JP2018015936A - 計測装置、計測方法、プログラム - Google Patents

計測装置、計測方法、プログラム Download PDF

Info

Publication number
JP2018015936A
JP2018015936A JP2016146368A JP2016146368A JP2018015936A JP 2018015936 A JP2018015936 A JP 2018015936A JP 2016146368 A JP2016146368 A JP 2016146368A JP 2016146368 A JP2016146368 A JP 2016146368A JP 2018015936 A JP2018015936 A JP 2018015936A
Authority
JP
Japan
Prior art keywords
timing
input
determination
detection signal
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016146368A
Other languages
English (en)
Other versions
JP6494113B2 (ja
Inventor
綾一郎 早野
Ryoichiro Hayano
綾一郎 早野
康弘 野原
Yasuhiro Nohara
康弘 野原
育典 井伊谷
Ikunori Iitani
育典 井伊谷
翔 関口
Sho Sekiguchi
翔 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP2016146368A priority Critical patent/JP6494113B2/ja
Priority to CN201710616267.7A priority patent/CN107650350B/zh
Publication of JP2018015936A publication Critical patent/JP2018015936A/ja
Application granted granted Critical
Publication of JP6494113B2 publication Critical patent/JP6494113B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/768Detecting defective moulding conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/76254Mould
    • B29C2945/76257Mould cavity

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

【課題】複数の入力チャネルを有する計測装置において射出成形装置の的確な成形状況判定を行うことができるようにする。
【解決手段】計測装置の複数の入力チャネルに入力される、射出成形装置に配備された1又は複数のセンサの検出信号について、それぞれの特定タイミング、例えば立ち上がりタイミングや立ち下がりタイミングなどと評価できるタイミングを検出する。そして検出した特定タイミングについて、相互の比較や経過時間の判定などの処理により射出成形状況の判定結果を求める。
【選択図】図5

Description

本発明は例えば射出成形装置等の量産監視のための計測装置、計測方法、プログラムに関する。
特開2008−36975号公報
射出成形装置に設置したセンサの検出信号を計測装置で計測する計測システムが知られている。この計測システムは、射出成形機内や金型内、或いは成形周辺機器(例えば冷却用の温調機や真空引き装置など)内に配備した温度センサ、圧力センサ等により、樹脂等の成形材料の挙動を検出し、波形としてパーソナルコンピュータ等の情報処理装置にリアルタイム出力可能とされている。
計測データは、最適な成形条件の設定、不良品の自動選別、品質管理、金型の評価等、様々な用途に活用することができる。
また、計測システムでは、センサの検出信号に基づく計測値を監視し、異常の発生に応じてアラーム出力を行うことも可能とされている。このアラーム出力により、射出成形装置の停止や不良品の識別を行うことが可能となる。
例えば射出成形における一般的な量産監視の手法としては、測定しているセンサの検出信号のピーク値管理がある。
なお、上記特許文献1には、射出成形装置に設けられたセンサがキャビティ内の樹脂の圧力を検出し、該センサの検出信号をアンプ装置によりサンプリングする技術が開示されている。
ところで、射出成形装置に接続した計測装置によって実行する監視処理に関しては、より適切な処理が求められている。具体的には、マルチゲートタイプの金型やマルチキャビティタイプの金型に適した監視、経時的や環境的な変動に対応した監視などである。
そこで本発明ではこれらマルチゲートタイプ/マルチキャビティタイプの金型に適した監視や、経時的或いは環境的な変動に対応した監視などを適切に実行できる技術を提供することを目的とする。
本発明に係る計測装置は、複数の入力チャネルを有し、射出成形装置に配備された複数のセンサの検出信号を同時入力することができる入力部と、前記入力部の各入力チャネルに入力された各時点での検出信号値をログデータとして記憶するデータログ処理部と、1又は複数の入力チャネルの検出信号について、特定タイミングを検出し、検出した特定タイミングを用いた処理により射出成形状況の判定結果を求める判定処理部とを備える。
射出成形装置に配備される各種のセンサ、例えば圧力センサや温度センサ等の検出信号値のデータロガーとしての計測装置において、各種成形過程における事象を判定し、成形品の良品/不良品の判定等を行うようにする。このために、複数チャネルの検出信号入力を可能とし、1つのチャネルの検出信号の特定タイミング又は複数の各チャネルの検出信号の特定タイミングを用いた判定を行うようにする。
上記した計測装置は、前記判定処理部は、複数の入力チャネルの検出信号について、前記特定タイミングとして検出信号が第1閾値以上となる第1タイミングを検出し、複数チャネルのそれぞれの前記第1タイミングが所定の第1時点から第2時点の間であるか否かの判定を行うことが考えられる。
例えば第1入力チャネルから第n入力チャネルに、射出成形装置において同時に樹脂流入が行われるn個の部位の検出信号が入力されることを考えると、それらの検出信号からは、本来、略同時的な変化、例えば検出信号値波形の立ち上がりが観測されるはずである。この立ち上がりタイミングを、検出信号が第1閾値以上となる第1タイミングとして検出する。立ち上がりタイミングがずれることには各種の要因があるが、タイミングずれは成形品の良否判定の指標となる。複数の入力チャネルの検出信号について第1タイミング(立ち上がりタイミング)が、全て第1時点から第2時点の間であれば、各入力チャネルの立ち上がりタイミングが揃っていると評価できる。なお、第1時刻、第2時刻は、例えば樹脂流入開始からの所定時間経過時点などである。
上記した計測装置は、前記判定処理部は、複数の入力チャネルの検出信号について、前記特定タイミングとして検出信号が第1閾値以上となる第1タイミングを検出し、複数チャネルのそれぞれの前記第1タイミングのずれが所定の時間幅以内であるか否かの判定を行うことが考えられる。
各入力チャネルについて第1タイミングのずれを判定する。例えば樹脂注入開始からなどの経過時間については判定対象とせずに、各入力チャネルの相対的な第1タイミングのずれを監視する。
上記した計測装置は、前記判定処理部は、前記特定タイミングとして、前記入力部に入力された検出信号が第2閾値以下となる第2タイミングを検出し、前記第2タイミングが所定の第1時点から第2時点の間であるか否かの判定を行うことが考えられる。
1つの入力チャネル、又は複数の入力チャネルについて第2タイミング(立ち下がりタイミング)が所定の経過時間範囲内にあるか否かを判定する。
上記した計測装置は、前記判定処理部は、入力チャネルの検出信号について検出信号が第1閾値以上となる第1タイミング、又は検出信号が第2閾値以下となる第2タイミングを検出することに応じて、前記第1タイミング又は前記第2タイミングの通知信号を出力する処理を行うことが考えられる。
第1タイミング/第2タイミングとして例えば検出信号の立ち上がりや立ち下がりのタイミングを射出成形装置の制御部に通知する。
本発明に係る計測方法は、計測装置の複数の入力チャネルの全部又は一部に入力される、射出成形装置に配備された1又は複数のセンサの検出信号について、特定タイミングを検出するタイミング検出ステップと、検出した特定タイミングを用いた処理により射出成形状況の判定結果を求める判定ステップとを備える。
本発明に係るプログラムは、上記各ステップの処理を演算処理装置に実行させるプログラムである。
本発明によれば、マルチゲートタイプ/マルチキャビティタイプの金型に適した検出信号の計測・監視や、経時的或いは環境的な変動に対応した監視などを適切に実行できる。
実施の形態の射出成形計測システムの構成を示したブロック図である。 マルチキャビティ、マルチゲートの説明図である。 実施の形態の管理ソフトウェアによる表示画面の説明図である。 実施の形態の計測装置のブロック図である。 実施の形態の立ち上がりタイミングの監視処理の説明図である。 実施の形態の立ち下がりタイミングの監視処理の説明図である。 実施の形態の監視処理のフローチャートである。 実施の形態の監視処理のフローチャートである。 実施の形態の監視処理のフローチャートである。 実施の形態の監視処理のフローチャートである。 実施の形態のタイミング信号出力処理のフローチャートである。 実施の形態のタイミング信号出力処理の説明図である。
<計測システムの構成>
以下、本発明に係る実施の形態について説明する。まず本発明の実施の形態となる計測装置1と射出成形装置2を含む射出成形計測システム100(単に「計測システム100」とも表記する)について説明する。
図1は計測システム100の構成概要を示した図である。
図示するように計測システム100は、計測装置1、射出成形装置2、専用アンプ3、パーソナルコンピュータ4を備えている。
射出成形装置2は、一般的に公知のとおり、所定位置に配置される金型10と、金型10に対して樹脂材料を射出充填するための機構を備えた射出部11と、射出部11の射出動作や金型10の開閉動作等を制御して一連の射出成形動作を実行制御する成形制御部12を有して構成されている。
金型10は、例えば上型、下型が配置され、例えば成形ステージ内に配置された下型に対して射出部11に設けられた機構によって上型が開閉される。上型が下型に対して閉じられた状態で、例えば上型に設けられたゲートに対し、射出部11の射出シリンダによって樹脂材料が注入され、金型10内のキャビティに樹脂材料が充填される。そして充填後、所要の時間が経過したら上型が開放され、キャビティから樹脂成形品が取り出される。
金型10内には金型内センサ31が配置されている。例えば充填された樹脂材料の温度を検出する温度センサや、樹脂材料の圧力を検出する圧力センサなどである。
射出部11には、金型10に対する樹脂材料の注入機構、型締め機構、射出シリンダ機構、射出モータ等、射出成形に必要な機構が設けられている。
また射出部11には射出部内センサ32及びセンサ用アンプ33が設けられている。射出部内センサ32としては、注入過程の樹脂材料の温度を検出する温度センサや、圧力を検出する圧力センサ、注入速度を算出する位置センサなどがある。
本実施の形態では射出部11の機構、構造、例えばシリンダ構造、型締め機構の構造、ランナー構造、ノズル構造、ヒーター配置、モータ配置、材料投入機構などは特に限定されず、どのような構造/種別のものでもよい。
また本実施の形態の計測システム100は、金型10の構造、種別についても特に限定されずに各種のものに対応できるが、特にマルチキャビティタイプやマルチゲートタイプの金型10についても良好に対応できるものとされている。
図2Aにマルチキャビティタイプの金型10を模式的に示している。金型10内には複数(図では6個)のキャビティCが形成され、各キャビティCには射出部11による1ショットの樹脂注入で同時に樹脂材料が注入される。これにより同時に複数の成形品を成形できるものとされている。破線で示す各キャビティCへの樹脂流入経路は略同距離同条件とされ、樹脂材料の温度や圧力に対して流入経路の差が影響しないように形成されている。
各キャビティC内にはそれぞれ金型内センサ31が配置され、温度や圧力が検出可能とされる。
図2Bはマルチゲートタイプの金型10を模式的に示している。金型10には複数のゲートG(注入孔)が設けられ、各ゲートGから内部のキャビティに樹脂材料の注入が行われる。マルチゲートとすることで樹脂材料注入の効率化が図られている。この場合も破線で模式的に示す各ゲートGへの樹脂流路については略同距離同条件とされている。図示していないが、各ゲートGに対応して金型内センサ31が配置される。
なおマルチゲートかつマルチキャビティの金型10も想定される。
成形制御部12は、例えばROM(Read Only Memory)、RAM(Random Access Memory)、CPU(Central Processing Unit)を有するマイクロコンピュータを備えて構成されている。
成形制御部12は、射出部11による各部の駆動制御を行う。例えば射出モータ制御、金型ステージ動作制御、金型開閉機構の動作制御、ノズル開閉機構の動作制御、ヒーター制御、材料投入動作制御などを行う。これによって一連の射出成形動作を実行させる。
金型内センサ31の検出信号S1は例えば射出成形装置2とは別体に配置された専用アンプ3により電圧値に変換される。そして電圧信号に変換された検出信号Vs1として計測装置1に供給される。
射出部内センサ32の検出信号S2は、例えば射出部11内に設けられたセンサ用アンプ33により電圧値に変換される。そして電圧信号に変換された検出信号Vs2として計測装置1に供給される。
なお、ここでは検出信号Vs1,Vs2として2つの検出信号を示しているが、検出信号Vs1は金型内センサ31からの検出信号の総称で、検出信号Vs2は射出部内センサ32からの検出信号の総称である。金型内センサ31として複数のセンサが配置される場合や射出部内センサ32として複数のセンサが配置される場合も当然に想定される。
従って検出信号Vs1,Vs2は2系統のみの検出信号を示しているものではなく、金型内センサ31と射出部内センサ32のいずれの検出信号についても計測装置1に入力できることを示しているに過ぎない。
計測装置1にはnチャネルの入力系が用意されており、n系統の検出信号の同時入力が可能である。従って金型内センサ31としてn個のセンサの検出信号Vs1を計測装置1に供給してもよいし、射出部内センサ32としてのn個のセンサの検出信号Vs2を計測装置1に供給してもよい。さらに金型内センサ31と射出部内センサ32としてのそれぞれ1又は複数系統の検出信号Vs1,Vs2をnチャネルに振り分けて計測装置1に供給してもよい。
計測装置1に対してどのような検出信号入力を行うかは、実際の射出成形装置2や金型10の構造、種別、成形品、搭載センサ数、実行したい計測・監視の内容などに応じて適宜決められればよい。
また、図示していないが射出成形装置2の周辺機器、例えば冷却用の温調機や真空引き装置などに各種のセンサが設けられる場合もあり、それらのセンサの検出信号を計測装置1に供給することも想定されている。
計測装置1と成形制御部12の間は各種の通信が可能とされる。図1では、通信の1つとして、成形制御部12から計測装置1に対して成形タイミング信号STMが送信されること、及び計測装置1から成形制御部12に対して通知信号SIが送信されることを示している。
成形タイミング信号STMは、例えば射出成形の1サイクルの開始/終了タイミングを通知する信号である。計測装置1は、成形タイミング信号STMにより、1ショットの樹脂注入による1サイクルの成形期間を検知し、その間の各種検出信号のロギングや判定を行うことができる。
通知信号SIは各種の検出情報や判定情報の結果を通知する信号である。例えば成形不良等が推定される異常判定の際のアラーム通知や、検出信号波形の立ち上がりタイミング/立ち下がりタイミングの通知などの信号である。成形制御部12は、これらの内容の通知信号SIに応じて各種動作制御を行うことができる。
計測装置1による温度や圧力などの計測結果は、計測装置1と有線又は無線の通信経路USによって接続されたコンピュータ装置4により閲覧可能とされている。通信経路USは、例えばLAN(Local Area Network)ケーブルなどにより実現される。
コンピュータ装置4には、計測装置1による各種検出信号の計測について管理を行うための管理ソフトウェアがインストールされている。この管理ソフトウェアにより、作業員等はコンピュータ装置4のディスプレイを介して計測装置1による計測結果を閲覧可能とされている。
また、管理ソフトウェアを用いた設定により、作業員等は各種の数値設定を行うことができる。
さらに計測結果をコンピュータ装置4におけるHDD(Hard Disk Drive)やSSD(Solid State Disk)等の所定の記憶装置に収録させることが可能とされている。
図3は管理ソフトウェアによってコンピュータ装置4の画面に提示される管理画面90の表示内容例を示している。図示のように管理画面90には、各種センサによる検出信号の計測結果を波形により示すことが可能とされるとともに、各検出信号の所定の数値(例えばピーク値、積分値、立ち上がりタイミング値、立ち下がりタイミング値等)が示される。また作業者が各種設定入力をおこなうための操作子が用意されている。
なお図3では、計測波形の表示について、時間軸に沿って描画方向が左から右に向かうようにしているが、これを右から左に向かって描画されるように切り替えることもできる。即ち作業者の操作に応じて、波形の描画方向を切り替えることができるようにしている。例えば射出成形装置では、右側に射出機構が配置され、左に向かって射出する装置が多い。このように樹脂材料の注入方向が右から左になっている場合、表示する波形も右から左に進行するようにすると、作業者にとって感覚的に計測内容がわかりやすいものとなる。
<計測装置の構成>
図4は計測装置1の内部構成を示している。
計測装置1には、演算部20、入力部21、A/D変換器22、バッファ及びIF部23、メモリ部24が設けられている。
入力部21は、検出信号Vs1,Vs2についてnチャネルの入力が可能とされる。図の例では8チャネル入力を想定し、入力チャネルをI1〜I8として示している。
各入力チャネルI1〜I8に入力される検出信号Vs1,Vs2は、上述のように専用アンプ3又はセンサ用アンプ33で検出情報が電圧レベルに変換された信号である。
チャネルI1〜I8の全部又は一部に対して、検出信号Vs1又はVs2が入力される。例えば図2Aのマルチキャビティタイプの金型10内の6個のキャビティCに配置された6個の金型内センサ31の検出信号Vs1が、それぞれチャネルI1〜I6として入力されたり、図2Bのマルチゲートタイプの金型10内の3個のゲートGに配置された3個の金型内センサ31の検出信号Vs1が、それぞれチャネルI1〜I3として入力されるなどである。また射出部内センサ32の1又は複数のセンサの検出信号もそれぞれ所定のチャネルに入力される。
A/D変換器22は、入力チャネル数と同数の同時入力が可能とされる。従って図の例では8チャネル入力のA/D変換器とされている。
A/D変換器22は、入力された各チャネルI1〜I8の検出信号について電圧値に応じたデジタルデータに変換し、バッファ及びIF部23に供給する。
バッファ及びIF部23は、各チャネルI1〜I8の検出信号の演算部20への受け渡しや、演算部20と外部機器(コンピュータ装置4や成形制御部12)との通信データの送受信を行う部位を総括して示している。
例えばA/D変換器22から出力される同時入力された複数チャネルの検出信号のデジタルデータ(後述する検出値Ddet)は、バッファ及びIF部23で一時的にバファリングされながら各時点の検出情報として検出信号のサンプリング時点の時刻情報(後述する時間値Tdet)とともに順次演算部20に転送される。
また演算部20からの通知信号SIは、バッファ及びIF部23が端子TM2から成形制御部12に送信する。また成形制御部12からの成形タイミング信号STMは、端子TM1からバッファ及びIF部23に一旦取り込まれ、時刻情報とともに順次演算部20に転送される。
また演算部20とコンピュータ装置4の各種情報通信は、バッファ及びIF部23を介して、端子TM3(例えばLANコネクタ端子)に接続された通信経路USにより実行される。
演算部20は例えばROM、RAM、CPUを有するマイクロコンピュータにより構成される。
本実施の形態では、演算部20は特にデータログ処理部20a、判定処理部20bとしての機能を持つ。
データログ処理部20aは、入力部21の各入力チャネルに入力された各時点での検出信号値をログデータとして記憶する処理を行う。
例えばA/D変換器22でデジタル値とされた各チャネルI1〜I8の各検出信号についてサンプル毎の値を記憶していく処理を行う。
判定処理部20bは、入力部21に入力された検出信号について、各種の特定タイミングを検出し、検出した特定タイミングを用いた処理により射出成形状況の判定結果を求める判定処理や、それに応じた通知信号SIの出力処理を行う。
これらの機能を有する演算部20の具体的な処理例については後述する。
メモリ部24は、例えばROM、ワークメモリ、不揮発性メモリ等として演算部20が使用できるメモリ領域を総括して示している。
メモリ部24は、例えばデータログ処理部20aの処理によるログデータの記憶領域として用いられる。またメモリ部24は、各種演算処理のワーク領域として用いられる。またメモリ部24は、演算部20の処理、特にデータログ処理部20aや判定処理部20bの処理を実現するためのプログラムの格納領域としても用いられる。
<タイミング管理による判定処理>
本実施の形態の計測装置1において実行する、タイミング管理による判定処理例を説明する。
まず、例えばマルチキャビティタイプの金型10を想定し、各キャビティCへの樹脂材料の流入タイミングの監視を行う例を述べる。
まず図5A、図5Bにより流入タイミングの経過時間管理による判定を説明する。
図5A、図5Bは、各キャビティCに設けられたセンサの検出信号の波形を示している。縦軸は検出値(Ddet)、横軸は時間である。ここでは、金型10内に4つのキャビティCが設けられているとし、各キャビティCに取り付けられた金型内センサ31の検出値として4つの波形、例えば圧力センサの検出信号波形を示している。例えば1ショットの樹脂注入に応じた1成形サイクルにおける検出信号波形である。
成形品が良品となる場合、各キャビティCへの流入タイミングはほぼ同じとなることが経験的に知られている。そのため各検出信号から各キャビティCへの流入タイミングを検知すれば、その結果により成形品の良品/不良品判定を行うことができる。
キャビティCに配置された圧力センサの検出値は、樹脂が流入している期間はほぼゼロであるが、樹脂がキャビティC内に充満するまで充填された直後に急激に上昇する。充満した状態でなお樹脂注入されてキャビティC内で樹脂が一気に圧縮されていくためである。
すると、検出信号波形の立ち上がりタイミングは、樹脂の充満直後のタイミングとなり、注入開始から充満までの経過時間に相当する。
そして樹脂材料の充満までの経過時間は流入タイミングと略等価であるため、検出信号波形の立ち上がりまでの経過時間が、それぞれのキャビティCにおいて略同等であれば、流入タイミングが揃っていると評価できる。
立ち上がりタイミングの検出のためには、閾値thDHを設定する。また立ち上がりタイミングとしての適切な経過時間となる範囲として経過時間Ts、Teを設定する。
図5A、図5Bに閾値thDH、経過時間Ts、Teを例示している。経過時間Ts、Teは、注入開始時点T0から立ち上がりタイミングまでの経過時間として許容できる最短値、最長値である。例えばTs=1秒、Te=2秒とすれば、注入開始から1秒経過時点から2秒経過時点の間に樹脂が充満されればよいとすることになる。
閾値thDHは、立ち上がりタイミング検出のための設定値であり、検出値Ddetが閾値thDH以上となった時点を、立ち上がりタイミングとする。
なお、閾値thDH、経過時間Ts、Teは、例えば図3のような管理画面90を用いた操作により、コンピュータ装置4上で作業者が入力し、それを演算部20が処理用の設定値として受信し取得する。
図5Aは、成形品が良品と判定される場合の例である。
各検出信号波形は、検出値Ddetが閾値thDH以上となるタイミングが、全て経過時間TsからTeの範囲内となっている。この場合、各キャビティCへの流入タイミングは略同じに揃っていると評価し、成形品は良品と判定する。
一方、図5Bは、各検出信号波形の立ち上がりタイミングが大きくずれている状態を示している。一部の波形は、検出値Ddetが閾値thDH以上となるタイミングが、経過時間TsからTeの範囲内となっているが、他の波形は経過時間TsからTeの範囲外のタイミングとなっている。
この場合、各キャビティCへの流入タイミングは揃っておらず、成形不良が生じていると判定する。
このように、各キャビティCへの樹脂充満が所定の経過時間内に達成されるか否かで流入タイミングのバランスを監視することで、適切な良否判定が可能となる。特に樹脂注入開始からの経過時間を管理することで、バランスが揃っていても、樹脂注入が速すぎたり、或いは遅すぎるというような状態も監視でき、これも注入速度の制御等に反映させることができる。つまり流入速度を厳密に管理したい場合に好適な手法となる。
なお、マルチキャビティCへの流入タイミングの例で説明したが、マルチゲート金型の各ゲートGでの流入タイミングの監視も全く同様に可能である。
次に図5C、図5Dにより流入タイミングの相対的な時間管理による判定を説明する。
上記の図5A、図5Bは絶対的な経過時間の基準として経過時間Ts、Teを設定したが、経過時間Ts,Teの設定は比較的難しい。
例えば製造ロットの変化、金型10や射出部11の経時変化、金型温度、材料温度、射出成形装置2を配置した室内の温度、などの諸条件により、最適な流入タイミングの範囲は微妙に変動する。つまり経過時間Ts、Teは、各条件に応じて調整する必要が生ずる。経過時間Ts,Teの設定が適切でないと、成形品が良品であるにも関わらず、不良品と判定されることが続出するような事態が生ずる可能性もある。
もちろん、経過時間Ts,Teの設定調整により、より正確な判定が可能となるが、場合によっては、特に経過時間については厳密な管理を行わず、各キャビティCへの流入タイミングが揃っていればよいという場合もある。
そこで図5C、図5Dにより流入タイミングの相対時間管理を行うこともできるようにしている。
この場合も、立ち上がりタイミングの検出のためには、閾値thDHを設定する。また、相対的なバランスの判定のために、許容できる立ち上がりタイミングのずれ幅ΔTHを設定する。閾値thDH、許容ずれ幅ΔTHは、図3のような管理画面90を用いた操作により、コンピュータ装置4上で作業者が入力し、それを演算部20が処理用の設定値として受信し取得する。
図5C、図5Dは図5A,図5Bと同様に各キャビティCに設けられたセンサの検出信号の波形を示している。
成形品が良品となる場合、各キャビティCへの流入タイミングはほぼ同じとなるため、各キャビティCについての立ち上がりタイミングが相対的に揃っているか否かを監視する。
図5Cは、成形品が良品と判定される場合の例である。
各検出信号波形は、検出値Ddetが閾値thDH以上となるタイミングが、比較的集中しており、立ち上がりタイミングが最も速い波形から最も遅い波形までの、立ち上がりタイミングのずれ幅ΔTdHが、許容ずれ幅ΔTHより狭くなっている。この場合、各キャビティCへの流入タイミングは略同じに揃っていると評価し、成形品は良品と判定する。
一方、図5Dは、各検出信号波形の立ち上がりタイミングが比較的大きくずれている状態を示している。その結果、立ち上がりタイミングが最も速い波形から最も遅い波形までの、立ち上がりタイミングのずれ幅ΔTdHが、許容ずれ幅ΔTHより広くなっている。この場合、各キャビティCへの流入タイミングは揃っておらず、成形不良が生じていると判定する。
このように、各キャビティCへの樹脂充満が相対的に揃っているか否かで流入タイミングのバランスを監視することで、簡易な手法で適切な良否判定が可能となる。
なお、この例も、マルチゲート金型の各ゲートGでの流入タイミングの監視にも適用可能である。
以上の立ち上がりタイミングの監視による判定として、説明上、図5A、図5Bの判定方式を「経過時間判定」、図5C、図5Dの判定方式を「相対判定」と呼ぶ。
経過時間判定、相対判定のいずれの場合も、計測装置1は、これらの判定を、1成形サイクル実行中に検出値Ddetをロギングしながらリアルタイムで行うこともできるし、1サイクル完了時点やさらに後の時点等で、ログデータを取得して行うこともできる。
つまり1成形サイクルの実行中に、各時点で入力部21から入力され取得された各チャネルI1〜I8の検出値Ddetや、もしくはデータログ処理部20aによってログデータとして記憶された検出値Ddetを用いて、各種のタイミングで経過時間判定や相対判定を行うことができる。
次に図6A、図6Bを用いて、立ち下がりタイミングの監視を行う例を説明する。例えば図6Aは、或る金型10のキャビティCにおける複数回の成形サイクル毎の検出信号波形(例えば圧力センサや温度センサの波形)のうち、或る3回の波形を波形P1,P2,P3として示している。
圧力センサの場合、成形サイクルにおいてピーク値に達した後、時間経過に伴う材料の収縮により圧力が低下していく。
また温度センサの場合も、成形サイクルにおいてピーク値に達した後、時間経過に伴う材料の冷却が観測される。
この収縮過程や冷却過程が毎回同じようなプロファイルを描くか否かを良否判定に用いる。このため或る閾値thDLを設定し、検出値Ddetが閾値thDL以下となったタイミングを立ち下がりタイミングとし、この立ち下がりタイミングが、注入開始時点T0からの適切な経過時間範囲にあるか否かを監視する。
経過時間Ts1、Te1は、注入開始時点T0から立ち下がりタイミングまでの経過時間として許容できる最短値、最長値である。
この場合も、閾値thDL、経過時間Ts1、Te1は、例えば図3のような管理画面90を用いた操作により、コンピュータ装置4上で作業者が入力し、それを演算部20が処理用の設定値として受信し取得する。
図6Aの例では、波形P2は経過時間Ts1、Te1で設定された適切な経過時間範囲内に立ち下がりタイミングが観測されている。一方、波形P1,P3は、立ち下がりタイミングは許容できる経過時間範囲からはずれたタイミングとなっている。
この場合、波形P2が観測された際の成形品は良品と判定し、波形P1,P3が観測された際の成形品は不良と判定する。
このような判定はシングルキャビティの金型10を用いた場合の、成形サイクル毎の良否判定に用いることができる。もちろんマルチキャビティタイプの金型10の各キャビティCについての成形サイクル毎の良否判定に用いることもできる。
図6Bは、マルチキャビティタイプやマルチゲートタイプの金型10において立ち下がりタイミングのバランスを監視する例である。
即ち、例えば各キャビティCにおける樹脂の収縮や温度低下のバランスを監視して、成形品の良否判定を行うことができる。
例えば図5A等と同様に、各キャビティCについての検出信号の波形を示している。
この各検出信号波形の立ち下がりタイミング、つまり検出値Ddetが閾値thDL以下となるタイミングが略同様のタイミングとなるか否かで、良否判定ができる。
例えば上述の経過時間判定の考え方を適用し、立ち下がりタイミングの許容経過時間として図6Bに示すように経過時間Ts2,Te2の設定を行う。そして全てのキャビティCについての検出信号波形の立ち下がりタイミングが、注入開始時点T0からの経過時間Ts,Teの範囲内となっているか否かで、成形品の良否判定ができる。
或いは上述の相対判定の考え方を適用し、許容ずれ幅ΔTLを設定する。そして図6Bに示すような、立ち下がりタイミングが最も速い波形から最も遅い波形までの、立ち下がりタイミングのずれ幅ΔTdLを測定する。このずれ幅ΔTdLが、設定した許容ずれ幅ΔTLより狭くなっているか否かにより、成形品の良否判定ができる。
以上、各種の判定処理例を示したが、これらの処理を実行する演算部20(データログ処理部20a及び判定処理部20b)の具体的な処理例を以下説明していく。
なお、以下の処理は、例えば樹脂成形の1サイクル実行中にリアルタイムで各種判定を行う例とする。1サイクル完了直後、或いはさらに後の時点で行う場合については後で言及する。
また以下の処理例は、計測装置1の演算部20が、図5A、図5Bの経過時間判定、図5C、図5Dの相対判定、図6Aの立ち下がりタイミング判定を、作業者のモード選択に応じて実行する例とする。
演算部20の処理例を図7,図8,図9,図10に示す。
演算部20はまず図7のステップS101でモード設定を行う。これは作業者が選択した判定処理モードを認識し、実行する処理として設定する処理である。本例では、経過時間判定モード、相対判定モード、立ち下がりタイミング判定モードのいずれかが選択されるものとする。
ステップS102で演算部20は、実行するモードに応じた設定値を取得する。
経過時間判定モードの場合は、閾値thDH、経過時間Ts,Teの各値を設定値として取得する(図5A、図5B参照)。
相対判定モードの場合は、閾値thDH、許容ずれ幅ΔTHの各値を設定値として取得する(図5C、図5D参照)。
立ち下がりタイミング判定モードの場合は、閾値thDL、経過時間Ts1,Te1の各値を設定値として取得する(図6A参照)。
以上のステップS101,S102では、演算部20は、コンピュータ装置4との通信により、選択されたモードや設定値を認識・取得することになる。
ステップS101,S102で判定処理の準備を終えたら、演算部20はステップS103で開始タイミングを待機する。例えば成形制御部12からの成形タイミング信号STMを監視し、1サイクルの射出成形動作の開始を検出する。
成形タイミング信号STMにより、1サイクルの射出成形動作の開始タイミング(つまり時点T0)を認識したら、演算部20はステップS104に進み、データログ処理部20aによるロギング処理を開始する。即ち、チャネル毎に各サンプルタイミングで得られる検出値Ddetの記憶を開始する。
このロギング処理は、ステップS105で終了タイミングが検出されるまで継続される。演算部20はステップS105で、例えば成形タイミング信号STMによる1サイクルの終了タイミングを監視している。なお、終了タイミングは、開始タイミングから所定時間経過の時点として演算部20が内部計数により管理してもよい。
演算部20は、終了タイミングを検知したらステップS105からS106に進み、ロギング処理を終了する。
終了タイミングとなってロギング処理を終了したら、演算部20はステップS107で監視終了か否かを確認し、引き続き監視を実行するのであればステップS103で開始タイミングを待機する。開始タイミングの待機中も、演算部20はステップS107で監視の終了か継続かを確認している。
演算部20は、作業者のコンピュータ装置4を用いた操作による監視終了の指示、或いは規定回数の監視動作の終了、或いは射出成形装置2からの通信による射出成形の終了などを検知することで、ステップS107で監視終了と判断する。その場合、演算部20は当該図7の処理を終了する。
ここまでの説明から理解されるように、射出成形の1サイクル毎にロギング処理が行われている。従って、1サイクル毎に各種センサの検出信号が、ログデータとして保存されていく。このログデータを用いることで、射出成形装置2の動作評価や成形品の検証等を行うことができる。
以上のような成形サイクル毎のロギングを行っていることと並行して、演算部20は選択されたモードの判定処理を行う。
即ちステップS103で開始タイミングが認識されてから、ステップS105で終了タイミングと判定されるまでの期間、演算部20の処理は選択されたモードに応じてステップS120,S140,S160で処理が分岐される。
演算部20の処理が経過時間判定モードに設定されている場合、ステップS105→S120→図8の処理→ステップS105というように処理がループする。即ち図8のステップS121〜S130で経過時間判定モードとしての判定処理が行われる。
図8のステップS121では、演算部20は或る入力チャネルI(x)の検出値Ddetとサンプルタイミングとしての時間値Tdetを取得する。時間値Tdetは、例えば1サイクルの開始タイミング(=樹脂の注入開始時点T0)を起点とした経過時間である。入力チャネルI(x)は、入力チャネルI1〜I8のいずれかを指す(x=1〜8)。
例えば演算部20は、バッファ及びIF部23を介して順次転送されてくる各時点の各チャネルの検出値を、順次ステップS121で取得し、この取得した各検出値についてそれぞれ図8の処理を実行する。換言すれば、ロギングする検出値Ddetを取得する毎に、その検出値Ddetと時間値Tdetを用いて図8の処理を行う。
ステップS122で演算部20は、取得した検出値Ddetの入力チャネルI(x)が、立ち上がりタイミング監視対象の検出信号の入力チャネルのうちであって、すでに今サイクルにおいて立ち上がりタイミングを検出済みのチャネルであるか否かを判定する。即ち1サンプル前以前の時点で、すでに検出値Ddetが閾値thDH以上となっていたチャネルであるか否かの判定である。
すでに立ち上がりタイミング検出済みのチャネルであれば、図8の処理を終え、図7のステップS105に戻る。
入力チャネルI(x)が立ち上がりタイミング未検出のチャネルであれば演算部20はステップS122からS123に進み、今回が立ち上がりタイミングであるか否かを判定する。即ち検出値Ddetを閾値thDHと比較し、Ddet≧thDHとなったか否かを確認する。
Ddet≧thDHでなければ図8の処理を終える。
Ddet≧thDHであれば、今回の時間値Tdetが立ち上がりタイミングとなる。そこで演算部20はステップS124に進み、時間値Tdetを、入力チャネルI(x)の立ち上がりタイミングの値として例えばメモリ部24の所定の領域に記憶する。例えばログデータの1つとして記憶する。
続いて演算部20はステップS125、S126で、時間値Tdetと経過時間Ts,Teを比較する。
即ちステップS125でTdet≧Tsであるか否かを判定する。
またステップS126でTdet≦Teであるか否かを判定する。
ステップS125,S126の両方で肯定結果が得られる場合、今回検出した立ち上がりタイミングは、適正な経過時間範囲内となるため、ステップS127で入力チャネルI(x)の検出信号についてOK判定結果をメモリ部24の所定の領域に記憶する。
一方、ステップS125,S126のいずれかで否定結果が得られた場合は、今回検出した立ち上がりタイミングは、適正な経過時間範囲内ではないことになるため、ステップS128で入力チャネルI(x)の検出信号についてエラー判定結果をメモリ部24の所定の領域に記憶する。
演算部20はステップS129では、立ち上がりタイミング監視対象となっている全チャネルについて立ち上がりタイミング検出済みであるか否かを確認する。まだ立ち上がりタイミングが検出されていない入力チャネルが存在する場合、そのまま図8の処理を終える。
検出値Ddetの取得毎に図8の処理が行われることで、ある時点でのステップS129で、全チャネルについて立ち上がりタイミング検出済みとなる。その場合、演算部20はステップS130に進み、判定結果を出力する。
即ち全チャネルについてOK判定結果が記憶されていれば、判定OKの通知信号SIを成形制御部12に送信し、またコンピュータ装置4に判定OKを通知する。
一方、1つのチャネルでもエラー判定結果が記憶されていれば、判定エラー、つまり不良判定の通知信号SIをアラームとして成形制御部12に送信し、またコンピュータ装置4に不良判定を通知する。
このような図8の処理が各検出値Ddetの取得毎に行われることで、各入力チャネルの立ち上がりタイミングが検出され、経過時間判定が行われる。
なお、判定エラーの通知は、ステップS128でエラー判定された時点ですぐに実行するようにしてもよい。
演算部20の処理が相対判定モードに設定されている場合、図7のステップS105→S120→S140→図9の処理→ステップS105というように処理がループする。即ち図9のステップS141〜S151で相対判定モードとしての判定処理が行われる。
図9のステップS141では、演算部20は或る入力チャネルI(x)の検出値Ddetとサンプルタイミングとしての時間値Tdetを取得する。
ステップS142で演算部20は、取得した検出値Ddetの入力チャネルI(x)が、立ち上がりタイミング監視対象の検出信号の入力チャネルのうちであって、すでに今サイクルにおいて立ち上がりタイミングを検出済みのチャネルであるか否かを判定する。すでに立ち上がりタイミング検出済みのチャネルであれば、図9の処理を終え、図7のステップS105に戻る。
入力チャネルI(x)が立ち上がりタイミング未検出のチャネルであれば演算部20はステップS143に進み、今回が立ち上がりタイミング(Ddet≧thDH)であるか否かを判定する。 Ddet≧thDHでなければ図9の処理を終える。
Ddet≧thDHであれば、今回の時間値Tdetが立ち上がりタイミングとなるため、演算部20はステップS144に進み、時間値Tdetを入力チャネルI(x)の立ち上がりタイミングの値として記憶する。
以上のステップS141〜S144は図8のステップS121〜S124と同様である。
演算部20はステップS145では、立ち上がりタイミング監視対象となっている全チャネルについて立ち上がりタイミング検出済みであるか否かを確認する。まだ立ち上がりタイミングが検出されていない入力チャネルが存在する場合、そのまま図9の処理を終える。
ある時点のステップS145で、立ち上がりタイミング監視対象となっている全チャネルについて立ち上がりタイミング検出済みと判定されたら、演算部20はステップS146に進み、各チャネルの立ち上がりタイミングのうちで最大値と最小値を判定する。
立ち上がりタイミング監視対象となっているチャネルが入力チャネルI1〜I(m)であるとし、各チャネルについて検出された立ち上がりタイミング(時間値)をTdet(1)〜Tdet(m)とする。演算部20は立ち上がりタイミングとした時間値Tdet(1)〜Tdet(m)のうちで最大値をTdetMAX、最小値をTdetMINとする。
そして演算部20はステップS147で、立ち上がりタイミングのずれ幅ΔTdHを
ΔTdH=TdetMAX−TdetMIN
として求める。
演算部20は、ずれ幅ΔTdHを求めたら、ステップS148でこれを許容ずれ幅ΔTHと比較する。
ΔTdH≦ΔTHであれば、立ち上がりタイミングのずれ幅は許容範囲内であるとしてステップS149でOK判定とし、判定結果をメモリ部24の所定の領域に記憶する。
ΔTdH≦ΔTHでなければ、立ち上がりタイミングのずれ幅は許容範囲内ではないとしてステップS150でエラー判定とし、判定結果をメモリ部24の所定の領域に記憶する。
そして演算部20はステップS151で、判定結果の通知信号SIを成形制御部12に送信し、またコンピュータ装置4に判定結果を通知する。
即ちステップS149の処理でOK判定結果が記憶されていれば、判定OKの通知信号SIを成形制御部12に送信し、またコンピュータ装置4に判定OKを通知する。
一方ステップS150の処理でエラー判定結果が記憶されていれば、判定エラー、つまり不良判定の通知信号SIをアラームとして成形制御部12に送信し、またコンピュータ装置4に不良判定を通知する。
このような図9の処理が各検出値Ddetの取得毎に行われることで、各入力チャネルの立ち上がりタイミングが検出され、相対判定が行われる。
演算部20の処理が立ち下がりタイミング判定モードに設定されている場合、図7のステップS105→S120→S140→S160→図10の処理→ステップS105というように処理がループする。即ち図10のステップS161〜S169で立ち下がりタイミング判定モードにおける判定処理が行われる。
図10のステップS161では、演算部20は或る入力チャネルI(x)の検出値Ddetとサンプルタイミングとしての時間値Tdetを取得する。
なお、このモードの場合、判定対象とする入力チャネルの数は1つでもよいし、複数でもよい。
ステップS162で演算部20は、取得した検出値Ddetの入力チャネルI(x)が、
立ち下がりタイミング監視対象の検出信号の入力チャネルのうちであって、すでに一旦立ち上がりが検出され、その後に立ち下がりタイミングが未検出のチャネルであるか否かを判定する。該当しなければ図10の処理を終え、図7のステップS105に戻る。
入力チャネルI(x)が、監視対象の検出信号の入力チャネルであって、立ち下がりタイミング未検出のチャネルであれば演算部20はステップS163に進み、今回が立ち下がりタイミングであるか否かを判定する。即ち検出値Ddetを閾値thDLと比較し、Ddet≦thDLとなったか否かを確認する。
Ddet≦thDLでなければ図10の処理を終える。
Ddet≦thDLであれば、今回の時間値Tdetが立ち下がりタイミングとなる。そこで演算部20はステップS164に進み、時間値Tdetを、入力チャネルI(x)の立ち下がりタイミングの値として例えばメモリ部24の所定の領域に記憶する。
続いて演算部20はステップS165、S166で、時間値Tdetと経過時間Ts1,Te1を比較する。
即ちステップS165でTdet≧Ts1であるか否かを判定する。
またステップS166でTdet≦Te1であるか否かを判定する。
ステップS165,S166の両方で肯定結果が得られる場合、今回検出した立ち下がりタイミングは、適正な経過時間範囲内となるため、ステップS167で入力チャネルI(x)の検出信号についてOK判定結果をメモリ部24の所定の領域に記憶する。
一方、ステップS165,S166のいずれかで否定結果が得られた場合は、今回検出した立ち下がりタイミングは、適正な経過時間範囲内ではないことになるため、ステップS168で入力チャネルI(x)の検出信号についてエラー判定結果をメモリ部24の所定の領域に記憶する。
そして演算部20はステップS169で、判定結果の通知信号SIを成形制御部12に送信し、またコンピュータ装置4に判定結果を通知する。
即ちステップS167の処理でOK判定結果が記憶されていれば、判定OKの通知信号SIを成形制御部12に送信し、またコンピュータ装置4に判定OKを通知する。
一方ステップS168の処理でエラー判定結果が記憶されていれば、判定エラー、つまり不良判定の通知信号SIをアラームとして成形制御部12に送信し、またコンピュータ装置4に不良判定を通知する。
このような図10の処理が各検出値Ddetの取得毎に行われることで、対象とする1又は複数の入力チャネルの立ち下がりタイミングが検出され、その良否判定が行われる。
以上、図7,図8,図9,図10に演算部20の処理の一例を示した。この例では経過時間判定、相対判定、立ち下がりタイミング判定を、樹脂成形の1サイクル実行中にリアルタイムで行う例としたが、これに限られない。
1サイクル完了直後、或いはさらに後の時点で行う場合については、監視対象の入力チャネルについての検出値Ddet及び時間値Tdetのログデータを順次メモリ部24から取得しながら、図8,図9又は図10の処理が行われるようにすればよい。
また図6Bで説明したような、各検出情報波形の立ち下がりタイミングの略一致の判定の処理については示していないが、図8の処理の所要部分を、図10のように閾値thDLを用いた立ち下がりタイミング検出及び経過時間Ts2,Te2を用いた判定に変形することで可能であることは言うまでもない。
<タイミング検出信号出力処理>
ところで計測装置1は、通知信号SIとして、成形制御部12に立ち上がりタイミングや立ち下がりタイミングを通知することができる。このための処理例を図11に示す。
なお図11においてステップS101〜S107は図7と同様であるため重複説明を避ける。但しステップS101のモード設定では、タイミング通知モードが選択される。
ステップS102では閾値thDH、閾値thDLが取得される。
この図11の処理例では、1サイクルの成形が開始されてから終了されるまでの期間に、ステップS180、S190の監視が行われる。
ステップS180では検出値Ddetが閾値thDH以上となったか否かが判定される。検出値Ddetが閾値thDH以上となった場合、つまり立ち上がりタイミングが検出されたら、演算部20はステップS181に進み、立ち上がりタイミング検出信号としての通知信号SIを出力する。またステップS182で時間値Tdetを検出した立ち上がりタイミングとして記憶する。
図12Aに立ち上がりタイミングの通知信号SIを示している。
先に述べたように、例えば圧力センサの検出信号を考えると、立ち上がりタイミングは、キャビティに樹脂材料が充満した直後のタイミングとなる。
例えば成形制御部12は、樹脂がキャビティに充満するまでは、注入樹脂の速度制御を行い、充満後に圧力制御に切り換えるような制御を行う。そのためには充満タイミングを検知することが必要となるが、この通知信号SIにより当該タイミングを知ることができる。従って成形制御部12が速度制御から圧力制御への切替を適切なタイミングで実行できる。
図11のステップS190では、すでに立ち上がりが観測された後に、検出値Ddetが閾値thDL以下となったか否かが判定される。
検出値Ddetが閾値thDL以下となった場合、つまり立ち下がりタイミングが検出されたら、演算部20はステップS191に進み、立ち下がりタイミング検出信号としての通知信号SIを出力する。またステップS192で時間値Tdetを検出した立ち下がりタイミングとして記憶する。
図12Bに立ち下がりタイミングの通知信号SIを示している。
立ち下がりタイミングは、成型材料の温度下降や収縮を表す。金型10からの成形品の取り出しは、温度や圧力がある程度低下した時点で行われるが、すると或る閾値thDLを用いて検出する立ち下がりタイミングは、成形品の取り出しに適したタイミングすることもできる。
そこで例えば成形制御部12は、立ち下がりタイミングの通知信号SIに応じて、金型10の開閉機構を制御し、金型10を開いて成形品の取り出しを行うようにする。
このようにすれば、最適なタイミングで成形品の取り出しが可能となる。
即ち取り出しが速すぎて成形不良が生ずることもなく、また取り出しが遅すぎて工程サイクルの長時間化が生ずることもないようにすることができる。
従って、歩留まりの向上や、工程1サイクル時間の削減による製造効率の向上を実現できる。
なお、図11の処理例では、立ち上がりタイミング通知と立ち下がりタイミング通知の両方が行われるものとしたが、モード選択により、いずれかが選択的に実行されるようにしてもよい。
また図7で説明した判定処理とともに、或いは選択的に、立ち上がりタイミング通知や立ち下がりタイミング通知の処理が行われてもよい。
<まとめ及び変形例>
以上の実施の形態の計測装置1は、複数の入力チャネルI1〜Inを有し、射出部11及び金型10を有する射出成形装置2に配備された複数のセンサの検出信号を同時入力することができる入力部21を有する。また各入力チャネルに入力された各時点Tdetでの検出値Ddetをログデータとして記憶するデータログ処理部20aと、1又は複数の入力チャネルの検出信号について、特定タイミングを検出し、検出した特定タイミングを用いた処理により射出成形状況の判定結果を求める判定処理部20bとを備える。
即ち計測装置1は、射出成形装置2(金型10や射出部11)に配備される各種のセンサ(31,32)、例えば圧力センサや温度センサ等の検出信号値のデータロガーとして機能しつつ、各種成形過程における事象を判定し、成形品の良品/不良品の判定等を行うことができるようにしている。特に複数チャネルの検出信号入力を可能とし、1つのチャネルの検出信号の特定タイミングだけでなく、複数の各チャネルの検出信号の特定タイミングを用いた判定を行うようことができる。
例えばマルチキャビティタイプの金型10やマルチゲートタイプの金型10を用いる射出成形装置2では、各キャビティ/ゲートにおける温度、圧力その他の各種状況、特にこれらの検出信号の特定タイミングのずれが、成形品の品質に影響する。また金型10における温度や圧力の低下のプロファイルの変動は成形品の品質に応じたものとなる。そこでこれらを互いに比較したり、所定の時間軸範囲にあるか否かを比較したりすることで、成形品の良否判定を効率的に精度よく実行できる。
特に熱可塑性樹脂の射出成形において、マルチキャビティタイプの金型による多数個取りは量産効率の向上に適しており、またマルチゲートタイプ(多点ゲート)の金型は、樹脂材料の充填効率の向上に適している。これらの場合、各キャビティや各ゲートでの流入バランスが崩れた場合に成形不良が発生するケースがある。従って、これらのバランスの崩れを、特定タイミングの評価により検知・管理できることは射出成形による生産管理上、非常に有効なものとなる。
なお、1又は複数の入力チャネルの検出信号について、特定タイミングを検出し、検出した特定タイミングを用いた処理により射出成形状況の判定結果を求める処理は、射出成形サイクルに合わせてリアルタイムに行うこともできるし、ログデータを用いて事後的に行うこともできる。従って成形工程におけるリアルタイム監視で用いてもよいし、事後的な工程分析等の目的で行うこともできる。
また実施の形態の計測装置1は、経過時間判定として、複数の入力チャネルの検出信号について、検出値Ddetが閾値thDH以上となる立ち上がりタイミング(第1タイミング)を検出し、複数チャネルのそれぞれの立ち上がりタイミングが所定の第1時点から第2時点の間(経過時間Ts〜Te間)であるか否かの判定を行うようにしている(図8参照)。
例えば第1入力チャネルから第n入力チャネルに、射出成形装置において同時に樹脂流入が行われるn個の部位の検出信号が入力されることを考えると、それらの検出信号からは、本来、略同時的な変化、例えば検出信号値波形の立ち上がりが観測されるはずである。この立ち上がりタイミングを、検出信号が第1閾値以上となる第1タイミングとして検出する。立ち上がりタイミングがずれることには各種の要因があるが、タイミングずれは成形品の良否判定の指標となる。複数の入力チャネルの検出信号について第1タイミング(立ち上がりタイミング)が、全て第1時点(Ts)から第2時点(Te)の間であれば、各入力チャネルの立ち上がりタイミングが揃っており、かつ規定の経過時間範囲内に立ち上がっていることが示される。つまり各検出信号の立ち上がりが相対的にも揃っており、かつ経過時間的にも良好な範囲であることになる。これにより各キャビティや各ゲートにおける状況のバランスが監視でき、各成形品についての比較的厳格な評価が可能となる。
また実施の形態の計測装置1は、相対判定として、複数の入力チャネルの検出信号について、検出値Ddetが閾値thDH以上となる立ち上がりタイミング(第1タイミング)を検出し、複数チャネルのそれぞれの立ち上がりタイミングのずれ幅ΔTdHが所定の時間幅(許容ずれ幅ΔTH)以内であるか否かの判定を行うようにした(図9参照)。
例えば樹脂注入開始からなどの経過時間については判定対象とせずに、複数の入力チャネルの検出信号について第1タイミング(立ち上がりタイミング)のずれが所定の時間幅以内であれば、各入力チャネルの各検出信号の波形の立ち上がりが相対的に揃っていると評価する。これにより各キャビティや各ゲートにおける状況のバランスが監視できる。
ここで、例えば樹脂注入開始からなどの経過時間は、各種事情でずれていくことがある。すると、経過時間の点を判定に反映させてしまうことで、良品であるにもかかわらず不良品と判定されることが生ずる場合もある。そこで経過時間のずれが成形品に影響を与えない場合については、各検出信号の立ち上がりの相対的な一致を監視する。これにより経時状況や環境に適した精度のよい判定が可能となる。
実施の形態の計測装置1は、入力された検出値Ddetが閾値thDL以下となる立ち下がりタイミング(第2タイミング)を検出し、立ち下がりタイミングが所定の第1時点から第2時点の間(Ts1〜Te1間)であるか否かの判定を行うようにした(図10参照)。
例えば圧力や温度の検出信号の立ち下がりタイミングが所定の経過時間範囲内にあるか否かは、樹脂材料の冷却過程、収縮過程などが適切な検出信号のプロファイルで検出されているか否かを判断するものである。立ち下がりタイミングが適切な経過時間範囲内であれば成形品の樹脂材料の冷却過程、収縮過程などが適切な状態で推移していると評価でき、これにより適切な良否判定が可能となる。
このような立ち下がりタイミングの監視は、1つのチャネルについてのサイクル毎のプロファイル監視としても有効であり、またマルチキャビティタイプ、マルチゲートタイプの金型についての複数のチャネルのバランス監視にも有効である。
実施の形態の計測装置1は、立ち上がりタイミング(第1タイミング)、又は立ち下がりタイミング(第2タイミング)を検出することに応じて通知信号SIを出力する処理を行うようにした(図11,図12参照)。
圧力センサや温度センサ等の検出信号の立ち上がりタイミングや立ち下がりタイミングは、射出成形装置1の動作制御に用いることができる。従って立ち上がりタイミング又は立ち下がりタイミングの通知信号SIを出力することで、成形制御部12で効率的な動作制御を実行させることができる。
以上、本発明に係る実施の形態について説明したが、本発明は上記した具体例に限定されるべきものではなく、多様な変形例が考えられる。
射出成形装置2の構成は多様に考えられる。計測装置1の構成も同様である。
図7〜図11に示した計測装置1の演算部20に処理例も一例に過ぎず、具体的な処理例は多様に考えられる。
射出成形装置2に搭載されるセンサ(金型内センサ31や射出部内センサ32)としては多様に考えられる。即ち計測装置1は、圧力センサによる射出部11内や金型10内における樹脂材料の圧力計測や、温度センサの検出信号に基づく成形材料や金型表面温度の計測以外にも多様な検出信号の計測に適用できる。例えば光センサ等の検出信号に基づく成形材料の流速計測、赤外線センサ等の検出信号に基づくフローフロント計測(例えば成形樹脂がキャビティ内の所定位置に到達するまでの時間の計測)、位置センサ等の検出信号に基づく型閉時における金型同士の位置ズレ量の計測(型開き量の計測)等、射出成形に係る他の計測を行う場合にも好適に適用できる。
<プログラム及び記憶媒体>
本発明の実施の形態のプログラムは、計測装置1における演算部20(マイクロコンピュータ等の演算処理装置)に判定処理部20bとしての機能を実行させるプログラムである。
実施の形態のプログラムは、例えば計測装置1の複数の入力チャネルの全部又は一部に入力される、射出成形装置2に配備された1又は複数のセンサ(31,32)の検出信号について、特定タイミングを検出するタイミング検出ステップと、検出した特定タイミングを用いた処理により射出成形状況の判定結果を求める判定ステップとを演算処理装置に実行させるプログラムである。即ち、図7,図8,図9,図10の処理を実行させるプログラムである。
このようなプログラムにより本実施の形態の計測装置1の製造が容易となる。
そしてこのようなプログラムはコンピュータ装置等の機器に内蔵されている記憶媒体や、CPUを有するマイクロコンピュータ内のROM等に予め記憶しておくことができる。あるいはまた、半導体メモリ、メモリカード、光ディスク、光磁気ディスク、磁気ディスクなどのリムーバブル記憶媒体に、一時的あるいは永続的に格納(記憶)しておくことができる。またこのようなリムーバブル記憶媒体は、いわゆるパッケージソフトウェアとして提供することができる。
また、このようなプログラムは、リムーバブル記憶媒体からパーソナルコンピュータ等にインストールする他、ダウンロードサイトから、LAN、インターネットなどのネットワークを介してダウンロードすることもできる。
またこのような実施の形態のプログラムがコンピュータ装置4にインストールされることで、コンピュータ装置4が計測装置1の機能を備えるようにすることもできる。
例えば専用アンプ3とコンピュータ装置4をコネクタで直接接続する。専用アンプ3を介してコンピュータ装置4には複数の入力チャネルの検出信号が同時に供給されるようにする。そしてコンピュータ装置4において当該プログラムを含むソフトウェアが起動されることで、図7,図8,図9,図10の処理をコンピュータ装置4で実行する。即ち複数の入力チャネルの全部又は一部に入力される、1又は複数のセンサ(31,32)の検出信号について、特定タイミングを検出し、検出した特定タイミングを用いた処理により射出成形状況の判定結果を求める処理を行う。これにより、パーソナルコンピュータ等のコンピュータ装置4を用いて計測装置1を実現できる。
1…計測装置、2…射出成形装置、3…専用アンプ、4…コンピュータ装置、10…金型、11…射出部、12…成形制御部、20…演算部、20a…データログ処理部、20b…判定処理部、21…入力部、22…A/D変換器、23…バッファ及びIF部、24…メモリ部、31…金型内センサ、32…射出部内センサ、33…センサ用アンプ、100…計測システム

Claims (7)

  1. 複数の入力チャネルを有し、射出成形装置に配備された複数のセンサの検出信号を同時入力することができる入力部と、
    前記入力部の各入力チャネルに入力された各時点での検出信号値をログデータとして記憶するデータログ処理部と、
    1又は複数の入力チャネルの検出信号について、特定タイミングを検出し、検出した特定タイミングを用いた処理により射出成形状況の判定結果を求める判定処理部と、を備えた
    計測装置。
  2. 前記判定処理部は、
    複数の入力チャネルの検出信号について、前記特定タイミングとして検出信号が第1閾値以上となる第1タイミングを検出し、
    複数チャネルのそれぞれの前記第1タイミングが所定の第1時点から第2時点の間であるか否かの判定を行う
    請求項1に記載の計測装置。
  3. 前記判定処理部は、
    複数の入力チャネルの検出信号について、前記特定タイミングとして検出信号が第1閾値以上となる第1タイミングを検出し、
    複数チャネルのそれぞれの前記第1タイミングのずれが所定の時間幅以内であるか否かの判定を行う
    請求項1に記載の計測装置。
  4. 前記判定処理部は、
    前記特定タイミングとして、前記入力部に入力された検出信号が第2閾値以下となる第2タイミングを検出し、
    前記第2タイミングが所定の第1時点から第2時点の間であるか否かの判定を行う
    請求項1に記載の計測装置。
  5. 前記判定処理部は、入力チャネルの検出信号について検出信号が第1閾値以上となる第1タイミング、又は検出信号が第2閾値以下となる第2タイミングを検出することに応じて、前記第1タイミング又は前記第2タイミングの通知信号を出力する処理を行う
    請求項1に記載の計測装置。
  6. 計測装置の複数の入力チャネルの全部又は一部に入力される、射出成形装置に配備された1又は複数のセンサの検出信号について、特定タイミングを検出するタイミング検出ステップと、
    検出した特定タイミングを用いた処理により射出成形状況の判定結果を求める判定ステップと、を備えた
    計測装置の計測方法。
  7. 複数の入力チャネルの全部又は一部に入力される、射出成形装置に配備された1又は複数のセンサの検出信号について、特定タイミングを検出するタイミング検出ステップと、
    検出した特定タイミングを用いた処理により射出成形状況の判定結果を求める判定ステップと、
    を演算処理装置に実行させるプログラム。
JP2016146368A 2016-07-26 2016-07-26 計測装置、計測方法、プログラム Active JP6494113B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016146368A JP6494113B2 (ja) 2016-07-26 2016-07-26 計測装置、計測方法、プログラム
CN201710616267.7A CN107650350B (zh) 2016-07-26 2017-07-25 测量设备、测量方法及程序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016146368A JP6494113B2 (ja) 2016-07-26 2016-07-26 計測装置、計測方法、プログラム

Publications (2)

Publication Number Publication Date
JP2018015936A true JP2018015936A (ja) 2018-02-01
JP6494113B2 JP6494113B2 (ja) 2019-04-03

Family

ID=61081170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016146368A Active JP6494113B2 (ja) 2016-07-26 2016-07-26 計測装置、計測方法、プログラム

Country Status (2)

Country Link
JP (1) JP6494113B2 (ja)
CN (1) CN107650350B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114555325A (zh) * 2019-10-02 2022-05-27 美蓓亚三美株式会社 压力检测装置以及优劣判断方法
CN114555321A (zh) * 2019-10-02 2022-05-27 美蓓亚三美株式会社 压力检测装置以及优劣判断方法
WO2023140136A1 (ja) * 2022-01-20 2023-07-27 三菱電機株式会社 繊維強化樹脂羽根車の成形方法および繊維強化樹脂歯車の成形方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111186111B (zh) * 2020-01-21 2020-12-08 广州中和互联网技术有限公司 一种注塑机产量实时检测方法、系统及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195459A (ja) * 1975-02-18 1976-08-21 Netsukasoseijushiseikeisochi
JPH07205245A (ja) * 1994-01-13 1995-08-08 Sumitomo Heavy Ind Ltd プロセスデータのリアルタイム解析方法及び装置
JPH07232366A (ja) * 1994-02-24 1995-09-05 Sony Corp 射出成形判定方法及び装置
US6090318A (en) * 1997-09-16 2000-07-18 K.K. Holding Ag Process for controlling the hot-runner heating of a multicavity injection mould
JP2003112348A (ja) * 2001-10-04 2003-04-15 Olympus Optical Co Ltd 射出成形方法
JP2009096045A (ja) * 2007-10-16 2009-05-07 Toyo Mach & Metal Co Ltd 射出成形機
JP2014162132A (ja) * 2013-02-26 2014-09-08 Murata Mach Ltd 型締装置の管理システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224323A (ja) * 1983-06-03 1984-12-17 Tekunopurasu:Kk 型内圧波形による監視方法
JPH04282219A (ja) * 1991-03-11 1992-10-07 Sumitomo Jukikai Plast Mach Kk 射出成形機の計量時間監視装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195459A (ja) * 1975-02-18 1976-08-21 Netsukasoseijushiseikeisochi
JPH07205245A (ja) * 1994-01-13 1995-08-08 Sumitomo Heavy Ind Ltd プロセスデータのリアルタイム解析方法及び装置
JPH07232366A (ja) * 1994-02-24 1995-09-05 Sony Corp 射出成形判定方法及び装置
US6090318A (en) * 1997-09-16 2000-07-18 K.K. Holding Ag Process for controlling the hot-runner heating of a multicavity injection mould
JP2003112348A (ja) * 2001-10-04 2003-04-15 Olympus Optical Co Ltd 射出成形方法
JP2009096045A (ja) * 2007-10-16 2009-05-07 Toyo Mach & Metal Co Ltd 射出成形機
JP2014162132A (ja) * 2013-02-26 2014-09-08 Murata Mach Ltd 型締装置の管理システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114555325A (zh) * 2019-10-02 2022-05-27 美蓓亚三美株式会社 压力检测装置以及优劣判断方法
CN114555321A (zh) * 2019-10-02 2022-05-27 美蓓亚三美株式会社 压力检测装置以及优劣判断方法
EP4039442A4 (en) * 2019-10-02 2023-11-01 Minebea Mitsumi Inc. PRESSURE DETECTION DEVICE AND QUALITY DETERMINATION METHOD
EP4039441A4 (en) * 2019-10-02 2023-11-01 Minebea Mitsumi Inc. PRESSURE DETECTION DEVICE AND QUALITY DETERMINATION METHOD
WO2023140136A1 (ja) * 2022-01-20 2023-07-27 三菱電機株式会社 繊維強化樹脂羽根車の成形方法および繊維強化樹脂歯車の成形方法

Also Published As

Publication number Publication date
CN107650350B (zh) 2020-11-06
JP6494113B2 (ja) 2019-04-03
CN107650350A (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
JP6532845B2 (ja) 計測装置、計測方法、プログラム
JP6494113B2 (ja) 計測装置、計測方法、プログラム
US8060240B2 (en) Injection molding control method
JP2006281662A (ja) 射出成形機の制御装置
JP6587989B2 (ja) 計測装置、計測方法、プログラム
JP6772119B2 (ja) 演算処理装置、演算処理装置の演算方法及びプログラム
US20160214299A1 (en) Measurement apparatus
JP2008114286A (ja) ダイカストマシンの溶湯充填状態良否判定装置及び溶湯充填状態良否判定方法
TWI380861B (zh) 基於柱塞吹出之測定辨認模造物品之品質之方法
JP2021062504A (ja) 射出成形機管理支援装置及び射出成形機
JP3562582B2 (ja) 射出成形機の制御方法及び制御装置
JP2009137076A (ja) 射出成形用金型、射出成形における可塑化不良の検出方法、及び射出成形方法
KR20170082928A (ko) 사출 성형 장치의 보압 절환 제어 장치 및 방법
KR101951592B1 (ko) 메인터넌스 판단 지표 추정 장치, 유량 제어 장치 및 메인터넌스 판단 지표 추정 방법
JP6687574B2 (ja) 演算処理装置、演算処理装置の演算方法及びプログラム
JP3475725B2 (ja) 射出成形方法およびその装置
JP3556357B2 (ja) 射出成形機における製品良否判別装置
JP2012196870A (ja) 樹脂詰まり検出装置および樹脂詰まり検出方法
JP4767192B2 (ja) 射出成形装置、射出成形方法
US11642822B2 (en) Largest empty corner rectangle based process development
US10882236B2 (en) Molding system, molding apparatus, inspection apparatus, inspection method, and program
JPH0249894B2 (ja)
KR101465347B1 (ko) 사출성형 공정의 특성신호도출 방법 및 이를 이용한 사출성형 공정 모니터링 방법
JP2003181846A (ja) タイヤの加硫監視方法およびそれに用いる装置
AT520658A1 (de) Prozessüberwachung bei der herstellung von spritzgussformteilen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6494113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250