルロースの0.5質量%スラリー(水分散液)60mlを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出することができる:
カルボキシル基量〔mmol/g酸化セルロース又はセルロースナノファイバー〕=a〔ml〕×0.05/酸化セルロース質量〔g〕。
(カルボキシメチル化)
本発明において、セルロース原料のカルボキシメチル化は公知の方法を用いて行うことができ、特に限定されるものではないが、セルロースの無水グルコース単位当たりのカルボキシメチル基置換度が0.01〜0.50となるように調整することが好ましい。その一例として次のような製造方法を挙げることができるが、従来公知の方法で合成してもよく、市販品を使用してもよい。セルロースを発底原料にし、溶媒に3〜20重量倍の水及び/又は低級アルコール、具体的にはメタノール、エタノール、N−プロピルアルコール、イソプロピルアルコール、N−ブタノール、イソブタノール、第3級ブタノール等の単独、又は2種以上の混合媒体を使用する。なお、低級アルコールの混合割合は、60〜95重量%である。マーセル化剤としては、発底原料の無水グルコース残基当たり0.5〜20倍モルの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用する。発底原料と溶媒、マーセル化剤を混合し、反応温度0〜70℃、好ましくは10〜60℃、かつ反応時間15分〜8時間、好ましくは30分〜7時間、マーセル化処理を行う。その後、カルボキシメチル化剤をグルコース残基当たり0.05〜10.0倍モル添加し、反応温度30〜90℃、好ましくは40〜80℃、かつ反応時間30分〜10時間、好ましくは1時間〜4時間、エーテル化反応を行う。
グルコース単位当たりのカルボキシメチル置換度の測定方法としては、例えば、次の方法によって得ることができる。すなわち、1)カルボキシメチル化セルロース繊維(絶乾)約2.0gを精秤して、300mL容共栓付き三角フラスコに入れる。2)硝酸メタノール1000mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振とうして、カルボキシメチルセルロース塩(CM化セルロース)を水素型CM化セルロースにする。3)水素型CM化セルロース(絶乾)を1.5〜2.0g精秤し、300mL容共栓付き三角フラスコに入れる。4)80%メタノール15mLで水素型CM化セルロースを湿潤し、0.1NのNaOHを100mL加え、室温で3時間振とうする。5)指示薬として、フェノールフタレインを用いて、0.1NのH2SO4で過剰のNaOHを逆滴定する。6)カルボキシメチル置換度(DS)を、次式によって算出する:
A=[(100×F’−(0.1NのH2SO4)(mL)×F)×0.1]/(水素型
CM化セルロースの絶乾質量(g))
DS=0.162×A/(1−0.058×A)
A:水素型CM化セルロースの1gの中和に要する1NのNaOH量(mL)
F’:0.1NのH2SO4のファクター
F:0.1NのNaOHのファクター
(カチオン化)
本発明において、セルロース原料のカチオン化は公知の方法を用いて行うことができ、カチオン化により例えば、アンモニウム、ホスホニウム、スルホニウム、これらアンモニウム、ホスホニウムまたはスルホニウムを有する基をセルロース分子に有することができるが、アンモニウムを有する基が好ましく、特に、四級アンモニウムを含む基が好ましい。具体的なカチオン化の方法としては、特に限定されるものではないが、一例として、セルロース原料にグリシジルトリメチルアンモニウムクロリド、3−クロロ−2ヒドロキシプロピルトリアルキルアンモニウムハイドライト又はそのハロヒドリン型などのカチオン化剤と触媒である水酸化アルカリ金属(水酸化ナトリウム、水酸化カリウムなど)を水及び/又は炭素数1〜4のアルコールの存在下で反応させることによって、四級アンモニウムを含む基を有する、カチオン変性されたセルロースを得ることができる。なお、この方法において、得られるカチオン変性されたセルロースのグルコース単位当たりのカチオン置換度は、反応させるカチオン化剤の添加量、水及び/又は炭素数1〜4のアルコールの組成比率をコントロールすることによって、調整することができる。ここでいう置換度とは、セルロースを構成する単位構造(グルコピラノース環)あたりの導入された置換基の個数を示す。言い換えると、「導入された置換基のモル数を、グルコピラノース環の水酸基の総モル数で割った値」として定義する。純粋セルロースは単位構造(グルコピラノース環)あたり3個の置換可能な水酸基を有しているため、本発明のセルロース繊維の置換度の理論最大値は3(最小値は0)である。
本発明において、カチオン化されたセルロースのグルコース単位当たりのカチオン置換度は0.01〜0.40であることが好ましい。セルロースにカチオン置換基を導入することで、セルロース同士が電気的に反発する。このため、カチオン置換基を導入したセルロースは容易にナノ解繊することができる。なお、グルコース単位当たりのカチオン置換度が0.01より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのカチオン置換度が0.40より大きいと、膨潤あるいは溶解するため、繊維形態を維持できなくなり、ナノファイバーとして得られなくなる場合がある。
グルコース単位当たりのカチオン置換度は、試料(カチオン変性されたセルロース)を乾燥させた後に、全窒素分析計TN−10(三菱化学)で窒素含有量を測定し、次式により算出することができる。ここで言う置換度とは、無水グルコース単位1モル当たりの置換基のモル数の平均値を表している。
カチオン置換度=(162×N)/(1−151.6×N)
N:窒素含有量
(エステル化)
セルロース原料または解繊セルロース繊維をエステル化して、エステル化セルロース繊維またはエステル化セルロースナノファイバーを得る方法は、特に限定されないが例えば、セルロース原料または解繊セルロース繊維に対し化合物Aを反応させる方法が挙げられる。化合物Aについては後述する。
セルロース原料または解繊セルロース繊維に対し化合物Aを反応させる方法としては例えば、セルロース原料または解繊セルロース繊維に化合物Aの粉末又は水溶液を混合する方法、セルロース原料または解繊セルロース繊維のスラリーに化合物Aの水溶液を添加する方法等が挙げられる。これらのうち、反応の均一性が高まり、且つエステル化効率が高くなることから、セルロース原料または解繊セルロース繊維又はそのスラリーに化合物Aの水溶液を混合する方法が好ましい。
化合物Aとしては例えば、リン酸系化合物(例、リン酸、ポリリン酸)、亜リン酸、ホスホン酸、ポリホスホン酸、これらのエステル等が挙げられる。化合物Aは、塩の形態でもよい。上記の中でも、低コストであり、扱いやすく、またセルロース原料(例、パルプ繊維)のセルロースにリン酸基を導入して、解繊効率の向上が図れるなどの理由から、リン酸系化合物が好ましい。リン酸系化合物は、リン酸基を有する化合物であればよく、例えば、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウム等が挙げられる。用いられるリン酸系化合物は、1種、あるいは2種以上の組み合わせでもよい。これらのうち、リン酸基導入の効率が高く、下記解繊工程で解繊しやすく、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩が好ましく、リン酸のナトリウム塩がより好ましく、リン酸二水素ナトリウム、リン酸水素二ナトリウムがさらに好ましい。また、反応の均一性が高まり、且つリン酸基導入の効率が高くなることから、エステル化においてはリン酸系化合物の水溶液を用いることが好ましい。リン酸系化合物の水溶液のpHは、リン酸基導入の効率が高くなることから、7以下が好ましい。パルプ繊維の加水分解を抑える観点から、pH3〜7がより好ましい。
エステル化の方法としては例えば、以下の方法が挙げられる。セルロース原料または解繊セルロース繊維の懸濁液(例えば、固形分濃度0.1〜10重量%)に化合物Aを撹拌しながら添加し、セルロースにリン酸基を導入する。セルロース原料または解繊セルロース繊維を100重量部とした際に、化合物Aがリン酸系化合物の場合、化合物Aの添加量はリン元素量として、0.2重量部以上が好ましく、1重量部以上がより好ましい。これにより、エステル化セルロース繊維またはエステル化セルロースナノファイバーの収率をより向上させることができる。上限は、500重量部以下が好ましく、400重量部以下がより好ましい。これにより、化合物Aの使用量に見合った収率を効率よく得ることができる。従って、0.2〜500重量部が好ましく、1〜400重量部がより好ましい。
セルロース原料または解繊セルロース繊維に対し化合物Aを反応させる際、さらに化合物Bを反応系に加えてもよい。化合物Bを反応系に加える方法としては例えば、セルロース原料または解繊セルロース繊維のスラリー、化合物Aの水溶液、又はセルロース原料もしくは解繊セルロース繊維と化合物Aのスラリーに、化合物Bを添加する方法が挙げられる。
化合物Bは特に限定されないが、塩基性を示すことが好ましく、塩基性を示す窒素含有化合物がより好ましい。「塩基性を示す」とは通常、フェノールフタレイン指示薬の存在下で化合物Bの水溶液が桃〜赤色を呈すること、または/および化合物Bの水溶液のpHが7より大きいことを意味する。塩基性を示す窒素含有化合物は、本発明の効果を奏する限り特に限定されないが、アミノ基を有する化合物が好ましい。アミノ基を有する化合物として例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。この中でも低コストで扱いやすい点で、尿素が好ましい。化合物Bの添加量は、2〜1000重量部が好ましく、100〜700重量部がより好ましい。反応温度は0〜95℃が好ましく、30〜90℃がより好ましい。反応時間は特に限定されないが、通常1〜600分程度であり、30〜480分が好ましい。エステル化反応の条件がこれらのいずれかの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを抑制することができ、リン酸エステル化セルロースの収率を向上させることができる。
セルロース原料または解繊セルロース繊維に化合物Aを反応させた後、通常はエステル化セルロース繊維またはエステル化セルロースナノファイバーの懸濁液が得られる。エステル化セルロース繊維またはエステル化セルロースナノファイバーの懸濁液は必要に応じて脱水される。脱水後には加熱処理を行うことが好ましい。これにより、セルロース原料または解繊セルロース繊維の加水分解を抑えることができる。加熱温度は、100〜170℃が好ましく、加熱処理の際に水が含まれている間は130℃以下(更に好ましくは110℃以下)で加熱し、水を除いた後100〜170℃で加熱処理することがより好ましい。
リン酸エステル化セルロースにおいては、セルロースにリン酸基置換基が導入されており、セルロース同士が電気的に反発する。そのため、リン酸エステル化セルロース繊維は容易にセルロースナノファイバーまで解繊することができる(このようにセルロースナノファイバーとなるまで行う解繊を、ナノ解繊ともいう。)。リン酸エステル化セルロース繊維のグルコース単位当たりのリン酸基置換度は0.001以上が好ましい。これにより、十分な解繊(例えばナノ解繊)が実施できる。上限は、0.40以下が好ましい。これにより、リン酸エステル化セルロース繊維の膨潤又は溶解を抑制し、セルロースナノファイバーが得られない事態の発生を抑制することができる。従って、0.001〜0.40であることが好ましい。また、リン酸エステル化により変性されているセルロースナノファイバー(リン酸エステル化セルロースナノファイバー)のグルコース単位当たりのリン酸基置換度は0.001以上が好ましい。上限は、0.40以下が好ましい。したがって、リン酸エステル化セルロースナノファイバーのグルコース単位当たりのリン酸基置換度は0.001〜0.40であることが好ましい。リン酸エステル化セルロース繊維に対して、煮沸後冷水で洗浄する等の洗浄処理がなされることが好ましい。これにより解繊を効率よく行うことができる。
(解繊)
本発明において、解繊する装置は特に限定されないが、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置を用いて前記水分散体に強力なせん断力を印加することが好ましい。特に、効率よく解繊するには、前記水分散体に50MPa以上の圧力を印加し、かつ強力なせん断力を印加できる湿式の高圧または超高圧ホモジナイザーを用いることが好ましい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。また、高圧ホモジナイザーでの解繊・分散処理に先立って、必要に応じて、高速せん断ミキサーなどの公知の混合、攪拌、乳化、分散装置を用いて、上記のセルロースナノファイバーに予備処理を施すことも可能である。
上記の処理で解繊する場合、セルロース繊維原料としての固形分濃度は0.1重量%以上、好ましくは0.2重量%以上、特に0.3重量%以上、また10重量%以下、特に6重量%以下であることが好ましい。固形分濃度が低過ぎると、処理するセルロース繊維原料の量に対して液量が多くなり過ぎ効率が悪く、固形分濃度が高過ぎると流動性が悪くなる。
本発明において、チーズに含有させるセルロースナノファイバーの態様は特に限定されるものではなく、セルロースナノファイバーの分散液あるいはセルロースナノファイバーの乾燥固形物、あるいはその中間的な状態である湿潤固形物であってもよい。なお、本発明において、セルロースナノファイバーの乾燥固形物とは、セルロースナノファイバーを含む分散液を水分量12%以下に脱水・乾燥したものを意味する。
セルロースナノファイバーの乾燥固形物としては、セルロースナノファイバーの分散液を乾燥させたもの、あるいはセルロースナノファイバーと水溶性高分子と混合液を乾燥させたものを例示することができる。なお、再分散性の点では後者が好ましい。上記水溶性高分子としては、例えば、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、エチルセルロース)、キサンタンガム、キシログルカン、デキストリン、デキストラン、カラギーナン、ローカストビーンガム、アルギン酸、アルギン酸塩、プルラン、澱粉、かたくり粉、クズ粉、陽性澱粉、燐酸化澱粉、コーンスターチ、アラビアガム、ローカストビーンガム、ジェランガム、ゲランガム、ポリデキストロース、ペクチン、キチン、水溶性キチン、キトサン、カゼイン、アルブミン、大豆蛋白溶解物、ペプトン、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸ソーダ、ポリビニルピロリドン、ポリ酢酸ビニル、ポリアミノ酸、ポリ乳酸、ポリリンゴ酸、ポリグリセリン、ラテックス、ロジン系サイズ剤、石油樹脂系サイズ剤、尿素樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミド・ポリアミン樹脂、ポリエチレンイミン、ポリアミン、植物ガム、ポリエチレンオキサイド、親水性架橋ポリマー、ポリアクリル酸塩、でんぷんポリアクリル酸共重合体、タマリンドガム、ジェランガム、ペクチン、グァーガム及びコロイダルシリカ並びにそれら1つ以上の混合物をいう。この中でも、カルボキシメチルセルロース及びその塩を用いることが相溶性の点から好ましい。
上記セルロースナノファイバーの乾燥固形物は、セルロースナノファイバーの水分散液、あるいはセルロースナノファイバー分散液と水溶性高分子を含有した混合液を、pHを9〜11に調整した後に、脱水・乾燥することが再分散性の点から好ましい。セルロースナノファイバーの分散液に水溶性高分子を配合する場合、水溶性高分子の配合量は、セルロースナノファイバーの絶乾固形分に対して、5〜50重量%であることが好ましい。5重量%未満であると十分な再分散性の効果が発現しない。一方、50重量%を超えるとセルロースナノファイバーの特徴である粘度特性、分散安定性の低下などの問題が生じる。
セルロースナノファイバー分散液あるいはセルロースナノファイバー分散液と水溶性高分子を含有した混合液の脱水・乾燥方法としては、従来公知のものであれば良く、例えば、スプレードライ、圧搾、風乾、熱風乾燥、及び真空乾燥を挙げることができる。本発明方法で具体的に用いる乾燥装置の例としては、以下のようなものである。すなわち、連続式のトンネル乾燥装置、バンド乾燥装置、縦型乾燥装置、垂直ターボ乾燥装置、多重段円板乾燥装置、通気乾燥装置、回転乾燥装置、気流乾燥装置、スプレードライヤ乾燥装置、噴霧乾燥装置、円筒乾燥装置、ドラム乾燥装置、スクリューコンベア乾燥装置、加熱管付回転乾燥装置、振動輸送乾燥装置等、回分式の箱型乾燥装置、通気乾燥装置、真空箱型乾燥装置、及び撹拌乾燥装置等の乾燥装置を単独で又は2つ以上組み合わせて用いることができる。これらの中でも、ドラム乾燥装置を用いることが、均一に被乾燥物に熱エネルギーを直接供給するためエネルギー効率の点から好ましい。また、ドラム乾燥装置は必要以上に熱を加えずに、直ちに乾燥物を回収できる点からも好ましい。
上記乾燥固形物は、粉砕、分級して用いることができる。特に乾式粉砕や湿式粉砕を施すと、より微細化された添加物を得ることができ好ましい。乾式粉砕で用いる装置としてはハンマーミル、ピンミル等の衝撃式ミル、ボールミル、タワーミル等の媒体ミル、ジェットミル等が例示される。湿式粉砕で用いる装置としてはホモジナイザー、マスコロイダー、パールミル等の装置が例示される。
<セルロースナノファイバー(CNF)の分散指数>
本発明において、チーズに添加するセルロースナノファイバーを分散液として添加する場合、その分散液は下記の方法で算出されるCNF分散指数が8000以下、好ましくは4000以下、さらに好ましくは1000以下であることが好ましい。CNF分散指数が8000以下であるCNF分散液を添加することで優れた食感を付与することができる。
(CNF分散指数)
本発明において、分散指数とは、以下の(1)〜(5)のより算出した値である。
(1)1.0質量%に調整したセルロースナノファイバー分散液1gに、平均粒子径が0.03以上1μm以下の有機顔料を5〜20質量%含有する色材を添加し、ボルテックスミキサーにて1分間撹拌する
(2)上記(1)で得られた色材を含有するセルロースナノファイバー分散液を分散液の膜厚が0.15mmになるように二枚のガラス板に挟む
(3)上記(2)で得られた二枚のガラス板に挟んだ色材を含有するセルロースナノファイバー分散液の膜を顕微鏡(倍率:100倍)で観察する
(4)上記(3)の観察において、3mm×2.3mmの範囲に存在する凝集物の長径を測定し、観察された凝集物を、特大:150μm以上、大:100μm以上150μm未満、中:50μm以上100μm未満、小:20μm以上50μm未満に分類する工程 (5)上記(4)分類した凝集物の個数を数え、下式によりCNF分散指数を算出し、セルロースナノファイバー分散液の分散性を評価する
CNF分散指数=(特大の個数×512+大の個数×64+中の個数×8+小の個
数×1)÷2
セルロースナノファイバーの水分量が12%を超える場合は上記の方法でCNF分散指数を求めることができ、セルロースナノファイバーの水分量が12質量%以下の場合は、上記(1)の前に、セルロースナノファイバーの乾燥固形物を25℃の水に添加してボルテックスミキサーにて5分間撹拌し、1.0質量%のセルロースナノファイバー水分散液の調製を行う。
以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定される
ものではない。
<酸化セルロースナノファイバーの製造1>
針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)500g(絶乾)をTEMPO(Sigma Aldrich社)780mgと臭化ナトリウム75.5gを溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水洗することで酸化されたパルプ(カルボキシル化セルロース)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシル基量は1.6mmol/gであった。
上記の工程で得られた酸化パルプを水で1.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、150Mpa)で3回処理して、セルロースナノファイバー分散液(CNF1)を得た。得られた繊維は、平均繊維径が3nm、アスペクト比が250、分散指数は0であった。
<酸化セルロースナノファイバーの製造2>
超高圧ホモジナイザーの処理回数を1回にした以外はCNF1と同様にしてセルロースナノファイバー分散液(CNF2)を作成した。なお、得られた繊維の平均繊維径が20nm、アスペクト比が250、分散指数が3500であった。
<カルボキシメチル化(CM化)セルロースナノファイバーの製造>
パルプを混ぜることが出来る撹拌機に、パルプ(NBKP(針葉樹晒クラフトパルプ)、日本製紙株式会社製)を乾燥質量で200g、水酸化ナトリウムを乾燥質量で111g加え、パルプ固形分が20%(w/v)になるように水を加えた。その後、30℃で30分攪拌した後にモノクロロ酢酸ナトリウムを216g(有効成分換算)添加した。30分撹拌した後に、70℃まで昇温し1時間撹拌した。その後、反応物を取り出して中和、洗浄して、グルコース単位当たりのカルボキシメチル置換度0.25のカルボキシルメチル化したパルプを得た。その後、カルボキシメチル化したパルプを水で固形分1%とし、高圧ホモジナイザーにより20℃、150MPaの圧力で5回処理することにより解繊し、カルボキシメチル化セルロース繊維の水分散液(CNF3)を得た。得られた繊維は、平均繊維径が15nm、アスペクト比が50、分散指数が0であった。
<実施例1>
表1の配合例に従いチーズソースを作製した。具体的には、CNF3水溶液(1%溶液)38.1部にアミノ酸系調味料を0.25部加え加熱撹拌することで※1を得た。続いて、※2の粉体原料6種をあらかじめ粉体混合した後、※1に加え90℃に達するまで攪拌を行った。そこに水溶きした加工でんぷん(※3)をさらに加え85℃×4分間加熱撹拌を行った後、※4を加えてチーズが溶けるまで加熱撹拌を行い、チーズが溶けた後に※5を加え85℃×5分間の加熱攪拌し、チーズソース1を得た。
<比較例1>
実施例1においてCNF3の代わりに水を用いた以外は、実施例1と同様に行いチーズソース2を得た。
Figure 2018027074
<チーズソースの保形性評価>
作製したチーズソースを定量型に20g入れ冷凍後、冷凍したものをデッキオーブンにて上火200℃、下火200℃、10分間の条件で直接焼成し、溶ける状態について評価した(図1、表2)。
Figure 2018027074
<ミートパテの作製>
表3の配合例に従いミートパテを作製した。具体的には、ミンチ肉と食塩をよく混ぜた後、ソテーオニオンを加えさらによく混ぜる。続いて※6の液体系原料(3種)をそこに加え、よく混ぜ合わせる。あらかじめ混合していた粉体原料※7を加えよく混ぜ、ペースト状になり粘り気が出るまで捏ねたら、袋に入れて真空包装機で脱気する。
Figure 2018027074
<実施例2:チーズインハンバーグの作製>
表4の配合例に従いチーズインハンバーグを作製した。具体的には、ミートパテ90gに冷凍したチーズソース1を20g加え、なるべく空気が入らないによう周囲から包みこむように包餡し形を整えチーズインハンバーグ1を得た。なお、チーズはできるだけ焼成時に頂上付近にくるように調整した。
<比較例2:チーズインハンバーグの作製>
実施例2においてチーズソース1をチーズソース2に変更した以外は、実施例2と同様に行いチーズインハンバーグ2を得た。
<ミートパテの作製>
表3の配合例に従いミートパテを作製した。具体的には、ミンチ肉と食塩をよく混ぜた後、ソテーオニオンを加えさらによく混ぜる。続いて※6の液体系原料(3種)をそこに加え、よく混ぜ合わせる。あらかじめ混合していた粉体原料※7を加えよく混ぜ、ペースト状になり粘り気が出るまで捏ねたら、袋に入れて真空包装機で脱気する。
Figure 2018027074
Figure 2018027074
<チーズインハンバーグの焼成評価>
クッキングシートを敷いた天板にチーズインハンバーグ(包餡時の閉じ口を下)を乗せ、スチームコンベクションオーブンで焼成した。焼成条件は温度230℃、スチーム100%、時間8分、蒸し条件は温度85℃、時間15分とした。焼成後の外観および断面、食感の評価を行った(表5、図2、図3)。
Figure 2018027074
実施例1、比較例1のチーズソースの加熱前後の形状変化を示す図である。 実施例2、比較例2の焼成後のチーズインハンバーグの状態を示す図である。 丸で囲っている部分はチーズが溶けだした部分を示す。 実施例2、比較例2のチーズインハンバーグの断面を示す図である。

Claims (5)

  1. セルロースナノファイバーを含有することを特徴とする、チーズ。
  2. 前記セルロースナノファイバーが、化学変性セルロースナノファイバーであることを特
    徴とする、請求項1に記載のチーズ。
  3. 前記化学変性セルロースナノファイバーが、化学変性セルロースナノファイバーの絶乾
    重量に対して、カルボキシル基の量が0.5mmol/g〜3.0mmol/gである酸
    化セルロースナノファイバーであることを特徴とする、請求項2に記載のチーズ。
  4. 前記化学変性セルロースナノファイバーが、変性セルロースナノファイバーのグルコー
    ス単位当たりのカルボキシメチル置換度が0.01〜0.50であることを特徴とする、
    請求項2に記載のチーズ。
  5. 請求項1〜4のいずれかに記載のチーズを内包した食品。
JP2017017183A 2016-08-16 2017-02-02 チーズ Active JP7203484B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016159517 2016-08-16
JP2016159517 2016-08-16

Publications (2)

Publication Number Publication Date
JP2018027074A true JP2018027074A (ja) 2018-02-22
JP7203484B2 JP7203484B2 (ja) 2023-01-13

Family

ID=61247741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017017183A Active JP7203484B2 (ja) 2016-08-16 2017-02-02 チーズ

Country Status (1)

Country Link
JP (1) JP7203484B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433225A (zh) * 2017-12-07 2020-07-17 日本制纸株式会社 羧甲基化纤维素和羧甲基化纤维素纳米纤维的制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065116A (ja) * 2014-09-24 2016-04-28 第一工業製薬株式会社 セルロースナノファイバー水分散体組成物、それを用いた食品および化粧料。
JP2016136888A (ja) * 2015-01-28 2016-08-04 旭化成株式会社 固体状または液体状の調味料を含有する肉加工食品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6841586B2 (ja) 2015-05-13 2021-03-10 日本製紙株式会社 食品用添加剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065116A (ja) * 2014-09-24 2016-04-28 第一工業製薬株式会社 セルロースナノファイバー水分散体組成物、それを用いた食品および化粧料。
JP2016136888A (ja) * 2015-01-28 2016-08-04 旭化成株式会社 固体状または液体状の調味料を含有する肉加工食品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433225A (zh) * 2017-12-07 2020-07-17 日本制纸株式会社 羧甲基化纤维素和羧甲基化纤维素纳米纤维的制造方法

Also Published As

Publication number Publication date
JP7203484B2 (ja) 2023-01-13

Similar Documents

Publication Publication Date Title
JP6876619B2 (ja) セルロースナノファイバー乾燥固形物の製造方法
JP6931837B2 (ja) 乾燥セルロースナノファイバーの製造方法
JP6951978B2 (ja) アニオン変性セルロースナノファイバー分散液およびその製造方法
JP7170380B2 (ja) 化学変性パルプ乾燥固形物の製造方法
JP2018016745A (ja) 繊維性成形品製造用の成形材料およびそれを用いた成形品
WO2017154568A1 (ja) セルロースナノファイバー分散液の再分散方法
JP6785037B2 (ja) 気泡含有組成物用添加剤
JP2017079598A (ja) 麺皮
JP6861972B2 (ja) 乾燥セルロースナノファイバーの製造方法
JP2017079600A (ja) 食品用保湿剤
JP2019156825A (ja) 乳化剤組成物
JP7211048B2 (ja) セルロースナノファイバー及び澱粉を含む組成物
JP6671935B2 (ja) セルロースナノファイバーの乾燥固形物の製造方法
JP7203484B2 (ja) チーズ
JP6876367B2 (ja) 人工ケーシング及びそれを用いた加工食品
JP7178655B2 (ja) 澱粉含有組成物及びその用途
JP2020100755A (ja) 微細繊維状セルロース分散体の製造方法
JPWO2018173761A1 (ja) 化学変性セルロース繊維の保管方法および化学変性セルロースナノファイバーの製造方法
JP7148912B2 (ja) 高アミロース澱粉とセルロースナノファイバーを含有する組成物
JP7303794B2 (ja) セルロースナノファイバー乾燥固形物の製造方法
JP2017176034A (ja) 焼成食品生地および焼成食品生地の製造方法、並びに焼成食品および焼成食品の製造方法
JP7250455B2 (ja) アニオン変性セルロースナノファイバーを含有する組成物
JP2022087414A (ja) セルロースナノファイバーの乾燥固形物の製造方法
JP2023133679A (ja) 微細セルロース繊維乾燥体の製造方法
JP2023148586A (ja) 微細セルロース繊維

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190326

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201225

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210106

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210129

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210202

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220322

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220510

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220726

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220802

C19 Decision taken to dismiss amendment

Free format text: JAPANESE INTERMEDIATE CODE: C19

Effective date: 20220816

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20221115

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221213

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221227

R150 Certificate of patent or registration of utility model

Ref document number: 7203484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150